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Abstract Proper understanding of how theEarth’smass dis-
tributions and redistributions influence the Earth’s gravity
field-related functionals is crucial for numerous applications
in geodesy, geophysics and related geosciences. Calculations
of the gravitational curvatures (GC) have been proposed in
geodesy in recent years. In view of future satellite missions,
the sixth-order developments of the gradients are becoming
requisite. In this paper, a set of 3D integral GC formulas
of a tesseroid mass body have been provided by spherical
integral kernels in the spatial domain. Based on the Tay-
lor series expansion approach, the numerical expressions of
the 3D GC formulas are provided up to sixth order. More-
over, numerical experiments demonstrate the correctness of
the 3D Taylor series approach for the GC formulas with
order as high as sixth order. Analogous to other gravitational
effects (e.g., gravitational potential, gravity vector, gravity
gradient tensor), numerically it is found that there exist the
very-near-area problem and polar singularity problem in the
GC east–east–radial, north–north–radial and radial–radial–
radial components in spatial domain, and compared to the
other gravitational effects, the relative approximation errors
of the GC components are larger due to not only the influence
of the geocentric distance but also the influence of the lati-
tude. This study shows that the magnitude of each term for
the nonzero GC functionals by a grid resolution 15′ ×15′ at
GOCE satellite height can reach of about 10−16 m−1 s2 for
zero order, 10−24 or 10−23 m−1 s2 for second order, 10−29
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m−1 s2 for fourth order and 10−35 or 10−34 m−1 s2 for sixth
order, respectively.

Keywords Tesseroid · Gravitational curvatures · Gravita-
tional effects · Gravity tensors · Gravity gradiometry

1 Introduction

Calculating gravity tensors (or gravitational gradients) effect
of the topographic masses on gravity field modeling is one of
the crucial topics in the area of geodetic sciences (e.g., phys-
ical geodesy, geophysics). With advanced satellite missions
for Earth’s gravity field modeling, e.g., CHAMP (Reigber
et al. 2002), GRACE (Tapley et al. 2004) and GOCE (ESA
1999; Rummel 2003, 2015), there is increased interest to
modeling of the gravity tensors. In addition, next-generation
satellite missions are also under examination and simulated,
e.g., the Next-Generation Gravimetry Mission (NGGM)
(Cesare et al. 2010; Silvestrin et al. 2012), the Four-Satellites
Cartwheel Formation (FSCF) mission (Wiese et al. 2009;
Zheng et al. 2013), the Earth SystemMass TransportMission
(ESMTM) (Gruber et al. 2012; Zheng et al. 2012; Panet et al.
2013) and the GRACE Follow-On (GRACE-FO or GFO)
mission (Flechtner et al. 2009; Wiese et al. 2009; Loomis
et al. 2012; Elsaka et al. 2014; Zheng et al. 2009, 2014,
2015). Among these next new-generation satellite missions,
the OPTical Interferometry for global MAss change detec-
tion from space (OPTIMA) mission (Brieden et al. 2010),
which is proposed to measure the components of the third-
order gravitational potential tensor (gravitational curvatures
or gravity’s curvature, abbreviated here by GC, which physi-
cally means the rate change of the gravity gradient) on board
of a satellite in space, attracted the special interest of both
experimentalists and theoreticians.
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Focusing on the simulation experiment for the GC func-
tionals, the Russian Dulkyn project (Balakin et al. 1997) had
proposed a sensor that could detect the GC functionals and
their temporal changes. Recently, Rosi et al. (2015) imple-
mented the first direct GC functionalsmeasurements by atom
interferometry sensors in a laboratory environment, which
opened a new era in related geodesy applications, especially
for the GC functionals.

Concerning another aspect of the fundamental theory
for the GC functionals, relevant studies focused mostly on
the spectral domain modeling. Relevant expressions of the
GC functionals only appeared in both Tóth and Földváry
(2005) and Tóth (2005), but without detailed mathemati-
cal derivation. Casotto and Fantino (2009) derived relevant
expressions of the GC functionals in spherical coordinates
in details. They also provided well-defined coordinate trans-
formation expressions of the GC functionals between global
and local Cartesian coordinate systems. Fantino and Casotto
(2009) numerically compared four algorithms (Legendre,
Clenshaw, Pines, Cunningham–Metris) for harmonic syn-
thesis in spectral domain for the computation of the GC
functionals. Fukushima (2012a, b, c) also analyzed the com-
putational harmonic synthesis aspects of the GC functionals
in spectral domain. Most recently, Šprlák and Novák (2015)
derived 40 new integrals of Newton, Abel-Possion, Pizzetti
and Hotine for the GC computation and revealed the spatial
properties of the GC functionals by numerical investigations.
In addition, Hamáčková et al. (2016) derived non-singular
expressions of the spherical harmonic synthesis in spectral
domain for the GC functionals in the local north-oriented
frame (LNOF), which could avoid numerical singularities at
polar region. Šprlák et al. (2016) studied the spectral proper-
ties of the GC functionals, derived new quadrature formulas
of spherical harmonic expansions for the GC functionals and
considered the possibility of an instrument for observing the
GC functionals at satellite altitude. Ghobadi-Far et al. (2016)
presented the 2D Fourier series expressions of gravitational
functionals (e.g., first-order and second-order gradients of
the gravitational potential) up to third-order gradients in
LNOF spherical coordinates. In short, researches of the
GC functionals mainly focused on spectral domain (Fantino
and Casotto 2009; Fukushima 2012a, b, c; Hamáčková et al.
2016; Šprlák et al. 2016; Ghobadi-Far et al. 2016) other
than spatial domain (Šprlák and Novák 2015). Therefore,
the properties (e.g., representation forms, computational effi-
ciency) of the GC functionals in the spatial domain need to
be more carefully and extensively investigated.

The effect of different mass distributions on the gravity
field by forward gravity modeling based on Newton’s inte-
gral can be evaluated in both spatial domain and spectral
domain (Nahavandchi 1999; Kuhn and Featherstone 2002;
Kuhn and Seitz 2005; Wild-Pfeiffer and Heck 2006; Hirt
and Kuhn 2014; Grombein et al. 2016; Hirt et al. 2016).

In spatial domain, when calculating the effect of the whole
mass distribution by different types of mass bodies, it can
be applied by the superposition principle to evaluate New-
ton’s integral (e.g., Heck and Seitz 2007; Asgharzadeh et al.
2007; Wild-Pfeiffer 2008; Tsoulis et al. 2009; Li et al. 2011;
Álvarez et al. 2012; Du et al. 2015; Shen and Han 2013,
2014, 2016; Grombein et al. 2013, 2014, 2016; Uieda et al.
2016; Kuhn andHirt 2016; Shen andDeng 2016), namely the
effects of the sum of different individual mass bodies. This
paper focuses on the tesseroid as an elementary mass body,
namely spherical prism, which comes from discretization of
the sphere. In this study, spherical approximation has been
used for the numerical experiments. Compared to rectangular
prism, point mass, mass layer and mass line, its second-order
formula of Taylor series expansion had been numerically
tested bymany researchers as efficient modelingmass bodies
for topographic (and isostatic) reductions and on the effect of
high-resolution and high-accuracy gravity fields and geoids
modeling, especially in global application (e.g., Heck and
Seitz 2007; Wild-Pfeiffer 2008; Tsoulis et al. 2009; Shen
and Han 2013, 2014, 2016; Grombein et al. 2013, 2014;
Shen and Deng 2016).

