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Abstract
Relative positioning using multi-GNSS (global navigation satellite systems) can improve accuracy, reliability, and availability
compared to the use of a single constellation system. Intra-system double-difference (DD) ambiguities (ISDDAs) refer to the
DD ambiguities between satellites of a single constellation system and can be fixed to an integer to derive the precise fixed
solution. Inter-system ambiguities, which denote theDD ambiguities between different constellation systems, can also be fixed
to integers on overlapping frequencies, once the inter-systembias (ISB) is removed. Comparedwith fixing ISDDAs, fixing both
integer intra- and inter-system DD ambiguities (IIDDAs) means an increase of positioning precision through an integration of
multiple GNSS constellations. Previously, researchers have studied IIDDA fixing with systems of the same frequencies, but
not with systems of different frequencies. Integer IIDDAs can be determined from single-difference (SD) ambiguities, even
if the frequencies of multi-GNSS signals used in the positioning are different. In this study, we investigated IIDDA fixing for
multi-GNSS signals of narrowly spaced frequencies. First, the inter-system DD models of multi-GNSS signals of different
frequencies are introduced, and the strategy for compensating for ISB is presented. The ISB is decomposed into three parts:
1) a float approximate ISB number that can be considered equal to the ISB of code pseudorange observations and thus can
be estimated through single point positioning (SPP); 2) a number that is a multiple of the GNSS signal wavelength; and 3) a
fractional ISB part, with a magnitude smaller than a single wavelength. Then, the relationship between intra- and inter-system
DD ambiguity RATIO values and ISB was investigated by integrating GPS L1 and GLONASS L1 signals. In our numerical
analyses with short baselines, the ISB parameter and IIDDAwere successfully fixed, even if the number of observed satellites
in each system was small.

Keywords Multi-GNSS integration · Narrowly spaced frequencies · Inter-system bias · Inter-system DD ambiguity fixing ·
Intra-system DD ambiguity fixing

1 Introduction

Global navigation satellite system (GNSS) is a powerful
tool for precise positioning and navigation. In addition to

B Zhizhao Liu
lszzliu@polyu.edu.hk

1 Faculty of Geosciences and Environmental Engineering,
Southwest Jiaotong University, Chengdu, Sichuan 610031,
China

2 Department of Land Surveying and Geo-Informatics,
Hong Kong Polytechnic University, Hong Kong, China

3 Institute of Geodesy and Geoinformation Science, Technische
Universität Berlin, 10623 Berlin, Germany

4 German Research Centre for Geosciences, 14473 Potsdam,
Germany

the fully operational Global Positioning System (GPS) and
GLObal NAvigation Satellite System (GLONASS), new
systems, such as the European Galileo, Chinese BeiDou
Navigation Satellite System (BDS), Japanese Quasi-Zenith
Satellite System (QZSS), and the Indian NAVigation with
Indian Constellation (NAVIC) systems, have been developed
(Montenbruck et al. 2014; Nadarajah et al. 2015). In total,
these systems incorporate more than 100 satellites and nearly
20 carrier frequencies (Table 1). Integration of these multi-
GNSS signals can improve positioning accuracy, reliability,
and availability (Li et al. 2015; Wang et al. 2001; Force
and Miller 2013). In relative positioning mode, a double-
difference (DD) observation model between receivers and
satellites is used to reduce or eliminate the observation errors
in un-difference observations. In this paper, “intra-system”
refers to DD model/observations between satellites of the
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Table 1 Frequencies used by GNSS

a b c d e f g h i J k l m n o p q r s
L1(GLO-RF) a
L1(GPS) b ○
L1(QZSS) c ○
E1 d ○
B1 e ○ ○ ○
E6 f ○
LEX g ○
B3 h ○ ○
L2(GLO-RF) i
L2(GPS) j
L2(QZSS) k
E5B l ○
B2 m ○
L3(GLO-RC) n ○ ○
E5 o
L5(GPS) p
L5(QZSS) q
E5a r
SPS-L5 s

GLO-RF refers to a GLONASS FDMA frequency band; RC refers to a CDMA GLONASS frequency band; red squares indicate DDs of identical
GNSS signals; green squares indicate DDs of GNSS signals of the same frequencies from different GNSS systems; yellow squares indicate DDs

of GNSS signals of different frequencies with wavelength differences smaller than 4mm, where 1mm < < 2mm < < 3 mm < < 4 mm

same system. Intra-system DD fixing has been extensively
studied, especially for the GPS intra-system signals. “Inter-
system” denotes DD model/observations between different
satellite systems. Inter-system DD models enable observa-
tions from different systems to be processed together in a
single mathematical model. This results in improved inte-
ger ambiguity resolution, and consequently more reliable
positioning results (Julien et al. 2003; Odijk and Teunissen
2013a). However, fixing DD ambiguities to integer values in
inter-system DD models requires that the inter-system bias
(ISB) be known or estimated. The ISB is mainly composed
of hardware delays, resulting from different signal paths in
the GNSS devices (Odijk and Teunissen 2013b; Paziewski
and Wielgosz 2015; Wang et al. 2001).

In the construction of inter-system DD models, observa-
tions of the same frequencies, such asGPS andGalileoL1-E1
andL5-E5a, are preferred (Odijk andTeunissen 2013a;Odijk
et al. 2014; Odolinski et al. 2014; Julien et al. 2003). In
this case, single-difference (SD) ambiguities from different
systems can be directly combined to produce integer DD
ambiguities. These integer inter-system DD ambiguities can
be resolved once the ISB is known. The ISB can be regarded
as a combination of an integer part and a fractional part. The

integer part is a multiple of the wavelength of the GNSS
signal and can be combined with integer DD ambiguities
without affecting the performance of final positioning per-
formance. The fractional part (F-ISB) is a fraction of the
wavelength and needs to be accurately estimated. However,
when the F-ISB is estimated as an unknown parameter in the
DD model, the normal equation (NEQ) in the data process-
ing is rank deficient because the number of SD ambiguities
is one more than the number of DD equations. Methods
have been proposed to eliminate this rank deficiency prob-
lem. For instance, Odijk and Teunissen (2013b) estimated
the F-ISB by selecting a reference satellite for each system
and fixing only integer intra-system DD ambiguities (ISD-
DAs). Paziewski and Wielgosz (2015) added a constraint to
the equation by assigning the F-ISB parameter an a priori
value. Tian et al. (2016) proposed a particle filter approach,
which fixed both integer intra- and inter-system DD ambigu-
ities (IIDDAs) in F-ISB estimation via pregenerated F-ISB
samples.

However, in multi-GNSS applications, a large proportion
of GNSS signals have different frequencies. Many of these
frequencies are narrowly spaced, as shown in Table 1. For
instance, BeiDou B1 and GPS L1 have a wavelength differ-
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ence of 1.7mm, BeiDou B3 and Galileo E6 have a difference
of 1.9 mm, and Galileo E5b and GLONASS L3 have a differ-
ence of 1.1mm.WhenGNSS signals of different frequencies
are used together in relative positioning, SD ambiguities
cannot be directly combined to form integer DD ambigui-
ties. This is similar to the case of processing data from a
frequency-divisionmultiple access (FDMA)GLONASS sys-
tem (Leick 1998; Wang et al. 2001). Ambiguity resolution
in GLONASS data processing has been investigated previ-
ously. However, an inter-systemmodel with narrowly spaced
frequencies has not yet been reported. Therefore, we inves-
tigated such a model and developed a strategy similar to that
of processing FDMA-based GLONASS data with corrected
ISB to fix IIDDAs. The developed strategy is generic and can
be applied to multi-GNSS integration with both FDMA and
CDMA (code-division multiple access) techniques.

