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Abstract To meet the need for real-time and high-accuracy
predictions of polarmotion (PM), the singular spectrum anal-
ysis (SSA) and the autoregressive moving average (ARMA)
model are combined for short- and long-term PM prediction.
According to the SSA results for PM and the SSA prediction
algorithm, the principal components of PM were predicted
by SSA, and the remaining components were predicted by
the ARMA model. In applying this proposed method, mul-
tiple sets of PM predictions were made with lead times of
two years, based on an IERS 08 C04 series. The observa-
tions and predictions of the principal components correlated
well, and the SSA + ARMAmodel effectively predicted the
PM. For 360-day lead time predictions, the root-mean-square
errors (RMSEs) of PMx and PMywere 20.67 and 20.42 mas,
respectively, which were less than the 24.46 and 24.78 mas
predicted by IERS Bulletin A. The RMSEs of PMx and PMy
in the 720-day lead time predictions were 28.61 and 27.95
mas, respectively.
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1 Introduction

The polar motion (PM) of the Earth is the rotation axis
movement with respect to its crust. PMs can be accurately
determined with space geodetic techniques. However, due
to the complexity of data acquisition and processing, the
results cannot be provided in real time (Bizouard and Gam-
bis 2009; Schuh and Behrend 2012). The high accuracy of
the PM parameters is necessary to determine the relationship
between the terrestrial reference frame and the celestial refer-
ence frame. This is important for researches and applications
such as satellite navigation and positioning and spacecraft
tracking (Kalarus et al. 2010; Xu et al. 2012; Choi et al.
2013). The reliable and accurate prediction of PM has the
important scientific and practical value.

Long-term observations indicate that PMs have the Chan-
dler oscillation, and seasonal, sub-seasonal, interannual, and
long-term changes. The Chandler and annual oscillations are
the most important of these changes (Schuh et al. 2001; Guo
and Han 2009; Shen et al. 2015). Commonly, extrapolative
prediction models are constructed based on the deterministic
periods of PM using the least squares (LS) harmonic fitting
trend term and periodic terms, and then to use a determin-
istic or stochastic model to predict its residual (Kosek et al.
1998; Akulenko et al. 2002; Yao et al. 2013). Among these
existing models, the LS + ARmodel is currently considered
to be one of the most effective for short- and long-term fore-
casting of PM (Kosek et al. 2007; Kalarus et al. 2010; Xu
and Zhou 2015). Due to the complexity of the physical exci-
tation mechanism and time variations of the main periodic
oscillations of PM (Chen and Wilson 2005), the fitting of
the data series using the LS fitting model of the trigonomet-
ric function does not accurately reflect the period and trend
terms variations. This inaccuracy has a significant influence
on the accuracy of long-term PM predictions. PM has very
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complex nonlinear characteristics because it is affected by a
variety of excitation sources (Jin et al. 2012). Many groups
have used nonlinear models to predict PM, such as an adap-
tive neural network fuzzy inference system (Akyilmaz and
Kutterer 2004; Akyilmaz et al. 2011) and an artificial neural
network (Schuh et al. 2002; Liao et al. 2012). These previous
studies have shown that neural networks and other nonlinear
models can play a significant role in PM prediction. Su et al.
(2014) used a normal time–frequency transform to analyze
the time and frequency domains of PM and to construct a PM
prediction model, which has achieved good results in single-
and multi-year forecasts.

The singular spectrum analysis (SSA) (Broomhead and
King 1986), a nonparametric spectral estimation method,
combines elements of classical time series analysis, multi-
variate statistics, multivariate geometry, dynamical systems,
and signal processing. This analytical method can effectively
identify anddisplay the periodic signal of a time series, allow-
ing the precise separation and reconstruction of its principal
components. SSA has been used in oceanography (Kon-
drashov and Berloff 2015), climatology (Wyatt et al. 2012;
Rial et al. 2013), surveying (Chen et al. 2013; Wang et al.
2016), and in other fields that involve component analyses of
time series. The SSA method can extract accurate principal
component information from an incomplete sequence and
then determine a suitable data interpolation model (Schoell-
hamer 2001; Beckers and Rixen 2003). As shown by the
temporal or spatial correlation of the data, SSA can decom-
pose and reconstruct the main components of a data set,
which can then be used to approximate the missing data.
Kondrashov and Ghil (2006) and Kondrashov et al. (2010)
proposed the repeated iterative reconstruction of the princi-
pal components by SSA in the interpolation of incomplete
solar wind data and determined the window size, M, and the
number of reconstructed components (RCs), k, for SSA by
cross validation.