Moreover, the layout of the tesseroid formulas for the
gravitational and magnetic effects is the same. Therefore,
tesseroids also had been applied for modeling the effects
of magnetic field, namely magnetic potential (MP), mag-
netic vector (MV) and magnetic gradient tensor (MGT).
Asgharzadeh et al. (2008) calculated the magnetic field
effects of a tesseroid by numerical Gauss–Legendre Quadra-
ture integration (GLQ) approach. Compared to the rectan-
gular prism, Du et al. (2015) calculated the magnetic fields
effects of a tesseroid with different numerical methods (e.g.,
3D GLQ method, Taylor series expansion method) in spher-
ical coordinate system. Recently, similar to the software
Tesseroids of Uieda et al. (2016), Baykiev et al. (2016) pro-
posed the softwareMagnetic Tesseroids tomodel the induced
and remanent magnetic fields effects of the lithosphere
by tesseroids. These softwares can evaluate the gravita-
tional/magnetic effects using the tesseroid as an elementary
source body, while they did not include the GC functionals
or magnetic curvatures (MC) functionals.

In geodetic community, the gravitational effects of a
tesseroid mass in geoscience areas were generally expressed
as three parts of related functionals, namely gravitational
potential (GP), gravity vector (GV) (or gravitational accel-
eration) (e.g., the first-order derivatives of GP) and gravity
gradient tensor (GGT) (e.g., the second-order derivatives of
GP) (Heck and Seitz 2007; Asgharzadeh et al. 2007; Wild-
Pfeiffer 2008;Grombein et al. 2013). These components (i.e.,
GP, GV, GGT) have been the main focus up until now. How-
ever, after the concept of the GC put forward in geoscience
(Hamáčková et al. 2016; Šprlák et al. 2016; Šprlák andNovák
2016), the gravitational effects of a tesseroidmass should also
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include the GC functionals, which are the third-order gravi-
tational derivatives of GP. Therefore, this study expands the
previous studies for the gravitational effects by including the
GC functionals.

In this contribution, analogous to Nagy et al. (2000) by
providing the third-order gravitational derivatives of grav-
itational potential of the rectangular prism, the new GC
spherical integral formulas of a tesseroid are derived and
some synthetic experiments are implemented to confirm and
validate their usefulness. This paper also focuses on the spa-
tial numerical evaluation of these formulas by 3D Taylor
series approach. In a word, the GC expressions would be
used as significant parameters in the next-generation gravity
field model.

The paper is organized as follows. Section 2 provides
the theoretical formulas, in which Sect. 2.1 formulates the
detailed spherical integral GC formulas of a tesseroid in the
local East–North–Up (ENU) coordinate system. In Sect. 2.2,
Taylor series expansion approach is tested as the numerical
solution for 3D integral GC formulas of a tesseroid. Section
3 numerically confirms the consistency of the GC formulas
of a tesseroid by 3D Taylor series approach, and the numer-
ical properties of the derived tesseroid formulas compared
to the analytically closed formulation of a spherical shell are
investigated. Finally, contributions of the paper as well as
the viewpoint on continuing and further research work are
summarized in Sect. 4.

2 Theoretical aspects

2.1 GC formulas of a tesseroid

A tesseroid (or spherical prism) is defined as a mass body
with a pair of geocentric radii r1 and r2, meridional planes of
longitudes λ1 and λ2, coaxial circular cones of latitudes θ1
and θ2 and a constant densityρS (seeFig. 1). For convenience,
the detailed derivation of the GC formulas of a tesseroid in
spherical integral kernels is given in Appendix A.

Herein, Table 4 lists the 10 GC functionals, which con-
struct the complete 27 GC functionals in total. It means that
the total 27 GC functionals can be evaluated by the inde-
pendent 10 GC functionals because of the symmetry for all
GC functionals, referring to detailed interpretation in Šprlák
et al. (2016) and Šprlák and Novák (2017), as shown in Fig.
2b.

Note that the differences of equations from Eqs. (A1)–
(A10) between this paper and the corresponding ones in
the literature (Šprlák et al. 2016; Hamáčková et al. 2016;
Šprlák andNovák 2015, 2016, 2017) lie in expressions given
in different reference systems. This paper provides expres-
sions in spherical coordinates in the local East–North–Up
(ENU) topocentric reference system, which is also adopted
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Fig. 1 Definition of a tesseroid in spherical coordinates. The dimen-
sions of a tesseroid are�λ = λ2 −λ2,�θ = θ2 −θ1 and�r = r2 −r1,
which are differences in spherical longitudes, latitudes and geocen-
tric radii, respectively. The point S0(λ0, θ0, r0) is the geometric center
point of a tesseroid with λ0 = (λ1 + λ2)/2, θ0 = (θ1 + θ2)/2 and
r0 = (r1 + r2)/2. λ, θ and r are the spherical longitude, latitude and
geocentric radius, respectively. The observation (or computation) point
P is in the topocentric Cartesian coordinate system (modified after
Kuhn 2003). Note that the notations used herein are similar to those of
Roussel et al. (2015)

by Casotto and Fantino (2009), Fantino and Casotto (2009)
and Szwillus et al. (2016) and is slightly different from
the left-handed, North–East–Up (NEU) topocentric system
(Tóth 2005; Tóth and Földváry 2005; Wild-Pfeiffer 2008;
Grombein et al. 2013), that the horizontal direction (x and
y) contrarily points at North and East directions. While the
latter (Šprlák et al. 2016; Hamáčková et al. 2016; Šprlák and
Novák 2015, 2016, 2017) provided expressions in spherical
coordinates in the local North–West–Up (NWU) topocentric
reference system, namely the spherical LNOF. The reason
why we adopt the ENU coordinate system from Casotto and
Fantino (2009), Fantino and Casotto (2009) and Szwillus
et al. (2016) rather than LNOF and NEU is that one could
conveniently apply the mathematical coordinate rotation
relationship of the physical components between the global
reference system and the local reference system for the GV,
GGT and GC functionals provided in Casotto and Fantino
(2009).

