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Abstract The second reprocessing of all GPS data gath-
ered by the Analysis Centers of IGS was conducted in late
2013 using the latest models and methodologies. Improved
models of antenna phase center variations and solar radia-
tion pressure in JPL’s reanalysis are expected to significantly
reduce errors. In an earlier work, JPL estimates of position
time series, termed first reprocessing campaign, were exam-
ined in terms of their spatial and temporal correlation, power
spectra, and draconitic signal. Similar analyses are applied
to GPS time series at 89 and 66 sites of the second reanal-
ysis with the time span of 7 and 21years, respectively, to
study possible improvements. Our results indicate that the
spatial correlations are reduced on average by a factor of 1.25.
While the white and flicker noise amplitudes for all compo-
nents are reduced by 29–56%, the randomwalk amplitude is
enlarged. The white, flicker, and random walk noise amount
to rate errors of, respectively, 0.01, 0.12, and 0.09mm/yr
in the horizontal and 0.04, 0.41 and 0.3mm/yr in the verti-
cal. Signals reported previously, such as those with periods
of 13.63, 14.76, 5.5, and 351.4/n for n = 1, 2, . . ., 8days,
are identified in multivariate spectra of both data sets. The
oscillation of the draconitic signal is reduced by factors of
1.87, 1.87, and 1.68 in the east, north and up components,
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respectively. Two other signals with Chandlerian period and
a period of 380days can also be detected.
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1 Introduction

Continuous global positioning system (CGPS) time series
have been widely used to study several geophysical phenom-
ena (Segall and Davis 1997). These studies include inferring
motion of the Earth’s surface due to plate tectonics (Thatcher
2003; Argus et al. 2010; Kreemer et al. 2014), post-glacial
rebound (Johansson et al. 2002; King et al. 2010; Peltier et al.
2015), and hydrological loading (vanDam et al. 2001; Rajner
and Liwosz 2012; Argus et al. 2014). Moreover, strain accu-
mulation (Argus et al. 2005; d’Alessio et al. 2005; Serpelloni
et al. 2005; Craig and Calais 2014), sea-level variation (Wöp-
pelmann et al. 2007), volcanic deformation (Bonforte and
Puglisi 2006; Cervelli et al. 2006), and subsidence studies
(Lü et al. 2008; Bock et al. 2012) can be conducted.

To effectively apply GPS time series to geophysical phe-
nomena, appropriate functional and stochastic models are
required. The functional model takes into consideration the
deterministic effects—a linear trend, offsets, and potential
periodicities—to name a few. The stochastic model identi-
fies and determines the remaining unmodeled effects—white
noise andpower-lawnoise for instance.Deterministic effects,
if left undetected in the functional model, may mistakenly
mimic flicker noise and random walk noise (Williams et al.
2004; Amiri-Simkooei et al. 2007).

A proper stochastic model provides the best linear unbi-
ased estimator (BLUE) of unknown parameters. It can also

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00190-016-0991-9&domain=pdf
http://orcid.org/0000-0002-2952-0160


686 A. R. Amiri-Simkooei et al.

provide a realistic description of the parameters’ precision.
The parameter estimation in a stochastic model is referred
to as variance component estimation (VCE). VCE can be
conducted using various methods. The least-squares vari-
ance component estimation (LS-VCE), which was originally
developed by Teunissen (1988), is used in the present contri-
bution. For its geodetic and geophysical applications,wemay
refer to Amiri-Simkooei et al. (2007, 2009, 2013), Amiri-
Simkooei (2007, 2009, 2013a, b), and Khodabandeh et al.
(2012).

Proper analysis of GPS time series is a prerequisite for
an appropriate geophysical interpretation. The VCE method
based on the maximum likelihood estimation (MLE) has
also been widely used to assess the noise structure of GPS
time series. The differences between LS-VCE and MLE are
explained by Amiri-Simkooei et al. (2007). Zhang et al.
(1997) usedMLE and found that the noise structure is a com-
bination of white noise and flicker noise. Similar results have
been drawn by Bock et al. (2000), Calais (1999), Langbein
and Bock (2004), Mao et al. (1999), Williams et al. (2004).
The presence of randomwalk noise or a combination of other
noise components has been acknowledged by several schol-
ars including Johnson andAgnew (2000), King andWilliams
(2009), Langbein (2008, 2012), Langbein and Bock (2004).

Cross-correlation among different series is an important
issue. Errors in satellite orbits, Earth orientation parameters,
and errors in daily and long-term geodetic reference frame
are causes of regionally correlated errors (Wdowinski et al.
1997).Moreover, large-scale atmosphere errors, receiver and
satellite antenna phase center variations (Dong et al. 2006),
and atmospheric and hydrospheric water loading effects (van
Damet al. 2001) are also candidates for common-mode errors
(CMEs).Williams et al. (2004) found that in the regionalGPS
solutions in which CMEs have been removed, the noise is
significantly lower compared to the global solutions. CMEs
can be estimated with regional spatial filtering methods. We
refer to the stacking approach, which was first utilized by
Wdowinski et al. (1997). Nikolaidis (2002) removed CMEs
from daily GPS solutions by computing the daily weighted
mean of residual noise from a few regional fiducial stations.
Teferle et al. (2002) deployed a filtering technique to reduce
the annual signal effect on site velocity estimates using a
network of 9 stations. Teferle et al. (2006) used the weighted
stacking method (WSM) to remove CMEs through analy-
sis of a network consisting 6 permanent stations. Using the
WSM, Bogusz et al. (2015) calculated CMEs for the ASG-
EUPOS permanent stations.