This paper is organized as follows: The principles of SSA
and the SSA of PM are discussed in Sect. 2. The SSA and
ARMA method used for PM prediction are presented in
Sect. 3. In Sect. 4, we discuss the results of applying the
prediction method to PM over multiple periods. Our conclu-
sions are given in Sect. 5.

2 Singular spectrum analysis of polar motion

SSA is a statistical technique which is related to the empiri-
cal orthogonal function (EOF) determined from the dynamic
reconstruction of a sequence. SSA is practically a special
application of EOF decomposition. In SSA, a trajectory
matrix is constructed for a one-dimensional nonlinear time
series. This matrix can be decomposed and reconstructed to
extract various components of the original time series, such

as the long-term trend, the periodic terms, or noise (Vautard
and Ghil 1989.

2.1 Principle of SSA

Adaily time series {xN } has a length N . The trajectorymatrix
X is constructed by selecting the appropriate window size
M (M < N /2) for the one-dimensional time series. The
trajectory matrix X can be given as

X =

⎡
⎢⎢⎢⎣

x1 x2 · · · xN−M+1

x2 x3 · · · xN−M+2
...

...
. . .

...

xM xM+1 · · · xN

⎤
⎥⎥⎥⎦ . (1)

Then, the autocovariance matrix Tx (the Toeplitz matrix) of
the trajectory matrix X is obtained by

TX =

⎡
⎢⎢⎢⎣

c(0) c(1) · · · c(M − 1)
c(1) c(0) · · · c(M − 2)

...
...

. . .
...

c(M − 1) c(M − 2) · · · c(0)

⎤
⎥⎥⎥⎦ , (2)

where c( j) = 1
N− j

∑N− j
i=1 xi xi+ j , j = 0, 1, . . . , M − 1.

c( j) is the unbiased autocovariance function. The eigenval-
ues, λ1 ≥ λ2 ≥ · · · ≥ λM , and eigenvectors of TX can
then be determined. The eigenvector E j,k , corresponding to
λk is the temporal empirical orthogonal function (T-EOF).
Projecting the time series onto E j,k gives the corresponding
temporal principal component (T-PC)

ai,k =
M∑
j=1

xi+ j E j,k, (3)

where 0 ≤ i ≤ N − M, 1 ≤ j ≤ M . SSA separates the
components, so the reconstructed component (RC) can be
determined from the resulting T-EOF and T-PC. The kth RC
is

xi,k =

⎧⎪⎨
⎪⎩

1
i

∑i
j=1 ai− j+1,k E j,k , 1 ≤ i ≤ M − 1

1
M

∑i
j=1 ai− j+1,k E j,k , M ≤ i ≤ N − M + 1

1
N−i+1

∑M
j=i−N+M ai− j+1,k E j,k , N − M + 2 ≤ i ≤ N .

(4)

SSA can reconstruct M components in which the RCs of a
low-frequency signal effectively express the main variation
characteristics of the original series, and the series can be
approximated by the first k RCs. SSA can produce a pair of
RCswith similar eigenvalues for a single periodic component
of the original series.
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2.2 PM analysis

SSA can be used to decompose the original time series
into a series of components, such as trends, periods or
quasi-periods, and noise. When these parts are sufficiently
separated from each other, SSA can better reveal the roles of
different signals in the initial data. The 45-year PM (PMx,
PMy, polar coordinates) series covering the January 1, 1962,
toDecember 31, 2006, periodwas analyzed bySSA.This PM
series is taken from the EOP 08C04 series, downloaded from
the Web site of the IERS Earth Orientation Center (http://
datacenter.iers.org/eop/-/somos/5Rgv/latest/214). The sam-
pling interval in this series is one day. The EOP 08 C04
series is derived from various astro-geodetic techniques and
is consistent with ITRF 2008. The accuracies of PMx and
PMy in the most recent data in this series are up to 0.03 mas
(Bizouard and Gambis 2011).

