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Abstract Incorrect modeling of troposphere delays is one
of the major error sources for space geodetic techniques
such as Global Navigation Satellite Systems (GNSS) or Very
Long Baseline Interferometry (VLBI). Over the years, many
approaches have been devised which aim at mapping the
delay of radio waves from zenith direction down to the
observed elevation angle, so-called mapping functions. This
paper contains a new approach intended to refine the cur-
rently most important discrete mapping function, the Vienna
MappingFunctions 1 (VMF1),which is successively referred
to as Vienna Mapping Functions 3 (VMF3). It is designed
in such a way as to eliminate shortcomings in the empir-
ical coefficients b and c and in the tuning for the specific
elevation angle of 3◦. Ray-traced delays of the ray-tracer
RADIATE serve as the basis for the calculation of new map-
ping function coefficients. Comparisons of modeled slant
delays demonstrate the ability of VMF3 to approximate the
underlying ray-traced delays more accurately than VMF1
does, in particular at low elevation angles. In other words,
when requiring highest precision, VMF3 is to be preferable
to VMF1. Aside from revising the discrete form of mapping
functions, we also present a new empirical model named
Global Pressure and Temperature 3 (GPT3) on a 5◦ × 5◦ as
well as a 1◦ × 1◦ global grid, which is generally based on
the same data. Its main components are hydrostatic and wet
empirical mapping function coefficients derived from spe-
cial averaging techniques of the respective (discrete) VMF3
data. In addition, GPT3 also contains a set of meteorological
quantities which are adoptedas they stand from their prede-

B Daniel Landskron
daniel.landskron@geo.tuwien.ac.at

1 Technische Universität Wien, Vienna, Austria

cessor, Global Pressure and Temperature 2 wet. Thus, GPT3
represents a very comprehensive troposphere model which
can be used for a series of geodetic as well as meteorologi-
cal and climatological purposes and is fully consistent with
VMF3.

Keywords VLBI · GNSS · Troposphere · Mapping
functions · Horizontal gradients

1 Introduction

During their passage through the neutral atmosphere, radio
waves are delayed and bent as a result of interaction with dry
gases and water particles. As there is no chance to directly
measure these delays with sufficient accuracy, they need
to be modeled. The common concept for this purpose is
to determine the delay in zenith direction and multiply it
with a mapping function intended to scale it to the eleva-
tion angle of the observation. Because the composition of
atmospheric matter fluctuates heavily both temporally and
spatially, values for these zenith delays and mapping func-
tions are ever changing. One of the most accurate ways of
obtaining (at least approximate values of) troposphere delays
is ray-tracing through numerical weather models (NWMs).
In these numerical weather models, the lower atmosphere is
discretized to a specific horizontal grid resolution and a num-
ber of height levels throughwhich the ray-tracing beams then
propagate. They are delayed and bent following the complex
laws of refraction what is thought to approximate the real
travel path as well as possible. For this reason, ray-tracing
is, unlike surface measurement methods, able to consider the
effect of the whole atmosphere. Current ray-tracing software
such as RADIATE (Hofmeister and Böhm 2017) manages to
compute ray-traced delays for a more or less limited num-
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ber of observations such as those from VLBI (∼10 million
since advent in 1979); however, it is evidently not possi-
ble in terms of computational effort to do this for every
single GNSS observation. The concept of mapping func-
tions provides remedy as the information of the variability
of delays over the whole elevation range is condensed in
them, more precisely in three mapping function coefficients
a, b and c. The first mapping function to adopt information
from ray-tracing through NWMs was the Isobaric Mapping
Functions (IMF) by Niell (2000), which induced a major
leap in accuracy at that time. Böhm and Schuh (2004) drew
on this concept and devised the Vienna Mapping Functions
(VMF) which overcame some limitations of IMF, especially
in the wet part. The subsequent Vienna Mapping Functions
1 (VMF1) by Böhm et al. (2006a) is regarded as the most
accurate mapping functions nowadays and are applied by
numerous research centers and other agencies worldwide.
While VMF1 is retrieving data from the European Centre
forMedium-RangeWeather Forecasts (ECMWF), the UNB-
VMF1 (Santos et al. 2012) does the same for NWM data
from the United States National Centers for Environmental
Prediction (NCEP) and the Canadian Meteorological Center
(CMC). Also other models such as the Adaptive Mapping
Functions (AMF) by Gegout et al. (2011) or the Potsdam
Mapping Factors (PMF) by Zus et al. (2014) are based on
the concept of ray-tracing through NWMs.