As the regional networks expands, the magnitude of
daily CMEs is reduced (Márquez-Azúa and DeMets 2003),
and hence the application of the WSM becomes limited.
Dong et al. (2006) presented a spatiotemporal filtering
method based on principal component analysis (PCA) and
Karhunen–Loeve expansion. Unlike the WSM, this method

allows data to reveal the spatial distribution of CMEs by dis-
regarding the assumption of spatially uniform distribution of
these errors. Because the stations we utilized are globally
distributed, the concept of CMEs has lost its meaning (Dong
et al. 2006). The cross-correlation (i.e. spatial correlation)
among time series is thus investigated (see Williams et al.
2004; Amiri-Simkooei 2009).

The GPS draconitic year (351.4days) is the revolution
period of the GPS constellation in inertial space with respect
to the Sun. Harmonics of this periodic pattern have been
observed inGPS-derived geodetic products. Ray et al. (2008)
analyzed the time series of 167 IGS stations using the stacked
Lomb–Scargle periodogram. They identified up to the sixth
harmonic of GPS draconitic year in the east, north, and up
components. Collilieux et al. (2007) found significant sig-
nals near the frequencies 2.08, 3.12, and 4.16 cpy in the
up component. Amiri-Simkooei et al. (2007) computed the
stacked least squares power spectra of 71 permanent GPS
stations. They identified up to the eighth harmonic of the
GPS draconitic signal. Amiri-Simkooei (2013a) identified
ten harmonics of the draconitic signal by calculating themul-
tivariate least-squares power spectrumof350permanentGPS
stations. For more information on the harmonics of the GPS
draconitic signal, we refer to the studies of King and Watson
(2010), Rodriguez-Solano et al. (2012, 2014), Ostini (2012)
and Santamaría-Gómez et al. (2011).

2 Second reprocessing campaign strategies

In 2008, the Analysis Centers (ACs) of the international
GNSS service (IGS) initiated the reprocessing of the all GPS
data gathered by the IGS global network since 1994 employ-
ing the latest methods upon that time in an entirely consistent
manner. This was the first reprocessing campaign, and it was
anticipated that as further analysis and improvements were
made, undoubtedly, more reprocessing campaigns will be
required. Thus, the 2nd reanalysis of all IGS data using the
improved methods begun by the late 2013. Table 1 compares
different aspects of the two processing campaigns.

Also, there are other modifications and changes in the
models used within the 2nd reanalysis, which are explained
in “Appendix 1”.

The new models used within the second reanalysis along
with the studies conducted by Hugentobler et al. (2009) and
Rodriguez-Solano et al. (2012), who emphasized the orbit
mismodeling deficiencies and their effects on peculiar signals
observed in GPS-derived products, motivated us to study the
reprocessed daily position time series. We have suspected
that since these models have been incorporated within the
new reprocessing campaign, it is highly likely to observe sig-
nificant improvements. Improvements expected include the
reduction in the range of variations of the periodic pattern of
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Table 1 Setup of the first and second reanalysis campaign

Campaign First reprocessing Second reprocessing

Duration 1994–2007 1994–2014

Reference frame IGS05 (Aligned to ITRF2005) IGb08 (Aligned to ITRF2008)

IERS convention IERS 2003 IERS 2010

Antenna calibration IGS05 ANTEX (absolute calibration) IGS08 ANTEX (absolute calibration)

GPS draconitic year, the amplitude of different noise com-
ponents, the spatial correlation of GPS position time series
(Rodriguez-Solano et al. 2012). Rebischung et al. (2016)
have recently shown that the noise characteristics of GPS
position time series for JPL second reprocessing deviate from
the common white plus flicker noise toward an only flicker
background noise.

This contribution is a follow-up to the work carried out
by Amiri-Simkooei (2013a) in which the daily position of
many permanent GPS stations was analyzed. In the present
contribution, the daily position time series of 66 and 89 per-
manent GPS stations of the length 21 and 7years are derived
from the 2nd reprocessing campaign (Fig. 1). They are
referred to as data set #1 and data set #2, respectively, which
are freely available in ftp://sideshow.jpl.nasa.gov/pub/JPL_
GPS_Timeseries/repro2011b/post/point/. The time series
with 89 GPS stations (data set #2) are also derived from the
1st reprocessing campaign to make comparisons. Therefore,
for the data set #2 we have two kinds of data (Repro1 and
Repro2) with the same length, time span, and time instants.

All formulas and methodologies, used in the subsequent
sections, are based on those presented by Amiri-Simkooei
(2013a) who used a multivariate time series analysis. This
method is superior over univariate analysis because many
weak signals and small noise amplitudes which cannot
be detected in univariate analysis can be detected if we
simultaneously analyze multiple time series. This holds, for
example,when estimating the randomwalk amplitude,which
has a high chance to be masked in the univariate analysis, but
has a higher chance to be detected in the multivariate analy-
sis. However, a drawback of this multivariate analysis is that
it can only provide a kind of network-based random walk
and hence such errors cannot necessarily be attributed to the
individual time series. For further information, we may refer
to Amiri-Simkooei (2013a).