For the 45-year PM series, the chosen window length M
was 2190 points (6 years), which is almost equal to the beat
period of the annual and Chandler oscillations (Zotov 2010).
The weighted correlation (w-correlations) (Hassani 2007) is
used to determine the correlation coefficients between the
various RCs. The weighting factor wi is defined as

wi =
⎧⎨
⎩
i 1 ≤ i < M∗
M∗ M∗ ≤ i ≤ K ∗
N − i + 1 K ∗ ≤ i ≤ N ,

(5)

where M∗ = min(M, K ), K ∗ = max(M, K ), and K =
N−M+1. Assuming that the RC is Yk and its corresponding
elements are yk1 , y

k
2 , . . . , y

k
N , the w-correlations of any two

RCs can be expressed as

ρw
i, j = (Y (i),Y ( j))∥∥Y i

∥∥
w

∥∥Y j
∥∥

w

, (1 ≤ i, j ≤ N ), (6)

where
∥∥Y i

∥∥
w

= √
(Y (i),Y (i)),

∥∥Y j
∥∥

w
= √

(Y ( j),Y ( j)), and

(Y (i),Y ( j)) = ∑N
l=1 wl yil y

j
l . Large w-correlations between

RCs indicate that these components should possibly be gath-
ered into a single group and they may correspond to the same
component in the SSA decomposition.

The i th RC obtained by SSA decomposition is denoted
RC i . The results of the correlation analysis of the RCs of
the 45-year PM series are shown in Fig. 1. The correlation
of the RCs indicated that the first 7 RCs are the indepen-
dent and paired periodic components of PM. In the PMx
data, RC1 and RC2, RC3 and RC4, and RC6 and RC7 are
evidently three pairs of components. Using fast Fourier trans-
form (FFT) analysis, these components were determined to
be the Chandler term, the annual term, and an oscillation
with a period of about 492 days, respectively. In the PMy
data, RC2 and RC3, RC4 and RC5, and RC6 and RC7 rep-
resented the Chandler term, the annual term, and a period of

about 492 days, respectively. The about 492-day component
may be a mathematical expression of other periodic compo-
nents of PM by SSA, since the window length only takes into
account the beat period of the annual and Chandler oscilla-
tions. RC5 and RC1 are the trend terms of PMx and PMy,
respectively. The separated components of PMx and PMy are
shown in Fig. 2.

The residual components shown in Fig. 2 which indicate
that the first seven RCs are good approximations of the orig-
inal series. The RMS of the remaining RCs from the PMx
data is 13.0779mas, and the RMS of the remaining RCs from
the PMy data is 13.0056 mas. The amplitude of the Chan-
dler oscillations obtained by SSAfluctuates between 150 and
200 mas, and the amplitude of the annual oscillations fluc-
tuates between 50 and 100 mas. The trend rates in the x-
and y-directions were calculated to be 1.4585 ± 0.007 mas
and 3.9712 ± 0.007 mas per year, respectively. The trend
rate of the PM is 4.23 mas per year. The North Pole moves
to 69.85◦W in the longitudinal direction with respect to the
crust.

3 Prediction method

In this study, the data concerning the prediction period are
regarded as the missing part, and SSA is used to predict the
main components of the PM data. For the PM prediction, M
and k were determined for the SSA from prior PM analysis.
According to the PM analysis, the trend and main periodic
terms can better approximate the original PM series by taking
into account both the Chandler and annual oscillation periods
when determining M . We proposed a method to extrapolate
the RCs by SSA and the ARMA prediction model. The main
steps (as shown in Fig. 3) are as follows.