Wefirst analyzed the relationship betweenRATIOand ISB
variables to develop a strategy to determine ISBparameters in
an inter-systemmodel. RATIOwas defined as the ratio of the
secondary candidate of minimum q (b) to the primary candi-
date of minimum q (b) (Euler and Schaffrin 1991). q (b) =(
b̂ − b

)T
Q−1

b̂b̂

(
b̂ − b

)
, where b̂ and Qb̂b̂ are the float DD

ambiguity vector and the corresponding variance–covariance
(VC) matrix, respectively, and b is integer-ambiguity-vector
candidate. RATIO values reflect the closeness of the float
ambiguity solution to its nearest integer vector (Verhagen
and Teunissen 2013). Hence, they can be used to analyze
ambiguity resolution performance.

In the developed strategy, the ISB μ in the inter-system
model is separated into three parts, the approximate ISB part
d, the integer part λN with λ being the carrier phase wave-
length, and the remaining F-ISB δμ. Therefore, we have
μ = d+λN+δμ. Once the approximate ISBpart is obtained,
it is used to remove the major effect of the ISB on the carrier
phase of the inter-system model. The integer part represents
the part whose value is an integer number of wavelengths and
can therefore be neglected since it becomes a part of integer
ambiguity. The remaining F-ISBvalue is estimated by locally
maximizing the RATIO value in integer DD ambiguity res-
olution. To obtain an accurate F-ISB value, the particle filter
approach (Doucet et al. 2001; Gordon et al. 1993; Tian et al.
2015) is used in this study. After the approximate ISB and
accurate F-ISB values are obtained, they are added together
to obtain a final ISB value, which enables the resolution of
integer IIDDAs.

In the experiments, we chose to use the GPS L1
(1575.42MHz) and GLONASS L1 (1598.0625–1605.375
MHz) signals to build the inter-system DD model. These
frequency bands were selected because the largest wave-
length difference between them is 3.55 mm, which is large
enough to study integer DD ambiguity resolution and F-ISB
estimation through the analysis of RATIO value characteris-

tics. In addition, larger wavelength differences require more
accurate initial SD phase ambiguities. If the wavelength
difference is too large, the initial SD phase ambiguities calcu-
lated from low-accuracy pseudorange observations may not
be sufficiently accurate. This wavelength difference allows
observing solution improvements for short baselines such
as 10–15km. Moreover, both GPS and GLONASS constel-
lations are fully operational. Therefore, a large number of
GPS and GLONASS satellites can be used to study inte-
ger DD ambiguity resolution, F-ISB estimation, and RATIO
value distribution characteristics. Furthermore, the strat-
egy developed for FDMA signals can also be applied to
CDMA signals, because CDMA signals can be regarded as
a special case of FDMA signals in terms of their hardware
delays.

This paper is organized as follows. Section 2 presents the
mathematic models for multi-GNSS integration. Section 3
details the relationship between RATIO and F-ISB values.
Section 4 describes the experimental and analytical results.
Our conclusions are given in Sect. 5.

2 Intra- and inter-system double-difference
models and estimation of F-ISB

Because of passing through different hardware channels or
being processed differently by the firmware of receivers,
GNSS signals from different constellations and different
GLONASS FDMA frequencies are affected by multi-GNSS
ISB and GLONASS inter-frequency bias (IFB), respec-
tively (Melgard et al. 2013). In DD observation models, the
between-receiver hardware delays do not cancel out and they
need to be estimated (Al-Shaery et al. 2012;Wanninger 2012;
Cai and Gao 2013; Odijk et al. 2014).

For GLONASS FDMA signals, the GLONASS IFB
present in the code pseudorange and carrier phase obser-
vations may be nonzero in the DD model. This effect has
been demonstrated using two receivers from different manu-
facturers (Wanninger 2012; Paziewski and Wielgosz 2015).
The effects of the remaining hardware delays on pseudor-
ange observations are difficult to model. However, the effects
on carrier phase observations have been found to be linear
with respect to the channel number and can be precisely
expressed by a constant value plus its rate term (Wanninger
2012; Tian et al. 2015). For instance, the carrier phase
IFB μi

a for a station a and satellite i can be described as
μi
a = μ̄a + ki�γa,FDMA, where μ̄a is the constant and

�γa,FDMA is the rate of change with channel number ki .
Considering theGLONASS IFB, thegeneric un-difference

GNSS observation model can be expressed as follows
(Teunissen and Kleusberg 1998):
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Ps1,i
a = ρs1,i

a − c
(
δta − δt s1,i

)
+ d̄s1a + �dia,FDMA

− ds1,i + I s1,ia + T s1,i
a

+ cals1,ia + Ms1,i
a + εs1,ia (1a)

λs1,iΦs1,i
a = ρs1,i

a − c
(
δta − δt s1,i

)
+ μ̄s1

a + ki�γa,FDMA

−μs1,i − I s1,ia + T s1,i
a + cals1,ia + ms1,i

a

+ λs1,i N s1,i
a + λs1,iψ s1,i

a + ξ s1,ia , (1b)

where s1 denotes a GNSS constellation system, such as
GPS, GLONASS, or Galileo. Pi

a is the pseudorange code
observation (m).Φ i

a is the carrier phase observation (cycles).
Superscript i and subscript a refer to the GNSS satellite and
receiver, respectively.λi is thewavelengthof the carrier phase
observation (m/cycle). ρi

a refers to the geometric distance
between the phase centers of the satellite and receiver anten-
nas (m). c is the speed of light in a vacuum (m/s). δta and δt i

are the clock offsets for the receiver and satellite, respectively
(s). d̄a and μ̄a are the common parts of the receiver hard-
ware delays for all of the satellites in a constellation system
for pseudorange and phase observations, respectively (m).
�dia,FDMA represents the remainder of the receiver hardware

delay, on top of the d̄a in pseudorange observations (m). ki is
the slot number of the GLONASS satellite. �γa,FDMA is the
IFB rate for GLONASS phase observations (m). �dia,FDMA

and �γa,FDMA have values of zero for CDMA signals. di

and μi represent the satellite bias delays in pseudorange
and carrier phase observations, respectively. I ia and T i

a are
the ionospheric and tropospheric delays, respectively (m).
calia includes the errors such as earth tide, ocean loading,
relativity effects, antenna phase center offset/variation and
phase windup effects, and so on (m). Those errors can be
accurately modeled in the data processing. Mi

a and mi
a are

the multipath effects in the pseudorange and carrier phase
observations, respectively (m). Ni

a is the carrier phase inte-
ger ambiguity, and ψ i

a is the initial phase (cycles). ε
i
a and ξ ia

refer to the measurement noise for pseudorange and carrier
phase observations, respectively (m).