3 Results and discussion

The multivariate method is used to study the GPS posi-
tion time series of daily global solutions. These time series
have been obtained using the precise point positioning (PPP)
method in the GIPSY-OASIS software (Zumberge et al.

1997). The process has been carried out in an analysis center
at JPL (Beutler et al. 1999).

Prior to the analysis, amultivariate offset detectionmethod
was used to identify and remove offsets in the series (Hoseini-
Asl et al. 2013).Although themanual offset detectionmethod
is still more reliable than the existing methods (see Gazeaux
et al. 2013), we used an automatic offset detection method
having a few characteristics. This method assumes similar
offsets in the three coordinate components. It also takes into
account appropriate functional and stochastic models. For
example, prior to offset detection, LS-VCE is applied to esti-
mate the white and flicker noise amplitudes. Comparing the
offset detection results with those in the JPL website indi-
cates that our method detects all offsets reported by JPL. In
addition, a few smaller offsets, which are likely due to other
causes like small earthquakes, have been detected.

The initial functionalmodel consists of a linear trend along
with the three harmonics of the annual signal; the tri-annual
signal was included because the power spectrum showed
a signal near 122days. Equation (8) in Amiri-Simkooei
(2013a) is utilized to obtain the multivariate power spectrum
(MPS) of multiple series. The analysis requires matrices �

and Q, which can be estimated using a multivariate method
(seeAmiri-Simkooei 2009, algorithm in Fig. 1). The nonneg-
ative least-squares variance component estimation method
(NNLS-VCE) (Amiri-Simkooei 2016, algorithm in Fig. 1)
has been employed to avoid nonnegative variance factors for
white noise, flicker noise, and random walk noise. While the
matrix� explains the spatial correlation among the series, Q
considers the temporal correlation among observables within
each series. For the flicker noise, the Hosking structure intro-
duced by Williams (2003a) and Langbein (2004) has been
employed.

Multivariate analysis requires simultaneous time series.
This indicates that if there is a gap or outlier in a (couple of)
series, the observations of other series should be removed to
have simultaneous time instants for all series. However, if
the data were available in 95% of the series (missed in 5%
of the series), the observations for the gaps (missed) were
reconstructed using the above functional model, and then a
normally distributed noise based on the estimated stochastic
model was added to reconstruct the data. For the data set # 2,
89 GPS stations were analyzed. Therefore, the total number
of series is r = 267. Matrix �, which expresses the spatial
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Fig. 1 World distribution of 66 GPS stations with time span of 21years (top: Repro2), 89 GPS stations with time span of 7years (bottom: Repro1
and Repro2)

correlation, is of size 267× 267. Matrix Q is of size m ×m,
where m is the number of observables in each series; for
the multivariate analysis, m is identical for all time series.
While the three 89 × 89 block diagonals of the � form the
spatial correlation of each coordinate component (i.e. east-
east (EE), north-north (NN), and up-up (UU)), the other three
89 × 89 off-diagonals represent the cross-correlation of the
components (i.e. between north-east (NE), north-up (NU),
and east-up (EU)).

The VCE methods can computationally be an expensive
process. Some researchers have contributed to reduce the
computational burden of the VCE methods. We may refer

to excellent studies by Bos et al. (2008, 2012) in which the
computational burden of MLE is drastically reduced. One
feature of our multivariate noise assessment method is also
that its computational burden is similar to that of the univari-
ate analysis (see Amiri-Simkooei 2009).

3.1 Spatial correlation

GPS position time series have been shown to have a sig-
nificant spatial correlation (Williams et al. 2004; Amiri-
Simkooei 2009, 2013a). The spatial (cross) correlation
results for the data set with 89 GPS station are illustrated

123
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Fig. 2 Six kinds of spatial correlation estimated for position time series
with the time span of 7years as a function of angular distance (deg);
(left) individual componentsNN, EE, andUU; (right) cross components

NE, NU, and EU. Indicated in the plots also mean correlation curves
for the second (blue) and first (black) reprocessing campaigns using a
moving average

in Fig. 2. Derived from �, this figure shows the spatial
correlation among NN, EE, UU, NE, NU, and EU compo-
nents. Significant spatial correlations for NN, EE, and UU
are observed over an angular range of 0◦ to 30◦, implying the
presence of regionally correlated errors. No effort has been
put forward to reduce CMEs here, and thus, as expected, the
spatial correlation among stations which are close to each
other (about 3000km apart) is significant. This spatial cor-
relation directly propagates into the correlation between site
velocities, and hence it should be taken into consideration in
the covariance matrix of the site velocities (Williams et al.
2004). Over larger distances, the correlations of individual
components experience a significant decline, in agreement
with the findings of Amiri-Simkooei (2013a) and Williams
et al. (2004). This indicates that the CME noise is significant
only over nearby stations. The component EE experiences
higher correlations compared with the NN and UU compo-
nents.