Mapping functions adopting information from ray-tracing
through NWMs at certain times and locations are commonly
referred to as discrete mapping functions in this paper. In
contrast, empirical troposphere models and mapping func-
tions rely on experience values from climatology and are
of vital importance particularly for all applications that do
not have internet connection and thus have no possibility
of downloading the latest discrete data. Also applications
which simply do not require utmost accuracy benefit from
empirical troposphere delay models owing to their straight-
forward usage. Their accuracy is certainly lower than that of
discrete mapping functions which harness real observation
data, but yet they are frequently used in all space geodetic
techniques. Important realizations of empirical troposphere
models and mapping functions are (in chronological order)
the New Mapping Functions (NMF) by Niell (1996), the
Global Mapping Functions (GMF) by Böhm et al. (2006b),
the model UNB3m (Leandro et al. 2006) or the mod-
els Global Pressure and Temperature 2 (GPT2) by Lagler
et al. (2013) and its successor Global Pressure and Tem-
perature 2 wet (GPT2w) by Böhm et al. (2015), having
improved capability to determine zenith wet delays empir-
ically. However, the modeling of troposphere delays still
leaves considerable room for improvement, which is why
there remains large interest in evermore accurate troposphere
delaymodeling techniques both for discrete and for empirical
purposes.

2 Fundamentals of troposphere modeling

Following Nilsson et al. (2013), the total delay time �L(ε)

which radio waves experience when traveling through the
neutral atmosphere depending on the observation elevation
angle ε is commonly modeled with the parametrization in
Eq. (1) (Davis et al. 1985):

�L(ε) = �Lz
h · mfh(ε) + �Lz

w · mfw(ε) (1)

The delay modeling is obviously split into a hydrostatic part,
which is mainly caused by the dry gases in the atmosphere,
and a wet part which arises from water vapor and water
particles in the atmosphere, each represented through amulti-
plication of the respective delay in zenith direction�Lz with
a mapping function mf(ε). The zenith hydrostatic delay�Lz

h
can be determined with very high precision through pressure
measurements at the site, as the weight of all air layers adds
up to the surface pressure. The equation by Saastamoinen
(1972) as revised by Davis et al. (1985)

�Lz
h = 0.0022768 · p

1 − 0.00266 · cos(2ϕ) − 0.28 · 10−6 · hell (2)

is generally used for this purpose, where p is the pressure and
ϕ and hell the geographic latitude and ellipsoidal height of
the station, respectively. Deriving the zenith wet delay �Lz

w
is far more difficult because surface measurements alone are
not sufficient for this. Common practice in space geodesy
is to estimate this parameter in the analysis on the basis of
a sufficient overdetermination of observations, which, how-
ever, is not always given. An approach to approximate �Lz

w
is the formula by Askne and Nordius (1987) which requires
three input parameters: water vapor pressure e, mean tem-
perature weighted with water vapor pressure Tm and water
vapor decrease factor λ:

�Lz
w = 10−6 ·

(
k′
2 + k3

Tm

)
· Rd · e
gm · (λ + 1)

(3)

k′
2 and k3 represent empirically determined refractivity con-
stants here, while Rd is the specific gas constant for dry
constituents which equals 287.0464 JK−1 kg−1 and gm is
the mean gravity which equals 9.80665 ms−2. Apart from
that, ray-tracing through numerical weather models is also
capable of computing very precise values for both �Lz

h and
�Lz

w (Teke et al. 2011).
Following the model by Marini (1972) in its truncated

form by Herring (1992), which is the basis for all “modern”
mapping functions developed so far, the mf(ε) are each built
up on the basis of three coefficients a, b and c:
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mf(ε) =

1 + a

1 + b

1 + c

sin(ε) + a

sin(ε) + b

sin(ε) + c

(4)

According to Herring (1992), a, b and c are defined as coef-
ficients that depend on integrals of refractivity through the
atmosphere. To put it another way, mapping functions can
also be regarded as a measure of the thickness of the neu-
tral atmosphere. With decreasing thickness compared to the
earth’s radius (as is the case at the poles for instance), the
coefficients decrease and the mapping function approaches
sin(ε)−1 (Niell 2000). On account of its principal order in
the formula, the coefficient a is the determining element of
Eq. (4). In all discrete mapping function approaches men-
tioned in Introduction, the information from the NWMs is
incorporated into the coefficient a, while b and c rely on
empirical functions. In empirical mapping functions also the
a coefficients are of empirical nature.

The general purpose of this paper is to conceptualize map-
ping functions which are able to surpass the performance of
VMF1 and GPT2w, which are considered among the most
accurate mapping functions of their kind. For this purpose,
in the following an understanding of the general concept of
these two is given.

