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Abstract
In this paper, a robust unscentedKalman filter (UKF) based on the generalizedmaximum likelihood estimation (M-estimation)
is proposed to improve the robustness of the integrated navigation system of Global Navigation Satellite System and Inertial
Measurement Unit. The UKF is a variation of Kalman filter by which the Jacobian matrix calculation in a nonlinear system
state model is not necessary. The proposed robustM–Munscented Kalman filter (RMUKF) applies theM-estimation principle
to both functional model errors and measurement errors. Hence, this robust filter attenuates the influences of disturbances in
the dynamic model and of measurement outliers without linearizing the nonlinear state space model. In addition, an equivalent
weight matrix, composed of the bi-factor shrink elements, is proposed in order to keep the original correlation coefficients of
the predicted state unchanged. Furthermore, a nonlinear error model is used as the dynamic equation to verify the performance
of the proposed RMUKF with a simulation and field test. Compared with the conventional UKF, the impacts of measurement
outliers and system disturbances on the state estimation are both controlled by RMUKF.

Keywords Integrated navigation · Unscented Kalman filter · Robust estimation · M-estimation · Nonlinear filter

1 Introduction

The Kalman filter has been widely applied in real-time nav-
igation using integrated Global Navigation Satellite System
(GNSS) and Inertial Measurement Unit (IMU), since it is
optimal in linear systems. The filter reduces the effects of
errors on the state estimates in a least squares sense, by using
weighting information fromvarious sources. In this sense, the
state and its covariance matrix are obtained by solving the
linear parameter estimation problem. It is well documented,
however, that outliers (i.e., data that are inconsistent with
the overall pattern of distribution) degrade the estimation
quality and render the estimate unreliable (Fitzgerald 1971;
Durgaprasad and Thakur 1998).
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In static geodetic measurement adjustment, different
methods have been applied in an effort to reduce the influence
of outliers in observations on the estimated state parameters.
These include conventional test procedures (Baarda 1968;
Pope 1976) and robust estimation techniques (Huber 1981;
Hampel et al. 1986; Rousseeuw and Leroy 1987; Koch 1999;
Yang 1999; Xu 2005). The former methods detect, identify
and remove the outliers based on statistical hypothesis test-
ing; the latter methods design robust estimation criteria to
reduce the influence of outliers on the parameter estimates.
Different robust estimators have been proposed, including
the so-called L-estimator, L1-norm estimator, M-estimator
and M split-estimator (Bickel 1973; Bloomfield and Steiger
1983; Huber 1964, 1981; Andrews 1974; Wiśniewski 2009,
2010), and some of these have been successfully applied
in GNSS/INS navigations. Among these robust estimators,
the robust M-estimator has received widespread attention
due to its high efficiency and high accuracy (Hampel et al.
1986; Wiśniewski 1999, 2009; Yu et al. 2017). The M-
estimator has also been extended to deal with correlated
observations (Koch 1988;Xu 1989;Yang et al. 2002). Specif-
ically, Koch (1988) uses the Cholesky decomposition to
de-correlate the correlated observations; Xu (1989) extends
the robust estimator by a bivariate robust function which
addresses the correlations between the observations, while
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Yang et al. (2002) keep the correlations among the observa-
tions unchanged using a bi-factor robust equivalent matrix.
Nevertheless, theM-estimates may not be robust in some cir-
cumstances, if the weights of outlying observations satisfy a
certain condition (Xu 2005).