The spatial cross-correlations between components (NE,
NU, and EU) are negligible. The cross-correlation curve is
less than 0.1 which is owing to a good GPS geometry stem-
ming from simultaneous processing of all observations. To

fairly compare the average spatial (cross) correlations derived
from the 1st and 2nd reprocessing campaign, the 1st repro-
cessing campaign time series for the data set with 89 stations
have been processed as well. The results are presented in
Table 2. The spatial correlations of individual components
have been reduced compared to those computed for the
Repro1 data except for the EE component, which shows a
(small) increase from 0.57 to 0.62 in the second reprocess-
ing. The reduction is the result of improvement in the models
used within the new campaign. It could also be due to an
improved alignment of the daily terrestrial frames, which
makes it difficult to separate it from the impact of new mod-
els used in the analysis. The spatial correlation matrix �,
estimated for the latest processing campaign, is to be taken
into consideration in the estimation of the multivariate power
spectrum.

In this contribution, we considered the correlation among
the east, north and up components. In principle, by applying
the error propagation law, these correlations can be prop-
agated into the coordinate differences of X, Y, and Z in an
earth-centered earth-fixed coordinate system using an appro-
priate coordinate transformation.
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3.2 Temporal correlation and noise assessment

The amplitudes of white noise, flicker noise, and random
walk noise can be obtained using matrices � and Q. Noise
characteristics of GPS time series have been expressed as a
combination of white plus spatially correlated flicker noise
(Zhang et al. 1997; Mao et al. 1999; Calais 1999; Nikolaidis
et al. 2001;Williams et al. 2004; Amiri-Simkooei et al. 2007,
2009). The presence of randomwalk noise inGPS time series
is due to monument instability (Williams et al. 2004) or the
presence of nonlinear deformation behavior, for example in
areas with active deformation or when the offsets remain in
the data series (Williams 2003b). The presence of postseis-
mic deformation or volcanic events could also increase the
apparent amplitude of random walk noise. The reason for
masking the (small) values of the random walk noise is the
short time spans of the data series or the existence of domi-
nant flicker noise (Williams et al. 2004).

The amplitudes of white noise, flicker noise, and random
walk noise can simply be provided from the Kronecker struc-

Table 2 Average spatial correlation over the angular distance of 30◦
for the first and second reprocessing campaign using 89 GPS stations

Reprocessing campaign Correlation Cross-correlation

NN EE UU NE NU EU

1st (Repro 1) 0.73 0.57 0.55 0.05 0.07 0.08

2nd (Repro 2) 0.56 0.62 0.37 0.07 0.03 0.06

ture � ⊗ Q. The diagonal entries of the matrices sw�, s f �
and srw� represent the variances ofwhite, flicker and random
walk noise for each series. To compare the amplitudes of the
three noise components for the two reprocessing campaigns,
the data sets with the time span of 7years (89 GPS stations)
of the two campaigns have been processed. For the second
reanalysis, the time correlation results of these stations are
shown in Fig. 3. The average amplitudes of white, flicker,
and random walk noise components along with their esti-
mated standard deviations for both campaigns are presented
in Table 3. A few observations are highlighted.

• The amplitudes of all noise components of the vertical is
larger than those of the horizontal by a factor of 3, consis-
tent with the previously published results (Williams et al.
2004; Amiri-Simkooei 2013a; Dmitrieva et al. 2015).

• Amiri-Simkooei (2013a) published flicker noise vari-
ances for the repro1 series about 4 times smaller than
those reported here. Unfortunately, there was a mistake
in presenting flicker noise results in Amiri-Simkooei
(2013a). There, the unit was mistakenly mm/day1/4 (and
not mm/year1/4) for the flicker noise component. This
indicates that a scaling factor of 4

√
365.25 = 4.37 should

be applied to his flicker noise amplitudes.
• In contrast to the values obtained from the first reanalysis,
the noise amplitudes of the north and east components are
nearly identical in the second reanalysis.

Fig. 3 Estimated amplitudes of white (left), flicker (middle), and random walk (right) noise for the data set with the time span of 7years; top frame
(north), middle frame (east), bottom frame (up)
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Table 3 Average amplitudes of white noise, flicker noise, and random walk noise along with their estimated standard deviations for permanent
GPS stations of 1st and 2nd processing campaigns

Processing campaign Second First

White noise (mm) N 1.24 ± 0.02 2.02 ± 0.03

E 1.20 ± 0.02 2.68 ± 0.04

U 4.06 ± 0.06 5.69 ± 0.09

Flicker noise (mm/year1/4) N 2.60 ± 0.04 4.39 ± 0.06

E 2.51 ± 0.04 5.80 ± 0.08

U 8.52 ± 0.13 12.33 ± 0.18

Random walk (mm/year1/2) N 0.24 ± 0.004 0

E 0.23 ± 0.004 0

U 0.79 ± 0.010 0

• The amplitudes of flicker and random walk noise over
different stations are multiples of the white noise ampli-
tudes. In reality, however, this should not indicate all
stations contain random walk noise, because the esti-
mated values are an average value (over all stations)
due to the special structure used (see Amiri-Simkooei
et al. 2013). Therefore, the multivariate approach imple-
mented in the present contribution can resolve only a
single network-wide random walk value rather than a
station specific one.

