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Abstract
In ground-based global positioning system (GPS) meteorology, atmospheric weighted mean temperature, Tm, plays a very
important role in the progress of retrieving precipitable water vapor (PWV) from the zenith wet delay of the GPS. Generally,
most of the existing Tm models only take either latitude or altitude into account in modeling. However, a great number of
studies have shown that Tm is highly correlated with both latitude and altitude. In this study, a new global grid empirical Tm
model, named as GGTm, was established by a sliding window algorithm using global gridded Tm data over an 8-year period
from 2007 to 2014 provided by TU Vienna, where both latitude and altitude variations are considered in modeling. And the
performance of GGTm was assessed by comparing with the Bevis formula and the GPT2w model, where the high-precision
global gridded Tm data as provided by TU Vienna and the radiosonde data from 2015 are used as reference values. The results
show the significant performance of the new GGTm model against other models when compared with gridded Tm data and
radiosonde data, especially in the areas with great undulating terrain. Additionally, GGTm has the global mean RMSPWV and
RMSPWV/PWV values of 0.26 mm and 1.28%, respectively. The GGTmmodel, fed only by the day of the year and the station
coordinates, could provide a reliable and accurate Tm value, which shows the possible potential application in real-time GPS
meteorology, especially for the application of low-latitude areas and western China.
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1 Introduction

Water vapor, an important component of the Earth’s atmo-
sphere, plays a key role in global atmospheric radiation,water
cycling and energy balance (Wang et al. 2007; Wang and
Zhang 2009; Jin and Luo 2009). Understanding the spatial
and temporal distribution of water vapor in the atmosphere
is of great scientific and practical significance in weather
forecasting and climate prediction. Traditional techniques for
detecting water vapor mainly include water vapor radiome-
ters, radiosondes and remote sensing. These methods are
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unable to meet the increasing demands of modern meteoro-
logical development, primarily due to the expensive devices,
heavy workload and low spatiotemporal resolution.

A global positioning system (GPS) technique has advan-
tages of all-weather conditions, high precision and wide
coverage and has been fully operational since 1994. The
GPS signal path through the Earth’s atmosphere is influ-
enced by troposphere refraction, resulting in a GPS signal
delay, i.e., a tropospheric delay. The tropospheric delay can
be expressed as zenith total delay (ZTD) multiplied by the
tropospheric mapping function. Meanwhile, the ZTD con-
sists of two parts: zenith hydrostatic delay (ZHD) and zenith
wet delay (ZWD). Precipitable water vapor (PWV) is the
total precipitation of the vapor content in a unit area cylinder
from the ground to the outer layer of the atmosphere (Chen
et al. 2014). Bevis et al. (1992) first proposed the concept
of GPS meteorology and developed an approach to calculate
the crucial parameter, weighted mean temperature (Tm), for
retrieving the PWV from the ZWD of GPS. The ZTD can be
calculated precisely using GPS measurements, and the ZHD
can also be determined using a tropospheric empiricalmodel.
Then, ZWDcan be computed by subtractingZHD fromZTD.
Therefore, the GPS technique becomes a powerful method
to detect atmospheric water vapor with advantages of high
precision, real time and high spatiotemporal resolution. The
relationship between ZWD and PWV can be expressed as
follows (Askne and Nordius 1987; Bevis et al. 1994; Ross
and Rosenfeld 1997):

PWV = � · ZWD (1)

where� is a conversion factor, with an expression as follows:

� = 106

ρwRv

(
k3
Tm

+ k′
2

) (2)

where Rv is the specific gas constant for water vapor; ρw is
the density of water; k′

2 and k3 are the atmospheric refrac-
tivity constants given in Bevis et al. (1994); and Tm is the
weighted mean temperature and the key variable to deter-
mine the conversion factor � (Bevis et al. 1992). According
to the law of error propagation, the precision of calculated
PWV is mainly affected by the error sources of Tm and ZWD
based onEqs. (1) and (2). Equations (3) and (4) could provide
an explanation of how the errors from Tm and ZWD affect
PWV.

σPWV = � · σZWD + ZWD · σ� (3)

σ� = 106k3

ρwRv
(
k3 + k′

2Tm
)2 σTm (4)

where σPWV, σZWD, σTm and σ� are errors from PWV, ZWD,
Tm and �, respectively. Currently, the precision of the ZTD
product provided by the International GNSS Service (IGS) is
better than 5 mm (Byun and Bar-Sever 2009). The ZHD can
be accurately estimated using surface pressuremeasurements
or numerical weather models (Hobiger et al. 2008a; Lu et al.
2016; Zhang et al. 2017), while for the application of real-
time/near real-time mode, one can use a short-range forecast
from a weather model (e.g., the forecast VMF1) to derive
ZHD (Hobiger et al. 2008b; Lu et al. 2017). Thus, the ZWD
can achieve a remarkable accuracy. If the ZWD has an error
of 1 cm, the error of calculated PWV caused by ZWD error is
approximately 1.5 mm (Yao et al. 2014a), and the accuracy
of Tm is considered one of the largest error sources in PWV
estimation. Bevis et al. (1994) indicated that the relative error
of � is basically equal to that of Tm. Precisely estimating
Tm, therefore, is the key to improving the accuracy of PWV
calculation.