In Kalman filtering, different robust estimators have been
studied, such as the Gaussian sum approach, H∞ filter
and robust M-estimation-based Kalman filter (Alspach and
Sorenson 1972; Caputi and Moose 1993; Koch and Yang
1998; Yang et al. 2001; He and Han 2010). In addition,Wang
et al. (2008) proposed a robust extended Kalman filter (EKF)
using W-test statistics based on filtering residuals in order to
eliminate the effect of outliers onGNSSnavigation solutions.
The Gaussian sum approach approximates the non-Gaussian
distribution analytically by a finite sum of Gaussian density
functions (Alspach and Sorenson 1972; Caputi and Moose
1993; Nikusokhan and Nobahari 2017). The approximation
accuracy of the Gaussian sum approach, however, relies on
the number of Gaussian terms. If only few Gaussian terms
are employed, the poor approximation of true densities could
be provided (Stano et al. 2013). The H∞-based Kalman fil-
ter minimizes the worst-case estimate error averaged over
all samples by treating process noises, measurement noises
and model uncertainties as unknown-but-bounded noise (He
and Han 2010). The filter breaks down, however, in the pres-
ence of randomly occurring outliers (Gandhi andMili 2010).
The M-estimation technique improves the robustness of the
Kalman filter by assuming that the observation errors follow
Huber’s distribution (Durgaprasad and Thakur 1998), and
then uses the M-estimation approach (Kovacevic et al. 1992;
Durovic and Kovacevic 1999). The approaches down weight
the contaminatedmeasurements and conduct like least square
filters on the othermeasurementswith the assumption that the
predicted state is accurate and any of the outliers are uncor-
related. If a correlation exists between the measurements,
the Cholesky decomposition can be used to de-correlate the
dependent measurements into independent ones, but the out-
lying errors are also transformed, meaning that the error
detection may fail (Xu 1989; Yang 1994).

In general, two types of outliers are assumed: the dynamic
model disturbances and themeasurement outliers. These two
types of outliers arise naturally in many areas of engineering,
such as disturbances in the dynamic environment, impre-
cise knowledge of prior information and faults in hardware,
etc. In the literature, adaptive filters and robust filters have
been proposed to overcome these two types of outliers. In
respect of disturbances in the dynamic environment, adap-
tive Kalman filter (AKF) is applied. A conventional adaptive
method uses a re-weighting technique to re-evaluate the
covariance matrices of the predicted state and the measure-
ments with a moving window (Sage and Husa 1969). Amore
flexible adaptive Kalman filter (AKF) has also been pro-
posed in which an adaptive factor is introduced based on the

discrepancy between the estimated and predicted states or
based on the predicted residuals (Yang et al. 2001; Yang and
Gao 2005). Furthermore, an optimal AKF has been derived
based on both the predicted state errors and the predicted
residuals (Yang and Gao 2006), while Yang and Xu (2003)
proposed a combined AKF based on the moving window
variance estimate. By applying the adaptive variance estima-
tion or adaptive factors, the performance of Kalman filter
is improved. Furthermore, the robust adaptive estimation
techniques have also been applied to control the effects of
both the measurement outliers and dynamic model distur-
bances. Despite the care taken during individual observation
solutions, a new robust adaptive Kalman filter with adap-
tive factors for different state components has been proposed
(Yang and Cui 2008). These adaptive factors, however, are
constructed under the individual robust solution based on
recent measurement information, which is often unavailable.
In addition, different robust filters, namely the robust M–LS,
LS–M and M–M filters, have been developed to accommo-
date effects of the outliers or outlying disturbances by using
equivalent weights (Yang 1991).

The above approaches are derived based on the Kalman
filter or extended Kalman filter (EKF). The latter uses the
first-order Taylor expansion, i.e., it calculates the Jaco-
bian matrix in order to analytically linearize the nonlinear
model. The cumbersome derivation and determination of
the Jacobian matrix not only increases the complexity of
the mathematical computation, but also introduces lineariza-
tion errors. The unscented Kalman filter (UKF), which was
introduced by Julier and Uhlman (1997), is another prob-
abilistic approach to approximate the state distribution by
Gaussian random variables. The filter utilizes the unscented
transform (UT) to estimate the system state vector and its
covariance matrix, which undergoes a nonlinear transforma-
tion (Wan and van der Merwe 2000; Julier and Uhlmann
2004). An adaptive UKF with a covariance matching tech-
nique and a nonlinear strapdown inertial navigation system
(SINS) error model with large misalignment angle are used
for Doppler Velocity Log (DVL)-aided SINS alignment (Li
et al. 2013). A robust adaptive UKF has been proposed to
deal simultaneously with dynamic model errors and mea-
surement outliers (Wang et al. 2014). The algorithm uses
Huber’s robust function to adjust the measurement weight
basedon the innovation vector,while the process noisematrix
is adjusted by a fading factor, based on the discrepancy
between the predicted state and the robust estimated state
at the present epoch. A fault-tolerant estimation algorithm
based on the UKF, which adaptively estimates the process
noise covariance or measurement noise covariance, depend-
ing on the type of fault, has also been studied (Hajiyev and
Soken 2014). Li et al. (2016) proposed a robust adaptiveUKF
to handle the uncertainties of process noise andmeasurement
noise. This algorithm uses the moving window and matrix
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matching technology to estimate the measurement noise and
process noise adaptively. It is difficult to determine the length
of the moving window, however.