• When the values obtained from the latest reanalysis are
compared to their older counterpart, the amplitudes of
white and flicker noise of all components have been
reduced by factors ranging from 1.40 to 2.33. This high-
lights that the new models used in the second reanalysis
have significantly reduced the amplitude of these two
noise components.

• While the amplitudes of bothwhite and flicker noise have
significantly reduced in this contribution, Rebischung
et al. (2016) reported reduction in only white noise. This,
however, was only speculated by explaining their power
spectra and hence was not based on a real estimation of
the noise amplitudes.

• The random walk noise amplitudes estimated in the sec-
ond reanalysis are substantially larger than those of the
first campaign. This further confirms the findings of King
and Williams (2009), Dmitrieva et al. (2015) and Amiri-
Simkooei et al. (2013), who identified significant random
walk noise in GPS time series. As a non-stationary noise
process, the variance increases over time under a ran-
dom walk process. The zero amplitude of random walk
in the first reprocessing campaign is likely because this
noise process is being masked (or underestimated) in the
‘processing’ noise due to the lack of the new appropri-
ate models and strategies used in the second reprocessing
campaign.

• To further support the statement of the previous point,
we present the detrended data (i.e. the mean residuals)

Fig. 4 Mean residuals (for the data set with the time span of 7years)
of time series for north, east, and up components after removing a linear
trend, 3 harmonics of annual signal and 10 draconitic harmonics; (left)
first reprocessing campaign; (right) second reprocessing campaign

of all 89 stations for these two reprocessing campaigns
(Fig. 4). In contrast to the series derived from the first
reanalysis, the noise of the new time series has not sig-
nificantly changed over time as the latest models were
used in the second reprocessing. Having a uniform ‘pro-
cessing’ noise over time allows one to efficiently detect
the possible non-stationary random walk noise process
due tomonument instability (see also Santamaría-Gómez
et al. 2011).

To estimate rate errors induced by white, flicker, and random
walk noise in the multivariate model, we employ a method
described in “Appendix 2”. Using Eqs. (7)–(9), the rate errors
of different noise structures have been estimated for the north,
east, and up components (Table 4); the rate errors are deter-
mined for the data set with the time span of 7years. It is
observed that random walk rate error is larger than those of
white and flicker noise. These results are in good agreement
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Table 4 White flicker and random walk noise rate errors using three
types of formulas; left: this contributionwithwhite (Q = swQw), flicker
(Q = sfQf ) and random walk noise (Q = srwQrw) and those obtained

using all noise components (Q = swQw + sfQf + srwQrw); middle:
Bos et al. (2008); right: Argus (2012)

Noise component Error rates (mm/year)

This contribution Bos et al. (2008) Argus (2012)

N E U N E U N E U

White 0.013 0.013 0.044 0.014 0.014 0.047 0.012 0.012 0.040

Flicker 0.126 0.121 0.412 0.152 0.147 0.500 0.136 0.131 0.445

Random walk 0.092 0.090 0.301 0.097 0.093 0.316 0.091 0.088 0.298

White + Flicker + Random walk 0.160 0.155 0.525 – – – – – –

In Argus (2012), the formula for the error in rate generated by white noise is missing a factor of
(
12
f

) 1
2
. The correct formula is σwh =

(
12
f

) 1
2 swh

T
3
2
.

In this table we use this corrected formula in the Argus (2012) column. The data set used consisted of 89 stations and 7years of data (T = 7years)
with equal sampling frequency

with those obtained using Eqs. (30)–(31) of Bos et al. (2008)
(see Table 4). We may also employ Eqs. (1)–(3) of Argus
(2012), originated from Williams (2003a) and Bos et al.
(2012), to calculate the rate errors (substitute T = 7 years
and f = 365). Rate errors determined by employing these
equations are also shown in Table 4. The last row of Table 4
presents the rate errors using the combination of all noise
components.

The (large) amplitude of the random walk compared to
those reported by King and Williams (2009) and Dmitrieva
et al. (2015) can be explained as follows. It has been shown
thatwhite andflicker noise havenearly identical spatial corre-
lation (Amiri-Simkooei 2009). However, random walk noise
does not show such a significant correlation because this
noise depends on site-related effects such asmonument insta-
bility, etc. The Kronecker structure used in Amiri-Simkooei
(2013a) will induce also significant spatial correlation for
random walk. A sub-optimal stochastic model can bias (i.e.
overestimates or underestimate) the estimated variance com-
ponents (Amiri-Simkooei et al. 2009, see Eq. 33). This
highlights again that the estimated random walk amplitudes
of the multivariate analysis provide only a general indication
of a single network-based random walk value.