2.2 3D Taylor series approach for the GC formulas of a
tesseroid

Heck and Seitz (2007) proposed the Taylor series expansion
method for a tesseroid in the GP and part of the GV (the first
radial derivative of the GP). Wild-Pfeiffer (2008) applied the
numerical evaluation of Taylor series expansion method and
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(a) (b)

Fig. 2 a Graphical illustration for second-order gravitational deriva-
tives of the gravitational potential induced by a tesseroid by a 2D square
expressed by 9 functionals Vmn (m ∈ {λ, θ, r} and n ∈ {λ, θ, r}),
where the symbols with the light green color denote 5 GGT function-
als, which could represent all 9 GGT functionals including the other 4
GGT functionals (represented by the light blue circles) if the continuous
gravitational field exists, and it is noted that two of the three diagonal
elements are independent as all three fulfill the Laplace equation; b)
Graphical illustration for GC third-order gravitational derivatives of the

gravitational potential induced by a tesseroid by a 3D cube defined by 27
functionals Vlmn(l ∈ {λ, θ, r} ,m ∈ {λ, θ, r} and n ∈ {λ, θ, r}), where
the symbols with the light green denote 10 GC functionals, and only 10
of the 27 GC functionals are independent, which could represent all 27
GC functionals including the other 17 GC functionals (represented by
the light blue circles) if the continuous gravitational field exists (mod-
ified after Šprlák et al. 2016 and Šprlák and Novák 2017). It should
be noted that the properties described above are more general and can
apply to any mass distribution not only the tesseroid

Gauss–Legendre cubature (3D/2D) for the GGT (Mzz) com-
pared to an exact and closed true reference spherical cap
around the computation point. Grombein et al. (2013) opti-
mized the integral tesseroid formulas in theGP, GV andGGT
from spherical integral kernels to Cartesian integral kernels
by Taylor series expansion method. Deng et al. (2016) cor-
rected the formal error from1/(i+ j+k)! to 1/(i ! j !k!) for the
coefficient of tesseroid expression for the GP of Taylor series
expansion method in Heck and Seitz (2007) and Grombein
et al. (2013). Shen and Deng (2016) further extended the
Taylor series expansion for the GP of a tesseroid to fourth
order. Later, Grombein et al. (2016) also applied the tesseroid
formulas for the GP of Taylor series expansions in gravity
forward modeling. Herein following the work of Heck and
Seitz (2007), Wild-Pfeiffer (2008), Grombein et al. (2013),
Deng et al. (2016), Shen and Deng (2016) and Grombein
et al. (2016), we implement the numerical evaluation method
based on Taylor series approach with up to sixth order to cal-
culate the GC formulas.

The 3D tesseroid formulas by Taylor series approach at
the tesseroid geometric center point S0 can be expressed as
(Heck and Seitz 2007; Shen and Deng 2016)

Fm =
∑

i, j,k

Xi jk
1

i ! j !k!
(�λ)i+1

2i (i + 1)

(�θ) j+1

2 j ( j + 1)

(�r)k+1

2k (k + 1)
. (1)

Similar to coefficients of Eq. (16) in Grombein et al. (2016),
here we obtain the simplified expression:

Fm =
∑

i, j,k

Xi jk
(�λ)i+1 (�θ) j+1 (�r)k+1

2i+ j+k (i + 1)! ( j + 1)! (k + 1)! , (2)

Xi jk = ∂ i+ j+kX (λS, θS, rS)

∂λiS∂θ
j
S ∂rkS

|λS=λ0,θS=θ0,rS=r0 , (3)

where Fm are even-order functions and represent differ-
ent GC functionals (e.g.,m = 0, 2, 4, 6, . . .), Xi jk are the
coefficient parameters of the corresponding GC function-
als and the detailed expressions X (λ0, θ0, r0) are listed in
Table 5. i , j and k are even integer numbers (e.g., i, j, k =
0, 2, 4, 6, . . .) with i + j + k = m. The three coordinate
differences of a tesseroid (or dimensions of a tesseroid) are
�λ = λ2 − λ1,�θ = θ2 − θ1 and �r = r2 − r1. Then, the
detail formulas of the 3D Taylor series approach for the GC
formulas are given in Appendix B.

3 Numerical investigations

3.1 Comparison with a spherical shell of analytical
solution

In practical numerical evaluation, we adopted the experiment
situation, which is similar toGrombein et al. (2013) and Shen
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Fig. 3 Definition of a homogeneous spherical shell with constant
thickness h′ and constant density ρ, namely the shadow part is referred
as the homogeneous spherical shell

and Deng (2016). That is to say, an analytical solution for a
spherical shell is provided herein as reference values for the
GC functionals and the derived formulas are tested against
the gravitational effects of a spherical shell.

A homogeneous spherical shell with a constant thickness
h′=R−R1 and a constant density ρ is fixedwithin a synthetic
Earth spheremodelwith amean radius R (see Fig. 3). Herein,
we provide the GC (V sh

i jk) reference values of the analytic
formulas of a spherical shell as follows

V sh
i jk = 4

3
πGρ

(
R3 − R3

1

) (
− 15i jk

r7P
+ 3pi jk

r5P

)
, (4)

pi jk =
⎧
⎨

⎩

3i i = j = k
0 i �= j&i �= k& j �= k
T otherwise

, (5)

T =
⎧
⎨

⎩

i j = k&i �= j
j i = k&i �= j
k i = j&i �= k

, (6)

where i ∈ {x, y, z}, j ∈ {x, y, z} and k ∈ {x, y, z}. R is the
mean radius of the Earth sphere, R1 is the radius of inner
surface of the spherical shell and rP = √

x2 + y2 + z2 is
the geocentric distance from the computation point P to the
center of the Earth sphere.

Analogous to Grombein et al. (2013) and Shen and Deng
(2016), the computation point P is set on the polar axis
without loss of the generality because of the isotropy of the
spherical shell, which means x = y = 0 and z = rP . Hence,
the analytic formulas of theGP (V sh), GV (V sh

i ), GGT (V sh
i j )

functionals can be referred in Grombein et al. (2013), and
the analytic formulas of the GC (V sh

i jk) functionals can be
obtained as

V sh
xxx = V sh

xxy = V sh
xyz = V sh

yyx

= V sh
yyy = V sh

zzx = V sh
zzy = 0, (7)

Table 1 Parameters for the spherical shell

R 6371 km

R1 = R − h′ 6370 km

G 6.67428×10−11 m3 kg−1 s−2

ρ 2670 kg m−3

V sh
xxz = V sh

yyz = 4

3
πGρ

(
R3 − R3

1

) (
3

r4P

)
, (8)

V sh
zzz = 4

3
πGρ

(
R3 − R3

1

)(
− 6

r4P

)
. (9)

It should be noted that Eqs. (8) and (9) satisfy the Laplace
equation:

V sh
xxz + V sh

yyz + V sh
zzz = 0. (10)

The constant thickness of the spherical shell is h′=1 km and
the constant density of the homogeneous spherical shell is ρ

= 2670 kg m−3. Then, the total parameters defined for the
spherical shell are listed in Table 1. As for the applications,
we conduct three evaluation applications, where the height of
computation point P is at three different locations apart from
the spherical shell, used by the parameter h. Furthermore, the
reference values of theGP,GV,GGTandGC for the spherical
shell are provided in Table 2.

In the following part, the relative approximation errors
(e.g., δV T 3D(0)

, δV T 3D(0)

z ,δV T 3D(0)

xx …, δV T 3D(0)

xxz …) mean
that the absolute approximation errors are divided by the ref-
erence values of the corresponding entity. And the absolute
approximation errors are the absolute differences between
the reference values for GP (V sh), GV (V sh

z ), GGT (V sh
xx…)

and GC (V sh
xxz…) and the actual calculated values by 3D Tay-

lor series approach different order tesseroid formulas for GP
(V T 3D(0)

,V T 3D(2)
,V T 3D(4)

),GV(V T 3D(0)

z ,V T 3D(2)

z ,V T 3D(4)

z ),

GGT (V T 3D(0)

xx ,V T 3D(2)

xx ,V T 3D(4)

xx …) and GC (V T 3D(0)

xxz ,

V T 3D(2)

xxz ,V T 3D(4)

xxz …).
In terms of the tesseroid grid resolution for discretizing the

whole spherical shell, we select the grid resolution 15′×15′,
which is also adopted in Shen andDeng (2016) and Table 2 of
Kuhn and Hirt (2016). Therefore, the horizontal discretiza-
tion of the spherical shell is set as �λ = �θ = 15′, and the
vertical dimension to�r = h′ = 1 km based on the constant
thickness of spherical shell.