In this paper, we focus on the robust M–M UKF
(RMUKF), based on the M–M estimation proposed by Yang
(1991), by extending the equivalent weight matrices to bi-
factor weight matrices and extending this approach from
linear models to the nonlinear models. More precisely, this
study extends the robust M–M estimation to a nonlinear
state space model, in which the influences of the dynamic
model disturbances and measurement outliers are controlled
simultaneously by inflating the variances of the outliers. The
correlations among the state vector elements are solved by
introducing the bi-factor equivalent variance elements,which
preserve the original correlation between the states. The rest
of the paper is organized as follows.We first review theM–M
estimator. The new robust M–M UKF (RMUKF) based on
the bi-factor covariance matrix is presented. A simulation
and field test are carried out with a loosely coupled integrated
Global Positioning System (GPS) and Inertial Measurement
Unit (IMU) to verify the performance of the proposed filter.
Finally, conclusions are drawn.

2 Mathematical model andM–M robust
Kalman filtering

2.1 Dynamic model andmeasurement model

The classical linear error model for an IMU usually ignores
the second-order terms and assumes that the angle error is
small. Environmental disturbances and sensor errors, how-
ever, may break the small error assumption. Thus, IMU error
models for large misalignment angles have been reported in
the literature (Yan et al. 2008), in which the nonlinear error
model is derived based on the Euler angle errors. The Jaco-
bian matrix of this nonlinear error model is complicated;
hence, the UKF is reasonably applied to complete the state
estimation. This nonlinear error model states:

ϕ̇ � C−1
ω

[(
I − C p

l

)
δωl

il

]

δv̇l �
[
I −

(
C p
l

)T ]
C p
b f b −

(
2δωl

ie + δωl
el

)

× ṽl −
(
2ω̃l

ie + ω̃l
el

)
× δvl +

(
2δωl

ie + δωl
el

)
× δvl + δgl

δ ṗl �
⎡
⎣

0 1
M+h 0

1
N+h cosφ 0 0

0 0 1

⎤
⎦δvl (1)

where

C−1
ω � 1

cosϕx

⎡
⎣
cosϕy cosϕx 0 sin ϕy cosϕx

sin ϕy sin ϕx cosϕx − cosϕy sin ϕx

− sin ϕx 0 cosϕy

⎤
⎦

(2)

C p
l is the rotation matrix from the local-level frame (l) to the

platform frame (p); δωl
il is the angular velocity error of the

l frame with respect to the inertial frame (i). ω̃l
ie is the earth

rotation velocity at the l frame, and ω̃l
el is the rotation velocity

of the l frame with respect to the earth-centered, earth-fixed
frame (e) at the l frame. f b is the measurement of the
accelerometer at the body frame (b). ṽl � [

VE VN VU
]T

are
the velocity components of the east, north and up directions,

and δpl � [
δ L δλ δh

]T
are the position error components

of the latitude, longitude and altitude. Thus, the state vector
can be expressed as X � [

ϕ1×3δv1×3δp1×3
]T. The dynamic

model can be rewritten more economically as:

xk � fk,k−1(xk−1) + ωk−1 (3)

where xk and xk−1 are the state vectors at epoch k and k
− 1, respectively, including the position vector and velocity
vector; fk,k−1(xk−1) is the state transition function; andωk−1

is the model error vector.
The measurement equation is written as:

Lk � hk(xk) + ek (4)

where Lk is an m × 1 measurement vector; hk(xk) is the
transformation function thatmaps the state vector parameters
into the measurement domain; and ek is the measurement
error vector. In case the velocity and positioning outputs from
GPS receivers are taken as measurements, the measurement
equation is:

Lk � Akxk + ek (5)

where xk is the n × 1 state vector with prior estimated x̄k
and covariance matrix �X̄ ; ek is the 6 × 1 error vector; and
Ak is the 6× n linear map function between the state vector
parameters and measurements and is expressed as:

A �
[
03×3 I3×3 03×3 . . . 03×n

03×3 03×3 I3×3 . . . 03×n

]
(6)

where I3×3 is an identity matrix.

2.2 M–M robust estimation

Yang (1991) introduced three robust estimators, based on
the M-estimation technique, for three corresponding error
models, in which the measurements follow a contaminated
normal distribution (M–LS), or in which the prior estimate
contains outliers (LS–M), or both measurements and prior
estimates follow contaminated normal distributions (M–M).
This section reviews themethodology of the three estimators.
The error equation of the measurement is:

vk � Ak x̂k − Lk (7)
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where vk is the n × 1 correction vector of measurements
and x̂k is the estimated state vector of x . If the predicted
correction vector, �x̄k � x̄k − xk , and the measurements
are independently and identically distributedwith aGaussian
distribution, the risk function, based on the least squares (LS)
Bayesian estimation, is:

Ωk � vTk �−1
k vk +

(
x̄k − x̂k

)T
�−1

x̄k

(
x̄k − x̂k

)
(8)

where �k is the covariance matrix of the measurements.
Assuming that the measurements, Lk, and the predicted

state vector, x̄k , are contaminated by outliers and the corre-
sponding contaminated distributions for both measurement
errors and predicted state elements are, respectively,

F�(ε) � (1 − ε)φ� + εH (9)

and

F�x̄ (εx ) � (1 − εx )φx + εx H (10)

where 0 < ε < 1, H is any symmetric distribution, and φ�

and φx are the normal distributions. The risk function based
on the robust M-estimation is as follows:


 �
n∑

i�1

ρ(vi ) +
m∑
j�1

β
(
δ x̃ j

)
(11)

with

ρ(vi ) �
{

v2i
2 |vi | < τ

τ |vi | − τ 2

2 |vi | ≥ τ
(12)

where vi denotes the i th element of the vector vk ; τ is chosen
to give the desired efficiency at the Gaussian model (Kovace-
vic et al. 1992); and the β(·) function is similar to ρ(·).

The estimator determined by condition function (11) is
known as the M–M estimator, since the M-estimation prin-
ciple is applied for both the measurement and the predicted
state vectors. The robust estimator is expressed as:

x̂k �
(
AT
k P̄k Ak + P̄x̄k

)−1(
AT
k P̄k Lk + P̄x̄k x̄k

)
(13)

where P̄k and P̄x̄k are equivalent weight matrices of the mea-
surements and predicted state vector, respectively. TheM–M
Kalman filter is the combination of LS–M andM–LS estima-
tor. It can also be written as follows (Koch and Yang 1998;
Yang et al. 2001):

x̂k � x̄k + Σ̄x̄ A
T
k

(
AkΣ̄x̄ A

T
k + Σ̄k

)−1(
Lk − L̄k

)
(14)

where Σ̄k � P̄−1
k and Σ̄x̄ � P̄−1

x̄k
are called equivalent

covariance matrices of the measurements and predicted state
vector, respectively (for the detailed component calculation,
please refer to Koch and Yang 1998).

If the dynamic model and measurement equations are lin-
ear, the M–M Kalman filter can provide robust estimates of
the state vector. In practice, however, the dynamic model
and measurement equations may be nonlinear, and the lin-
earization process introduces not only a heavy computational
burden but also additional uncertainty in respect of model
errors.