3.3 Multivariate power spectrum

The multivariate power spectra (MPS), illustrated in
Figs. 6, 7, 8 and the top frame of Fig. 5, are obtained using
Eq. (8) of Amiri-Simkooei (2013a). The power spectrum
would be flat if: (1) there were only white noise in the series,
or, (2) the correct stochastic model � ⊗ Q were used. Both
spectra shown in Fig. 5 are obtained when taking the tempo-
ral correlation of the series (estimated Q) into consideration.
The spectrum at the top is derived assuming the series are
spatially correlated (correct � ⊗ Q), while the bottom frame

Fig. 5 Multivariate least-squares power spectrum for the data set with
the time span of 7years. Vertical axes are normalized with respect to
spectral values of bottom frame to provide the maximum power of one;
(top) full structure of � ⊗ Q is taken into consideration, and (bottom)
� is considered to be diagonal

is derived assuming that the spatial correlation is absent, i.e.
� = diag (σ11, . . . , σrr ) is a diagonal matrix. The bottom
frame is similar to theweighted power spectrum in the studies
of Amiri-Simkooei et al. (2007) and Ray et al. (2008, 2013),
but differs in that it is based on the correct Q, rather than sta-
tionery white noise. Therefore, in contrast to their spectra,
our spectra is nearly flat. This indicates that the matrix Q,
which compensates for the temporal correlation of the series,
affects the flatness of the spectrum, whereas the spatial corre-
lation (matrix�) affects the scale of the spectrum. Therefore,
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Fig. 6 Multivariate least-squares power spectrum on all coordinate
components. Vertical axes are normalized to provide the maximum
power of one; (top frame) data set with the time span of 7years, (bottom
frame) data set with the time span of 21years

a mature stochastic model is crucial for the correct detection
of signals. When employing an immature stochastic model,
one takes the risk of not detecting peaks at higher frequencies
(see Fig. 5); cluster of periods between 5 and 6days, present
in the top frame, are absent in the bottom frame.

The MPS in Fig. 6 shows signals with periods of
13.63days (direct tides) and 14.76days (direct 14.77days
tide or 24-h alias of M2). These signals are also detected in
theMPS on individual components for both data sets (Fig. 7).
It can be seen that the former signal is sharper in the bottom
frame of Fig. 6 and the left frame of Fig. 7. The 14.76-day
signal was not clearly observed in the up component of the
data set with 66 stations. The signals detected for the east
and north components are in good agreements with those
reported by Ray et al. (2013). They, however, found that fort-
nightly signals are much less distinct in the up components.
Our observations show that this holds indeed only for the
14.76-day signal.

The vertical dashed lines in Figs. 5, 6, 7, 8 illustrate
harmonics of the GPS draconitic signal with the periods
of 351.4/Ndays (1.04N cpy) for N = 1, . . . , 8. The peaks
match nearly all of the frequencies. The aliasing signal can
contribute to parts of this draconitic signal. Errors in GPS
satellite orbit are considered to be the origin for the har-
monics because the GPS draconitic year is intrinsic to the

Fig. 7 Multivariate least-squares power spectrum analysis on individual components. Vertical axes are normalized to provide the maximum power
of one; (right frame) data set with the time span of 7years, (left frame) data set with the time span of 21years
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Fig. 8 Multivariate least-squares power spectrum after removing
Chandlerian, annual, semiannual, tri-annual, and 8 harmonics of GPS
draconitic year for the data set consisting 66 GPS stations (21years of
data). Vertical axes are normalized to provide the maximum power of
one

satellite orbits, and hence they provide a mechanism for
the generation of harmonic modulations. As an example,
Rodriguez-Solano et al. (2011) slightly reduced the level
of the sixth draconitic harmonic by taking earth albedo and
thermal effects on GPS orbits into consideration. For more
information, we refer to Ray et al. (2008), Tregoning and
Watson (2009), King and Watson (2010), and Griffiths and
Ray (2013). Amiri-Simkooei (2013a) shows that a similar
behavior of the draconitic pattern at adjacent stations implies
that the dominant draconitic effect is not likely dependent
on the station-related local effects—multipath for instance.
Because the GPS orbit modeling has been improved in latest
reanalysis campaign using the new models for Earth radia-
tion pressure and Earth albedo radiation, the reduction in the
draconitic signal is expected. This issue will be considered
later in Sect. 3.5.

Amiri-Simkooei (2013a) found, contrary to expected, that
the first draconitic harmonic in Figs. 5, 6, 7, 8 does not have
the largest and sharpest peak, owing to leakage. According
to the Rayleigh criterion (Godin 1972), in order to clearly
distinguish between two signals with the periods of T1 and
T2, the time spans of the series should be at least equal to
T1T2
T2−T1

. Applying this formula to the annual and draconitic

signals with the periods of 365.25 and 351.4days, respec-
tively, we find that the minimum length of the time series
should be equal to 25.4years. This holds only in theory, but
in reality longer time series are required because the above
signals are (much) messier that the pure sinusoidal waves.
If the time series are not long enough, the annual signal is
leaked into the draconitic signal and prohibits it from hav-
ing the largest and sharpest peak. This is, however, not the
case for the higher harmonics of this periodic pattern as the
length of the time series exceeds that of the minimum time
span required. A sharper peak of the first harmonic in the
bottom frame of Fig. 6 and the left frame of Fig. 7 in which

longer data span (21years) have been used verifies the above
statement. Compared to Amiri-Simkooei (2013a), the num-
ber of draconitic harmonics detected has been reduced from
10 to 8.