The Vienna Mapping Functions 1 (VMF1) is a model
providing discrete values for zenith hydrostatic delay �Lz

h,
zenith wet delay �Lz

w and the hydrostatic and wet map-
ping functions mfh and mfw. Therein the coefficients bh,
bw and cw are constants, while ch is dependent on day of
year (doy) and geographic latitude. The hydrostatic and wet
a coefficients are determined directly from ray-traced delays
at the initial elevation angle 3.3◦ through inverting Eq. (4).
This is done for each NWM epoch, that is, daily at 00:00,
06:00, 12:00 and 18:00 UT for a specific set of stations
as well as on a global grid. The respective values at the
observation epoch can eventually be obtained through inter-
polation from adjacent NWM epochs. In addition, Böhm
et al. (2009) developed the VMF1-FC which provides the
VMF1 coefficients also up to two days in advance and thus
opened the possibility of using VMF1 for real-time applica-
tions.

Global Pressure and Temperature 2 wet (GPT2w) is
an empirical model for troposphere delays which is the
successor of the former models GPT (Böhm et al. 2007)
and GPT2 (Lagler et al. 2013). It requires only informa-
tion about time and location and provides mean values
plus annual and semi-annual amplitudes of a set of quan-
tities such as mapping function coefficients ah and aw,
temperature T , pressure p, water vapor pressure e, mean

temperature weighted with water vapor pressure Tm and
water vapor decrease factor λ, optionally on a 5◦ × 5◦
and a 1◦ × 1◦ grid. The coefficients were derived from
monthly mean pressure-level data of ERA-Interim fields by
the ECMWF.

3 Development of new mapping functions

As the publication of VMF1 dates back to 2006, many new
approaches have evolved over the years, however none of
which was actually able to outperform VMF1 yet. Nonethe-
less, Zus et al. (2015) revealed shortcomings in VMF1 due
to its tuning for the specific elevation angle of 3◦, station
heights and orbital altitudes. For those reasons, it was tried
to conceive a new, however similar mapping function con-
cept to overcome these problems. NWMs have improved
significantly since 2006 what made it possible to draw on
a much larger data framework for this purpose. The new dis-
crete mapping function is to be named VMF3, following the
draft VMF2 (Böhm et al. 2005) which has never become
operational as it was not able to sufficiently improve the
results of VMF1. Analogously, the data are also used for
designing a new empirical mapping function consecutively
named Global Pressure and Temperature 3 (GPT3) that is
also assumed to benefit from the higher amount of data and
is fully consistent with VMF3.

In the course of this paper, a series of new models with
separate names is designed and tested, which might create
confusion as they all resemble each other. Therefore, Table 1
lists all names and labels to serve as a guide. The theory
behind each approach is to be explained in the upcoming

Table 1 A list of all mapping function approaches mentioned through-
out this paper

Identifier name

VMF1original Vienna Mapping Functions 1

VMF1repro3deg Reprocessed VMF1; empirical b and c (Böhm
et al. 2006a), a for 3◦ (outgoing) elevation

VMF1reproLSM Reprocessed VMF1; empirical b and c
(Böhm et al. 2006a), a from LSM

VMFLSM a, b and c from LSM

VMF33deg Vienna Mapping Functions 3; empirical b and
c (this paper), a for 3◦ (outgoing) elevation

VMF3LSM Vienna Mapping Functions 3; empirical b and
c (this paper), a from LSM

GPT2w Global Pressure and Temperature 2 wet
(optionally on a 5◦ × 5◦ or 1◦ × 1◦ grid)

GPT3 Global Pressure and Temperature 3
(optionally on a 5◦ × 5◦ or 1◦ × 1◦ grid)

For all LSM versions, 7 (outgoing) elevation angles are used (3◦, 5◦,
7◦, 10◦, 15◦, 30◦, 70◦)
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sections; however, it is stated already at this point that the
final products of this section will be the methods VMF3LSM
and GPT3.

3.1 Vienna Mapping Functions 3

What is striking in Table 1 is that there are least-squares
method (LSM) approaches and non-LSM approaches. The
idea behind this is that with the ray-tracer RADIATE pro-
grammed in FORTRAN it is possible to create millions of
ray-traced delays in virtually no time at all, so the map-
ping function coefficients can be determined efficiently from
ray-tracing at not just a single elevation angle, such as in
VMF1, but also from a number of elevation angles through
least-squares methods. The reprocessed VMF1 coefficients
(VMF1repro3deg) are calculated based on exactly the same
model, but new ray-tracing data. This shall allow estima-
tions about the quality of the ray-tracing data itself on the one
hand, and comparisons which would not be possible with the
VMF1original on the other hand. The following subsections
are intended to explain the theory behind each approach.