Generally, in post-processing mode the Tm can be exactly
determined using atmospheric profiles (such as water vapor
pressure and temperature) based on integration, while in real-
time/near real-time mode the Tm can also be derived using
fairly accurate atmospheric profiles from numerical weather
models (Lu et al. 2017).However, to enhance the efficiency of
Tm calculation and provide convenience for users, an accu-
rate Tm empirical model is needed to meet such demands.
Bevis et al. (1992) conducted an analysis of the correla-
tion between surface temperature (Ts) and Tm using 8718
radiosonde profiles in North America, and they found that
Tm and Ts have a good linear correlation; thus, the Bevis
formula, Tm = a + bTs, is a commonly used model to esti-
mate Tm. In the Bevis formula, the coefficients of a and b
are largely season- and location-dependent and should be
estimated using meteorological measurements from specific
areas and seasons (Bevis et al. 1992; Ross and Rosenfeld
1997; Emardson et al. 1998; Emardson and Derks 2000;
Wang et al. 2011). Some regional linear functions of Tm and
Ts were established inChina (Li et al. 1999;Wanget al. 2011),
and the coefficients of these functions were re-estimated
using local radiosonde profiles with higher precision than
that of the Bevis formula for local use. Similarly, Yao et al.
(2014a) analyzed the correlation of Tm and Ts around the
globe and established a global latitude-related linear regres-
sion model based on the gridded Tm data as provided by
TU Vienna (abbreviated as gridded Tm data) and the Euro-
pean center for medium-range weather forecasts (ECMWF)
Ts data, and the newmodel canobtain excellent results around
the globe. Yao et al. (2014b) studied the relation between Tm
and Ts, water vapor pressure (es) and surface pressure (Ps)
and then developed one/multi-parameter Tm models that con-
sider seasonal and geographic variations. The two models
show better performance around the globe. The regression
models can achieve great results if in situ meteorological
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measurements are available. Unfortunately, meteorological
sensors are not installed at most GPS stations, and the linear
regression models of Tm and Ts become invalid in real-time
application of GPS meteorology because the in situ Ts mea-
surements are unavailable.

In recent years, the PWV retrieved from GPS signal is
widely used for the analysis or nowcasting of severe weather
conditions such as heavy rainfall, flood, deep convective and
typhoon events (Sapucci et al. 2016; Huelsing et al. 2017;
Adams et al. 2013; Zhao et al. 2018), because of its high
accuracy, high temporal resolution and all-weather condi-
tions. An accurate real-time GPS-PWV estimation is helpful
to improve weather for- and now casting. Thus, an empir-
ical model is needed to provide a real-time Tm value for
retrieving real-time GPS-PWV. Emardson and Derks (2000)
developed an empirical Tm model in Europe that considers
the latitude and annual variations of Tm, and it could be used
largely in real-time GPS meteorology as it is without any
meteorological parameters for input. Yao et al. (2015a) estab-
lished an improved atmospheric conversion factor model in
low-latitude China by considering the height variation in the
model of Emardson and Derks (2000). Zhang et al. (2017)
established two enhanced Tm models, GM-Tm (a mixed-
grid model) and GH-Tm, using ERA-Interim data sets over
China. These two models both show a high accuracy over
China. To improve the global applicability of the model,
extensive researches have been conducted for global Tm mod-
eling. Yao et al. (2012) developed the GlobalWeightedMean
Temperature (GWMT) model based on radiosonde data of
135 global sites, but due to the uneven distribution of the
global radiosonde sites (no radiosonde sites in oceanic areas),
it cannot obtain sufficient accuracy in the southern Pacific
Ocean. To overcome these problems, however, an improved
model, GTm-II, was proposed by re-estimating the coeffi-
cients using Tm from the Bevis formula over oceanic areas
(Yao et al. 2013), where Ts is calculated from the global
pressure and temperature (GPT) model (Böhm et al. 2007).
Chen et al. (2014) proposed an improved Tm model, GTm_N,
using the America National Centers for Prediction (NCEP)
reanalysis data, which takes the influence of annual and semi-
annual periodicity of Tm into account. Similarly, Yao et al.
(2015b) developed the GWMT-G model by improving the
GTm-II using gridded Tm data. The GTm-II model was fur-
ther improved (taking semi-annual and diurnal variations into
account) into GTm-III (Yao et al. 2014c). Because the lapse
rate of Tm, in most cases, is neglected in some empirical
models, He et al. (2017) developed an empirical grid Tm
model, GWMT-D, based on the annual, semi-annual and
diurnal variations in Tm. Because it takes the lapse rate of Tm
into account, the new model shows excellent performance at
different altitudes all over the globe. In addition, the newly
released empirical tropospheric delay models, such as the

GPT2wmodel (Böhm et al. 2015) and ITGmodel (Yao et al.
2015c), also provide a precise Tm product.

The purpose of this study is to develop a global Tm empiri-
cal model for providing accurate real-time Tm value to derive
an accurate real-timePWVestimate.As previously analyzed,
Tm shows apparent season and location dependence over the
globe, and also it presents a high correlationwith both latitude
and altitude. The model equations of the existing Tm mod-
els, as mentioned, only take one spatial factor into account,
i.e., either latitude or altitude. In this study, both latitude and
altitude variations are considered in modeling, and a new
global grid Tm model, GGTm,will be developed based on the
sliding window algorithm using gridded Tm data and global
ellipsoidal height grid data.

2 Methods for calculating Tm

Two data sets are used to estimate Tm: gridded Tm data and
radiosonde profiles. Gridded Tm data from 2007–2014 are
used to establish the new GGTm model, while both gridded
Tm data and radiosonde profiles in 2015 are used to evaluate
the GGTm model as well as the Bevis formula and GPT2w
model.