The multivariate analysis is applied both to the individual
components (Fig. 7) and simultaneously to the three compo-
nents (Fig. 6). Both spectra show a cluster of periods around
5.5days. Using daily time series of 306 IGS stations, Ray
et al. (2013) detected a signal with this period in the north
and up residuals, but barely visible in the east residuals. We
also observe a cluster of periods around 2.75days (likely the
second harmonics of 5.5days) in the data set with 89 stations
(Fig. 6, top frame and Fig. 7, right), and to a lesser extent in
the data set with 66 stations (Fig. 6, bottom frame). These
findings are in agreement with those of Ray et al. (2013). We
do not offer an explanation for the origin of these two signals.

Selle et al. (2014) reprocessed six stations in which a large
5.5days feature has been found. They used the same orbit,
clock product and GIPSY software as the JPL GPS PPP time
series, but with a different processing strategy which results
in a significant reduction in the strength of the 5.5days fea-
ture. Their result suggested that this signal is both station
dependent and probably related to parts of PPP processing
strategy other than orbit and clock products or the GIPSY-
OASIS software. Therefore, further research is needed for
investigation into the origin of the 5.5days feature in the JPL
time series.

Apart from the detected signals discussed earlier, a signal
with a period of 432.5days referred to as Chandler wobble
period has been found (Fig. 6, bottom frame). The ampli-
tude of the Chandlerian signal (averaged over 66 stations)
for the east, north, and up components are 0.2, 0.2, and
0.4mm, respectively (Table 5), and the maximum amplitude
of this signal for the up and east components reaches nearly
1.2mm. Nikolaidis (2002) identified a signal with a period
of 439 ± 15days in the power spectrum of the GPS posi-
tion time series residuals derived from the SOPAC network.
It was attributed to the unmodeled pole tide. Moreover, the
amplitude of the first Chandlerian harmonics obtained by
Bogusz and Klos (2016) was nearly 1mm for the up com-
ponent. Collilieux et al. (2007) identified a broad range of
frequencies between 0.75 and 0.9 cpy in SLR height residu-
als from the ITRF2005 solution. The existence of this signal
may indicate mismodeling of the Chandler period and its
modulations (Bogusz and Klos 2016) on GPS time series.
As the minimum time span needed for the identification of
Chenlerian signal is 12years, the signal has not been detected
in the data set with the time span of 7years. The Chandlerian
signal, which is likely related to International Earth Rota-
tion Service’s (IERS) pole tide model (Wahr 1985; King and
Watson 2014), has not been reported in any of the IGS AC
stacked spectra (including JPL) by Rebischung et al. (2016).
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Table 5 The mean and maximum range of variations of the 3 annual
harmonics, the 3 draconitic harmonics separately, the 8 draconitic har-
monics, the Chandlerian signal and the signal with a period of 383days
for the north, east and up components of the data set with 66 permanent
GPS stations of the second reprocessing campaign

Signal Mean range (mm) Maximum range (mm)

N E U N E U

Annual 0.8 1.0 2.4 2.0 2.1 5.3

Semiannual 0.3 0.2 1.1 0.7 0.6 1.9

Tri-annual 0.1 0.1 0.3 0.4 0.3 0.7

Draconitic 0.3 0.4 0.7 0.7 0.9 2.7

Semi-draconitic 0.3 0.4 0.9 0.6 0.8 1.7

Tri-draconitic 0.2 0.1 0.4 0.4 0.3 1.2

All 8 draconitic 0.8 0.9 2.0 1.5 1.5 3.7

Chandlerian 0.2 0.2 0.4 0.5 1.2 1.2

383days 0.3 0.3 0.6 1.0 0.7 3.0

We would intuitively expect the spectrum not to show any
peak around the annual signal ifwewere to remove8harmon-
ics of the GPS draconitic year signal and the first harmonic of
the Chandler wobble in addition to 3 harmonics of the annual
signal. To examine our hypothesis, these signals are added
to the functional model and the noise assessment was car-
ried out and the correct matrices � ⊗ Q were estimated. The
spectral values were then computed. Figure 8 shows theMPS
for 66 stations after removing the signals mentioned above.
Although the spectral values of 8 harmonics of the draconitic
signals have been reduced compared to the bottom frame of
Fig. 6, they are not totally removed. This indicates that the
draconitic pattern is not completely of periodic nature.More-
over, a signal with a period of around 380days has been
detected, which was not previously observed. This signal is
statistically significant because its spectral value (i.e. 412.56)
is much larger than the critical value of χ2

0.99,2×66 = 172.71.
We do not have an explanation for this. But it may correspond
to the findings ofGriffiths andRay (2013), who computed the
Doodson number 165.545 with the period of 23.9379816h
aliases into the period of 385.98days when the 1-day sam-
pling is used. As expected, this signal has not been observed
in the data set with the time span of 7years as the mini-
mum length of the time series required for distinguishing
between this signal and draconitic is 12.7years (to clearly
detect this signal and the annual signal at least 25.7years
of data is needed). The variations of the signal observed for
the east, north, and up components of the 66 GPS stations
are 0.3, 0.3, and 0.6mm, respectively (Table 5). The varia-
tion of this signal is larger than those of the Chandlerian,
tri-annual, and the third draconitic harmonics. The maxi-
mum variations of this signal for the up components is larger
than those of the first draconitic and the semiannual signal
(Table 5).