3.1.1 VMF1repro3deg and VMF1reproLSM

Here the b and c coefficients are adopted from VMF1, while
the a coefficients get new values based on the ray-tracing
data whose properties are listed in Table 3.

For VMF1repro3deg, RADIATE is used to compute the
mapping function mf(3◦) for each observation which is then,
together with the empirical b and c, inserted into the follow-
ing formula in order to analytically calculate a:

a = − mf(ε) · sin(ε) − 1

mf(ε)

sin(ε) + b

sin(ε) + c

− 1

1 + b

1 + c

(5)

This is done separately for the hydrostatic and the wet
part. For VMF1reproLSM, the situation is different because
the a coefficients are fitted to ray-traced mapping function
coefficients at the whole elevation range, which requires
least-squares adjustments. Because the equation system is
nonlinear, in fact (unweighted) iterative least-squares adjust-
ments must be applied employing starting values of ah0 =
0.0012, aw0 = 0.00055, although the adjustment is very
insensitive to the choice of the starting values; even using
the (absolutely unrealistic) starting values ah0 = 0.005,
aw0 = 0.002 instead does not change the results at all. Con-
vergence is assumed as soon as the additions are smaller
than 10−12 which corresponds to an accuracy of the resulting
delay of approximately 6 × 10−9 m. For details, see Land-
skron (2017).

3.1.2 VMFLSM

Here all three mapping function coefficients are determined
together in least-squares adjustments. This appears to be the
best approach of simulating the ray-traced delays, because
the coefficients then contain the full information of the
NWMs and do not suffer from sometimes better, sometimes
worse fitting empirical parameters. The iterative adjustment
requires starting values also for b and c, which are set tobh0 =
0.0029, bw0 = 0.00146, ch0 = 0.065 and cw0 = 0.04391.
At first glance, it seems as if this would be the best mapping
function concept; however, for two reasons it cannot be used
operationally:

– Convergence of the wet coefficients can only be achieved
when the underlyingNWMis sufficiently “smooth”. This
means that the ray-traced delays must exhibit a more or
less linear variation over the elevation angles, otherwise
the iterative LSM immediately diverges. For the hydro-
static part, this is no problem at all, but the wet delays
are affected by too many small-scale variations so that it
is not possible to determine aw, bw and cw for discrete
locations and times from operational NWM data. Small-
scale variations in the wet delay at different elevation
angles certainly represent important information about
the actual state of the troposphere; however, they conflict
with the determination of single coefficients which shall
represent the state at all elevation angles. For a global grid
based on monthly averaged NWM values, the situation
is different as the upcoming Sect. 3.1.3 addresses.

– According to Böhm (2004), the interpolation, which has
to be performed separately for each of the three coeffi-
cients a, b and c by the user, involves danger because of
the inherent high correlation between them.

3.1.3 VMF33deg and VMF3LSM

The only way to improve the VMF1 concept when b and
c have to keep on their empirical nature is to significantly
improve and extend the underlying empirical model. The
coefficients bh, bw, ch and cw all need to be equipped with
spatial as well as temporal variation components on whose
basis ah and aw can be computed.

As mentioned before, the determination of VMFLSM does
not fail formonthlymeanNWMs inwhich allmeteorological
quantities are strongly smoothed. For the operational pro-
vision of mapping functions, this obviously does not make
sense; however, it enables the determination of discrete b and
c values on a grid from which, in a further step, empirical
information can be derived. Hence, ray-traced delays are pro-
duced on a global 5◦×5◦ grid, monthly for the time period of
2001 to 2010 (Table 2) fromwhich the VMFLSM coefficients
are then estimated.
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Table 2 Properties of the
grid-wise ray-traced delays that
were generated for the
derivation of VMF3

Parameter Specification

Ray-tracing software RADIATE (Hofmeister and Böhm 2017)

Ray-tracing method 2D piecewise linear (Hobiger et al. 2008)

NWM ECMWF ERA-Interim Pressure-Level Data

Horizontal resolution of the NWM 1◦ × 1◦

Horizontal coverage (1) global grid with resolution 5◦ × 5◦ (lat: [87.5◦, −87.5◦],
lon: [2.5◦, 357.5◦]), resulting in 2592 grid points and (2)
global grid with resolution 1◦ × 1◦ (lat: [89.5◦, −89.5◦], lon:
[0.5◦, 359.5◦]) resulting in 64800 grid points

Vertical coverage 25 Pressure levels

Temporal resolution Mean values for every month from 2001 through 2010 (= 120
epochs)

