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Abstract A radial integration of spherical mass elements
(i.e. tesseroids) is presented for evaluating the six com-
ponents of the second-order gravity gradient (i.e. second
derivatives of the Newtonian mass integral for the gravita-
tional potential) created by an uneven spherical topography
consisting of juxtaposed vertical prisms. The method uses
Legendre polynomial series and takes elastic compensation
of the topography by the Earth’s surface into account. The
speed of computation of the polynomial series increases logi-
cally with the observing altitude from the source of anomaly.
Such a forward modelling can be easily applied for reduc-
tion of observed gravity gradient anomalies by the effects of
any spherical interface of density. An iterative least-squares
inversion of measured gravity gradient coefficients is also
proposed to estimate a regional set of juxtaposed topo-
graphic heights. Several tests of recovery have been made
by considering simulated gradients created by idealistic con-
ical and irregular Great Meteor seamount topographies, and
for varying satellite altitudes and testing different levels of
uncertainty. In the case of gravity gradients measured at a
GOCE-type altitude of∼300km, the search converges down
to a stable but smooth topography after 10–15 iterations,
while the final root-mean-square error is ∼100m that rep-
resents only 2% of the seamount amplitude. This recovery
error decreaseswith the altitude of the gravity gradient obser-
vations by revealing more topographic details in the region
of survey.
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1 Introduction

Gravity gradiometry has been mainly used to image sub-
surface geology to aid hydrocarbon and mineral exploration.
Being more sensitive to the surface contrast of density and
with higher acuity, the gravity gradiometry is better able
to discern and locate mineral deposits and small-scale near
surface geologic features. The detection of such buried struc-
tures requires accurate computation of the second derivatives
of the potential (i.e. the six independent coefficients of the
gravity gradient matrix) with respect to the three spatial coor-
dinates of the chosen reference system.

Compared to the first derivatives of the gravitational
potential, the spectral power of the gravity gradient com-
ponents concern higher spatial frequencies. This makes the
gravity gradient components (proportional to the inverse of
the cube of the distance between the observation and the
sources points) more localized than gravity anomaly vector
components, and thus more sensitive to deeper masses.

Numerical methods to compute the gravity gradients were
obtained by differentiating the gravity potential twice with
respect to spatial coordinates. Except of the cases ofmass vol-
umes of simple shapes in polyhedral modelling (Roy 2008,
Chap.3), this operation requires discretization of the mass
distribution by decomposing the Earth’s surface layer into
elementary solid bodies.

Representation of mass sources in rectangular prisms was
earlier explored by Talwani and Ewing (1960), Nagy (1966),
Paul (1974), Plouff (1976), Ku (1977), and more recently
Nagy et al. (2000), with exact analytical expressions for esti-
mating gravity anomalies. Some of these approaches rely on
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Taylor series expansion of the potential integral kernel as
they were inspired by MacMillan (1930) who developed the
theory of rectangular-shaped mass elements.

Alternative computational methods were proposed to
evaluate the gravitational effects of spherical prisms (or
tesseroids). As there is no direct analytical expression pro-
viding the gravity effects of such a distribution of tesseroids,
approximate methods of integration have to be considered.
Ku (1977) and von Frese et al. (1981a, b) considered the
spherical Earth approximation to locate points of mass
through Gauss-Legendre Quadrature (GLQ) decomposi-
tion for solving the potential integrals. By minimizing the
residuals between modelled and observed values following
the least-squares criteria, these authors estimated the spa-
tial positions of mass sources and use them as equivalent
masses to model gravity anomalies for any arbitrary mass
distribution. Later, Wild-Pfeiffer (2008) used GLQ decom-
position to model gravity potential and to deduce its first
derivatives. Petrović (1996) and Tsoulis (2012) proposed
analytical expressions for polyhedral bodies using line inte-
grals. It has been proved that sets of spherical prisms are
the most accurate representations to evaluate gravity gra-
dients with acceptable computational time (Heck and Seitz
2007; Wild-Pfeiffer 2008). In particular, Heck and Seitz
(2007) considered a third-order Taylor expansion at the cen-
tres of the tesseroids to evaluate the gravity potential and
its first radial derivatives, and finally Wild-Pfeiffer (2008)
extended this method of integration to the second deriva-
tives (i.e. all the components of gravity gradient). These
authors proposed a semi-analytical strategy to solve 1D
and then the remaining 2D integrals of the gravity poten-
tial by quadrature. This method was inspired by Tsoulis
et al. (2003) who considered an arbitrary shape body and
smooth mass sources. Grombein et al. (2013) proposed an
optimal expression of the integral kernels where Cartesian
coordinates replace spherical ones to decrease computational
time. Lately, Roussel et al. (2015) proposed to use an ellip-
soidal prisms representation andGLQ for integration ofmass
elements.