2.1 Computing Tm based on radiosonde profiles

The radiosonde technique is one of the most common meth-
ods to measure meteorological parameters. The radiosonde
data mainly contain surface parameters (such as Ts, Ps and
PWV) and pressure level parameters (such as geopotential
height H , relative humidity RH and absolute tempera-
ture T at every pressure level) at UTC 00:00 and 12:00
every day. Currently, there are in total more than 1500
radiosonde sites distributed over the globe. The radiosonde
profiles can be retrieved free from the upper-air archive at
the websites of the University of Wyoming (http://weather.
uwyo.edu/upperair/sounding.html) or the Integrated Global
RadiosondeArchive (IGRA) (http://www.ncdc.noaa.gov/oa/
climate/igra/). The Tm values are obtained through numerical
integration using geopotential height, absolute temperature
and relative humidity measurements at every pressure level
along the zenith direction. The formula to calculate Tm can
be expressed as follows:

Tm =
∫

(e/T ) dH∫ (
e/T 2

)
dH

(5)

where T is the absolute temperature (K) and e is the water
vapor pressure (hPa), as radiosonde profiles provide the rel-
ative humidity RH and absolute temperature T (K), which

123

http://weather.uwyo.edu/upperair/sounding.html
http://weather.uwyo.edu/upperair/sounding.html
http://www.ncdc.noaa.gov/oa/climate/igra/
http://www.ncdc.noaa.gov/oa/climate/igra/


162 L. Huang et al.

can be used to calculate the e (hPa) in the following formula
(Bolton 1980; Wang et al. 2016):

e = RH · es
100

(6)

es = 6.11 × 10

(
7.5×Td
237.3+Td

)
(7)

where es is the saturated vapor pressure and Td is the atmo-
spheric temperature in Celsius (T = Td + 273.15). In
practice, Eq. (5) will be discretized using the following inte-
gral formula:

Tm =
∫

(e/T ) dH∫ (
e/T 2

)
dH

=
∑n

1 ψ (ei , Ti )�hi∑n
1 φ (ei , Ti )�hi

(8)

where ψ (ei , Ti ) = ei
Ti
, φ (ei , Ti ) = ei

T 2
i
; �hi indicates the

thickness of the atmosphere at the i th layer (m), n is the num-
ber of layers; and Ti and ei indicate the average temperature
and water vapor pressure at the i th layer of the atmosphere,
respectively.

2.2 Computing Tm based on the linear regression
formula

Several researchers have noted that the relationship between
Tm and Ts has a strong linear correlation over the globe (Bevis
et al. 1992; Yao et al. 2014a); thus, Tm can be estimated using
a linear function of Ts for a specific area. Bevis et al. (1994)
developed the Bevis Tm − Ts relationship using 2 years of
radiosonde profiles from 13 radiosonde sites distributed in
the United States, and the formula is as follows:

Tm = 70.2 + 0.72Ts. (9)

According to Eq. (9), Tm can easily be calculated from Ts,
making it the most widely used Tm model. The relationship
between Tm and Ts varies with season and location (Emard-
son and Derks 2000; Wang et al. 2005; Yao et al. 2014a), and
the coefficients of the formula are estimated from radiosonde
measurements inNorthAmerica,while its accuracywould be
affected when applied globally. Additionally, few GPS sta-
tions are equippedwithmeteorological sensors formeasuring
Ts, thus limiting its application in real-time GPS meteorol-
ogy.

2.3 Tm derived from the GPT2wmodel

When modeling tropospheric delay or atmospheric weighted
mean temperature, the resolution and accuracy of a model
will be improved if the model parameters are stored in
the form of a grid. Global pressure and temperature 2 wet

(GPT2w), an empirical troposphere delay model, was devel-
oped by Böhm et al. (2015) using ERA-Interim data sets
(the newest products of ECMWF). This empirical model, an
improved model for GPT, can provide several tropospheric
parameters, such as Tm, pressure, temperature and water
vapor pressure with two horizontal resolutions of 1◦ × 1◦
and 5◦ × 5◦. Tm is calculated by the following equation:

TGPT2w
m = A0 + A1 cos

(
doy

365.25
2π

)

+B1 sin

(
doy

365.25
2π

)
+ A2 cos

(
doy

365.25
4π

)

+B2 sin

(
doy

365.25
4π

)
(10)

where doy is the day of year, and the other coefficients in this
equation are determined based on a regular grid of 1◦ × 1◦
and 5◦ × 5◦. Thus far, GPT2w is one of the newest released
models, which has excellent performance in the computation
of tropospheric parameters against other models.

3 Construction of a new global grid Tm
model: GGTm

Extensive studies, as mentioned in Sect. 1, have focused on
establishing a regional Tm model using local radiosondemea-
surements,whichundoubtedly canyield a better performance
for local use but is not suitable globally. In recent years, sev-
eral empirical global Tm models have beendeveloped, and the
parameters of these models are mainly expressed by spher-
ical harmonics or are stored in the form of a grid. A fitting
error of the model parameters will be introduced if using the
spherical harmonics for global Tm modeling. For global grid
models, i.e., models with the parameters stored in the form of
a grid, the realization of the Tm calculation is usually accom-
plishedby adoptingbilinear interpolation after achieving four
gridded coefficients around the site. These types of models
generally have good results over the globe. As we know, a
regional Tm model should be the recommended model in a
specific area due to its superior performance, but how can one
realize a regional Tm model for global application? Greater
efforts were made here to derive a new approach.

3.1 Introduction of the sliding window algorithm

In this study, a new approach, the sliding window algorithm,
will be introduced to solve the aforementioned problems or
shortages. Yao et al. (2014a) conducted an analysis of the
correlation between Tm and Ts over the globe using a sliding
window algorithm. On a global scale, it can be divided into
numerous regular areas (i.e., each area denotes one sliding
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N1 N2 N3 NK-2 NK-1 Nk

NK+1 NK+2 NK+3 N2k-2 N2k-1 N2k

N(i-2)k+1 N(i-2)k+2 N(i-2)k+3 N(i-1)k-2 N(i-1)k-1 N(i-1)k

N(i-1)k+1 N(i-1)k+2 N(i-1)k+3 Nik-2 Nik-1 Nik

(90°N,180°W) (90°N,180°E)

(90°S,180°W) (90°S,180°E)

Fig. 1 The realization process of the sliding window algorithm over the globe (The figure is drawn using Microsoft Visio 2010)

window) of the same size by employing the sliding window
algorithm.