Outgoing elevation angles per point 4 (3.3◦, 5◦, 15◦ and 30◦) for 5◦ × 5◦ grid and 1 elevation (3◦)
for 1◦ × 1◦ grid

Azimuth angles per point 8 (0◦:45◦:315◦)

In order to deduce empirical temporal information for the
coefficients b and c, the following seasonal fit formula is
applied (Lagler et al. 2013; Böhm et al. 2015). For bh, it
would appear as:

bh = A0 + A1 · cos
(

doy

365.25
2π

)
+ B1 · sin

(
doy

365.25
2π

)

+ A2 · cos
(

doy

365.25
4π

)
+ B2 · sin

(
doy

365.25
4π

)

(6)

in which A0 represents the mean value, A1 and B1 the annual
amplitudes and A2 and B2 the semi-annual amplitudes of the
coefficient. Least-squares adjustments are again used to fit
these parameters to the VMFLSM data. Figure 1 contains the
results for the coefficient bh.

The coefficients and their amplitudes could be saved as a
grid, from which the user then could spatially interpolate the
desired position. However, this would be accompanied with
unacceptably long loading times, particularly for a range of
positions and times. Therefore, it was decided to represent
the discrete grid by continuous functions, which is accom-
plished through spherical harmonics, which are commonly
used for representations of the geoid and the gravitational
and magnetic fields of the Earth. In fact, bh, bw, ch and cw
and their amplitudes must pass through another least-squares
adjustment in order to be fitted to the spherical harmonics
coefficients. For details of the spherical harmonics estima-
tion, it is again referenced to Landskron (2017).

Setting the degree of expansion to n = m = 12, 91 Legen-
dre coefficients must be estimated by LSM for each mapping
function coefficient and each of its amplitudes. Figure 2
shows the results of the spherical harmonics expansion exem-
plarily for a certain time, compared to the original grid. In
general, the representation works very well. For small-scale

variations such as over mountain ranges like the Himalayas
or the Andes, the degree of expansion n = 12 is obviously
too low, which, however, is not critical because small errors
in the b and c coefficients can be compensated by the a coef-
ficients.

The empirical coefficients bh, bw, ch and cw now have
appropriate temporal and spatial variations that are consid-
erably more advanced than those of VMF1. Using these,
discrete values for ah and aw can be determined. As men-
tioned already at an earlier stage, this is handled—once
more—through a least-squares adjustment over all seven ele-
vation angles for the representation VMF3LSM and for the
single outgoing elevation angle of 3◦ for version VMF33deg.
The performance of all approaches introduced throughout
this chapter (VMF1repro3deg, VMF1reproLSM, VMF33deg and
VMF3LSM) is assessed in Sect. 4.

3.2 Global Pressure and Temperature 3

In the previous section, empirical representations of themap-
ping function coefficients bh, bw, ch and cw were found from
which the discrete ah and aw can be calculated. To create
an all-empirical mapping function model, these need to be
represented empirically as well. Having done most of the
groundwork already through the generation of VMF3, the
only step remaining is to apply Eq. (6) to the discrete a coef-
ficients. The resulting values are then stored in a grid, as is
done in GPT2w, while b and c retain their spherical harmon-
ics expression. The crucial difference is that for the empirical
version the ah coefficients must be valid at sea level instead
of the respective height of the topography so that users can
then reproduce them for any location on earth, because the
magnitude of ah is dependent on ellipsoidal height hell. The
height correction by Niell (1996) is the suitable tool for han-
dling this:
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Fig. 1 Parameters of the seasonal fit for the mapping function coefficient bh. Top left: annual amplitude A1, top right: annual amplitude B1, center
left: semi-annual amplitude A2, center right: semi-annual amplitude B2 and bottom: mean values A0

Fig. 2 Empirical coefficient bh at the arbitrary epoch January 15, 2001 (MJD: 51924). Left: the original grid which is to be represented by spherical
harmonics. Right: spherical harmonics representation for degree of expansion n = 12

mfh0 =mfh1 − hell
1000

×
⎛
⎜⎝ 1

sin(ε)
−

1 + aht
1+ bht

1+cht

sin(ε) + aht
sin(ε)+ bht

sin(ε)+cht

⎞
⎟⎠

(7)

where mfh0 is the hydrostatic mapping function at reduced
height 0 (usually sea level), mfh1 is the hydrostatic map-
ping function at height 1 (usually at the topography), and
the constants aht = 2.53 × 10−5, bht = 5.49 × 10−3 and
cht = 1.14×10−3 define the correction. Figure 3 depicts the
resulting ah coefficients on the grid.
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Fig. 3 Mean values A0 (top left), seasonal amplitudes A1 (top right),
half-seasonal amplitudes A2 (bottom left) and standard deviation of
the residuals of A0 (bottom right) of the hydrostatic mapping function
coefficient ah from GPT3. At a rough estimate, given the uncertainty of