3 Robust M–M unscented Kalman filter

TheM–Mestimatormentioned above reweights themeasure-
ments and predicted state elements by using iterated residuals
of the measurements and corrections of predicted state ele-
ments based on the linear or linearizedmodels. The RMUKF,
however, starts from general nonlinear models, Eqs. (3) and
(4).

The predicted state vector and its covariance matrix are:

(x̃k)i � fk
[
(x̃k)i

]
(15)

x̄k �
2n∑
i�0

wi (x̃k)i (16)

with the covariance matrix:

�x̄k � �ωk−1 +
2n∑
i�0

wi
[
(x̃k)i − x̄k

][
(x̃k)i − x̄k

]T (17)

where (x̃k)i is the i th sigma point, which is chosen based
on the current Gaussian distribution; wi is the weight of the
sigma point. The details of the UKF can be found in Yang
et al. (2016, 2018). The predicted measurement vector and
innovation vector are:

(
L̃k

)
i
� hk

[
(x̃k)i

]
(18)

L̄k �
2n∑
i�0

wi

(
L̃k

)
i

(19)

V̄k � Lk − L̄k (20)

with the covariance matrix:

(21)

�V̄k
� �k +

2m∑
i�0

wi

[(
L̃k

)
i
− L̄k

] [(
L̃k

)
i
− L̄k

]T

� �k + �L̄k
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The cross-covariance matrix is:

�x̄k L̄k
�

2m∑
i�0

wi
[
(x̃k)i − x̄k

][(
L̃k

)
i
− L̄k

]T
(22)

where
(
L̃k

)
i
is the sigma point of the predicted measure-

ments; L̄k is the weighted mean of the sigma points. If a
linear equation is used to describe the measurement model,
the linear propagation of the state vector and its covariance
matrix have equivalent accuracy as those from the unscented
transform, but there is less computational consumption (Yang
et al. 2016).

The estimated state vector and its covariance matrix can
be obtained as:

x̂k � x̄k + Kk
(
Lk − L̄k

)
(23)

�x̂k � �x̄k − Kk�ȳk K
T
k (24)

where Kk is the Kalman gain matrix (Yang et al. 2018):

Kk � �x̄k ȳk�
−1
ȳk

(25)

The correction vector of the measurements and the cor-
rection vector of the predicted state can be obtained using the
estimated state vector. They are:

L̂k � h
(
x̂k

)
(26)

Vk � L̂k − Lk (27)

Vx̄k � x̂k − x̄k (28)

where L̂k is the estimated measurement vector. Based on the
M-estimation principle, the cost function is:

V T
x̄k P̄x̄k Vx̄k + V T

k P̄kVk � min (29)

where P̄x̄k and P̄k are equivalent weight matrices of the
respective predicted state and measurement vectors. An
equivalent expression may be written as:

V T
x̄k Σ̄

−1
x̄k

Vx̄k + V T
k Σ̄−1

k Vk � min (30)

where Σ̄x̄k and Σ̄k are the equivalent covariance matrices of
the respective x̄k and Lk , and

Σ̄x̄k � P−1
x̄k

(31)

Σ̄k � P̄−1
k (32)

It should be noted that although the observations are inde-
pendent within a loosely coupled integration, the predicted
state elements are correlated. Thus, if both the predicted state
and measurement vectors are contaminated by outliers, a bi-
factor inflation covariance model is introduced to suppress
the impact on the estimated state vector (Yang et al. 2002).
The equivalent covariancematrices of the predicted state vec-
tor, x̄k , and the measurement vector, Lk , are then:

σ̄ 2
i � λi iσ

2
i λi i ≥ 1

σ̄ 2
j � λ j jσ

2
j λ j j ≥ 1

σ̄i j � λi jσi j (33a)

where λi i and λ j j are two inflation factors of the covariance
elements, and λi j � √

λi iλ j j is the bi-factor; σ̄ 2
i , σ̄

2
j and σ̄i j

are equivalent variances and covariance elements, respec-
tively. The newly generated covariance matrix has thus kept
the original correlations unchanged.