Since the term calia can be accurately modeled, they will
be neglected in the following discussion. Multipath effects
are difficult to model and typically cannot be canceled by
differencing. Therefore, they are treated as white noise. The
satellite clock error can be canceled in the between-receiver
single difference. The initial phases are correlated with hard-
ware delays and thus are considered as a part of hardware
delays and are not parameterized separately. Hence, the
between-receiver SD model can be expressed as follows:

Ps1,i
ab = ρ

s1,i
ab − cδt s1,ab + d̄s1ab

+�diab,FDMA + I s1,iab + T s1,i
ab + ε

s1,i
ab (2a)

λs1,iΦ
s1,i
ab = ρ

s1,i
ab − cδt s1,ab + μ̄s1

ab + ki�γab,FDMA

+ λs1,i N s1,i
ab − I s1,iab + T s1,i

ab + ξ
s1,i
ab , (2b)

where b represents the second receiver of a baseline. The DD
model between two stations a and b, and two satellites i and
j , can be given as follows:

Ps1s2,i j
ab = ρ

s1s2,i j
ab + d̄s1s2ab + �di jab,FDMA

+ I s1s2,i jab + T s1s2,i j
ab + ε

s1s2,i j
ab (3a)

λs2, jΦ
s2, j
ab − λs1,iΦ

s1,i
ab = ρ

s1s2,i j
ab + μ̄s1s2

ab

+
(
k j − ki

)
�γab,FDMA + λs2, j N s2, j

ab − λs1,i N s1,i
ab

− I s1s2,i jab + T s1s2,i j
ab + ξ

s1s2,i j
ab (3b)

This is a generic DD model, where s1 and s2 can be either
the same GNSS system or different systems, with either the
same or different frequencies.

For GLONASS FDMA signals, the IFB in pseudorange
observations is usually stable over time (Kozlov et al. 2000).
Thus, it can be corrected using a lookup table of pseudorange
SD-IFB values. To generate such a lookup table, the pseudo-
range IFB is first set to zero in the pseudorange DD model,
and the processing residuals are obtained. These nonzero DD
residuals are regarded as DD pseudorange hardware delays
and modeled using SD pseudorange hardware delay param-
eters. The corresponding equation is rank deficient by one.
Assuming that the sum of all of the SD pseudorange hard-
ware delays equals zero, the rank deficiency problem can
be resolved and the SD pseudorange hardware delays can be
determined. Thismethod of eliminating rank deficiency is the
same as that utilized byAlber et al. (2000), where single-path
phase delays of atmospheric water vapor were obtained from
theDDvalues inGPSdata processing.TheGLONASS IFB in
carrier phase observations can be estimated using themethod
proposed by Tian et al. (2015). After the IFB is removed in
the SD or DD models, integer DD carrier phase ambiguities
can be resolved.

If theGLONASSpseudorangeSD-IFBand theGLONASS
phase IFB have been corrected using the pseudorange IFB
lookup table and the phase IFB rate, respectively, the corre-
sponding parameters in the SD model (2) and the DD model
(3) are eliminated. Therefore, these models can be rewritten
as follows:

Ps1,i
ab = ρ

s1,i
ab − cδt s1,ab + d̄s1ab + I s1,iab + T s1,i

ab + ε
s1,i
ab (4a)

λs1,iΦ
s1,i
ab = ρ

s1,i
ab − cδt s1,ab + μ̄s1

ab

+ λs1,i N s1,i
ab − I s1,iab + T s1,i

ab + ξ
s1,i
ab (4b)
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and

Ps1s2,i j
ab = ρ

s1s2,i j
ab + d̄s1s2ab + I s1s2,i jab + T s1s2,i j

ab + ε
s1s2,i j
ab

(5a)

λs2, jΦ
s2, j
ab − λs1,iΦ

s1,i
ab = ρ

s1s2,i j
ab + μ̄s1s2

ab + λs2, j N s2, j
ab

− λs1,i N s1,i
ab − I s1s2,i jab + T s1s2,i j

ab + ξ
s1s2,i j
ab . (5b)

2.1 Intra-system DDmodel

For intra-system DD models, s1 and s2 represent the same
system (s1 = s2). Thus, the common parts of the hardware
delays d̄s1s2ab and μ̄s1s2

ab in Eq. (5) cancel each other. The
remaining equations for FDMAandnon-FDMAsatellite sys-
tems are presented in this section.

2.1.1 Intra-system DDmodel for non-FDMA satellite
systems

For the intra-system DD model, the two satellite systems in
Eq. (5) are the same (s1 = s2). If the single GNSS satel-
lite system is a non-FDMA system, and at the same time
the GNSS signals are generated at the same frequency, the
two ambiguity terms in Eq. (5b) combine to form the DD
ambiguity. Thus, the intra-system model can be expressed as
follows:

Ps1s1,i j
ab = ρ

s1s1,i j
ab + I s1s1,i jab + T s1s1,i j

ab + ε
s1s1,i j
ab (6a)

λΦ
s1s1,i j
ab = ρ

s1s1,i j
ab + λNs1s1,i j

ab

−I s1s1,i jab + T s1s1,i j
ab + ξ

s1s1,i j
ab . (6b)

In this case, the DD ambiguity Ns1s1,i j
ab is an integer. If the

float values of Ns1s1,i j
ab and the corresponding VC matrix are

estimated, the integer DD ambiguities can be fixed using the
integer least squares method.

2.1.2 Intra-system DDmodel for FDMA satellite systems

When twoFDMAsignals are used to formDD, the difference
between theirwavelengths disallows the formation of an inte-
ger DD ambiguity by differencing between the two unknown
SD ambiguities in Eq. (5b). Therefore, the DD model shown
in Eq. (5) becomes Eq. (7).

PRR,i j
ab = ρ

RR,i j
ab + I RR,i j

ab + T RR,i j
ab + ε

RR,i j
ab , (7a)

λR, jΦ
R, j
ab − λR,iΦ

R,i
ab = ρ

RR,i j
ab + λR, j N R, j

ab

−λR,i N R,i
ab − I RR,i j

ab + T RR,i j
ab + ξ

RR,i j
ab , (7b)

where R indicates that the SD observations are from
GLONASS, while RR refers to that the DD observations are

fromGLONASS.Thismodel is not the only approach to solv-
ing a GLONASS baseline (Leick 1998; Wang et al. 2001).
For example, the observation model can also be expressed
in units of cycles, so that the SD ambiguity parameters can
be directly combined. In that case, the receiver clock param-
eters cannot be canceled out, and they must be calculated.
However, these various models are similar and can be easily
transformed between each other. Moreover, they have been
found to exhibit similar performances (Li and Wang 2011;
Al-Shaery et al. 2012). Therefore, in this study, we only use
the model shown in Eq. (7).

The SD ambiguities N R,i
ab and N R, j

ab in Eq. (7b) are
unknown, and the number of those SD ambiguities is larger
than the number of the carrier phase DD observations by
one. Thus, the NEQ derived from Eq. (7) is rank deficient.
However, the pseudorange observations can be used to calcu-
late the initial values of SD ambiguities, eliminating the rank
deficiency problem. From the SD models described in Eq.
(2b), the SD ambiguity N R,i

ab can be calculated as follows:

N R,i
ab = − 1

λR,i
P R,i
ab + Φ

R,i
ab + 1

λR,i

(
d̄ R
ab − μ̄R

ab + 2I R,i
ab

)
.