6 × 10−7 in A0 and of 8 × 10−7 in all amplitudes of ah (as is the case
at the poles), the resulting slant hydrostatic delay at 5◦ elevation would
change at worst by 4 mm

Table 3 Properties of the station-wise ray-traced delays that were gen-
erated using the ray-tracer RADIATE from 1999 to 2014

Parameter Specification

Ray-tracing software RADIATE (Hofmeister and Böhm 2017)

Ray-tracing method 2D piecewise linear (Hobiger et al. 2008)

NWM ECMWF ERA-Interim Pressure-Level
Data+ECMWF operational data

Horizontal
resolution of the
NWM

1◦ × 1◦

Vertical coverage 25 Pressure levels

Horizontal coverage 33 VLBI stations

Temporal resolution 6-hourly at 00:00, 06:00, 12:00 and 18:00UTC
each day from 1999 through 2014 (=23376
epochs)

Outgoing elevation
angles per point

7 (3◦, 5◦, 7◦, 10◦, 15◦, 30◦ and 70◦)

Azimuth angles per
point

16 (0◦:22.5◦:337.5◦)

The several meteorological quantities from GPT2w are
left unchanged for GPT3. They are of particular importance
for creating empirical zenith delays; pressure p can be con-
verted to zenith hydrostatic delay �Lz

h using Eq. (2), while
inserting water vapor pressure e, mean temperature weighted
with water vapor pressure Tm, and water vapor decrease fac-
tor λ into Eq. (3) produces empirical zenith wet delay �Lz

w.
In addition, the ray-traced delays are also utilized for deter-

Table 4 Mean absolute error (first column),mean bias (second column)
and mean standard deviation (third column) in slant total delay �L at
5◦ elevation (mm) between ray-tracing and several mapping function
approaches, averaged over all 2592 grid points and 120 epochs

Trop. model MAE �L Bias �L σ�L

VMFLSM 0.35 0.00 0.43

VMF1repro3deg 1.73 0.58 1.23

VMF1reproLSM 1.49 0.50 1.08

VMF33deg 0.93 −0.04 0.84

VMF3LSM 0.82 −0.03 0.73

GMF 10.21 −2.08 10.47

GPT2w 6.85 0.32 8.26

GPT3 6.44 −1.03 7.98

mining an empirical gradient grid capable of outperforming
currently existing models. Thus, a full empirical troposphere
model is provided. The empirical gradient grid, however, is
not part of this paper; for more information see Landskron
(2017). The eventual GPT3 troposphere model is realized on
a 5◦ × 5◦ as well as on a 1◦ × 1◦ grid, which is naturally
assumed to be more precise, and consists of the quantities
listed in Table 8.

4 Results

In the following, two comparisons are described to assess
the performance of VMF3 and GPT3 relative to other
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356 D. Landskron, J. Böhm

Fig. 4 Differences in slant delays at 5◦ elevation between
VMF1repro3deg (left) and VMF3LSM (right) to the ray-traced delays,
averaged over all 120 epochs. Top: bias in slant total delay �L , center

top: bias in slant hydrostatic delay �Lh, center bottom: bias in slant
wet delay �Lw and bottom: standard deviation in slant total delay �L

approaches: (1) baseline length repeatabilities (BLRs) from
VLBI analyses using the Vienna VLBI Software (VieVS)
(Böhm et al. 2012) are compared, and (2) the modeled delays
are compared to those of ray-tracing, which are regarded as
the true delays for this purpose. For the BLR comparison,
only station-wise data (Table 3) are employed, while for the
delay comparison both station-wise and grid-wise data (cf.
Table 2) are regarded, but separately.

The BLR is the standard deviation of a set of baseline
lengths between two stations. These stations are also subject
to plate motions and other discontinuities over the long term,
which must be corrected beforehand so that only the error

of the modeling approach remains. The lower the standard
deviation, the better the modeling. However, it turned out
that the different mapping functions produce only marginal
differences in baseline lengths, with empiricalmapping func-
tions even yielding results equivalent to the discrete ones.
Thus, comparing BLRs is not sufficient for assessing differ-
ences between mapping functions [for details see Landskron
(2017)].