3.2 Evaluation of GC formulas

The different numerical values of Taylor order terms (e.g.,∣∣�0
∣∣,

∣∣�2
∣∣,

∣∣�4
∣∣ and

∣∣�6
∣∣) for the GC functionals are eval-

uated and the numerical results are listed in Table 3.
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Table 2 Setting of different applications and reference values of the GP, GV, GGT and GC functionals

Applications Surface Airborne Satellite

h 0 m 1 km 260 km

rP = R + h 6371 km 6372 km 6631 km

V sh 14264.777 m2s −2 14262.538 m2s −2 13705.458 m2 s−2

V sh
z − 223.902 mGal − 223.831 mGal − 206.688 mGal

V sh
xx = V sh

yy −351.439 mE −351.273 mE −311.699 mE

V sh
zz 702.878 mE 702.547 mE 623.398 mE

V sh
xxz = V sh

yyz 1.655 × 10−16m−1 s−2 1.654 × 10−16m−1 s−2 1.410 × 10−16m−1 s−2

V sh
zzz − 3.310 × 10−16m−1 s−2 − 3.308 × 10−16m−1 s−2 − 2.820 × 10−16m−1 s−2

Table 3 Different Taylor order terms values of the GC functionals with the spherical coordinates of computation point P(0◦, 0◦, 6631 km) and the
grid resolution 15′×15′. The unit is m−1 s−2

Different Taylor
order terms

Nonzero GC terms Zero GC terms

V T3D
xxz V T3D

yyz V T 3D
zzz V T 3D

xxx V T3D
xxy V T3D

xyz V T3D
yyx V T 3D

yyy V T 3D
zzx V T 3D

zzy

∣∣�0
∣∣ 1.4×10−16 1.4×10−16 2.8×10−16 9.8×10−29 3.8×10−33 8.8×10−32 3.6×10−29 1.7×10−32 1.3×10−28 2.4×10−31

∣∣�2
∣∣ 2.2×10−23 3.1×10−23 9.3×10−24 2.1×10−31 5.5×10−34 3.6×10−34 3.6×10−31 1.1×10−34 7.7×10−32 2.2×10−34

∣∣�4
∣∣ 1.2×10−29 5.5×10−29 6.7×10−29 1.7×10−33 3.1×10−37 1.8×10−37 1.9×10−33 5.9×10−37 4.4×10−33 4.6×10−36

∣∣�6
∣∣ 1.6×10−34 8.4×10−35 3.0×10−34 9.4×10−36 1.5×10−39 6.5×10−39 7.0×10−36 4.2×10−39 2.1×10−35 4.7×10−39

TheGC functionals can be divided into two types: nonzero
and zeroGC functionals. In general, for the nonzeroGC func-
tionals, the precision levels of the different Taylor order terms
are about 10−16 m−1 s2 for zero order, 10−24or 10−23 m−1 s2

for second order, 10−29 m−1 s2 for fourth order and 10−35 or
10−34 m−1 s2 for sixth order. Afterward, the precision levels
of the different Taylor order terms for the zeroGC functionals
are much more improved than those of the nonzero GC func-
tionals, where they are approximately 10−33–10−28m−1 s2

for zero order, 10−34–10−31m−1 s2 for second order, 10−37–
10−33 m−1 s2 for fourth order and 10−39–10−35 m−1 s2 for
sixth order. Therefore, the numerical results in Table 3 obvi-
ously confirmed the correctness of the derived GC formulas
with different Taylor orders.

With the order increase, the calculated values of Taylor
order terms decrease quickly; thus, the main contributions
for the numerical evaluation are the low-order terms (zero
order and second order). In fact, the fourth-order and sixth-
order terms do not significantly influence the approximation
errors while their formulas are more complicated and their
computation time cost is relatively higher. Therefore, in terms
of the computational efficiency (computation time cost and
error) for 15′×15′ grid resolution as listed in Table 3, the
second-order tesseroid formulas are implemented for the GC
evaluation in the following numerical experiments.

3.3 Influence of the geocentric distance on GP, GV, GGT
and GC

Based on situation of the GP evaluation experiments in Shen
and Deng (2016), the GC evaluation experiments are imple-
mented in the following part. The very-near-area problem of
the observation (or computation) point P has been inves-
tigated when the condition hP → 0 is applied for the
gravitational effects with the grid resolution 15′×15′, espe-
cially for the GC functionals compared to other gravitational
effects. Specifically, the numerical properties of theGC func-
tionals are studied to see whether exist evident errors in the
very near area when the geocentric distance rP changes from
the surface of the spherical shell to a distant point. Moreover,
it should be noted that the very-near-area problem does not
only refer to the vertical location of the computation point. In
general, it refers to the fact that the tesseroid mass element is
rather close to the computation point, which could be in any
direction (e.g., horizontal or vertical), and the behavior may
significantly change when looking in a horizontal direction.

It should be noted that the selection of a single point may
not be representative for a general behavior because of the
latitude dependency (see Sect. 3.4). However, without loss
of generality, the spherical longitude and latitude of com-
putation point P are chosen as (0◦, 0◦), and the geocentric
distance rP ∈[6371, 6401 km]with 0.15-km interval to show
the geocentric distance dependency of the point P . It will be
more precise if the calculation is evaluated with higher-order
Taylor formulas, whereas it needs more computation time
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Fig. 4 a Visualization of the second-order tesseroid relative approx-
imation errors in Log10 scale for the GP (δV (blue curve)), GV (δVz
(red curve)), GGT (δVxx (green dashed curve), δVyy (dark blue dashed
curve) and δVzz(yellow dotted curve)) and GC (δVxxz (deep sky blue
dashed curve), δVyyz (thistle dashed curve) and δVzzz (magenta dot-

ted curve)) by grid resolution 15′×15′ with the influence of geocentric
distance rP from the surface 6371 to 6401km; b) the absolute approx-
imation errors for the δ�V2 (dark magenta curve) and δ�V3 (orange
curve), which are the Laplace parameters

cost. In terms of computation time cost, the second-order
tesseroid formulas for the GP, GV, GGT and GC are consid-
ered other than the high order in the following experiments.

Therefore, the second-order tesseroid relative approxi-
mation errors for GP (δV T 3D(2)

), GV (δV T 3D(2)

z ), GGT

(δV T 3D(2)

xx , δV T 3D(2)

yy and δV T 3D(2)

zz ) and GC (δV T 3D(2)

xxz ,

δV T 3D(2)

yyz and δV T 3D(2)

zzz )with the influence of geocentric dis-
tance rP by grid resolution 15′×15′ are visualized in Log10
scale in Fig. 4a as δV , δVz , δVxx , δVyy , δVzz , δVxxz ,δVyyz

and δVzzz , correspondingly. And the additional internal rela-
tionships expressed as Laplace equation

δ�V2 = δVxx + δVyy + δVzz, (11)

δ�V3 = δVxxz + δVyyz + δVzzz . (12)

are also utilized as the internal quality verification, which are
displayed as absolute approximation errors in Log10 scale in
Fig. 4b. Theoretically it should hold that δ�V2 = 0 and
δ�V3 = 0.