In the sliding window algorithm, there are two key steps
that need to be employed. The first step requires dividing
the globe into a grid. In this work, the global gridded Tm
data with a horizontal resolution of 2.5◦ ×2◦ (lon. × lat.) are
employed to compute the new model parameters. Hence, the
globe can be divided into regular grids with the same quanti-
ties and horizontal resolution of gridded Tm data. The second
step requires determining the size of the sliding window. The
determination ofwindow size is dependent on several factors,
such as guaranteeing that the quantity of windows over the
globe is an integer, maintaining continuity between windows
and ensuring the computability of model parameters in each
window. Considering these factors, we take the size of the
sliding window as 5◦ × 4◦ (lon. × lat.), as an example, to
describe the realization process of the sliding window algo-
rithm, as shown in Fig. 1. For each window, data at the 3× 3
grid points in the sliding window are used to estimate model
parameters, which will then be taken as results of the cen-
ter point of the sliding window. First, calculate the model
parameters of the sliding window N1 at the upper-left corner
as the results of the center point of window N1 (the red rect-
angle denotes the size of the sliding window, and the red dot
denotes the center point of each window, as shown in Fig. 1);
then, moving the sliding window by two points along the lat-
itude, calculate the model parameters of the sliding window

N2 as the results of the center point of window N2, continu-
ing until the last sliding window Nk of this latitude. Moving
the sliding window by two points along the longitude, and
then calculate the model parameters of all sliding windows
at this latitude according to the methods as previously men-
tioned, continuing until the model parameters of all sliding
windows over the globe are calculated. Finally, a new global
grid with a resolution of 5◦ ×4◦ (lon. × lat.), which consists
of red dots and blue dashed lines as shown in Fig. 1, will be
created.

3.2 Expression of GGTm

There have been extensive studies conducted on the spa-
tiotemporal characteristic of Tm, and the empirical Tm model
was developed based on its characteristics. The character-
istics of the time series of Tm mainly show annual and
semi-annual variations (Wang et al. 2005; Chen et al. 2014;
Böhm et al. 2015). While the diurnal variation in Tm is gen-
erally small, with mean amplitudes of 0.5–1.5 K over most
land areas and less than 0.5 K over most oceans (Wang et al.
2005), it is also season- and location-dependent and is diffi-
cult to model precisely using simple trigonometric functions
(He et al. 2017). For the spatial characteristic of Tm, the
model equations of the existing Tm models, as mentioned
in Sect. 1, only take one spatial factor into account (i.e.,
either latitude or altitude); in addition, Tm is slightly affected
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by longitude (Yao et al. 2014b). As previously discussed,
the GGTm considers annual and semi-annual variations and
takes both latitude and altitude variations into account in the
model expression of each window. The model expression of
each window is as follows:

Tm (ϕU , λU , h, doy) = α1 (ϕi , λi )

+α2 (ϕi , λi ) · ϕU + α3 (ϕi , λi ) · h
+α4 (ϕi , λi ) · cos

(
2π

doy

365.25

)

+α5 (ϕi , λi ) · sin
(
2π

doy

365.25

)

+α6 (ϕi , λi ) · cos
(
4π

doy

365.25

)

+α7 (ϕi , λi ) · sin
(
4π

doy

365.25

)

(11)

where doy is the day of the year; (ϕi , λi ) are the latitude
(in degree) and longitude (in degree) of the center point of
the i th window, respectively; ϕU , λU , and h are the latitude
(in degree), longitude (in degree) and height (in meter) of
the target location, respectively; α1 is the average value of
Tm; α2 is the latitude correction; α3 is the height correction;
and (α4, α5) and (α6, α7) are the amplitudes of annual and
semi-annual periodicity, respectively. As shown in Eq. (11),
these coefficients can be estimated by using the least square
adjustment based on at least seven grid-point-specific data
sets of each window. According to the factors determining
window size as described in Sect. 3.1, in this work, we finally
chose the size of the window as 5◦ × 4◦ (lon. × lat.). The
coefficients of GGTm, hence, are also expressed in the form
of a 5◦ × 4◦ (lon. × lat.) grid. Thus, we can divide the globe
into 3240 regular windows (grid points).

Here, we introduce the use of GGTm. Users only need to
provide the doy and target position and then find the nearest
grid point between the target position and grid points of the
model parameters based on the latitude and longitude of the
target location. The Tm values at the target position can be
calculated using the nearest gridded coefficients andEq. (11).

3.3 Data source for establishing GGTm

The website of global geodetic observing system (GGOS)
Atmosphere (a server at TUVienna) can provide global atmo-
spheric delay grid data (such as ZHD, ZWD and Tm) at a
spatial resolution of 2.5◦ ×2◦ (lon. × lat.) and with a tempo-
ral resolution of 6 h (at UTC 00:00, 06:00, 12:00 and 18:00)
(http://ggosatm.hg.tuwien.ac.at). These global surface grid
products are calculated from ECMWF reanalysis data and all
correspond to the ellipsoidal heights; the global ellipsoidal
height grid data are also provided by GGOS Atmosphere

with a spatial resolution of 2.5◦ × 2◦ (lon. × lat.). Yao et al.
(2014c) conducted an accuracy test for gridded Tm data using
341 globally distributed radiosonde sites; the results suggest
that the gridded Tm data are highly reliable and precise and
can be used as a data source for establishing the GGTm.
In this work, the GGTm model parameters are estimated
using gridded Tm data from 2007 to 2014 and global ellip-
soidal height grid data based on the least square method.
The parameters of GGTm are all stored in the form of a
5◦ × 4◦ (lon. × lat.) grid over the globe.