A more effective comparison among the mapping func-
tions is provided by comparing the delays directly. The better
the modeled delays approximate the ray-traced delays, the
higher their quality is,when considering the ray-traceddelays

123



VMF3/GPT3: refined discrete and empirical troposphere mapping functions 357

Fig. 5 Differences in slant delays at 5◦ elevation betweenGPT2w (left)
and GPT3 (right) to the ray-traced delays, averaged over all 120 epochs.
Top: bias in slant total delay �L , center top: bias in slant hydrostatic

delay �Lh, center bottom: bias in slant wet delay �Lw and bottom:
standard deviation in slant total delay �L

as the true reference values. For all tested approaches, the
zenith delays from RADIATE are used so that differences
can be attributed solely to the mapping factors.

First, the comparison is done for the global gridwhichwas
already used for the creation of VMF3 and GPT3. Table 4
shows the results on the basis of comparisons of mean abso-
lute error (MAE), mean bias and mean standard deviation.
VMF1original cannot be included here as it is not available for
the chosen grid.

From this, it can be concluded that VMFLSM, the approach
where all three coefficients a, b and c are estimated in
the least-squares adjustment, gets closest to the ray-traced

delays. However, for the reasons mentioned in Sect. 3.1.2,
this approach is not suitable for station-wise application. The
delays fromVMF33deg are not far off of those fromVMFLSM,
but considerably better than those from VMF1repro3deg.
The VMF3 approach obviously outperforms the VMF1
approach, while the estimation through LSM yields a fur-
ther small improvement. Figure 4 illustrates this graphi-
cally.

VMF3 reduces apparent shortcomings of the VMF1
approach in particular in mountainous areas, which almost
exclusively appear in the hydrostatic part. Also, as evident
from Table 4 and shown in Fig. 5, delays modeled with
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Table 5 Mean absolute error (first column),mean bias (second column)
and mean standard deviation (third column) in slant total delay �L at
5◦ elevation (mm) between ray-tracing and several mapping function
approaches, averaged over all 33 stations and epochs from 1999 to 2014

Trop. model MAE �L Bias �L σ�L

VMF1original 8.30 0.72 12.71

VMF1repro3deg 3.98 2.66 4.24

VMF1reproLSM 3.47 2.32 3.71

VMF33deg 2.97 1.72 3.57

VMF3LSM 2.64 1.58 3.15

GPT2w (5◦ × 5◦) 18.95 −0.53 24.74

GPT2w (1◦ × 1◦) 18.90 −0.21 24.69

GPT3 (5◦ × 5◦) 18.98 −2.43 24.69

GPT3 (1◦ × 1◦) 18.84 0.20 24.53

Table 6 Mean absolute error (first column),mean bias (second column)
and mean standard deviation (third column) in slant total delay �L at
3◦ elevation (mm) between ray-tracing and several mapping function
approaches, averaged over all 33 stations and epochs from 1999 to 2014

Trop. model MAE �L Bias �L σ�L

VMF1original 22.19 −5.42 33.88

VMF1repro3deg 0.52 0.00 0.64

VMF1reproLSM 1.62 −1.02 1.75

VMF33deg 0.52 0.00 0.64

VMF3LSM 1.17 −0.45 1.50

GPT2w (5◦ × 5◦) 54.35 −5.34 70.09

GPT2w (1◦ × 1◦) 54.13 −4.38 69.93

GPT3 (5◦ × 5◦) 54.49 −8.22 70.21

GPT3 (1◦ × 1◦) 53.86 −0.41 69.58

GPT3 are closer to the ray-traced delays than those mod-
eled with GPT2w. The improvement of GPT3 over GPT2w
is, in fact, not as distinct as it appears to be in the figure
because the delay differences were averaged over all 120
epochs before and thus lost their positive or negative alge-
braic signs. Besides, on the global grid it makes no difference
whether the 5◦ ×5◦ or 1◦ ×1◦ versions of GPT2w and GPT3
are used, since either of them exactly coincides exactly with
the global grid points.

The second comparison of delay differences ismade for 15
years of data (cf. Table 3) for 33 VLBI stations all around the
globe which were chosen in such a way as to reach a global
distribution that is as uniformas possible. Tables 5 and6 show
the resulting differences between the modeled delays and the
reference ray-traced delays for the two elevation angles 5◦
and 3◦. The zenith delays again come from RADIATE for
all model approaches so that differences in the slant delays
merely stem from differences in mapping factors. Figure 6
shows the improvement of VMF3LSM over VMF1repro3deg at
each station. VMF1original is also stated in this comparison;
as it is determined from entirely different ray-traced delays,
however, the values are not necessarily representative.