Spectral representations have been also developed to esti-
mate the Fourier (or spherical harmonic) coefficients of
gravity potential from the surface topography ones in a flat (or
spherical, respectively) Earth approximation. Parker (1972)
has originally proposed to estimate the gravity potential
anomaly related to material interface variations by simply
summing the Fourier transforms of the successive powers
of the plane 2D topography limiting two media of different
densities.

A number of algorithms have been developed to estimate
the gravity gradients created by an interface separating two
media of different densities; these techniques are exclusively
based on fast 2-D Fourier transform in a planar approxima-
tion (Tziavos et al. 1988; Schwarz et al. 1990). Jekeli and Zhu

(2006) assumed the topography consisting of rock columns
of constant density but irregular heights, and computed the
corresponding gradiometric anomaly by rectangular numeri-
cal integration. These authors showed that Fourier Transform
techniques generate oscillations due to spectrum truncation
(i.e. Gibbs effects). Moreover, more and more high-order
terms in the Fourier expansion are required to reach the
accuracy of 1 Eötvös (10−9 s−2). These algorithms based
on the flat-Earth approximation remain fast but inadequate
to model gravity gradients in the case of large-scale sources
that a 300-km altitude satellite such as GOCE (Gravity field
and steady-state Ocean Circulation Explorer) mission would
detect (Bouman et al. 2013). However Ramillien (2002)
extended the Parker’s formula for modelling spherical har-
monics of the gravity potential due to the topography of
a shell density interface. Eshagh and Sjöberg (2009a, b)
derived the forward expressions in spherical harmonics to
estimate the GOCE-based gravity gradients. From a given
geometry of mass density distribution, static gravitational
effects of the topographic and atmospheric masses reach the
level of tens of mGal and some units of E (mE) (Novák and
Grafarend 2006). Eshagh and Sjöberg (2009a) proposed a
method to evaluate the coefficients of the Earth’s topographic
(and atmosphere) effects that were used to reduce the satellite
gravimetry data in the local north-oriented instead of geo-
centric frames (Novák and Grafarend 2006) and applied it to
the Fennoscandia and Iran regions. More recently, Eshagh
and Sjöberg (2009b) have proposed non-singular expres-
sions for gravity gradients based on the sums of spherical
harmonics (defined on the entire sphere) by considering con-
stant and laterally-varying topographic densities. This study
was done in the perspective of the treatment of the ESA
(European Space Agency) GOCE satellite mission measure-
ments, since this mission was the first low-altitude geodetic
mission carrying a 3-axis gradiometre to reach a spatial res-
olution of ∼100km on the entire Earth excepting polar gaps
(Floberghagen et al. 2011).

Martinec (2014) provides the spherical harmonic forms of
the tensor Green’s functions to analyse GOCE-based gravita-
tional gradients created by crustal and lithospheric anomalies
in cartesian and spherical coordinate systems and shows
that band-limited omission error for GOCE does not exceed
1% in amplitude compared to the full spectrum mass den-
sity Green’s functions. It is also possible to evaluate the
gravitational potential of topographic masses by introduc-
ing Legendre functions of the first and second kinds with
imaginary variable expanded in Laurent series in a spheri-
cal geometry (Wang and Yang 2013). Šprlák et al. (2014)
derived spatial and spectral forms for isotropic kernels of
gravity gradients to solve analytically the spherical gradio-
metric boundary value problem.

Recently, different operators decomposed into azimuthal
and isotropic parts in a local north-oriented reference frame
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were proposed to evaluate third-order disturbing gravita-
tional tensor from density distribution (Šprlák and Novák
2015).

Except for localizing equivalent-mass points (Ku 1977;
von Frese et al. 1981a, b), so far no inverse method has been
proposed to estimate medium and long wavelengths of hun-
dreds of kilometres of density interface topography from
satellite-based (and airborne) gravity gradients in a spher-
ical Earth approximation.