4 Validation of GGTm

To assess the performance of the newGGTmmodel, we com-
pared it to the widely used Bevis formula (Tm = 70.2 +
0.72Ts) and the newest release of the GPT2w model using
the same reference Tm values derived from gridded Tm data
and radiosonde profiles. The GPT2w model has two hori-
zontal resolutions of 1◦ × 1◦ and 5◦ × 5◦. To describe them
conveniently, we defined these two resolutions as GPT2w-
1 and GPT2w-5, respectively. In this work, bias and root
mean square error (RMS) were considered as the criteria
for accuracy assessment and are calculated by the following
equations:

bias = 1

N

N∑
i=1

(
T Mi
m − T Ri

m

)
(12)

RMS =
√√√√ 1

N

N∑
i=1

(
T Mi
m − T Ri

m

)2
(13)

where T Mi
m is the Tm value calculated by the model, T Ri

m

is the reference Tm value derived from gridded Tm data or
radiosonde profiles, and N is the number of samples.

4.1 Comparison to gridded Tm data

In this section, for the global gridded Tm data from 2015,
there are a total of 13,195 Tm grids, and these are used as
the reference values to assess the four models. The global
gridded Tm data with a temporal resolution of 6 h (at UTC
00:00, 06:00, 12:00 and 18:00) and the Tm of each grid point
at the same time are calculated using the GGTm, GPT2w-1,
GPT2w-5 and Bevis models; thus, the daily bias and RMS
can be obtained for these models. For the Bevis formula
(Tm = 70.2+ 0.72Ts), the Ts measurements are unavailable
in oceanic areas. The Ts value can thus be derived fromempir-
ical GPT series models (Böhm et al. 2007, 2015). Here, we
regard the gridded Tm data from 2015 as the reference values
to analyze the impact of Ts values calculated from the GPT,
GPT2w-5 and GPT2w-1 models on the Bevis formula. The
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Table 1 Statistical results of the impact of Ts derived from the GPT,
GPT2w-5 and GPT2w-1 models on Bevis formula calculation using
gridded Tm data from 2015

Model Bevis&GPT Bevis&GPT2w-5 Bevis&GPT2w-1

bias (in K)

Max. 14.60 18.70 13.58

Min. − 6.60 − 6.68 − 7.25

Mean 1.18 1.17 1.16

RMS (in K)

Max. 15.50 19.49 14.23

Min. 1.23 1.33 1.32

Mean 4.85 4.76 4.74

statistical results of the bias and RMS of different models in
2015 are shown in Table 1.

Table 1 shows that both the bias and RMS of Tm derived
from Bevis&GPT2w-1 are the smallest; thus, GPT2w-1 can
provide the most precise Ts value for the Bevis formula com-
pared to that of the other two models. Therefore, we chose
the Ts derived fromGPT2w-1 for the calculation of the Bevis
formula. As previously described, the estimated Tm values
from these models are compared to the gridded Tm data. The
statistical results of the bias and RMS of the different models
tested by gridded Tm data in 2015 are shown in Table 2 and
Fig. 2.

Table 2 shows that for GGTm, the bias is −0.05 K and
ranges from −2.24 to 3.48 K; the RMS is 2.89 K and ranges
from 0.86 to 5.67 K. In terms of RMS, GGTm performs an
approximately 0.5 K (16%) and 0.4 K (12%) improvement
against GPT2w-5 and GPT2w-1 over the globe, respec-
tively; GPT2w-1 shows slightly better than GPT2w-5, while
the Bevis formula shows the largest RMS value. Figure 2
reflects larger errors in parts ofwesternChina, theHimalayas,
Antarctic areas, Chile, Peru andGreenland for the GPT2w-5.
Relative to GPT2w-5, GPT2w-1 improves the spatial resolu-
tion of the model parameters, larger errors are still observed
in parts of Greenland, Chile, western China and the Antarc-
tic, which are mainly affected by the complex topography
because GPT2w does not take the height variation of Tm
into account. While the GGTm shows stable and accurate
results in Tm estimation over the globe. Therefore, GGTm
significantly outperforms GPT2w in these areas with great
undulating terrain. For the Bevis formula, it shows strong
negative bias in low latitudes andpositive bias in theAntarctic
regions; similarly, a larger RMS exists in parts of Greenland
and western China, especially south of 60◦S latitude toward
the Antarctic region and parts of the oceanic areas. The Bevis
formula only uses radiosonde profiles in North America for
modeling. In addition, the Bevis formula does not consider
the vertical lapse of Tm,which results in aworse performance
when used in these areas. In all, GGTm shows significant

Table 2 Statistical results of different models validated by using grid-
ded Tm data from 2015

Model Bevis+GPT2w-1 GPT2w-5 GPT2w-1 GGTm

bias (in K)

Max. 13.58 24.68 11.93 3.48

Min. − 7.25 − 13.52 − 3.19 − 2.24

Mean 1.16 0.01 0.02 − 0.05

RMS (in K)

Max. 14.23 24.98 12.43 5.67

Min. 1.32 1.02 1.02 0.86

Mean 4.74 3.43 3.29 2.89

superiority against other models and is without large error in
estimating Tm on a global scale.

To analyze the stability and accuracy of different models
on different days of the year (DOY), the daily bias and RMS
at all grids of each model were statistically analyzed, and the
results varied with DOY as shown in Fig. 3.

From Fig. 3, the Bevis formula shows significant positive
bias all year, larger bias and RMS values are observed during
both the spring and autumnmonths, and it has the largest bias
andRMS among all themodels. The other threemodels show
obvious negative bias during both spring and winter days and
positive bias during summer days, while for the RMS, these
three models are without obvious seasonal variation. In all,
the GGTm shows the best accuracy (in terms of RMS) during
the whole year-long period.