Also from these tables and figures, it is obvious that the
VMF3 approach outperforms the VMF1 approach. At 3◦
elevation, the non-LSM version is best, but this is no sur-
prise since the a coefficients were determined for this very
elevation angle. At 5◦ elevation (and all other larger eleva-
tion angles, which are not included in the tables), however,
the LSM version is superior. Consequently, the approach
VMF3LSM is regarded as the best result. In all comparisons,

Fig. 6 Mean differences in slant hydrostatic delays (top) and slant
wet delays (bottom) at 5◦ elevation between VMF1repro3deg (left) and
VMF3LSM (right) to the ray-traced delays. VMF3LSM outperforms

VMF1repro3deg at 27 of the 33 stations in hydrostatic delay and at all
stations, albeit only marginally, in wet delay
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the bulk of improvement comes from the hydrostatic part,
while the wet part does not differ significantly. The empir-
ical model GPT3 is apparently able to marginally exceed
GPT2w in the 1◦ ×1◦ version, but not in the 5◦ ×5◦ version.
For geodetic purposes, the effect of the mapping function on
station positions is most important. A rule of thumb says that
the error in the height component is approximately one-fifth
of the delay error at an elevation angle of 5◦ (Böhm 2004);
this means that station heights are improved by 0.25 mm
when using VMF3LSM instead of VMF1repro3deg. Concern-
ing empirical mapping functions, there is virtually no station
height change.

5 Conclusions

In this paper, two new mapping function models for tropo-
sphere modeling are introduced, one for discrete purposes
and one for empirical purposes. The former is referred to as
VMF3 (corresponding to the approach VMF3LSM in the text)
and is characterized by a new, more sophisticated handling
of the empirical coefficients b and c compared to VMF1,
as well as a coefficients which were determined through
least-squares adjustments over seven elevation angles. In
particular, at low elevation angles VMF3 is able to approxi-
mate the underlying ray-traced delays appreciably better than
VMF1. At 5◦ elevation, the delays are improved on average
by 1.3 mm, which is equivalent to an improved station height
of 0.25 mm. At higher elevation angles, though, there is not
much of a difference between VMF1 and VMF3. For this
reason, it depends on the task whether the use of VMF3 is
justified or not; for high-precision applications, it certainly
makes sense; however for others VMF1 may be sufficient.
The ability of empirical models to approximate ray-traced
delays is obviously somewhat worse. The newly presented
model GPT3 uses the same b and c coefficients as VMF3
and, in case of the 5◦ × 5◦ version, is based on the same ray-
tracing data as VMF3. GPT3 (5◦ ×5◦) achieves equal results
to GPT2w (5◦ × 5◦), while results from GPT3 (1◦ × 1◦) are
slightly better than those of its counterpart, however being
a little more time-consuming. However, the main benefit of
GPT3 is its full consistency with VMF3. In future, a new
height correction for mapping functions will be determined
replacing that of Niell (1996), which is expected to further
improve GPT3 and its ability to model troposphere delays at
positions other than at or close to the surface of the earth.

6 Data and code availability

Required MATLAB scripts and data text files containing the
respective mapping function coefficients can be downloaded
from http://ggosatm.hg.tuwien.ac.at/DELAY/. Information

Table 7 Alist of all input andoutput parameters of the discretemapping
function VMF3

Symbol Name Unit

Input parameters

ah Hydrostatic mapping function coefficient –

aw Wet mapping function coefficient –

mjd Modified Julian date –

ϕ Geographic latitude rad

λ Geographic longitude rad

zd Zenith distance (π -elevation) rad

Output parameters

mfh Hydrostatic mapping factor –

mfw Wet mapping factor –

Table 8 A list of all input and output parameters of the empirical tro-
posphere model GPT3

Symbol Name Unit

Input parameters

mjd Modified Julian date –

ϕ Geographic latitude rad

λ Geographic longitude rad

hell Ellipsoidal height m

Output parameters

p Pressure hPa

T Temperature ◦C
dT Temperature lapse rate K km−1

Tm Mean temperature weighted with
water vapor pressure

K

e Water vapor pressure hPa

ah Hydrostatic mapping function
coefficient (valid at sea level)

–

aw Wet mapping function coefficient –

λ Water vapor decrease factor –

N Geoid undulation m

Gnh Hydrostatic north gradient m

Geh Hydrostatic east gradient m

Gnw Wet north gradient m

Gew Wet east gradient m

Unless otherwise stated, all output quantities are valid for the ellipsoidal
height hell specified in the input

on the usage of the files is found in http://ggosatm.hg.tuwien.
ac.at/DELAY/readme.txt. All input and output parameters of
VMF3 and GPT3 are summarized in Tables 7 and 8.
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