In the present article, new forward and inverse approaches
to calculate the potential, the vector anomaly and second
derivatives of gravity anomaly caused by the presence of
a compensated topography for the spherical Earth are pro-
posed. As gravity gradiometry technique is more suitable
for catching the gravitational signature of an interface lying
on a shell, we propose here to model and invert unevenly
distributed gravity gradient data for the shape of an inter-
face described by a set of infinitesimally narrow columns
of constant density. As considering spherical (or ellipsoidal)
tesseroids is the most accurate representation (see Heck and
Seitz 2007; Wild-Pfeiffer 2008), it is adopted in the present
study to derive the gravity gradients expressions for infinites-
imally thin vertical column of constant density obtained by
integration of elementary spherical elements in the radial
direction from the Earth’s centre. Gravity gradients due to
the presence of a topography can be evaluated by summing
the individual contributions of rock columns of constant den-
sity.

In the first part of the article, the theoretical aspects of the
computation are derived from the series of per-degree Leg-
endre polynomials. One of the advantages of these series
enables to introduce elastic Love numbers to take elas-
tic compensation of the Earth’s surface into account, as
this phenomena of compensation may occur at regional
scales. The results of this forward method are confronted
to the ones obtained by applying the Jekeli and Zhu (2006)
approach based on the “planar approximation”, in the sim-
ple case of a single column of rock of constant density.
An iterative least-squares inversion of satellite (or airborne)
gravity gradient observations is proposed to estimate the
corresponding topography of the interface, given the uncer-
tainties on both the gravity gradients observations and
modelled topographic heights. In the second part of the arti-
cle, numerical validation of inversion consists of recovering
the simple shape of a conical seamount by input of different
data altitudes and a priori uncertainties for discussion. The
method of estimation is finally used for retrieving the irreg-
ular seafloor topography around the 5000-m Great Meteor
seamount [29◦57′10.6′′N; 28◦35′31.3′′W], located in the
North Atlantic Ocean by considering simulated along-track
GOCE satellite measurements, and lower altitude airborne
data.

Fig. 1 Schematic view of the surface rock column (as a particular
element of the topography) having a gravity attraction measured at an
external point (e.g. an artificial satellite)

2 Method

2.1 Model geometry

In the fixed-Earth reference frame, the surface topography of
a spheroid is assumed to consist of a collection of vertical
prisms of rectangular sections, inside a geographical region.
The centre of the Earth is the centre of this orthogonal refer-
ence frame formed by the three unit vectors ε1, ε2 and ε3. The
ε3-axis is along the rotation axis passing through the North
and South poles, ε1 and ε2 axis are perpendicular to each
other and they are contained in the equatorial plane. These
ε1 and ε2 axis point across the Gulf of Guinea and the Pacific
Ocean, respectively. Each element of a column is located at
a radial distance r from the centre of the Earth � and has a
thickness of dr and a constant density ρ, and thus its mass is:

dm = ρ�λ�θ cos θr2dr (1)

where λ and θ are the longitude and latitude of the con-
sidered mass element, and �λ and �θ are its extensions in
the geographical directions. The mass element is observed
at satellite position at a radius a (Fig. 1). The angular and
the Cartesian distances between the mass element and the
observation point are ψ and ξ , respectively.

2.2 Gravitational potential created by a compensated
topography

The gravitational potential created by such a mass element
is:

dV (a, ψ) = G

ξ
dm = G

ξ
ρ�λ�θ cos θr2dr (2)
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where G is the gravitational constant (∼6.67 × 10−11

m3 kg−1 s−2), and ξ the distance between the mass element
and the observing satellite. The inverse of this distance can
be expanded into Legendre polynomials Pn of degree n:

1

ξ
= 1

a

∞∑

n=0

( r
a

)n
Pn(cosψ) (3)

Equation2 can be integrated with respect to the radial dis-
tance and taking Eq.3 into account, to obtain the potential
created by a column of rock of length r from � (i.e. r = 0) :

V (a, t) = Gρ�λ�θ cos θ

a

∞∑

n=0

Pn(t)
( r
a

)n r3

n + 3
(4)

and defining the angular parameter: t = cosψ .
For taking elastic compensation of the Earth’s surface into

account, a linear factor containing the per-degree Love num-
bers kn is simply added into Eq.4:

V (a, t) = Gρ�λ�θ cos θ

a

∞∑

n=0

Pn(t)(1 + kn)
( r
a

)n

× r3

n + 3
(5)

A list of the first load Love numbers is provided by Wahr
et al. (1998). These values were previously computed fol-
lowing the method of Dazhong and Wahr (1995) and using
the Preliminary Reference Earth Model (PREM) (Dziewon-
ski and Anderson 1981).