4.2 Comparison to radiosonde data

A total of 412 globally distributed radiosonde stations are
selected. The distribution of the selected radiosonde stations
is shown in Fig. 4. There are more radiosonde stations dis-
tributed in the Northern Hemisphere than there are in the
Southern Hemisphere. As described in Sect. 2.1, the Tm
values computed from radiosonde profiles using the integra-
tion method at UTC 00:00 and 12:00 every day in 2015 are
treated as the reference values to validate the new GGTm,
GPT2w-5, GPT2w-1 and Bevis Tm − Ts formula (Ts is in
situ surface temperature derived from the radiosonde site).
All the 412 selected radiosonde stations contain available
data of over half of the year (the abnormal radiosonde pro-
files are removed) to ensure the reliability of validation. The
statistical results of bias and RMS of the different models are
shown in Table 3 and Fig. 5.

From Table 3, the Bevis formula has the largest RMS of
4.10 K and the smallest absolute bias of 0.02 K. The RMS is
4.03 K for GPT2w-5 and 3.82 K for GPT2w-1. Both the
largest negative bias and RMS are observed for GPT2w-
5, meaning that GPT2w-1 shows relative stable values than
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(a) (b)
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(e) (f)

(g) (h)

Fig. 2 Global distribution of bias and RMS in different models tested by using gridded Tm data from 2015

those of GPT2w-5 through improving the spatial resolution
of the model. GGTm has the smallest RMS of 3.54 K and
ranges from 1.14 to 6.90 K, which performs an approxi-

mately 0.5 K (12%) and 0.3 K (8%) improvement against
both GPT2w-5 and GPT2w-1 over the globe, respectively.
Therefore,GGTmshows excellent performance against other
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Fig. 3 Results of different models tested by gridded Tm data during different days of the year

Fig. 4 Global distribution of selected 412 radiosonde stations for the validation of GGTm
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Table 3 Statistical results of different models validated using
radiosonde data from 2015

Model Bevis GPT2w-5 GPT2w-1 GGTm

bias (in K)

Max. 7.75 8.39 4.49 3.61

Min. − 6.12 − 13.89 − 6.63 − 3.67

Mean − 0.02 − 0.93 − 0.76 0.03

RMS (in K)

Max. 8.33 14.42 8.44 6.90

Min. 1.32 1.45 1.48 1.14

Mean 4.10 4.03 3.82 3.54

models over the globe. Figure 5 shows that all of these mod-
els can achieve relatively high accuracy (in terms of RMS)
over low latitude areas; the reasons for this will be analyzed
later. The Bevis formula shows an obvious cold bias in low
latitudes and a warm bias in Russia as well as western areas
of China, but it presents relatively high accuracy in North
American areas,where the radiosonde sites aremore involved
in the Bevis modeling. For GPT2w-5, both larger bias and
RMS are observed in parts of Northwest China and Chile.
In addition, both GPT2w-5 and GPT2w-1 show larger cold
bias in parts of Northwest China andwestern North America;
relative to GGTm, GPT2w-1 still shows larger RMS values
in parts of Northwest China and Northwest South America.
While for GGTm, both bias and RMS are small and stable
on a global scale. Additionally, the results of bias and RMS
at all selected radiosonde sites of each model were further
statistically analyzed, and the error distribution and statistics
of the different models are shown in Figs. 6 and 7.

Figure 6 shows that the bias of GGTm is highly concen-
trated around zero; although the bias of the Bevis formula
is relatively concentrated around zero, the number of strong
negative biases is approximately equal to the number of posi-
tive biases, resulting in a small mean bias, while the biases of
both GPT2w-5 and GPT2w-1 are relatively scattered (most
are negative biases), which indicates that the Tm derived from
the GPT2w model has few systematic deviations compared
to those of the radiosonde data. From Fig. 7, we can see more
intuitively that the RMS of the Bevis formula comprises 77%
below 5 K and only 21% below 3 K, and it has a large pro-
portion (7%) over 6 K. For GPT2w-5, the RMS comprises
78% (83% for GPT2w-1) below 5 K and only 26% (28%
for GPT2w-1) below 3 K, and the proportion over 6 K is
higher than that of GPT2w-1, but the proportion below 2 K
is slightly greater than that of GPT2w-1, while the RMS of
GGTm accounts for the both the largest proportion of below
5 K (90%) and below 3 K (32%) among the four models.
For the proportion of below 5 K, that of GGTm increased by
12 and 7% over GPT2w-5 and GPT2w-1, respectively, while
for the proportion of below 3 K, that of GGTm increased

by 6 and 4% over GPT2w-5 and GPT2w-1, respectively. In
addition, GGTm has the smallest proportion over 6 K (2%)
and the largest proportion below 2 K (11%). For the propor-
tion of over 6 K, that of GGTm decreased by 5 and 2% over
GPT2w-5 and GPT2w-1, respectively, while for the propor-
tion of below 2 K, that of GGTm increased by 3 and 5% over
GPT2w-5 and GPT2w-1, respectively. Therefore, it further
illustrated that the GGTm model performs excellent perfor-
mance against other models over the globe.

To analyze the bias and RMS of the seasonal variations in
different models, the daily results at all selected stations of
eachmodelwere statistically analyzed, and the bias andRMS
values of different models varying with DOY are shown in
Fig. 8.