Figure 4a shows the relative approximation errors for the
eight components of the GP (δV ), GV (δVz), GGT (δVxx ,

δVyy and δVzz) and GC (δVxxz, δVyyz and δVzzz). For the
GC functionals (δVxxz, δVyyz and δVzzz), the three curves
are overlapping together, showing that three GC function-
als provide the same relative approximation errors, and the
same as that of GGT. In general, the trends in Fig. 4a are
nearly similar to each other, namely the relative approxi-
mation errors for the components of the GP, GV, GGT and

GC reduce with increasing distance, excepting the turning
point for the eight components as 6379.4 km for GP (δV ),
6383.6 km for GV (δVz), 6387.65 km for GGT (δVxx , δVyy

and δVzz) and 6391.55 km for GC (δVxxz, δVyyz and δV )
zzz ,

where turning point means the logarithmic scale changing
fromanegative sign to a positive sign. These effects evidently
demonstrate the very-near-area problems of the tesseroid for-
mulas in spherical integral kernels, which are not only for the
GP, GV and GGT, but also for the GC.

Specifically, for the chosen distance rP ∈ [6371, 6401 km]
the relative approximation errors of the GP (δV ) are in range
of about 10−6 to 10−4, while the GV (δV )

z could reach appar-
ently larger relative errors about 10−3 to 100. In addition, for
the GGT functionals, the relative approximation errors can
reach a range of about 10−1–102. The relative approximation
errors for the GC functionals are about 101–105. Among the
gravitational effects, the relative approximation errors of the
GC functionals are largest under the same condition.

Also the two Laplace parameters (δ�V2 for the GGT and
δ�V3 for the GC) are shown in Fig. 4b as two rough curves,
where the range of δ�V2 for the GGT is about 10−20–10−15

s−2 and δ�V3 for the GC is approximately 10−25–10−20

m−1s−2. The two pairs of absolute approximation errors
(GGT and GC) clearly confirm the reliability of our formu-
las, namely the sum of the corresponding three curves for the
GGT (δVxx , δVyy and δVzz) and the GC (δVxxz , δVyyz and
δVzzz) satisfy the Laplace equations at appropriate double
precision range used for the calculations, respectively.
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Here, we note the similarities and differences between
Fig. 4 in Shen and Deng (2016) and Fig. 4 in this paper. The
experimental scheme and method of both papers are similar
by utilizing the approximation errors calculated between the
tesseroid formulas in spherical integral kernels and the ana-
lytical formulas of the spherical shell for the investigation
of the very-near-area problem. Also the distance variation
arrangement is same as rP ∈[6371, 6401 km]. However, as
for the dissimilarities, Shen and Deng (2016) adopted the
fourth-order tesseroid formulas by two different grid res-
olutions 15′×15′ and 5′×5′ to analyze the very-near-area
problem of the GP. In this paper, we use the second-order
tesseroid formulas by grid resolution 15′×15′ to study and
confirm the very-near-area problem not only for the GP, but
also the expansion with the other gravitational effects, espe-
cially for theGC.And the presentations of the figures are also
different. In this paper, the relative approximation errors in
Log10 scale are used, whereas in Shen and Deng (2016) they
show the absolute approximation errors values. Concerning
the GC functionals, the evident relative approximation errors
exist in the very near area.Moreover, among the gravitational
effects, the GC functionals have largest relative approxima-
tion errors at the very near area.

3.4 Influence of the latitude on GP, GV, GGT and GC

It is well known that the numerical properties (e.g., the
approximation error with the influence of latitude) on the
GP, GV and GGT tesseroid formulas approximation errors
had been broadly examined with zero-order and second-
order Taylor formulas correspondingly (Kuhn 2003; Heck
and Seitz 2007; Asgharzadeh et al. 2007;Wild-Pfeiffer 2008;
Tsoulis et al. 2009; Álvarez et al. 2012; Uieda et al. 2016;
Grombein et al. 2013, 2014, 2016; Shen and Han 2013,
2014, 2016) and with up to fourth order for the GP (Shen
andDeng 2016), hence the following context concentrates on
numerical evaluation for the GC formulas, where the GP, GV
and GGT components are also investigated with the relative
approximation errors by comparing to the GC components.

Similar to the evaluation experiments of Grombein et al.
(2013) and Shen and Deng (2016), the spherical coordinates
of computation point P are (λP , θP , rP ), where the spheri-
cal longitude λP = 0◦ and geocentric distance rP as three
different constants with surface, airborne and satellite height
(see Table 2), and spherical latitude θP as variable parameter
in northern hemisphere from the equator θP = 0◦ to north
pole θP = 90◦ with an interval 1◦. The numerical results are
symmetric with respect to the equator (Grombein et al. 2013;
Shen and Deng 2016). And the second-order tesseroid for-
mulas with grid resolution 15′×15′ are utilized in the latter
numerical evaluation of theGP,GV,GGTandGC functionals
in terms of the computation time cost.

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

R
el

at
iv

e 
ap

pr
ox

im
at

io
n 

er
ro

rs
 in

 L
og

10

0˚ 10˚ 20˚ 30˚ 40˚ 50˚ 60˚ 70˚ 80˚ 90˚

Latitude

GP_δV

GV_δVz

GGT_δVxx

GGT_δVyy

GGT_δVzz

GC_δVxxz

GC_δVyyz

GC_δVzzz

Fig. 5 Visualization of the second-order tesseroid relative approxima-
tion errors in Log10 scale for the GP (δV (blue curve)), GV (δVz (red
curve)), GGT (δVxx (green curve),δVyy (dark blue curve) and δVzz (yel-
low curve)) and GC (δVxxz (deep sky blue curve), δVyyz (thistle curve)
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ence of spherical latitude θP at surface height
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Fig. 6 At airborne height, other parameters are the same as in Fig. 5

Therefore, the relative approximation errors in Log 10

scale with the influence of latitude θP are presented for the
GP (δV ), GV (δVz), GGT (δVxx ,δVyy and δVzz) and GC
(δVxxz ,δVyyz and δVzzz) by grid resolution 15′×15′ with
three different applications in Fig. 5 for surface height, Fig.
6 for airborne height and Fig. 8 for GOCE satellite height,
respectively. Furthermore, the differences between Figs. 5
and 6 for the relative approximation errors in Log 10 scale
are also shown in Fig. 7 to present the minor differences
between surface and airborne applications.
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As for Fig. 5 and 6, the curves of different functionals
(GP, GV, GGT and GC) behave similarly with the change
in latitude, the relative approximation errors for some func-
tionals (e.g., δV , δVz , δVxx and δVxxz) decrease toward the
pole, whereas for some other functionals (e.g., δVyy , δVzz ,
δVyyz and δVzzz)) they increase toward the pole. Moreover,
the differences of each other for all the eight components of
the GP, GV, GGT and GC are visualized in Fig. 7, which
clearly shows that the GC (δVxxz ,δVyyz and δVzzz) function-
als aremore sensitive than all the fiveGP (δV ), GV (δVz) and
GGT (δVxx ,δVyy and δVzz) parameters from surface height
to airborne height, especially at the high-latitude area from
about 60◦ to pole point. Furthermore, in case of GP (δV ),
GV (δVz), GGT (δVyy and δVzz) and GC (δVxxz) large dif-
ferences between surface and airborne application can be
obviously shown at the high-latitude area. As for the GC
component (δVxxz) a rapid decline can be detected at high-
latitude area from about 60◦ to the pole area.