(8)

The error in Eq. (8) is as follows:

δN R,i
ab = 1

λR,i

(
d̄ R
ab − μ̄R

ab + 2I R,i
ab − ε

R,i
ab + ξ

R,i
ab

)
. (9)

In Eq. (9), in addition to the hardware delays
(
d̄ R
ab − μ̄R

ab

)
, the

ionospheric delay term 2I R,i
ab and the pseudorange observa-

tion noise ε
R,i
ab are the main contributors to the ambiguity

estimation error δN R,i
ab . The 2I R,i

ab term can be corrected
based on multi-frequency observations, or can be neglected
in the case of short baselines. The remaining pseudorange
observation noise term ε

R,i
ab depends on the satellite system

and the quality of the receivers.
After the SD ambiguities N R,i

ab and N R, j
ab and the corre-

sponding VC matrix (cycles) in the DD model of Eq. (7b)
are solved, their DD ambiguities N RR,i j

ab and corresponding
VCmatrix can be calculated. The wavelength corresponding
to the DD ambiguity N RR,i j

ab is neither λR,i nor λR, j , but a
wavelength between λR,i and λR, j . Moreover, the calculated
N RR,i j
ab value is affected by the error terms in Eq. (9). This can

be clarified by writing the terms
(
λR, j N R, j

ab − λR,i N R,i
ab

)
in

Eq. (7b) as
(
λR, j N RR,i j

ab − (
λR,i − λR, j

)
N R,i
ab

)
.

The term
(
d̄ R
ab − μ̄R

ab

)
, the differencebetween thebetween-

receiver SD hardware delays for pseudorange and carrier
phase observations of a channel, in Eq. (9) is involved in
GLONASS data processing if the pseudorange observations
are used to determine initial values for SD ambiguities or
to calculate the receiver clock errors. Thus, the between-
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receiver IFB should be corrected if these terms are nonzero.
However, the

(
d̄ R
ab − μ̄R

ab

)
term in Eq. (8) is usually unknown

and not considered in analyses. By ignoring
(
d̄ R
ab − μ̄R

ab

)
,

ISDDAs can be resolved in GLONASS FDMA data pro-
cessing (Kozlov and Tkachenko 1998; Tian et al. 2015;
Banville 2016). Thus, it is reasonable to consider the value of(
d̄ R
ab − μ̄R

ab

)
to be negligible in Eq. (9), and thus d̄ R

ab ≈ μ̄R
ab.

2.2 Inter-system DDmodel for narrowly spaced
frequencies

In this section, we present the inter-system DD model used
for observations from different satellite systems with nar-
rowly spaced frequencies. In this case, the SD hardware
delays do not cancel each other in the DD model. The inter-
system DD model has the form of Eq. (5), with s1 and s2
representing different systems.

As in GLONASS data processing, the resultant normal
equation is rank deficient because the number of SD ambi-
guity parameters in Eq. (7) is one larger than the rank of the
DD equations. Hence, the initial SD ambiguity values are
necessary to solve the equations. In addition, the initial SD
ambiguity value of s1 can be calculated from pseudorange
observations based on the SDmodel (2) and can be expressed
as follows:

Ns1,i
ab = − 1

λs1,i
Ps1,i
ab

+Φ
s1,i
ab + 1

λs1,i

(
d̄s1ab − μ̄s1

ab + 2I s1,iab

)
. (10)

Considering the unknown values of d̄s1ab , μ̄s1
ab, and I s1,iab , the

error of Ns1,i
ab in (10) is denoted as δNs1,i

ab :

δNs1,i
ab = 1

λs1,i

(
d̄s1ab − μ̄s1

ab + 2I s1,iab − ε
s1,i
ab + ξ

s1,i
ab

)
. (11)

Equations (10) and (11) are generic and are equivalent to Eq.
(8) and (9) for GLONASS data processing. In GLONASS
FDMA data processing, the SD ambiguities Ns1,i

ab and Ns2, j
ab

in Eq. (5b) are determined and then differenced to produce
the DD ambiguity Ns1s2,i j

ab . The errors in the initial values of

the SD ambiguities Ns1,i
ab and Ns2, j

ab as presented in Eq. (11)

will produce errors in the DD ambiguity Ns1s2,i j
ab , because

of the wavelength difference. The maximumwavelength dif-
ference among the GLONASS L1 frequencies is 0.85 mm.
When the GPS L1 and GLONASS L1 signals are integrated,
the maximum wavelength difference

(
λG, j − λR,i

)
between

the two signals is 3.55 mm, 4.18 times larger than that for the
GLONASS system alone. This implies that when the GPS
L1 and GLONASS L1 signals are integrated, the error in
the initial SD ambiguities N R,i

ab and NG, j
ab is also 4.18 times

greater than that for the GLONASSL1 data alone. Therefore,

its effect on the determination of the DD ambiguity N RG,i j
ab

is also much greater in the GPS L1 and GLONASS L1 inte-
gration case. The effect will be detailed further in Sects. 3.2
and 3.3.

If the hardware delay terms d̄s1s2ab and μ̄s1s2
ab in Eq. (5) are

known, the same processing procedure as that for GLONASS
single-system FDMA data can be used to estimate the SD
ambiguities in Eq. (5), and thus the DD ambiguities can
be calculated. The

(
d̄s1ab − μ̄s1

ab

)
term in Eq. (11) is equiva-

lent to
(
d̄ R
ab − μ̄R

ab

)
in GLONASS FDMA data processing.

GNSS CDMA signals may be regarded as special cases of
GLONASS FDMA signals. Therefore, the

(
d̄s1ab − μ̄s1

ab

)
term

is approximately negligible in Eq. (10) and (11), and thus
d̄s1ab ≈ μ̄s1

ab and d̄s2ab ≈ μ̄s2
ab.

2.3 Inter-system bias (ISB)

The between-receiver hardware delays in the DD models
result in ISB. Therefore, we used ISB, denoted as d̄s1s2ab and
μ̄s1s2
ab , to characterize the errors resulting from differences

between systems. The ISB d̄s1s2ab for pseudorange observa-
tions can usually be calculated using single point positioning
(SPP). The value of μ̄s1s2

ab , for carrier phase observations, can
be numerically decomposed into two parts:

μ̄s1s2
ab = μ̃s1s2

ab + λ̄Nμ̃s1s2
ab

, (12)

where μ̃s1s2
ab is the fractional part of the ISB (F-ISB) and is

shorter than onewavelength of the signal, λ̄ is thewavelength
corresponding to the IIDDAs, and Nμ̃s1s2

ab
is an integer.

When GNSS observations of the same frequency are inte-
grated, the integer part of the ISB does not affect ambiguity
resolution because the integer Nμ̃s1s2

ab
in Eq. (12) combines

with the integer DD ambiguity; therefore, the sum is also
an integer. The F-ISB disrupts integer ambiguity resolution
when it combines with the DD ambiguity. Therefore, the F-
ISB needs to be either removed or estimated.