2.3 Gravity anomaly components

The components of the gravity anomaly vector 
α = (∇V )α
are the first derivatives of the potential measured by the
onboard instruments with respect to the one of the spatial
coordinates α of the observation point, which can be X1, X2

or X3 in the geocentric reference frame defined in Sect. 1.1,
so that:

∂V

∂α
= ∂V

∂a

∂a

∂α
+ ∂V

∂t

∂t

∂α
(6)

If the Cartesian coordinates of the top of the rock column are
x1, x2, x3 in the same reference frame and using Eq.5, we
have:

∂V

∂a
= −Gρ�λ�θ cos θ

a2

∞∑

n=0

(1 + kn)(n + 1)
( r
a

)n
Pn(t)

× r3

n + 3
(7)

∂V

∂t
= Gρ�λ�θ cos θ

a

∞∑

n=0

(1 + kn)
( r
a

)n d Pn(t)
dt

r3

n + 3

(8)
∂a

∂α
= α

a
(9)

∂t

∂α
= ∂t

∂Xi
= − Xi t

a2
+ xi

ar
(10)

where dPn(t)
dt is the first derivative of the Legendre function

Pn(t) with respect to the angular parameter t .

2.4 Gravity gradient components

The elements of the symmetric gravity gradient 
α,β =
(∇∇V )α,β are the second derivatives of the potential func-
tion with respect to the pair of spatial coordinates α (i.e. X1,
X2 or X3), and β (i.e. X1, X2 or X3):

∂2V

∂α∂β
= ∂V

∂a

∂2a

∂α∂β
+ ∂V

∂t

∂2t

∂α∂β
+ ∂2V

∂a2
∂a

∂α

∂a

∂β

+∂2V

∂t2
∂t

∂α

∂t

∂β
+ ∂2V

∂a∂t

(
∂a

∂α

∂t

∂β
+ ∂a

∂β

∂t

∂α

)
(11)

with:

∂2V

∂a2
= Gρ�λ�θ cos θ

a3

×
∞∑

n=0

(1 + kn)(n + 1)(n + 2)Pn(t)

×
( r
a

)n r3

n + 3
(12)

∂2V

∂t2
= Gρ�λ�θ cos θ

a

∞∑

n=0

(1 + kn)
d2Pn(t)

dt2

×
( r
a

)n r3

n + 3
(13)

∂2V

∂a∂t
= ∂2V

∂t∂a
= −Gρ�λ�θ cos θ

a2

×
∞∑

n=0

(1 + kn)(n + 1)
dPn(t)

dt

( r
a

)n r3

n + 3

(14)

∂2a

∂Xi∂X j
= ∂2a

∂X j∂Xi
= δ(i, j)

a
− Xi X j

a3
(15)

∂2t

∂Xi∂X j
= ∂2t

∂X j∂Xi
= − t

a2
δ(i, j)

+3Xi X j t

a4
−

(
Xi x j + X j xi

a3r

)
(16)
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Fig. 2 Convergence of the
Legendre polynomial expansion
to compute the components of
the gravity gradient, with respect
to the number of terms of the
series and the ratio of the radial
distances. The convergence of
the series is particularly fast for
important satellite altitudes, as it
requires less terms to be reached
completely. The bottom graph is
zoomed in to illustrate the slow
convergence of the Legendre
polynomial series that is
completed for at least 20,000
terms

where δ(i, j)is the Kronecker delta symbol that equals one if

i = j and zero elsewhere, and d2Pn(t)
dt2

is the second derivative
of the Legendre function with respect to the parameter t .

From the equations for computing potential, gravity vector
and gradients, it is clear that the speed of the convergence of
the polynomial series decreases as the ratio r/a approaches
unity. Consequently, the number of terms to reach the exact
gravity gradient component valuesmust increase for low alti-
tudes, as more degree n terms from Eq.3 are required to
reach stable estimates (Fig. 2). The speed of convergence of
each 
α,β is different. For the diagonal tensor elements, sta-
ble values are reached faster than the non-diagonal ones. The
magnitudes of the gravity gradient components decreasewith
observation altitude, and these magnitudes tend to the same
order as the observer is closer to the density source, e.g. of
several hundreds of E at 4km below the top of the relief (see
the bottom graph of Fig. 2).