From Fig. 8, the biases of GGTm are generally the small-
est and without obvious seasonal variation. Both GPT2w-5
and GPT2w-1 show negative bias during most DOY, and
relatively strong negative bias existed during spring and win-
ter days, further indicating that the Tm calculated from the
GPT2w model has some systematic errors, while the Bevis
formula shows obvious positive bias during the spring and
negative bias during the summer. In terms of RMS, all of
these models have obvious seasonal variations, which show
relative larger RMS values during the spring and winter and
smaller RMS values during summer days. Because most of
the selected radiosonde stations are in the middle and high
latitudes of the Northern Hemisphere, Tm changes are small
during the summer and larger during the winter. The GGTm
shows the highest accuracy and stability during the whole
year period. For the other models, however, the stability and
accuracy of the models vary at different DOY. To further
illustrate the performance of the GGTm model in terms of
the seasonal variation, the results of the monthly bias and
RMS in different models are shown in Fig. 9.

FromFig. 9a, one can see that bothGPT2w-5 andGPT2w-
1 present larger negative monthly bias among 12 months,
while GGTm shows a stable and smaller monthly bias. From
January to June as well as October to December, GGTm
performs significant advantages against both GPT2w-5 and
GPT2w-1 in terms of monthly bias. Figure 9b shows that the
GGTm still has excellent performance against other models
in terms ofmonthlyRMS.GGTmperforms an approximately
0.5 and 0.3K improvement over theGPT2w-5 andGPT2w-1,
respectively. Therefore, GGTm performs excellent perfor-
mance over other models in terms of the monthly or seasonal
variation.

The Tm has strong correlations with both altitude and lat-
itude. To investigate the relations between altitude and the
bias and RMS, 412 radiosonde stations were sorted into six
categories based on altitude, i.e., lower than 500, 500–1000,
1000–1500, 1500–2000, 2000–2500, and above 2500m. The
results of the bias and RMS in each altitude range are shown
in Fig. 10.
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Fig. 5 Global distribution of bias and RMS of different models tested using radiosonde data from 2015
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(a)

(c) (d)

(b)

Fig. 6 Histogram of bias of different models tested by using radiosonde data from 2015

Figure 10 shows that in general, both the bias and
RMS increase with increasing altitude in the Bevis formula;
although those of both GPT2w-5 and GPT2w-1 are not
obvious, larger bias and RMS still existed in high-altitude
areas for GPT2w-5 and GPT2w-1. The GGTm significantly
outperforms all the other models in high-altitude areas, espe-
cially in the areas with altitude of above 2500 m, which
performs an approximately 2.5, 1.3 and 1.2 K improvement
(in terms of RMS) over the Bevis formula, GPT2w-5 and
GPT2w-1, respectively. In contrast, the GGTm has both the
smallest bias and RMS in each altitude range and small dif-
ferences among them at different altitude ranges, verifying
excellent performance of the GGTm as compared to that of
the other three models.

Furthermore, the relations between latitude and the bias
and RMS values in different models were analyzed. To visu-
alize the variation in the bias and RMS, 412 radiosonde
stations were sorted in terms of latitude in 15◦ intervals. The
results are shown in Fig. 11.

From Fig. 11, one can see that the Bevis formula has both
relatively larger bias and RMS at most of the latitude ranges,
and the bias of the Bevis formula increases with increasing
latitude in the Northern Hemisphere. In addition, the Bevis
formula, GPT2w-5 and GPT2w-1 show obvious negative

biases at low and middle latitudes, especially in the high-
latitude areas of the Southern Hemisphere, where larger bias
and RMS were observed for Bevis formula and GPT2w-5.
The accuracy (in terms of RMS) of the Bevis formula at
middle latitudes (30◦N−60◦N) in the Northern Hemisphere
is slightly higher than that of both GPT2w-5 and GPT2w-1.
These results reflect the advantage of the Bevis formula in
those regions where the radiosonde data are involved in the
modeling. The best performance of all models is obtained at
low latitudes (30◦S−30◦N), where the amplitudes of Tm are
much smaller than those at high latitudes (Yao et al. 2014b).
However, theGGTmperforms excellent performance against
other models in the areas with the latitude range from 15◦S to
45◦N. In all, GGTm shows best accuracy and stability over
other models.

4.3 Impact of Tm on GPS-PWV

In GPS meteorology, the goal of determining Tm is to map
the ZWD onto GPS-PWV. Most of the GPS stations are not
equipped with meteorological sensors as the initial purpose
of these was mainly for space geodetic studies. In addition,
the GPS stations and radiosonde stations are not co-located,
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Fig. 7 Proportional distribution of RMS values of different models tested using radiosonde data from 2015

and thus, it is difficult to make a comprehensive and global
assessment of the impact of Tm on GPS-PWV. Several inves-
tigations have been conducted to analyze the impact of Tm
on its resultant GPS-PWV in terms of theoretical function
(Wang et al. 2005, 2016; He et al. 2017). In this paper, a
similar method is employed to analyze the impact of Tm on
GPS-PWV, and the commonly used relationship of the RMS
between Tm and PWV can be calculated using the following:

RMSPWV

PWV
= RMS�

�
= k3RMSTm(

k3
Tm

+ k′
2

)
T 2
m

= k3(
k3
Tm

+ k′
2

)
Tm

· RMSTm
Tm

(14)

whereRMSPWV is the error inPWV,RMSTm is the error inTm
achieved from Sect. 4.2, PWV and Tm are set to annual mean
values and are also obtained from Sect. 4.2, RMSPWV/PWV
is defined as the relative error of PWV, and RMSPWV and
RMSPWV/PWV are used to evaluate the impact of the errors
in Tm on its resultant GPS-PWV. Some radiosonde stations
with insufficient PWV data have been removed; finally, the

403 globally distributed radiosonde stations are selected. The
global distributions of the theoretical results of RMSPWV and
RMSPWV/PWV in different models are shown in Figs. 12
and 13 and Table 4.