When GNSS observations of different frequencies are
integrated, the integer part of the ISB cannot be neglected.
The wavelength corresponding to the DD ambiguity Ns1s2,i j

ab
determined from the SD ambiguities in Eq. (5b) is not a
fixed value, but a value variable between λs1,i and λs2, j .
The wavelength λ̄ in Eq. (12) can change within a single
observation period, such as the results presented at the end
of Sect. 3.2, because the number of observed satellite varies.
Thus, the F-ISB μ̃s1s2

ab in Eq. (12) is also variable. However,
we expect μ̃s1s2

ab to be stable; therefore, its estimated value
can be applied to correct observations of multiple observa-
tion sessions. Fortunately, the magnitude of the wavelength
variation is between λs1,i and λs2, j ; thus, this variation is
small in our experiments because the frequencies are nar-
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rowly spaced. If the integer Nμ̃s1s2
ab

in Eq. (12) is also a small

value, the μ̃s1s2
ab term will be stable, at least in short term.

Although it is difficult to determine Nμ̃s1s2
ab

in Eq. (12)

directly, the value of μ̄s1s2
ab is approximately equal to the pseu-

dorange hardware delay d̄s1s2ab (see Sect. 2.2), and d̄s2, jab ≈
μ̄
s2, j
ab . Therefore μ̄s1s2

ab can be expressed as follows:

μ̄s1s2
ab = d̂s1s2ab + δμ̄s1s2

ab , (13)

where d̂s1s2ab is the pseudorange ISB, determined from pseu-
dorange observations, which can be regarded as an approx-
imation of the carrier phase ISB.δμ̄s1s2

ab is the difference
between the true values of μ̄s1s2

ab and d̄s1s2ab . The term δμ̄s1s2
ab is

unknown, but it will not be large because d̄s1s2, jab ≈ μ̄
s1s2, j
ab .

δμ̄s1s2
ab can be separated into an integer part and a fractional

part. Therefore, the phase ISB can be written as follows:

μ̄s1s2
ab = d̂s1s2ab + δ̃μ̄

s1s2
ab + λ̄Nδμ̄s1s2

ab
, (14)

where δ̃μ̄
s1s2
ab is a fractional part that is smaller than onewave-

length. Nδμ̄s1s2
ab

is the integer part, which is neglected. λ̄ is the

wavelength corresponding to the DD ambiguity Ns1s2,i j
ab and

has a value between λs1,i and λs2, j (Eq. (5b)). The fractional
part δ̃μ̄

s1s2
ab is the only value that needs to be accurately esti-

mated and is denoted as F-ISB in the following sections.

2.4 Estimation of F-ISB

The F-ISB defined in Sect. 2.3 can be estimated using the
particle filter approach proposed by Tian et al. (2016). The
particle filter method is based on a Bayesian filter imple-
mented using the Monte Carlo method, which approximates
the variables via a simulation with weighted samples. The
particle filter-based F-ISB estimation approach is closely
related to RATIO value proposed by (Euler and Schaffrin
1991). The RATIO value is calculated by

RATIO =
q

(
b̌
′)

q
(
b̌
) = ‖b̂ − b̌

′‖2Qb̂b̂

‖b̂ − b̌‖2Qb̂b̂

,

where b̂ is the estimated float DD ambiguity vector, b̌ is the

primary candidate of the DD integer ambiguity vector, b̌
′
is

the secondary candidate of the DD integer ambiguity vector,
and Qb̂b̂ is the VC matrix of b̂.

The particle filter-based F-ISB estimation approach can
be summarized as follows. Firstly, the initial range [−0.1,
0.1] is randomly sampled. The generated samples are used
as F-ISB values which substitute δ̃μ̄

s1s2
ab in Eq. (14) stepwise

to generate μ̄s1s2
ab samples. Secondly, μ̄s1s2

ab samples are sub-
stituted into Eq. (5b) or its normal equation. The LAMBDA

method is then used to derive the corresponding RATIO val-
ues. Thirdly, the weights of the δ̃μ̄

s1s2
ab samples are updated

with the normalized RATIO value. Finally, the resampling
and prediction steps are conducted, and the cluster analysis
method is used to find a solution to the half-cycle problem
(Tian et al. 2016). If the filtering converges, the F-ISB δ̃μ̄

s1s2
ab

is considered to be accurately estimated and can then be used
to calculate the ISB μ̄s1s2

ab in Eq. (14). If the observations
are contaminated by errors such as the multipath effects and
remaining atmospheric delays, the ambiguity fixing will fail
even if the ISB is accurately known. In this case, the RATIO
distribution cannot show the ISB’s information clearly and
the filtering may not converge.

3 Investigating the relationship between
RATIO and ISB

In short baseline data processing, DD models can cancel
many types of errors, which leaves the unknown between-
receiver ISB and the DD ambiguities for analysis. If the ISB
can be sufficiently approximated, the remaining DD ambi-
guities will be integers, and a large RATIO value can be
obtained in the ambiguity fixing. Thus, analyzing the rela-
tionship between RATIO and ISB may provide information
regarding the remaining ISB or F-ISB in the observation
equations.

In this section, the data used in our experiments are first
introduced. Then, our investigations into the RATIO distri-
bution with different F-ISB values, and the corresponding
ambiguity fixing solutions, are described.

3.1 Data description

This section describes the GNSS data (GPS and GLONASS
observations) used in this study. These data were obtained
from two IGS stations (KOSG and KOS1, located in the
Netherlands), separated by about 814 meters. KOSG is
equipped with a Leica GRX1200 GG PRO receiver and an
AOAD/M_B antenna. KOS1 is equipped with a Septentrio
PolaRx4 receiver and a Leica AR25.R3 antenna. The data
were collected on day of year (DOY) 048 of 2014 with a
sampling interval of 30 s.

The pseudorange IFB is corrected using the lookup table
method described in Sect. 2.1.2. The baseline solutions
obtained from pseudorange observations with and without
GLONASS IFB corrections are shown in Fig. 1. The assump-
tion that the sum of the SD pseudorange IFBs is zero does
not affect the GLONASS solutions, because the DD model
rather than the SD model was used for the baseline solu-
tions. In the inter-system DDmodels, the bias resulting from
the zero-sum assumption is combined with the pseudorange
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Fig. 1 Positioning errors in the three components of baseline KOSG–KOS1 determined from GLONASS L1 code pseudorange observations a
without and b with pseudorange IFB correction by pseudorange SD

ISB. This bias can be ignored, because the pseudorange ISB
approximates the phase ISB only.

3.2 Relationship between RATIO and F-ISB

The investigation of the RATIO distribution with differ-
ent carrier phase F-ISB values in GPS L1 and GLONASS
L1 integration is detailed in this section. First, a range of
minimum and maximum carrier phase F-ISB values was
defined, from which samples were taken and they were
regarded as the actual values of carrier phase F-ISBs. The
intra- and inter-system models were used to estimate float
ambiguity solutions corresponding to each sample of carrier
phase F-ISB. By introducing the initial SD ambiguity val-
ues, float DD ambiguities were derived. The RATIO values
were then calculated during the ambiguity resolution. The
data were processed epoch by epoch, and the satellite (GPS
or GLONASS) with the highest elevation was selected as the
reference satellite.