2.5 Case of surface topographic heights

The compensated potential, gravity anomaly and gravity gra-
dients created by a vertical rock column which basis and top
surfaces are located at the radial distances r = rmin and
r = rmax, respectively, from the centre of the Earth are the
differences (Fig. 1):

V (rmin, rmax) = V (r = rmax) − V (r = rmin) (17)


α(rmin, rmax) = 
α(r = rmax) − 
α(r = rmin) (18)


α,β(rmin, rmax) = 
α,β(r = rmax) − 
α,β(r = rmin) (19)

For a set of juxtaposed rock columns inside a region, the
gravity potential, anomaly or gradient observed at satellite
altitude a and angular parameter t (see Eq.4 in Sect. 2.1)
is simply the sum of all the gravity attractions of the k =
1, 2, . . . K topographic heights. For example, for computing
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Fig. 3 Geographical maps of the six independent components of the
gravity gradient anomaly created by an uncompensated 2-km height
rock column located at x =0and y=0andhaving adensity of 2600 kg/m3

and measured at 10m above the summit. The size of the section of each
infinitesimally thin column is 10m × 10m, and the total number of
juxtaposed columns is 40,000

the gravity gradient components created by a collection of
constant density rock prisms, we use:


α,β =
K∑

k=1


α,β(r = rk,max) − 
α,β(r = rk,min) (20)

Figures3 and 4 present the results of the computation of the
gravity gradient components in the case of a very simple
topography formed by a 2km × 2km × 2km cube com-

posed by juxtaposed radial columnswhich horizontal section
dimensions of each column are 10 m × 10 m, and depend-
ing upon the altitude of observation (i.e. the vertical distance
from the base of this relief 10m and 4km, resp.). Note that
non-diagonal gravity gradient components are smaller than
the diagonal ones in Fig. 3 (case of the bottom graph in Fig. 2
for a 4-km observation altitude), they are simply multiplied
by a factor 2 for easing graphical representation. Note that
decreasing the altitude down to tens ofmetres above the sum-
mit enables to locate the sharp edges and faces of the source
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Fig. 4 Maps of the gravity gradient components due to a simple 2km × 2km × 2km cubic topography having a constant density of 2600 kg/m3

as it is observed at an airborne-type altitude of 4000m above the summit (to be compared with the previous figure)

better. This sensitivity illustrates one the superiority of using
gravity gradiometry instead of considering less recent poten-
tial methods for detecting the shapes of small objects (see
Pajot 2007).

2.6 Numerical validation of the gravity gradients

The estimates obtained by themethod proposed for the spher-
ical case (Eq.20) need to be confronted to the predicted ones
using the computational scheme earlier proposed by Jekeli
andZhu (2006) for the local case. For this purpose, the simple
case of the gravity gradient components observed at several

altitudes created by a 2000-m rock column of constant den-
sity 2600 kg/m3 is considered. To simplify this numerical
test, this rock column is centred at zero longitude and lati-
tude, and its top surface is 1◦ by 1◦ that represents around
111km×111km at equatorial latitudes. Figure5 presents
on-axis and diagonal profiles of the six gradiometric com-
ponents with respect to the distance from the centre of the
rock column. In both cases of applying separately Jekeli and
Zhu (2006) method and our spherical approach, the ampli-
tudes computed per gravity gradient component, within−0.2
to +0.4 E, remain very comparable. The per-component dif-
ferences do not exceed 10−4 E at the summit of the column
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Fig. 5 Profiles of the gravity gradient components created by a 2km
× 2km × 2km block of constant density 2600 kg/m3 in the horizontal
x-axis direction (top, where 
xy = 
yz) following the proposed spher-
ical tesseroids method, and in the diagonal direction between the x and
y axis (bottom, where 
xx = 
yy and 
yz = 
zx )

Fig. 6 Differences between the 2km × 2km × 2km block simula-
tions made using the Fourier-based method proposed by Jekeli and
Zhu (2006) and applying our “spherical” approach. Differences are less
than 10−4 E, this values corresponds to 0.1% of the amplitude above
the source of anomaly

Fig. 7 Error analysis on the evaluation of the gravity gradient deriva-
tives with respect to the topographic parameter dh from Eq.23, in the
case of a 2km × 2km × 2km block of constant density 2600 kg/m3

observed at an altitude of 4000m (same configuration as Fig. 4). An
acceptable precision on the values of the derivatives are reached for dh
< 0.1 – 1 metre

and decreases with the distance according to Fig. 6. Thus, the
forward spherical approach provides consistent estimates of
the gravity gradient elements. These residuals represent 10−4

E for each component of the gravity gradient for a volume
of rock, and these tiny differences correspond to the small
region of 2-by-2◦ we consider where the geometrical distor-
tion between “pure planar” and spherical terrestrial surface
approximations remains insignificant. The differences are
important when the Earth’s curvature cannot be neglected
for large geographical areas. Spectral methods can be only
applied to small regions where the planar approximation
remains valid. Alternatively, the strategy of decomposing a
large area into overlapped planar tiles of a few degrees in
longitude and latitude each, have to be applied for predicting
seafloor topography from radar altimetry data, e.g. in entire
oceanic basins (Ramillien 1998).