Specifically, in both Figs. 5 and 6, for the GP (δV ), the
relative approximation errors in Log 10 form are in range of
about − 4.5 to − 3.5. The relative approximation errors in
Log 10 form are about −0.5 for the GV (δVz). Moreover, for
theGGT functionals, the relative approximation errors inLog

10 form can reach as the same level from about−0.5 to 3. For
the GC functionals, the relative approximation errors can be
in a range of about 2–5. For the high latitudes (θP > 45◦), the
curves of the two GC functionals (δVyyz and δVzzz) show the
increasing trend, whereas the other GC functionals (δVxxz)

show the decline trend toward the pole area. And the same
is as that of the GGT functionals. It should be noted that
the relative approximation errors of the GC functionals are
highest among the four types of the gravitational effects.
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Fig. 8 At satellite height, other parameters are the same as in Fig. 5

In addition, for satellite application in Fig. 8, all the eight
components parameters of the GP (δV ), GV (δVz), GGT
(δVxx , δVyy and δVzz) andGC (δVxxz , δVyyz and δVzzz) show
the same curve behavior as significant reliances on the lat-
itude θP of computation point P , and with the increase in
latitude θP from 0◦ to 90◦, the relative approximation errors
ascent by a fast increase in the polar region at θP > 85◦. The
relative approximation errors in Log10 form in Fig. 8 are in
range of − 14 to − 8.5 for the GP, − 14 to − 6.5 for the GV,
− 14 to − 5 for the GGT and − 14 to − 3 for the GC. Owing
to the logarithmic scale as changing from a negative sign to
a positive sign, which is the similar situation as described in
Fig. 5 of Grombeion et al. (2013) for the prism approach,
the relative approximation errors show a decrease behavior
at θP ≈ 44◦ in case of the GC component δVxxz . Compared
to the absolute approximation errors of the GGT in Fig. 5 of
Grombein et al. (2013), Fig. 8 provides the complete relative
approximation errors of all gravitational effects (e.g., GP,GV,
GGT and GC). Moreover, the relative approximation errors
of the GC functionals (δVxxz , δVyyz and δVzzz) are larger
than those of the other gravitational effects functionals (GP
(δV ), GV (δVz), GGT (δVxx ,δVyyand δVzz)) at polar region
(θP ≥ 80◦).

For the polar singularity problem for the GC component
(δVxxz) in spherical integral kernel, it should be known that
at pole point, the relative approximation errors are shown in
Fig. 5, 6, 7 and 8. In other words, the deep sky blue curves of
the GC component (δVxxz) in Figs. 5, 6, 7 and 8 have gaps at
latitude 90◦, which clearly demonstrate the polar singularity
problem of the GC component (δVxxz) in spherical integral
kernels.Moreover, it is obviously shown fromFigs. 5, 6, 7 and
8 that the polar singularity problem of the computation point
occurs not only for the GP at surface height (Shen and Deng
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2016) and the GGT at satellite height (Grombein et al. 2013),
but also for the GC at different surface, airborne and satellite
height. The polar singularity problem for the GC component
(δVxxz) does depend on not the height parameter but the
denominator parameters as the coordinates transformation.

4 Conclusions and outlook

Recently, the new GC functionals were proposed in geo-
science. Based on a direct measurement of the GC under
laboratory conditions (Rosi et al. 2015), its potential appli-
cations using the GC-type instrument on satellites’ board are
expected. In this contribution, we focused on the gravita-
tional effects of a tesseroid by adding the GC concept into
the tesseroid mass body in spatial domain. Afterward, the
3D integral GC formulas of a tesseroid in spherical inte-
gral kernels were derived. On the theoretical aspect, the GC
expressions by 3D Taylor series approaches were provided,
where the zero-order, second-order, fourth-order and sixth-
order Taylor series expansion expressions were offered.

Numerical experiments had validated the correctness of
the derived GC formulas with different Taylor orders. The
contribution of different order terms (e.g., zero order, second
order, fourth order and sixth order) was investigated for the
GC functionals, where the precision levels of the different
order terms are about 10−16 m−1 s2 for zero order, 10−24or
10−23 m−1 s2 for second order, 10−29 m−1 s2 for fourth order
and 10−35 or 10−34 m−1 s2 for sixth order for the nonzero
GC functionals. The numerical experiments showed that the
main contributions for the computation precision of the Tay-
lor series expansion approach were the low-order terms (zero
order and second order).

Subsequently, the numerical properties of the GC east–
east–radial, north–north–radial and radial–radial–radial com-
ponents had been investigated by numerical experiments
with 3D Taylor series approach compared to the analyti-
cal reference spherical shell, and the very-near-area problem
and polar singularity problem occurred when applying the
second-order Taylor series expansionmethod to theGC func-
tionals. The two problems were also noticed and studied in
numerical calculation of other gravitational effects (Heck
and Seitz 2007; Wild-Pfeiffer 2008; Tsoulis et al. 2009;
Grombein et al. 2013; Shen and Deng 2016). Generally,
the second-order relative approximation errors for the GC
functionals showed obvious dependency on the influence of
geocentric distance rP , and it was found that the relative
approximation errors of the GC functionals (δVxxz , δVyyz

and δVzzz)were same with each other. Also the second-order
relative approximation errors of the GC functionals showed
the latitude dependency in three different cases. Moreover,
compared to other publications (e.g., Grombein et al. 2013;
Shen and Deng 2016), the main highlight of this paper is that

the relative approximation errors of the GC functionals are
much larger than those of the other gravitational effects under
the same numerical conditions due to not only the influence
of the geocentric distance, but also the influence of the lati-
tude.We suspect that this might be due to the reason that with
the increased order derivatives of the GP, the precision using
the same numerical approach decreases. In other words, for
the GC functionals, they need higher-order Taylor formu-
las to reach the same relative accuracy. To finally confirm
this potential conclusion, further numerical experiments are
needed.

For the accuracy of the GP on the height, the relationship
of the GP and height was 0.1 m2 s−2 in GP for 1 cm in height
(Hofmann-Wellenhof and Moritz 2006; Shen et al. 2017).
The measurement accuracy of the GOCE gravity gradients
for the GGT was set as 1–2 mE (ESA 1999; Rummel 2003,
2015), namely 1×10−12–2×10−12 s−2 for the geoid deter-
mination with an accuracy of 1–2 cm. In the future, when
the components of the GC functionals can be measured and
obtained on a satellite, similar to the measurement accuracy
of the GGT, the accuracy requirements of the satellite appli-
cations are recommended as 1×10−18–2×10−18 m−1 s−2.
In our GC formulation, the absolute approximation errors are
in the order of 10−30–10−20m−1 s−2 (see Fig. 8 at satellite
height), achieving the accuracy requirement.