Σ̄ �

⎡
⎢⎢⎢⎣

σ̄ 2
11 · · · σ̄ 2

1n
...

. . .
...

σ̄ 2
n1 · · · σ̄ 2

nn

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

λ11σ
2
11 · · · λ1nσ 2

1n
...

. . .
...

λn1σ
2
n1 · · · λnnσ 2

nn

⎤
⎥⎥⎥⎦ (33b)

The bi-factor can be chosen as follows:

λi i �
{
1 |ṽi | ≤ c
|ṽi |
c |ṽi | > c

(34)

where c is a constant, usually chosen as 1.0–2.0; ṽi � vi/σ0
is the standardized correction corresponding to the i th mea-
surement or standardized correction for the i th predicted state
element. The variance scale factor is

σ0 � median {|ṽi |}/0.6745 (35)

The constant 1/0.6745 is a correction factor for Fisher con-
sistency at the Gaussian distribution (Fakharian et al. 2011).
The robust estimated state vector and its covariance matrix
then can be derived via Eqs. (23) and (24),while the iterations
can effectively suppress the influences of the outliers.

It can be found from the above derivation that the robust
estimation process requires iteration at the present epoch.
The estimated state vector at the first iteration acts as the
reference state and completes the robust M–M estimation.
The RMUKF calculation flow is presented in Fig. 1.

The following characteristics can be obtained from the
above derivation.
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Obtain the robust covariance 
matrix of predicted state 

and measurement Σ

Calculate the  correction  vectors
and 

Calculate bi-factors

Measurement Update 

Estimate the state and 
covariance matrix Σ

Predict the state by UT

Generate sigma points ( )

Fig. 1 Flowchart of RMUKF

1. TheM–M estimation is limited not only to linear models,
but also to nonlinear models if unscented Kalman filter
is applied.

2. The RMUKF can effectively attenuate the effects of the
dynamic disturbances and measurement outliers on the
estimated state vector by iteration procedures.

3. The algorithm can bemodified into an adaptive algorithm
by adding an adaptive factor to the innovation vector and
its covariance matrix. If the measurement errors were
not contaminated by the outliers, the innovation vector
could indicate the system discrepancy. The weight func-
tion decreases the contribution of the dynamic model to
the estimated state vector based on the extent of the dis-
crepancy.

4. The equivalent covariance matrices determined by
Eqs. (33a) and (33b) are symmetric and keep the original
predicted state correlation coefficients unchanged.

5. The derivation is carried out with nonlinear state space
models. It should be noted that the derivation is also valid
for a linear model.

Table 1 Simulation initial conditions

Gyro drift (°/h) 100

Accelerometer bias (μg) 500

Angular random walk (°/
√
h) 200

Velocity random walk (μg/
√
Hz) 5000

Initial position [22.31° 114.18° 41 m]

Measurement noise e � [
1 1 3 0.2 0.2 0.2

]T

Initial position error (m) [2 2 3]

Initial velocity error (m/s) 0.2

Initial misalignment angle (°) [− 20 37 80]

Initial variance of state vector [0.04 0.04 0.04 9.83e−14
9.83e−14 9]

22.31222.30922.306

Latitude [degree]

114.165

114.173

114.18

Lo
ng

itu
de

 [d
eg

re
e]

Fig. 2 The simulated trajectory. The red dot is the initial position of the
trajectory
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East North Altitude

Fig. 3 The simulated velocity at east, north and up components

4 Computation and analysis

To verify the proposed RMUKF, both a simulation test and
a field test were carried out. A loosely coupled integration
strategy was used to fuse the output data from a GPS receiver
and IMU. A nine-state nonlinear error model was used as the
dynamic equation. The tests were processed in theMATLAB
R2010a 64-bit program on a PCwith Intel Core i7-3770CPU
at 3.40 GHz, 16-GB RAM equipped with Win10.
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Table 2 Magnitude of input
outliers Epoch Velocity Position