(1) The predicted length n is set. n zero values are added to
the end of the original data (of length N ) to construct a
PM sequence with a total length of N + n.

(2) Decomposition of the new series (with length N + n) by
SSA. The n values at the end of the first RC (RC1) are
selected to replace the predicted values. This process is
repeated until RC1 converges. The convergent condition
is such that the RMS of the difference between the two
decomposed RC1 values is 0.001 mas.

(3) At the end of the first cycle, the second RC (RC2) is
added to reconstruct the forecast data; the prediction data
are obtained by superimposing RC1 and RC2. Step (2)
is repeated until the RC1 + RC2 sequence converges.

(4) The above procedure is repeated until the prediction data
are replaced with k RCs. The series of length n at the
end of these RCs is the main RC prediction series of PM
(denoted by k RCP).
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Fig. 1 Matrix of w-correlations for the first 15 RCs

Fig. 2 Components of PMx and PMy separated by SSA

(5) The residual RC of the original PM series {RN } contains
a number of other periodic terms and noises. Assuming
that the value of RN is related not only to its pre-p val-
ues, but also to the pre-q distracters, then according to
the principles of multiple regression, the ARMA(p, q)

model (Valipour et al. 2013) is

RN = β1RN−1 + β2RN−2 + · · · + βp RN−p − θ1aN−1

−θ2aN−2 − · · · − θqaN−q + aN , (7)

where βi (i = 1, 2, . . . , p) are the autoregressive (AR)
coefficients, θi (i = 1, 2, . . . , q) are the moving average
(MA) coefficients, and {aN } is the white noise series.
The extended autocorrelation function (EACF) (Cryer
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Fig. 3 Flowchart of the SSA + ARMA method for PM prediction

and Chan 2008) is used to determine the orders of p
and q. The parameters of the model are chosen by the
maximum likelihood estimate method. The predictions
of the residual series are performed according to the
determined ARMA(p, q) model.

(6) Combining the SSAprediction resultswith the prediction
ARMA results gives the final predictions.

4 Prediction of the polar motion

In this study, EOP 08 C04 PM data from 1962 to 2016 were
selected for the validation of SSA+ARMApredictions. The
PM from January 1, 2009, to the predicted start timewas used
as the original PM series. The principle components of two-
year lead time PMs (denoted by 7RCP) were predicted using
the proposed SSA predictionmethod (the first seven RCs and
the window length M = 2190). The start times of the two-
year lead time PMs were January 2, 2007, January 1, 2008,
January 6, 2009, January 5, 2010, January 4, 2011, January
3, 2012, January 1, 2013, and December 31, 2013. Decom-
position of the original PM series concerning the prediction
period was performed by SSA to obtain the first seven RCs
(denoted by 7RC). The original, 7RC, and 7RCP series for
each prediction period are shown in Fig. 4.

Figure 4 shows that the first seven RCs obtained by SSA
agree well with the first seven RCs of the original PM series
over multiple prediction periods. From Sect. 2.2, it can be
seen that the reconstructed series of the first seven RCs
can accurately represent the original series. Therefore, the
principal components of a PM series can be predicted effec-
tively by SSA. The correlations between the predicted RCs
and the RCs of the original PM series were analyzed. The
results are shown in Table 1. The highest correlation coef-
ficients were determined to be between the 5RCP series
and the 5RC series of the original PM series. The corre-

lation between the 7RCP series and the 7RC series of the
original PM series is relatively poor. However, the correla-
tion between the 5RCP series and the original PM series is
weaker than that of the 7RCP series, which indicates that
increasing the number of predicted RCs will also increase
the uncertainty of the principal component predictions. The
trend, annual, andChandler termswere relatively stable, with
about 492-day periodic term, which indicates that SSA is
capable of reliably reconstructing the stable principal com-
ponents.