Grombein et al. (2013) introduced the Cartesian inte-
gral kernels for the evaluation of the GP, GV and GGT of
a tesseroid, which can avoid the detected polar singularity
problem of the GGT. However, the singularity problem of
the GC is still open. Recently, Deng and Shen (2017) derived
the new GC formulas of a tesseroid in Cartesian integral ker-
nels in 3D forms, which are expected to solve the singularity
problem.

Moreover, the concept GC of a tesseroid in gravity field
can be applied for the magnetic field. In other words, analo-
gous to the GC of a tesseroid, the concept MC of a tesseroid,
which is third-order magnetic derivatives of MP, could be
proposed in the magnetic field by adding into the magnetic
effects (e.g., MP, MV and MGT) (Asgharzadeh et al. 2008;
Du et al. 2015; Baykiev et al. 2016). In addition, not only for
tesseroid mass body, but the concept GC can also be valu-
able for other mass bodies (e.g., mass layer (Tsoulis 1999;
Wild-Pfeiffer 2008), point mass (Tsoulis 1999; Heck and
Seitz 2007; Wild-Pfeiffer 2008), rectangular prisms (Nagy
et al. 2000), vertical mass line (Wild-Pfeiffer 2008), polyhe-
dralmass (Holstein 2002;Tsoulis 2012;Conway2015, 2016;
D’Urso 2013, 2014a, b, 2015, 2016;Werner 2017; Ren et al.
2017) and vertical pyramid mass (Starostenko 1978; Sastry
and Gokula 2016)) in the reduction of mass distributions in
gravity field modeling in physical geodesy and geophysics.
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Appendix A: Derivation of the 3D GC formulas in
spherical integral kernels

The integral expressions of the GC functionals (e.g., the
third-order derivatives of GP) given by a tesseroid mass
body can be expressed in spherical coordinates in the local
East–North–Up (ENU) topocentric reference system of the
computation point P(λP , θP , rP ). The expressions of the 10
GC functionals can be referred in Tóth (2005), Tóth and
Földváry (2005), Casotto and Fantino (2009), Šprlák et al.
(2016), Šprlák and Novák (2015, 2016, 2017).

After substituting the expressions of Table 4 into the
expressions of the 10 GC functionals and mathematical sim-
plification, the 3D integral expressions of GC functionals of a
tesseroid in spherical coordinates in the local East–North–Up
(ENU) topocentric reference system can be obtained as

V T 3D
xxx =

λ2∫

λ1

θ2∫

θ1

r2∫

r1

(
− 15kr3S cos

3 θS sin3 (λP − λS)

l7PS

+ 9krS cos θS sin (λP − λS)

rP sin θP cos θPl5PS

(
rS cos

2 θP A

+ sin θP cos θP B + rS sin θP cos θS cos (λP − λS))

+ 3krS cos θS sin (λP − λS)

r2P cos2 θPl3PS

(
1 − 2 cos2 θP

)
)
drSdθSdλS (A1)

V T 3D
xxy =

λ2∫

λ1

θ2∫

θ1

r2∫

r1

(
15kr3S cos

2 θS sin2 (λP − λS) A

l7PS

− 3krS A (cos θP B + rS cos θS cos (λP − λS) + rS sin θP A)

rP cos θPl5PS

− 1

r2P cos2 θPl3PS
krS sin θP (cos θS cos (λP − λS)

− cos θP cosψ + sin θP A)) drSdθSdλS (A2)

V T 3D
xxz =

λ2∫

λ1

θ2∫

θ1

r2∫

r1

(
− 15kr2S cos

2 θS sin2 (λP − λS) B

l7PS

+ 3k

r2P cos θPl5PS
(2r2S cos θP cos2 θS sin

2 (λP − λS) (rP − 1)

+rP B (rS cos θS cos (λP − λS) + rS sin θP A + rP cos θP B))

+ krS(cos θS cos(λP−λS)+ sin θP A)+k cos θP (B − rP )

r2P cos θPl3PS

)
drSdθSdλS

(A3)

V T 3D
xyz =

λ2∫

λ1

θ2∫

θ1

r2∫

r1

15kr2S cos θS sin (λP − λS) AB

l7PS
drSdθSdλS , (A4)

V T 3D
yyx =

λ2∫

λ1

θ2∫

θ1

r2∫

r1

(
− 15kr3S cos θS sin (λP − λS) A2

l7PS
+

3krS cos θS sin (λP − λS)

r2P cos θPl5PS

(
2rS sin θp (rP − 1) A

+rP cos θP (B + rS cosψ))) drSdθSdλS (A5)

V T 3D
yyy =

λ2∫

λ1

θ2∫

θ1

r2∫

r1

3krS A

l5PS

(
5r2S A

2

l2PS
− 3

)
drSdθSdλS (A6)

V T 3D
yyz =

λ2∫

λ1

θ2∫

θ1

r2∫

r1

3kB

l5PS

(
− 5r2S A

2

l2PS
+ 1

)
drSdθSdλS (A7)

V T 3D
zzx =

λ2∫

λ1

θ2∫

θ1

r2∫

r1

3krS cos θS sin (λP − λS)

l5PS

(
− 5B2

l2PS
+ 1

)
drSdθSdλS (A8)

V T 3D
zzy =

λ2∫

λ1

θ2∫

θ1

r2∫

r1

3krS A

l5PS

(
5B2

l2PS
− 1

)
drSdθSdλS (A9)

Table 4 Detailed expressions of
Vlmn (l,m,n = rP ,θPorλP ) with
k = GρSr2S cos θS , lPS =√
r2P + r2S − 2rPrS cosψ ,cosψ =

sin θP sin θS +
cos θP cos θS cos (λP − λS),
A = cos θP sin θS −
sin θP cos θS cos (λP − λS) and
B = rP − rS cosψ , “Formula”
means the integral kernels of
related expressions

Expressions
λ2∫
λ1

θ2∫
θ1

r2∫
r1
Formula·drSdθSdλS

VλPλPλP krPrS cos θP cos θS sin (λP − λS) (l4PS + 3rPrS cos θP cos θS(3 cos (λP − λS) l2PS
− 5rPrS cos θP cos θS sin2 (λP − λS)))/ l7PS

VλPλP θP krPrS cos θS(sin θP cos (λP − λS) l4PS − 3rPrS cos θP (cos (λP − λS) A

+ 2 sin θP cos θS sin2 (λP − λS))l2PS + 15r2Pr
2
S cos

2 θP cos θS sin2 (λP − λS) A)/ l7PS
VλPλPrP −krS cos θP cos θS(cos (λP − λS) l4PS − 3rP (cos (λP − λS) B

+2rS cos θP cos θS sin2 (λP − λS))l2PS + 15r2PrS cos θP cos θS sin2 (λP − λS) B)/ l7PS
VλP θPrP krS cos θS sin (λP − λS) (sin θPl4PS − 3rP (2rS cos θP A + sin θP B) l2PS

+ 15r2PrS cos θP AB)/ l7PS
VθP θPλP krPrS cos θP cos θS sin (λP − λS)