3 Inverse problem: estimating topographic height
from gravity gradients

A set of topographic heights separating media of different
densities can be recovered from satellite / airborne gravity
gradient observations 
αβ with i = 1, . . .6 × N , by consid-
ering the six independent component of the gravity gradient
matrix for each observation point. Density of the topographic
columns to retrieve is assumed to be constant. As the oper-
ator relating the topographic heights to the observations is
not linear, an iterative strategy for approximating progres-
sively the optimal topography solution needs to be applied.
The Gauss-Newton steepest descent algorithm proposed ear-
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Fig. 8 Recovery of a conical 2000-m amplitude seamount from simulated gravity gradients at several iteration steps. The altitudes of observation
are of 100km (left) and 300km (right)
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lier by Tarantola (1987) (see Sect. 4.5, p. 244) is the easiest
estimation procedure to implement in our case. This simple
gradient search gives the vector Hk containing the j=1,…
M topographic heights h j at the iteration number k from the
vector Hk−1 of the previous iteration k − 1:

Hk = Hk−1 +
[
FT
k−1C

−1
D F+

k−1C
−1
H

]−1

×
{
FT
k−1C

−1
D ( fOBS − fk−1)+C−1

H (Hk=0 − Hk−1)
}

(21)

The superscripts “T ” and “−1” indicate the transpose and
the inverse matrices, respectively. fOBS is the vector con-
taining the N gradiometry data observations, fk is the one of
the gradiometric values computed at the k-th iteration from
the set of M topographic heights Hk to be recovered using
the forward modelling equations of the previous Sect. 2. Fk
represents the matrix of the first derivatives of fk for each
topographic height that can be approximated by:

Fi j ≈ fi (h j + δh/2) − fi (h j − δh/2)

δh
(22)

and numerical tests have shown that the topographic parame-
ter δh should be smaller than∼1m (0.1mwas used for a level
of accuracy of 10−5% in all gravity gradient simulations)
(see Fig. 7, where the computational errors on the deriva-
tives obtained for different distances between the observation
point and the density relief show similar simple shapes. They
are flat from δh ∼1 to∼10m for distances of 4kmand 10km,
respectively, and the errors suddenly increase from these val-
ues). The condition for a relative error less than 0.01% is
reached at δh = 50m as the altitude is 4000m above the
summit, and at δh = 5000m when the altitude of observa-
tion is 300km. The 0.01%-error limit for this topographic
parameter increases with the smoothness of the gravity gra-
dient signals, thus with the distance between the observation
point and the mass sources. CD is the a priori error covari-
ance matrix of the observations of dimension 6Nx6N which
can be simply modelled in the case of independent gravity
gradient observations by:

CD = σ 2
D I (23)

where σ 2
D is the a priori variance of the gradiometric obser-

vations and I represents the identity matrix, and thus it is
purely diagonal. CH is the a priori error covariance matrix
of the topographic heights of dimension MxM that can be
modelled with the input of the spatially isotropic correlations
between the topographic heights into account by imposing
its elements to be (Hirvonen 1962):

{CH }i j = σ 2
H

1 + (ϕi j/ϕ0)2
(24)

Fig. 9 Recovery errors for the case of the conical seamount with
respect to the a priori uncertainty on the unknown topographic heights
σH and the length of their spatial correlation ϕ0

whereσ 2
H is the a priori variance of the topographic errors.ϕi j

represents the spherical distance between the rock columns
numbers i and j , and ϕ0 the length of correlation between the
topographic heights. In the following numerical tests, these
priori variances, and the length of correlation, were tested in
the iterative inversion (Eq.21) for different cases of recovery.

4 Inversion of simulated gradiometric data
of a simple relief

The main advantage of using simulated topography data and
observations is to consider them as a reference and thus
to quantify the recovery error easily. For validation of the
proposed inverse method, we try to retrieve the shape of
a 2000-m high conical seamount of density 2600 kg/m3 as
accurately as possible. The density of the surrounding sea
water is assumed to be 1000 kg/m3. The base of the seamount
is located at a constant radial distance, which corresponds to
the mean Earth’s radius. Simulation of the six independent
components of the gravity gradient matrix due to the pres-
ence of this simple relief is made on a 1/5-degree grid at
altitude h above the base of the seamount, by applying the
forward problem equations from Sect. 2.4.