East (m/s) North (m/s) Up (m/s) Latitude (m) Longitude (m) Altitude (m)

150 s + 1 – – – + 10.84 –

200 s – − 1 – − 22.64 – –

300 s – – – − 11.16 − 22.32 + 10

450 s – – − 1 – − 10

(a)
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D
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ce
 [m

]

Latitude

(b)
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D
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]
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 [m
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Fig. 4 The difference between the outlying position components and the
simulated true observations in latitude (a), longitude (b) and altitude (c)

4.1 Simulation tests

The simulation testswere based on amoving vehiclewith dif-
ferent moving behaviors. The simulation duration was 549 s
with a 100-Hz sampling frequency, and the simulation ini-
tial conditions are listed in Table 1. In Table 1, the initial
state variance elements approximately correspond to the ini-
tial state errors. The simulation was processed without initial

(a)
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D
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(b)
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ce

 [m
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(c)

-2

-1

0

1

2

D
iff

er
en

ce
 [m

/s
]

Up

Fig. 5 The difference between the outlying velocity components and
the simulated true observations in respect of east (a), north (b) and up
(c)

alignment, and the misalignment angle was randomly set to
a considerable number. The simulated trajectory and veloc-
ity are presented in Figs. 2 and 3. The measurement outliers
at four different epochs are arbitrarily given as presented
in Table 2. The differences between the observations with
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Fig. 6 Position error in latitude (a), longitude (b) and altitude (c)

outliers and the simulated true observations, positioning and
velocity components are plotted in Figs. 4 and 5. The esti-
mation results were also compared with the simulated true
values. A complementary simulation was also carried out
with different initial conditions, in which the initial position
errors were enlarged to [20 m, 20 m, 30 m], and the velocity
errors were enlarged to 2 m/s.

The positioning errors of simulation results are illustrated
in Fig. 6, in which (a) presents the error of the latitude com-
ponent, (b) the error in the longitude component and (c) the
error in the altitude component. Figure 7 presents the veloc-
ity error, in which (a) gives the error of the east component,
(b) gives the error of the north component, and (c) gives the
error of up component. The absolute maximum error of UKF
and RMUKF is given in Fig. 8. The root-mean-square error
(RMSE) is given in Table 3.

The two cases of the simulation calculation results are
labeled as RMUKF1 (with original small initial errors) and
RMUKF2 (with enlarged initial errors).

From the calculation results, we observe that:
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Fig. 7 Velocity error in east (a), north (b) and up (c)

1. The UKF failed to constrain the position error influence
between epoch 300 s and 386 s due to the outlying obser-
vations, see Fig. 6.

2. The maximum positioning error of RMUKF is smaller
than that of UKF. It is noted that the error magnitude
of UKF is more than 12 m in the longitude component,
while that ofRMUKF is less than 5m.Thismeans that the
RMUKF proposed in this paper has the ability to reduce
the outlying measurement effects to the state parameter
estimates. In particular, the peak value is confined.

3. The velocity component errors reveal a similar phe-
nomenon as the positioning component errors; that is,
the velocity estimated from RMUKF is superior to that
of UKF, as shown in Fig. 7.

4. It is noted that a large fluctuation occurred after epoch
300 s due to the outlying observation elements, while the
fluctuation in RMUKF is smaller andRMUKF converges
faster than that of UKF.
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Fig. 8 Absolute maximum error of position (a) and velocity (b)

5. TheRMSEpresented inTable 3 also proved thatRMUKF
was better able to minimize the influences of outliers on
positioning and velocity results.

6. From Table 4 it can be seen that the RMSE of RMUKF
with a large initial error is greatly increased. Thus, the
proposed RMUKF requires a relatively accurate initial
state.