The aboveprediction results show that SSAcan effectively
predict the medium- and long-term principal components of
PM. However, there was a random fluctuation in the remain-
ing SSA components from Sect. 2.2, which caused a ±50
mas deviation from the starting point of the short-term pre-
dictions, as shown in Fig. 4. Therefore, the ARMA(p, q)

model can be used to extrapolate the residual series. The
EACF indicated that the ARMA (2,8) model was suitable
for the residual SSA series. The extrapolation results of the
ARMAmodel were combined with the main component pre-
dictions of the SSA over the whole 2-year PM predictions.
To evaluate the precision of the PM prediction series, the pre-
dictions were compared with the corresponding IERS EOP
08 C04 PM series. The prediction accuracies are measured
by RMSE as well. The error bars of RMSE were computed

by σ̂ (RMSE)i = RMSEi√
2n p

, where i is the prediction length

and n p is the number of predictions (Kalarus et al. 2010).
IERS Bulletin A contains predicted PMs for the fol-

lowing year, which are updated every seven days by the
IERS (Stamatakos et al. 2011). To verify the reliability of
the SSA + ARMA method, the accuracy of the predicted
series was compared with the accuracy of the IERS Bulletin
A predictions (http://datacenter.iers.org/eop/-/somos/5Rgv/
getTX/6). The systematic prediction errors of the two meth-
ods are shown in Fig. 5. The RMSEs of the sixteen forecast
periods are shown in Fig.6.
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Fig. 4 730-day PM series (gray
line), 7RC reconstructed series
(red dotted line), and 7RCP
prediction series (black line)
from 2007.1 to 2014.7
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Fig. 4 continued

Table 1 Correlation coefficients
of the predicted RCs with the
RCs of the original PM series

Prediction time 5RCP–5RC 7RCP–7RC 5RCP-PM series 7RCP-PM series

X Y X Y X Y X Y

2007.1–2009.1 0.999 0.9994 0.9964 0.9974 0.9859 0.9846 0.9885 0.9856

2007.7–2009.7 0.9963 0.9954 0.9779 0.9811 0.9933 0.9942 0.9638 0.9676

2008.1–2010.1 0.9963 0.9965 0.986 0.9854 0.995 0.997 0.9839 0.9816

2008.7–2010.7 0.9961 0.9993 0.9963 0.9927 0.9959 0.996 0.9939 0.9903

2009.1–2011.1 0.9996 0.9947 0.999 0.9846 0.9935 0.9857 0.9967 0.9788

2009.7–2011.7 0.9971 0.9995 0.9903 0.9991 0.9873 0.9753 0.9829 0.9908

2010.1–2012.1 0.9992 0.9996 0.9991 0.998 0.9609 0.9482 0.9856 0.9896

2010.7–2012.7 0.9598 0.9801 0.9051 0.9565 0.8669 0.8832 0.9028 0.942

2011.1–2013.1 0.9564 0.9813 0.9315 0.973 0.8555 0.9383 0.9311 0.9764

2011.7–2013.7 0.9706 0.9488 0.9585 0.8663 0.8761 0.8773 0.9536 0.8508

2012.1–2014.1 0.9919 0.9966 0.9553 0.9785 0.9077 0.9008 0.9368 0.9687

2012.7–2014.7 0.9877 0.996 0.9263 0.9453 0.9262 0.965 0.8707 0.9205

2013.1–2015.1 0.9888 0.9994 0.9556 0.9978 0.9422 0.9736 0.9334 0.9777

2013.7–2015.7 0.9987 0.9994 0.9943 0.9983 0.9697 0.9827 0.9757 0.9789

2014.1–2016.1 0.9945 0.9976 0.9908 0.9955 0.9916 0.9915 0.9742 0.9841

2014.7–2016.7 0.9961 0.9968 0.9915 0.9904 0.9884 0.98 0.9791 0.9756

MEAN 0.9892 0.9925 0.9721 0.9774 0.9522 0.9608 0.9595 0.9662
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Fig. 5 Systematic prediction
errors of the IERS Bulletin A
and SSA + ARMA predictions
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Fig. 5 continued

Fig. 6 RMSE of the IERS Bulletin A (red) and SSA + ARMA pre-
dictions (black)