Figure 12 shows the global distribution of RMSPWV in
2015. The four models all show smaller RMSPWV in both
the Antarctic and Arctic regions, where the annual mean
values of PWV are only approximately 3.0 and 8.0 mm in
our experiment, respectively. According to Eq. (14), smaller
annual mean RMSPWV values can be achieved, although the
smaller annual mean values of Tm are also observed in these
regions (approximately 255 and 260 K, respectively). For
the Bevis and GPT2w-5 models, the larger RMSPWV val-
ues are observed at low latitudes (30◦S−30◦N), especially
in parts of Southern Asia for the Bevis formula, where it
has the largest RMSPWV value of approximately 1.0 mm.
At these low latitudes, both the largest annual mean PWV
and Tm values of approximately 37.3 mm and 286 K occur
for those two models in our experiment, respectively; sim-
ilarly, though the smaller annual mean RMS values of Tm
are obtained (described in Sect. 4.2) in these areas, there still
resulting in larger annual mean RMSPWV values as a contri-
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Fig. 8 Results of different models tested using radiosonde data during different days of the year
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Fig. 9 Monthly performance of different models tested using radiosonde data
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(a)
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Fig. 10 Results of bias and RMS of the different models at different altitude ranges
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Fig. 11 Results of bias and RMS of different models at different latitude ranges
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(a) (b)

(c) (d)

Fig. 12 The theoretical RMS of PWV resulting from different models using radiosonde data from 2015

(a) (b)

(c) (d)

Fig. 13 The theoretical relative error of PWV resulting from different models using radiosonde data from 2015

bution of larger PWV values. In contrast, for the GPT2w-1
and GGTm models, which show relatively smaller annual
mean RMSPWV values. From Fig. 13, one can see that the

GGTm, GPT2w-5 and GPT2w-1 models all show smaller
RMSPWV/PWVat low latitudes, especially fromsouth of 15◦
latitude to the north of 15◦ latitude, where the Bevis formula
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Table 4 Statistical results of theoretical RMSand relative error of PWV
resulting from different models validated by using radiosonde data from
2015

RMSPWV(mm) RMSPWV/PWV (%)

Max. Min. Mean Max. Min. Mean

Bevis 0.99 0.01 0.31 3.28 0.45 1.47

GPT2w-5 0.92 0.01 0.30 5.20 0.50 1.46

GPT2w-1 0.74 0.01 0.28 3.06 0.51 1.38

GGTm 0.65 0.01 0.26 2.53 0.40 1.28

shows relatively larger RMSPWV/PWV than that of the other
three models. The smallest RMS of Tm and the largest Tm
values are obtained in these regions, resulting in the smaller
annual mean RMSPWV/PWV values. For the Bevis formula,
GPT2w-5 and GPT2w-1, relatively larger RMSPWV/PWV
values are still observed in parts of western China, while
GGTm shows relative stable performance over the globe.
From Table 4, the RMSPWV values of the GGTm are less
than 0.65 mm and with a global mean RMSPWV value of
0.26 mm; in terms of RMSPWV/PWV, GGTm has a global
mean value of 1.28% and ranges from 0.40 to 2.53%. As the
GGTm is an empirical global model, which can provide an
accurate Tm values for retrieving accurate real-time PWV.
Thus, GGTm has possible potential applications in the real-
time analysis or nowcasting of severe weather conditions
such as heavy rainfall, flood, and typhoon events, especially
for the application of low-latitude areas and western China.

5 Conclusions

Tm is a crucial parameter for detecting GPS-PWV. A reliable
and accurate Tm empirical model is needed for the appli-
cation of real-time PWV sounding, especially when in situ
meteorological observations are unavailable. Tm shows sig-
nificant season and location dependence on a global scale.
The existing Tm empirical models do not completely account
for variations in both altitude and latitude. In this research,
both latitude and altitude variations were considered in the
modeling, and a new global grid Tm model, namely GGTm,
was developed based on a sliding window algorithm using
global gridded Tm data and global ellipsoidal height grid data.

The accuracy and stability of the GGTm were vali-
dated using global gridded Tm data and globally distributed
radiosonde station data from 2015, and detailed compar-
isons to the Bevis, GPT2w-5 and GPT2w-1 models were
also conducted. GGTm shows significant accuracy and sta-
bility among the four models over the globe when compared
using global gridded Tm data, especially in the areas with
highly undulating terrain, while the Bevis formula shows the
worst results and obvious systematic bias. When compared

using radiosonde data, GGTm still maintained excellent per-
formance against other models, with an annual mean bias
and RMS of 0.03 and 3.54 K, respectively. GPT2w-1 showed
slightly better performance than GPT2w-5, but both models
had significant systematic bias, especially in high-altitude
areas due to the GPT2w does not take the height variation
of Tm into account, while the Bevis formula still presented
the worst result. Additionally, the impact of Tm on GPS-
PWV was analyzed, showing that the global mean values of
RMSPWV and RMSPWV/PWV are 0.26 mm and 1.28% for
GGTm, respectively.

In this experiment, the Bevis formula and GPT2wmodels
show a relatively poorer ability to calculate the Tm in high-
altitude areas, as both models do not consider the altitude
variation in modeling; GPT2w-1, to a certain extent, can mit-
igate this effect by improving the spatial resolution of model
parameters, but larger errors are still existed in the areas with
the altitude of above 2500 m. GGTm has the ability to pro-
vide excellent accurate and reliable Tm value over the globe
and requires no in situ meteorological parameters as inputs,
making the GGTm model more powerful and practical for
calculating Tm, and it will have wide applicability in real-
time GPS-PWV sounding, especially for the application of
low-latitude areas andwestern China. In future work, wewill
mainly focus on considering diurnal variation in the model,
analyzing the impact of the window size on the model, and
combining multi-source data in the modeling.
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