Although the carrier phase F-ISB is smaller than the sig-
nal wavelength, in the simulation analyses we used a very
large F-ISB sampling range of [−20, 20]m, about 200 times
greater than the GPS L1 wavelength (0.19m). Using a sam-
pling interval of 2cm, 2000 F-ISB values can be sampled.
This enabled an investigation of the influence of F-ISB on
RATIO distribution, and the characterization of the periodic
characteristics of RATIO distribution. We assumed that the
pseudorange and carrier phase ISBs had similar values. The
approximate carrier phase ISBwas estimated as−16.2764m,
by the SPP method using pseudorange observations. This
value was added to the sampled F-ISB values, to reduce the
effect of ISB on float DD ambiguity estimation. The corre-
sponding RATIO valuewas calculated corresponding to each
carrier phase ISB value (Fig. 2).

Fig. 2 Three-dimensional plot of RATIO distribution based on GPS L1
and GLONASS L1 integration and inter-systemmodels for the KOSG–
KOS1 baseline

3.2.1 Approximate ISB and F-ISB affect the magnitude of
RATIO

Figure 2 shows a ridge composed of local maximum RATIO
values in the 3-D RATIO distribution. Local maxima of tem-
porally averagedRATIOvalues corresponding to each carrier
phase F-ISB are evident in Fig. 3a. The local maxima are
particularly large when the F-ISB values are small. To bet-
ter observe the details in Fig. 3a, a smaller sampling range
of [−1, 1] m, and a smaller sampling interval of 1 mm,
was defined. In the resulting graph (Fig. 3b), the periodic
characteristics of some local maxima can be clearly identi-
fied. Because the carrier phase F-ISB was sampled over a
large range ([−20, 20]m), many samples contained an inte-
ger multiple of the GNSS signal wavelength. These integer
multiples were incorporated into integer ambiguities. When
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Fig. 3 a RATIO results temporally averaged over 24 hours, corresponding to each carrier phase F-ISB value tested. b Magnified region of a
corresponding to F-ISB vales of −1 to 1. The red line indicates a RATIO value of 3

the F-ISB samples had values equal to an exact integer mul-
tiple of the wavelength, the estimated DD ambiguities had
values close to integers, and the corresponding RATIO val-
ues reach local maxima.

The F-ISB samples near the endpoints of the sampling
range were affected by larger errors than the samples taken
from near the center of the sampling range. These errors
affected the estimated SD ambiguities, the IIDDAs, and the
GLONASS FDMA ISDDAs. Because the wavelengths of
these DD ambiguities differ, the F-ISB sample value cannot
be a multiple of all of the different wavelengths simulta-
neously. Thus, the performance of the ambiguity resolution
degraded at these extremely large F-ISB values. In contrast,
a ridge of larger RATIO values occurs when F-ISB values
are sampled near the central sampling range (Figs. 2 and 3a).
Considering that the approximate ISB has been added to the
F-ISB samples in the experiments, it is clear that the approx-
imate ISB also affects the magnitude of the RATIO. The true
ISB value canmaximize the RATIO value. However, only the
approximate ISB is known and employed. This can probably
explain the ridge’s shift from F-ISB’s zero value in Fig. 3a.

3.2.2 Approximate ISB affects the stability of the local
maximum RATIO’s location

Thewavelength λ̄ corresponding to theDDambiguity is not a
fixed value. For example, the distance between two neighbor-
ingpeaks inFig. 3b is 18.87cm,which is approximately equal
to the average value of the GPS L1 and GLONASS L1 wave-
lengths. This is because in the GNSS baseline resolution, the
contribution of each GNSS system is similar. For instance,
both systems have a similar number of observed satellites

and observation weights. If one of the systems is dominant,
the distance between two neighboring peaks will change.
For example, if there is a full constellation of GPS satellites,
but only a single GLONASS satellite, the float SD ambiguity
solution will have a small effect on the GPS data, but a signif-
icant effect on the GLONASS data, and the distance between
two neighboring peaks will approach to the GLONASS L1
wavelength. However, if neither system is dominant, the ISB
biases in the inter-systemmodel will affect the SD ambiguity
solutions more evenly, and the distance between two neigh-
boring peaks tends toward a value in the middle of the GPS
L1 and GLONASS L1 wavelengths.

Experiments with a dominant constellation were imple-
mented using the first hour data collected atKOSGandKOS1
onDOY048 of 2014 to prove the above description. First, the
full GPS constellation and a single GLONASS satellite were
selected to estimate the solution. The corresponding RATIO
values for each single-epoch solution are shown in the top
panel of Fig. 4. RATIO values obtained using data from a
single GPS satellite and the full GLONASS constellation are
shown in the bottom panel of Fig. 4. For comparison purpose,
the RATIO values obtained using full GPS and GLONASS
constellations are also shown in both panels. The wavelength
of the GLONASS L1 frequency at channel zero is 18.71cm,
and the GPS L1 frequency is 19.03cm. Thus, the peaks of the
two plots have different F-ISB values on the abscissa axis.

Because, in our analytical method, the approximate ISB
d̂s1s2ab is subtracted, the neglected integer part Nδμ̄s1s2

ab
in Eq.

(14) is small. This integer part corresponds to the F-ISB sam-
ples near to the zero value on the right end of the both panels
in Fig. 4. Therefore, regardless of whether the observations
from a constellation system are dominant, the RATIO values
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Fig. 4 Comparisons of RATIO values obtained from integrating full
GPS and GLONASS constellations with a those obtained from inte-
grating the full GPS constellation and a single GLONASS satellite, and
b those obtained from integrating a single GPS satellite and the full
GLONASS constellation

will exhibit peaks in similar locations to those in Fig. 4. On
the right end of the both panels in Fig. 4, the F-ISB is stable
and can be estimated from a single scenario and used to cor-
rect other scenarios, regardless of the observed constellation.
If Nδμ̄s1s2

ab
is large, such as in the case where the approximate

ISB d̂s1s2ab is not subtracted, the locations of the RATIO peaks
on the abscissa axis will vary with different satellite scenar-
ios, as shown on the left end of the both panels in Fig. 4.
In this case, the estimated F-ISB value may change with the
satellite scenario.

Therefore, both the approximate ISB and F-ISB affect
the magnitude and the location of the maximum RATIO.
The RATIO value indicates how well the ambiguity’s inte-
ger nature is recovered. Thus, both the approximate ISB and
F-ISB should be considered in the data processing.

3.3 Fixed baseline solutions

The ISB remaining in the DD models may result in errors
to baseline solutions. Therefore, it is necessary to investigate
the variation of baseline solutions with the ISB correction as
different values. As in Sect. 3.2, it is necessary to obtain the
F-ISB samples and then correct the DD observations using
the sampled values plus the approximate ISB. Initially, the
F-ISB values are evenly sampled at an interval of 2cm over
a sampling range of [−20, 20]m. As a typical example, the
baseline fixing solutions at the epoch 2871 are presented in
Fig. 5.