Following the proposed inversion procedure of Eq.21,
the parameter vector formed by the topographic heights to
recover is progressively constructed as a linear combination
of the gravity gradient observations with optimal coefficients
from least-squares adjustment and converges to a stable solu-
tion. Figure8 illustrates the progressive construction of the
topographic solution for several iterations in two cases of
observation levels above the sea floor: (i) altitude of 100km
considering N = 1000 terms in the polynomial series, and
(ii) GOCE satellite-type altitude of 300km keeping N = 300
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Fig. 10 Reference bathymetry in the region of the Great Meteor
seamount extracted from the ETOPO-5 database and spatially re-
sampled at 0.04◦ (left), and three months of GOCE satellite tracks over
the same oceanic region (right). The rectangular frame indicates the

limits of the inner region where the topographic heights are adjusted,
while the positions of the gravity data used in the inversion are taken in
the larger area

terms only. As short-wavelength details of the density source
are damped with altitude, the recovery of the shape of the
seamount is more precise in the first case where final errors
less than 50m root mean square (r.m.s) after having com-
pleted a total of 50 iterations, whereas the summit and the
flanks of the structure are not well retrieved in the second
case (withfinal errors of∼100mr.m.s.).A stable topographic
solution is reached after 15–20 iterations in both cases (i) and
(ii). The r.m.s. differences consecutive solutions is less than
10metres after the iteration number 20–25 (see last iterations
presented in Fig. 8).

In order to reach the most precise solution, the inver-
sion parameters (i.e. a priori uncertainties σD and σH on
observations and topographic heights, respectively, and the
correlation length ϕ0) can be tuned in the inversion. The best
results have been obtained when σD = 10−5 – 10−3 E for
very accurate gravity gradient observations and σH = 700−
900m (Fig. 9). Smaller values of this latter parameter lead to a
slow convergence to a stable estimate, while important values
yield oscillating solutions (no convergence).When the obser-
vations are considered as not accurate enough (σD > 0.1 E),
the recovered topography is smooth, whereas the process
diverges due to numerical instabilities if σD < 10−6 E. As
in Fig. 9, a length of spatial correlation of ∼ 0.2◦ provides
less error in the final topographic solution.

5 Case of an irregular topography: the Great
Meteor seamount

The region of the Great Meteor seamount in the North
Atlantic Ocean is the perfect example of an irregular topog-
raphy, so that it represents a good test for challenging the
proposed method of inverting gravity gradient components
due to the seafloor interface and measured by a low-altitude
gradiometer such as GOCE satellite. Seafloor topography in
this region is provided by the ETOPO-5 database (1988) and
linearly re-interpolated onto a grid sampled at 0.02◦ in the
longitude and latitude directions. In other words, the topo-
graphic heights to be recovered consist of rock columns of
0.02◦x 0.02◦, and the density contrast with respect to the sur-
rounding seawater is assumed to be 1700 kg/m3. The base of
the Great Meteor seamount is located at a depth of ∼5000 m
below the sea surface (Fig. 10).

The positions of the GOCE satellite for a period of
3months are from the kinematic orbits computed by the Insti-
tute of Theoretical Geodesy and Satellite Geodesy (ITSG)
at the University of Graz, Austria (website: ftp.tugratz.at/
outgoing/ITSG/tvgogo/orbits), where the satellite positions
are computed at a 5 second-sampling rate. From these posi-
tions and the ETOPO 5-derived topography in the region, the
six components of the gravity gradients are computed using
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Fig. 11 Seafloor topography in theGreatMeteor seamount region esti-
mated by using the proposed spherical approach and after 15 iterations,
considering N = 300 Legendre polynomial terms, ϕ0 = 0.2◦, as well

as different durations of 300-km altitude observations and a priori grav-
ity gradient data accuracy

the forward equations given in Sect. 2.4. According to the
numerical tests presented in the previous section, choosing
N = 300 is enough to ensure the convergence of the series of
Legendre polynomials at the GOCE satellite altitude due to

less sensitivity of the satellite observations to upward contin-
uation. Alternatively, at least N ∼ 8000 terms are required to
compute the gravity gradient components at low (airborne)
altitude (as the number of terms increases to reach the con-
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Fig. 12 Final estimation of the topography of theGreatMeteor seamount a after 15 iterations of inversion, considering gravity gradient observations
at an altitude of 10km, with ϕ0 = 0.2◦, σD = 0.1 E and σH = 5000 m, as well as associated recovery errors (b)

vergence as the ratio r/a gets closer to 1, see Fig. 2). Then,
Eq.21 is applied to estimate the topographic heights start-
ing by the zero solution (i.e. no information on the starting
topographic heights, Hk=0 = 0).