(
l4PS + 3rPrS (2A + cosψ) l2PS − 15r2Pr

2
S A

2
)
/ l7PS

VθP θP θP −krPrS A
(
l4PS + 9rPrS cosψl2PS − 15r2Pr

2
S A

2
)
/ l7PS

VθP θPrP krS
(− cosψl4PS + 3rP

(
2rS A2 + cosψB

)
l2PS − 15r2PrS A

2B
)
/ l7PS

VrPrPλP 3krS cos θP cos θS sin (λP − λS)
(
(rP + 2B) l2PS − 5rP B2

)
/ l7PS

VrPrP θP 3krS A
(
5rP B2 − (rP + 2B) l2PS

)
/ l7PS

VrPrPrP 3kB
(
3l2PS − 5B2

)
/ l7PS
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Table 5 Detailed expressions of
Fm and X (λ0, θ0, r0) in Eqs.
(B1)–(B5) with
k0 = GρSr20 cos θ0,lP0 =√
r2P + r20 − 2rPr0 cosψ0,cosψ0 =

sin θP sin θ0 +
cos θP cos θ0 cos (λP − λ0),
A0 = cos θP sin θ0 −
sin θp cos θ0 cos (λP − λ0) and
B0 = rP − r0 cosψ0

Fm X (λ0, θ0, r0)

V T 3D
xxx − 15k0r30 cos

3 θ0 sin3 (λP − λ0) / l7P0
+ 9k0r0 cos θ0 sin (λP − λ0) [r0 cos2 θP A0 + sin θP cos θP B0

+ r0 sin θP cos θ0 cos (λP − λ0)]/rP sin θP cos θPl5P0
+ 3k0r0 cos θ0 sin (λP − λ0)

(
1 − 2 cos2 θP

)
/r2P cos2 θPl3P0

V T 3D
xxy 15k0r30 cos

2 θ0 sin2 (λP − λ0) A0/ l7P0
− 3k0r0A0 (cos θP B0 + r0 cos θ0 cos (λP − λ0) + r0 sin θP A0) /rP cos θPl5P0
− k0r0 sin θP (cos θ0 cos (λP − λ0) − cos θP cosψ0 + sin θP A0) /r2P cos2 θPl3P0

V T 3D
xxz −15k0r20 cos

2 θ0 sin2 (λP − λ0) B0/ l7P0
+ 3k0[2r20 cos θP cos2 θ0 sin2 (λP − λ0) (rP − 1)

+ rP B0 (r0 cos θ0 cos (λP − λ0) + r0 sin θP A0 + rP cos θP B0)]/r2P cos θPl5P0
+ k0r0 (cos θ0 cos (λP − λ0) + sin θP A0) + k0 cos θP (B0 − rP ) /r2P cos θPl3P0

V T 3D
xyz 15k0r20 cos θ0 sin (λP − λ0) A0B0/ l7P0

V T 3D
yyx −15k0r30 cos θ0 sin (λP − λ0) A2

0/ l
7
P0

+ 3k0r0 cos θ0 sin (λP − λ0) [2r0 sin θp (rP − 1) A0

+ rP cos θP (B0 + r0 cosψ0)]/r2P cos θPl5P0
V T 3D
yyy 3k0r0A0

(
5r02A2

0/ l
2
P0 − 3

)
/ l5P0

V T 3D
yyz 3k0B0

(−5r20 A
2
0/ l

2
P0 + 1

)
/ l5P0

V T 3D
zzx 3k0r0 cos θ0 sin (λP − λ0)

(−5B2
0/ l2P0 + 1

)
/ l5P0

V T 3D
zzy 3k0r0A0

(
5B2

0/ l2P0 − 1
)
/ l5P0

V T 3D
zzz 3k0B0

(
3 − 5B2

0/ l2P0
)
/ l5P0

V T 3D
zzz =

λ2∫

λ1

θ2∫

θ1

r2∫

r1

3kB

l5PS

(
3 − 5B2

l2PS

)
drSdθSdλS (A10)

As we adopt the same expressions of the 10 GC functionals
as in Tóth (2005), Casotto and Fantino (2009), the repre-
sentations of Eqs. (A1)–(A10) are equivalent to the Newton
integrals as shown in Šprlák and Novák (2015). One could
use the following Laplace identity equations to confirm the
validity of the GC expressions (Casotto and Fantino 2009;
Šprlák and Novák 2016; Šprlák et al. 2016):

V T 3D
xxx + V T 3D

yyx + V T 3D
zzx = 0, (A11)

V T 3D
xxy + V T 3D

yyy + V T 3D
zzy = 0, (A12)

V T 3D
xxz + V T 3D

yyz + V T 3D
zzz = 0. (A13)

Appendix B: 3D Taylor series approach for the GC
functionals

In practical calculations, one could use these iterative rela-
tionships to simplify the calculation process; therefore, the
3D zero-order, second-order, fourth-order and sixth-order
tesseroid expressions of the GC functionals can be given as:

F0 = �0, (B1)

F2 = �0 + �2 = F0 + �2, (B2)

F4 = �0 + �2 + �4 = F2 + �4, (B3)

F6 = �0 + �2 + �4 + �6 = F4 + �6, (B4)

�6 = 1

13824
�λ�θ�r

(
X222�λ2�θ2�r2

)

+ 1

46080
�λ�θ�r(X420�λ4�θ2 + X402�λ4�r2

+ X240�λ2�θ4

+ X204�λ2�r4 + X042�θ4�r2 + X024�θ2�r4)

+ 1

322560
�λ�θ�r

(
X600�λ6 + X060�θ6

+ X006�r6
)

. (B5)

Herein, the�6 term is provided, and the other lower terms
(e.g., �0, �2and �4) can be referred in Eqs. (13)–(15) of
Shen and Deng (2016).

Herein, the Mathematica code file (Code.nb) for the
detailed expressions of the 3D zero-order, second-order,
fourth-order and sixth-order tesseroid formulas of the GC
functionals is provided on a request addressing to W.B.
Shen. The code file contains two parts: a) the expressions
of the spherical integral kernels for the 10 different GC
functionals; b) the processes of different order (zero-order,
second-order, fourth-order and sixth-order) Taylor series
expansion approach for the 10 different GC functionals. Tak-
ing the GC component V T 3D

xxx for example, the first part in the
code file presents the expression of spherical integral kernels

123



Evaluation of gravitational curvatures of a tesseroid in spherical integral kernels 427

for V T 3D
xxx as V xxx[G_, ρ_, λp_, θp_, rp_, λ0_, θ0_, r0_],

which is the function definition in Mathematica; λp, θp, rp
and λ0, θ0, r0 are the spherical coordinates of the computa-
tion point P and the integration point S0 with the symbol def-
inition in the Mathematica code file. Then in the second part
of the code file, it gives the different coefficient parameters
expressions with different order (zero order with V xxx000;
second-order with V xxx200,V xxx020,V xxx002; fourth
order with V xxx220, V xxx022, …, V xxx004; and sixth
order with V xxx222, …, V xxx420, …, V xxx006) from
Eq. (3). After substituting the coefficient parameters into
Eqs. (B1)–(B5), it provides the final expressions for 3D zero-
order (GCV xxx0), second-order (GCV xxx2), fourth-order
(GCV xxx4) and sixth-order (GCV xxx6) tesseroid formu-
las for the GC component V T 3D

xxx .
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