In Fig. 5, fixed solutions can be obtained with most of
the F-ISB samples, except for samples near the endpoints of
the range. At the endpoints shown in Fig. 5, the ISB values

Fig. 5 Plots showing the influence of the F-ISB value on the baseline
fixing solutions of 3-D positioning with respect to a reference 3-D solu-
tion. The positioning was conducted at epoch 2871 on DOY 048, 2014,
at the KOSG–KOS1 baseline. The reference 3-D positioning solution
of this baseline was obtained from a GPS L1 ambiguity-fixed solution.
The F-ISB was sampled at an interval of 2cm in a sampling range of
[−20, 20]m

have relatively large errors. This reduces the accuracy of the
float solutions of the SD ambiguities and results in relatively
small local maximum RATIO values, and larger errors in
the residuals after the DD ambiguities are fixed as integers.
Furthermore, the large residual errors significantly affect the
fixed baseline solutions, which are estimated with known
integer ambiguities. Therefore, the plots in Fig. 5 are not
parallel to the abscissa axis. However, the maximum bias in
the fixed solutions is only a few millimeters in magnitude,
even though the sampledF-ISBvaluemaybe as large as 20m.
The plots shown in Fig. 5 indicate that if the F-ISB is smaller
than the signal wavelength, which is likely in real-world data,
the positioning solutions will have small errors.

To observe the data shown in Fig. 5 in detail, the F-ISBval-
ues were resampled over a sampling range of [− 1, 1] m, with
a sampling interval of 1 mm. The biases of the ambiguity-
fixed solutions for the epoch 2871 with respect to the
reference solution are shown in Fig. 6. From these plots,
it is evident that ambiguity-fixed solutions can be obtained
frommost F-ISB values and that the magnitude of the largest
bias in these solutions is only a few millimeters.

To preserve the integer nature of DD ambiguities of differ-
ent GNSS frequencies in the inter-system model, the carrier
phase ISB value needs to be known or estimated. The ISB can
be regarded as the sum of an approximate ISB and an accu-
rate F-ISBvalue. The approximate part can be estimated from
pseudorange observations alone using the SPP method. The
F-ISB, which is shorter than the signal’s wavelength, needs
to be accurately estimated. The approximate ISB value is
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Fig. 6 Plots of the influence of F-ISB on ambiguity-fixed 3-D position-
ing solutions with respect to a reference 3-D solution. The positioning
was conducted at the epoch 2871 on DOY 048, 2014 at the KOSG–
KOS1 baseline. The reference 3-D positioning solution was obtained
from a GPS L1 ambiguity-fixed solution. The F-ISB values were sam-
pled from a sampling range of [−1, 1] m at an interval of 1 mm

important for achieving larger RATIO values (Fig. 3a), and
for obtaining more accurate positioning solutions (Fig. 5).

The pseudorange observations were used to calculate the
initial SD ambiguity values in the model of Eq. (5b), and
thereby eliminate the rank deficiency problem. In the cases
of GNSS systems with different frequencies, the errors in the
pseudorange observations will be introduced into the initial
SD ambiguity values, which will then affect the float DD
ambiguities. However, the tolerance of DD ambiguity fix-
ing to the bias in the initial SD ambiguity values is large.
As indicated by the red lines in Fig. 3b, the widths of the
RATIO peaks at a RATIO value of 3 are 10 ∼ 12 cm. This
can be regarded as the bias tolerance in the inter-system DD
model. Considering the formulation of the model shown in
Eq. (10), and that the maximum difference between GPS L1
andGLONASSL1wavelengths is 3.55mm, ambiguity-fixed
solutions can be obtained if the bias in the initial SD ambigu-
ity value is smaller than 14 m. However, a bias smaller than
14 m does not guarantee the success of ambiguity fixing.
Fixed ambiguity solutions also require the use of the intra-
system model and adequate observations. Meindl (2011)
suggested that the uncertainty of the initial SD ambiguity
value should be less than seven cycles (around 1.3 m, in the
present study), so that the DD ambiguities can be determined
with an error smaller than 0.1 cycles. This condition may be
too strict when some intra-system models are included in
the estimation. In cases with short baselines and initial SD
ambiguity values calculated from pseudorange observations,
DD ambiguity fixing can be improved by introducing inter-
system DD ambiguity.

4 F-ISB estimation and application

This section evaluates the performance of the proposed strat-
egy for fixing both intra- and inter-system DD ambiguities.
First, the ISB parameters are estimated where the approxi-
mate ISB is calculated from pseudorange observations using
the SPP method and is then set as a fixed number. Then, the
F-ISB part is derived using the particle filter approach pro-
posed by Tian et al. (2015). At last, the positioning results
are analyzed with the calculated F-ISB value, using different
elevation masks and constellation geometries.

4.1 Estimated F-ISB

Asdescribed inSect. 3, integrationofGPSL1andGLONASS
L1 signals using the inter-system models requires knowl-
edge of the ISB value, which can be decomposed into
an approximate ISB value plus an accurate F-ISB value.
In this experiment, the approximate ISB was estimated as
−16.2764m from pseudorange observations using the SPP
method. Then, the F-ISB was estimated using the particle
filter method with 24-h data collected at the KOSG–KOS1
baseline on DOY 048 of 2014. The standard deviation of the
state noise was set to 1mm. The estimated F-ISB results are
very stable over the 24-h period, as shown in Fig. 7. The
insignificant fluctuations were attributed to changes in the
observed satellites and atmospheric variations. The average
of the estimated F-ISB values was found to be −0.0090m,
and thus the resulting ISB value is −16.2854m.

An additional experiment was conducted, in which F-ISB
values were estimated at the TLSG–TLSE baseline on DOY
001 of 2015, using the inter-system model with GPS L1
and GLONASS L1 integrated observations. The length of
baseline TLSG–TLSE is 1266m. The approximate ISB esti-
mated from pseudorange observations using SPP method is
−4.9430m. The average of the estimated F-ISB values is
−0.0191m, resulting in an ISB value of −4.9621m.

Fig. 7 Time series of F-ISB values estimated from the integration of
GPS L1 and GLONASS L1 data obtained at the KOSG–KOS1 baseline
on DOY 048, 2014. The 3 × standard deviation values of the F-ISB is
also shown
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Fig. 8 3-D epoch-wise positioning performance using the IIDDA and
ISDDA fixing strategies in the analyses of GPS L1 and GLONASS L1
data collected on DOY 001, 2015. The GPS-only static solution was
used as a reference solution. The results for the KOSG–KOS1 baseline

are shown in a and b, and the results for the TLSG–TLSE baseline are
shown in c and d. Plots b and d show the EARs of integer ambiguity fix-
ing at different elevation masks for the two ambiguity fixing strategies
and different satellite constellations

4.2 Baseline solutions for GPS L1 and GLONASS L1
using inter-systemmodels

This section presents the baseline solutions resolved with
known ISB parameters using different ambiguity resolution
strategies: fixing IIDDA, i.e., GNSS tight integration and
fixing only ISDDA, i.e., GNSS loose integration. The base-
lines were processed using two strategies: (1) using different
satellite elevation masks in the data processing and (2) in
a challenging observation environment by simulating very
severe GNSS satellite signal obstructions. To evaluate the
performance of the ambiguity fixing of each testing scenario,
we used the empirical availability rate (EAR) used by Li et al.
(2015), which is also named success rate such as in Han
(1997). EAR is defined as the ratio of the number of epochs
with fixed solution to the total number of epochs. Higher
EAR values indicate better ambiguity fixing performance.