Figure 5 shows that the systematic prediction errors in the
SSA + ARMA predictions were reasonably low in the 730-
day forecast, and lower still in the 365-day forecast. Figure 6
indicates that the RMSE of SSA + ARMA is slightly lower
than that of the Bulletin A predictions for PMx over one year,
and significantly lower from the 157th day prediction length

for PMy. The RMSEs are shown in Table 2. For PMx and
PMy, the RMSEs of SSA + ARMA in the 180-day predic-
tions are 16.84 and 14.86 mas, respectively, which are lower
than those of 18.95 and 16.44 mas for the Bulletin A predic-
tions. The RMSEs for PMx and PMy from SSA+ARMA in
the 360-day predictions were 20.67 and 20.42 mas, respec-
tively, lower than those of 24.46 and 24.78 mas for Bulletin
A. The RMSEs of the overall PMx and PMy SSA + ARMA
predictions were 28.61 and 27.95 mas, respectively.

The RMSE of SSA + ARMA increased slowly with the
increase in the forecasting time, and the prediction accuracy
of 720 and 540 days just showed several mas more than that
of 360 days. The distribution of the absolute errors of PM
prediction (see Fig. 7) shows that the proportions of the abso-
lute errors less than 30 mas of PMx and PMy in the whole
720 days are 70 and 70%, respectively. In the 360–720 days,
the proportions are 59 and 60%, respectively. The forecasting
errors in the 360–720 days are limited to a small range. The
SSA is capable of reliably reconstructing the stable princi-
pal components. It enables the SSA + ARMA particularly
suitable for long-term prediction.

Table 2 Comparison of the RMSE (mas) of the Bulletin A and SSA + ARMA predictions

Lead day Bulletin A SSA + ARMA

PMx σ̂PMx PMy σ̂PMy PMx σ̂PMx PMy σ̂PMy

30 5.51 0.97 3.29 0.58 4.26 0.75 3.87 0.68

90 12.63 2.23 7.34 1.29 11.56 2.04 9.61 1.70

180 18.95 3.35 16.44 2.91 16.84 2.98 14.86 2.63

360 24.46 4.32 24.78 4.38 20.67 3.65 20.42 3.61

540 – – – – 26.05 4.61 24.66 4.36

720 – – – – 28.61 5.06 27.95 4.94
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Fig. 7 Distribution of the absolute errors in the whole 720 days (a) and the 360–720 days (b)

During the whole period, the prediction accuracy of PMy
is better than that of PMx, as the correlation coefficient
between 7RCP for PMy and the original series is greater than
that for the PMx. Overall, the results show that the proposed
SSA + ARMA method can effectively predict PM.

5 Conclusions

In this study, the 45-yearPMseries data fromJanuary1, 1962,
to December 31, 2006, were analyzed by SSA. The results
show that SSA can effectively separate and reconstruct the
trend, annual, Chandler, and 492-day periodic terms of PM.
The first seven RCswere suitable approximations of the orig-
inal series. We described a method of predicting the main
components of PM using SSA, derived from the basic SSA
principles and algorithm. Multiple two-year PM predictions
showed that the average correlation coefficients between the
principal component prediction series and the principal com-
ponent series of PMx and PMy were 0.9721 and 0.9774,
respectively. The average correlation coefficients between
the principal component prediction series and the PM series
were 0.9595 and 0.9662, respectively, which indicated that
SSA could effectively predict long-term PM.

To reduce the influence of the remaining components
of the SSA on the PM predictions, an ARMA model was
constructed using the residual components, to improve the
accuracy of the short-term PM predictions. The RMSEs of
SSA + ARMA in the short- and long-term predictions were
low. Compared with predictions published in IERS Bulletin
A, the RMSE of SSA + ARMA was smaller over 180- and
360-day lead times. The RMSE of SSA + ARMA increases
slowly with increasing forecast time, and the 720-day PM
prediction showed good precision.Overall, these results indi-
cate that the proposed SSA + ARMA method has good
reliability and high precision for the prediction of PM.
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