4.2 Field test

This subsection presents experimental results to demonstrate
the performance of the proposed RMUKF when applied to
GPS/IMU integrated vehicle navigation. The experimentwas
conducted next to a lake inWuhan, China. The vehicle trajec-
tory is shown in Fig. 9a; the three positioning components,
which are solved by single-point positioning technique, are
presented in Fig. 9b–d. In Fig. 9d, it is noted that the altitude
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Fig. 9 The vehicle trajectory (a) and position components in longitude
(b), latitude (c) and altitude (d)

Table 3 RMSE of UKF and
RMUKF in simulation Latitude (m) Longitude (m) Altitude (m) East (m/s) North (m/s) Up (m/s)

UKF 1.91 2.68 1.99 1.00 0.87 0.67

RMUKF 1.27 1.11 1.93 0.28 0.43 0.26

Table 4 RMSE of RMUKF1
and RMUKF2 Latitude (m) Longitude (m) Altitude (m) East (m/s) North (m/s) Up (m/s)

RMUKF1 1.27 1.11 1.93 0.28 0.43 0.26

RMUKF2 6.55 5.79 15.02 1.85 2.05 1.79
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Fig. 10 Position error of UKF (a) and RMUKF in latitude (a), longitude
(b) and altitude (c)

component fluctuated between 6.6 and 49.22 m during the
epochs 283310–284248 s. The sampling frequencies of the
IMU and GPS were 100 Hz and 10 Hz, respectively. The
bias variances of the gyro and accelerometer were 1 °/h and
500 μg, respectively. The initial position errors were set to
[7 m, 7 m, 7 m], initial velocity errors to [0.1 m/s, 0.1 m/s,
0.1 m/s] and initial attitude errors to [16, 16, 83].

The estimated results were compared with double-
differenced GPS positioning and velocity. The UKF and
RMUKF positioning errors are presented in Fig. 10. The
velocity errors are presented in Fig. 11. TheRMSEare shown
in Fig. 12 and Table 5. The running time for both UKF and
RMUKF is presented in Table 6.

By analyzing from the actual field test, we observe:

(1) The peak positioning error values provided by RMUKF
are smaller than those of UKF. In particular, the out-
lying effects in the longitude component around epoch
2.84 disappear, see Fig. 10b. The RMUKF controls the
outlying measurement effects.
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Fig. 11 Velocity error of UKF versus RMUKF in east (a), north (b) and
up (c)
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Table 5 RMSE of UKF and
RMUKF in field test Latitude (m) Longitude (m) Altitude (m) East (m/s) North (m/s) Up (m/s)

UKF 0.35 1.24 5.58 0.47 0.48 0.25

RMUKF 0.31 0.37 0.60 0.09 0.08 0.14

Table 6 Running time of UKF
and RMUKF

Running time (s)

UKF 400.42

RMUKF 414.19

(2) It is also noted that there are considerable fluctuations in
the UKF positioning errors, especially in longitude and
altitude components, shown in Fig. 10b, c. The RMUKF
not only has fewer peak values in positioning errors than
those of UKF, but also converges faster than UKF after
the error peaks have occurred.

(3) The RMUKF velocity error in the east and north com-
ponents during the initial period is bounded, while the
UKF velocity error tends to diverge.

(4) TheRMSEpresented in Fig. 12 and Table 5 also demon-
strates the superior performance of the RMUKF.

(5) The proposed RMUKF took 414.19 s to run in the field
test, compared to 400.42 s for UKF.

5 Conclusions

This study presents a robust M-unscented Kalman filter,
based on anM–Mestimation principle. The filter has the abil-
ity to suppress the effects of outliers from both the dynamic
model and measurements on dynamic state estimates and
hence provides a robust solution in an iterative manner,
without requiring the linearization of nonlinear models. Fur-
thermore, the correlations of the predicted state parameters
are rigorously taken into account by the correlated bi-factor
equivalent covariance matrix, in which the original correla-
tions of the predicted parameters are kept unchanged. The
performance of RMUKF is verified by simulation and field
tests. The influences of measurement outliers and dynamic
model disturbances, as well as the stochastic model uncer-
tainties, are controlledwell byRMUKF. In addition,RMUKF
makes the filter converge quickly. The proposed method,
however, requires a relative accurate initial state vector.
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