4.2.1 Performance of different ambiguity fixing strategies
with different mask angles

Twobaselineswere solvedwith bothGPSL1 andGLONASS
L1observations by either fixing IIDDAorfixing ISDDA.The
results for the KOSG–KOS1 and TLSG–TLSE baselines are
shown in Fig. 8a and c, respectively. The two sets of results
obtained using the two fixing strategies agree well with each
other.

Initially, the elevation mask was set to 10
◦
, which enabled

100% of integer ambiguities to be fixed using both strategies.
As the elevation mask increases, the number of observed
satellites decreases. To investigate how the performance
of the strategies varied with different elevation masks, the
change in EAR with elevation mask was analyzed (Fig. 8b).
The IIDDA fixing strategy performed slightly better than the
ISDDA fixing strategy. The GPS L1-only baseline solution
has a much lower EAR than the GPS L1 and GLONASS L1
integration solution. The GLONASS L1-only baseline solu-
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tion is significantly worse than the integrated solution. When
the elevation mask was increased significantly, for example,
to 40

◦
, the position biases in these solutions are larger than

2cm horizontally or 3 cm vertically. In this case, the integer
ambiguity fixing was considered to be unsuccessful.

The same testing procedure was applied to analyze the
TLSG–TLSE baseline with data collected on DOY 001,
2015. With the elevation mask set to 10

◦
, the EAR val-

ues obtained from fixing IIDDA and ISDDA were 99.8 and
99.1%, respectively (Fig. 8c). The changes in EAR with
different elevation masks for the TLSG–TLSE baseline are
shown in Fig. 8d. The EAR obtained from fixing IIDDAwas
greater than that obtained from fixing ISDDA. The results
also show that the GPS and GLONASS integrated solutions
are significantly better than GPS-only solutions.

4.2.2 Performance of ambiguity fixing strategies under
signal obstruction conditions

To assess the performance of the IIDDAfixing strategy under
challenging observation conditions, three analyses were con-
ducted for the KOSG–KOS1 baseline with GPS L1 and
GLONASS L1 data collected on DOY 048 of 2014. The
obstruction of satellite signals was simulated by disabling
the use of some of the satellite data in the GNSS data pro-
cessing. During data processing, the float SD ambiguities are
propagated from one epoch to the next, and DD ambiguity
fixing is carried out for each epoch.

In the first simulation, three satelliteswith elevation angles
greater than 20

◦
were selected from each system. The biases

of the baseline solutions are shown in Fig. 9. The IIDDA
fixing strategy exhibited excellent performance, with an
EAR of 93.6%. It is 22.8% higher than the EAR (70.8%)
achieved using the ISDDA fixing strategy. The root-mean-
square errors (RMSEs) of the positioning results for the two
strategies are shown in Table 2. The RMSEs of the results
from the IIDDA fixing strategy are significantly smaller than
those of the ISDDA strategy results.

Two other obstruction schemes were simulated for the
KOSG–KOS1 baseline. First, only data from satellites in the
western half of the sky (azimuth 180

◦ ∼ 360
◦
) were used;

satellites in the eastern half of the sky (azimuth 0
◦ ∼ 180

◦
)

were considered to be obstructed. Conversely, in the second
simulation, only data from the satellites with azimuth 0

◦ ∼
180

◦
were used. In both scenarios, the elevation mask was

set to 15
◦
, and the results of these two simulations are shown

in Fig. 10.
Using the IIDDA fixing strategy, the EAR improved from

85.3 to 90% in the western-sky simulation, and from 81.7 to
93% in the eastern-sky simulation, compared with the results
obtained using the ISDDA fixing strategy. The RMSEs of
these results are shown in Table 2. Overall, the results of

Fig. 9 3-D positioning errors of baseline solutions with respect to the
GPS-only static reference solution for the KOSG–KOS1 baseline. To
simulate challenging observation conditions, data from only three GPS
satellites and three GLONASS satellites were used

IIDDA fixing were found to be more accurate and reliable
than those of ISDDA fixing.

The IIDDAs of the inter-system model can be fixed as
integers in the same way as other multi-GNSS signals of dif-
ferent frequencies are integrated. In the present study, GPS
L1 and GLONASS L1 signals were used, with frequency dif-
ferences of 3–4mm. The GNSS signal frequencies shown in
Table 1 demonstrate that the wavelength differences between
different signals may be smaller. The integration of GNSS
signals with smaller wavelength differences would improve
3-D GNSS positioning performance.

5 Conclusions

In the present study, we developed an approach to estimate
the ISBof narrowly spaced frequencies inmulti-GNSS signal
integration. After the carrier phase ISB is estimated, it can
be used as known value in the inter-system model. Thus,
the performance of fixing both ISDDA and IIDDA can be
improved. The ISB can be decomposed into an approximate
ISB, an integer part and an accurate fractional ISB (F-ISB)
value. The approximate ISB can be estimated fromSPP using
pseudorange observations. The integer part combines with
the DD ambiguities. The F-ISB can be estimated using the
particle filter approach.

Compared to the strategy of fixing ISDDA, where ISB
does not exist, the strategy of fixing IIDDA using the
estimated ISB inmulti-GNSS integration achieves better per-
formance. This approach was tested at the KOSG–KOS1
baseline (length: 814m) using GPS L1 and GLONASS L1
integration.When three satelliteswith elevation angles> 20

◦

are available from each system, the rate of IIDDA fixing is
93.6%, which is 22.8% higher than the rate for ISDDA fixing
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Table 2 RMSEs of 3-D GNSS
positioning using ISDDA and
IIDDA fixing strategies

RMSEs of ISDDA fixing (m) RMSEs of IIDDA fixing (m)

E N U 3D E N U 3D

3 GPS + 3 GLO 6.4 4.8 10.9 13.5 2.0 0.7 2.4 3.2

GPS + GLO (azimuth 0
◦ − 180

◦
) 43.8 8.1 44.9 63.2 1.9 1.7 3.7 4.5

GPS + GLO (azimuth180
◦ − 360

◦
) 5.6 2.8 6.6 9.1 2.3 1.9 2.5 3.9

Fig. 10 Coordinate differences of the KOSG–KOS1 baseline solutions
with respect to the GPS-only static reference solution, for satellites
observed a in the western half of the sky, and b in the eastern half of
the sky

alone (70.8%). In the GNSS signal obstruction simulations,
the empirical success rates of the IIDDA fixing strategy were
4.7 and11.3%higher than those of ISDDAfixing,whenusing
data from satellites in the eastern and western halves of the
sky, respectively. Those improvements may vary for differ-
ent baselines depending on themultipath effects and baseline
lengths.

Besides, the performance of ambiguity fixing (either inter-
system ambiguity fixing or intra-, inter-system ambiguity
fixing) for narrowly spaced frequencies in multi-GNSS inte-
gration can be degraded by errors in the initial SD ambiguity

values. These values are used to remove the rank deficiency
problem and are typically estimated by SPP using pseudor-
ange observations. Therefore, minimizing the errors in these
initial SD ambiguity values requires further research.
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