Figure11 shows the solutions obtained after 15 iterations
when considering different combination of parameters like
the duration of observation (i.e. satellite data coverage) and
a priori uncertainties σD and σH . The final solutions are rel-
atively smooth for a 300-km GOCE-type altitude, but the
location and amplitude of the Great Meteor seamount are
quite well retrieved. Convergence remains slow if σH <

2000m, optimal speed or number of iterations is found for
σH = 5000m, as lower values of this a priori parameter
yield slower convergence (see Sect. 4). Absolute errors are
in the range of 6 – 8 m r.m.s. Less error in the final solution
is obtained for small values of the a priori variance on the
gravity gradient observations (<10−4 E) than for three time
denser coverage of 3months of the satellite tracks. To con-
firm that the altitude of the observations is the most sensitive
parameter in the recovery process, airborne-type gravity gra-
dient observations were simulated for an altitude of 10km
and inverted by still following Eq.21. The final solution and
the corresponding absolute errors represented by short wave-
lengths of 3.5m r.m.s. with a maximum of 1135m on the
northern flank of the main Great Meteor structure are pre-
sented on Fig. 12. It shows a gain of topographic details; in
particular, the smaller seamount is detected in the southwest

part. Residual errors are located on the slopes of the three
seamounts of the region where the topographic gradient is
important, while the peaky tops of the small reliefs are under-
estimated because the topographic solution remains smooth,
as it is the same case for the simple conical seamount (see
Sect. 4 and Fig. 8).

Next step would be to invert real gradiometry data pro-
vided by the GOCE mission. However, the use of such real
satellite gravity gradient observations is difficult because of:
(i) the presence of coloured noise, (ii) the fact that GOCE
gradiometer provides only four accurate measurements, and
(iii) the fact that the observations are amixing of gravitational
effects of many possible density interfaces inside Earth.
Efficient band-pass pre-filtering for isolating the unique sig-
nature of a surface topography remains another problem to
be solved before inverting real GOCE gravity gradient mea-
surements. Unfortunately, these observations are a mixing
of all possible gravitational effects created by deeper den-
sity interfaces, and thus difficult to be interpreted in terms of
interface topography only.

6 Conclusions and recommendations

A forward approach for computing gravity anomaly data,
including the six components of the gravity gradient matrix,
due to a compensated interface topography has been devel-
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oped for a spherical Earth surface. In particular, for regions
where the planar approximation remains valid, it provides
estimates that are consistent to the ones obtained by the
method earlier proposed by Jekeli and Zhu (2006). The
approach could be used to reduce regional airborne (or satel-
lite) observations from the effects of the surface topography
or any other density interface. An iterative inverse strategy
is also proposed to demonstrate the possibility of recovering
a set of topographic heights on a spherical surface given the
associated gravity gradient observations. The most critical
parameter in the inversion process is the distance between the
positions of the sources ofmass and the observations, asmore
details of the topography can be adjusted for accurate mea-
surements. Numerical experiments suggest that noise-free
accurate gravity gradient data are the ideal case by consid-
ering very small values for a priori uncertainty on gravity
gradient observations σD , besides divergence of the estima-
tion process is avoided when σD is greater than 10−5 E. In
terms of optimal a priori uncertainty parameters, the con-
vergence is fast when a priori uncertainty on topographic
heights σH is of order of the expected amplitude of the topog-
raphy to be recovered. In this case, a length of correlation of
0.2◦ provides the less recovery errors. Recovering undersea
relief of irregular shape, such as the one of the Great Meteor
seamount, would be also possible by inverting gravity gradi-
ent data. The numerical studies presented here are based on
simulated gravity gradient data; the next step would be how
the proposedmethod performwith inversion of actual GOCE
products, e.g. to map seafloor topography in remote regions
of the Southern oceans that are not covered by ship tracks,
or to estimate density and thickness variations of the oceanic
lithosphere. However, the forward modelling of gravity gra-
dient quantities in the spherical case derived in this study
would be of great help for data reduction, as previously men-
tioned by Heck and Seitz (2007).
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