3.4 Draconitic periodic pattern

This section investigates the GPS draconitic year signal. Fol-
lowingAmiri-Simkooei (2013a), in the linearmodel y = Ax ,
one can partition A and x as [A1A2] and

[
xT1 x

T
2

]t
, respec-

tively, where x1 is the unknown parameters of linear term
plus annual, semiannual, and tri-annual signals and x2 is the
unknowns of the 8 harmonics of draconitic year signal. Using
y2 = A2x2, one can investigate the signal estimated for the
draconitic signal. Assume we have r time series. All esti-
mated y2 vectors of individual time series can be collected
in anm×r matrix Y2 = A2X2, wherem is number of obser-
vations in the time series.

An investigation on Y2 (for the data set consisting 89 GPS
stations with the time span of 7years) indicates that the mean
range of variations of the draconitic signal reaches −1.91–
1.91 , −1.75-1.73 and −4.72–4.72mm for the north, east,
and up components, respectively. They are the amplitudes
(average of all minima and maxima over all GPS stations)
of the draconitic signal. Compared to the first reprocessing
campaign, the mean range of variations for the north, east,
and up components are reduced by factors of 1.87, 1.87, and
1.68, respectively.

This reduction stems from the combined effect of the new
models used. As an example, Rodriguez-Solano et al. (2012)
found that the inclusion of the Earth radiation pressuremodel
causes a change in the north component position estimates
at a submillimeter level. The effect of their proposed method
has a main frequency of around six cpy, and hence a reduc-
tion of 38% occurs by applying this model. Within the latest
reprocessing campaign, the UT1 libration effect has been
considered, which can result in the reduction in the ranges of
variations.

To clearly observe the harmonics of the draconitic signal,
the 3 harmonics of the annual signal have been considered
in the initial functional model. That is, the functional model
consists of 8 columns (2 columns for the linear regression
and 2 columns for each annual harmonics). To compare the
relative oscillations of the annual and draconitic signal, we
have analyzed the original data without considering the 3
annual harmonics. The investigation has been done on the
time series with the time span of 21years as in the time series
with the time span of 7years it is not possible to analyze both
annual and draconitic signal (due to the shortness of the time
series). The results are presented in Table 5.

Themean annual variations of the north, east, and up com-
ponents are larger than those of the draconitic by factors
ranging from 2.5 to 3.4. The maximum annual variations are
larger than those of the semiannual by a factor ranging from
2.78 to 3.5. The annual oscillation is due to exchange of ice,
snow, water, and atmosphere, mainly between the northern
and southern hemispheres (Blewitt et al. 2001).
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For further investigation of this phenomenon, two kinds
of results are presented in the subsequent subsections.

3.4.1 Visual inspection

We now investigate the possible draconitic peak reduction in
the data derived from the 2nd reprocessing campaign. The
data sets analyzed consist of 89 GPS stations with the time
span of 7years acquired from the first and second reprocess-
ing campaigns.UsingEq. (8) ofAmiri-Simkooei (2013a), the
MPS is obtained (Fig. 9). The first, fourth, sixth, and eight
draconitic peaks have been reduced by less than 15%. The
third draconitic harmonic experienced a significant reduc-
tion; it has been nearly halved. The reduction in the second
and fifth draconitic peaks was nearly 25%. It can thus be
concluded that using new models within the second repro-
cessing campaign resulted in the reduction in the draconitic
peaks.

To investigate the behavior of the draconitic signal on dif-
ferent GPS stations, we use visual inspection. Figures 10
and 11 represent typical examples on the nature of the
draconitic signal for twonearby and two farawayGPSperma-
nent stations, respectively. As expected (see Amiri-Simkooei
2013a), this signal is of similar pattern for nearby stations
(<10km) (Fig. 10, compare red or black curves for each

component of stations CIT1 and OXYC). However, for two
faraway stations (>10, 000 km), this statement does not hold
true (Fig. 11). The effect is thus location dependent, which
originates from the CMEs. But, they are not likely station
dependent, and hence multipath cannot be the main source.
As expected, this periodic pattern for the 2nd reprocessing
campaign (black curve) has been reduced compared to that
for the first reprocessing campaign (red curve).

3.4.2 Correlation analysis

Thebehavior of this periodic pattern canbe investigatedusing
the correlation analysis. For this purpose, first we form a
zero-mean time series by using all sinusoidal functions of
the draconitic signal over one full cycle and collect them in
thematrixY of orderm×r . The spatial correlation inducedby

the matrix Y can be obtained using Y T Y
m . Figure 12 presents

the results for the data sets with 89 stations. The spatial
correlation induced by the draconitic signal is significant
over the angular distance ranging from 0◦ to 20◦ (2000km).
This is in agreement with the findings of Amiri-Simkooei
(2013a). Therefore, this also indicates that this periodic
pattern has still common-mode signatures for the adjacent
stations.

Fig. 9 Multivariate least-squares power spectrum for the data set with the time span of 7years for first reprocessing (red) and second reprocessing
(blue) campaign. Vertical axes are normalized with respect to the spectral values of the first reprocessing campaign (dashed red) to have the
maximum power of one
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Fig. 10 Effect of periodic pattern of first reprocessing (red) and second
reprocessing (black) campaign estimated for a typical example in which
stations are close to each other. CIT1 is the site at California Institute of
Technology. OXYC is the site at Occidental College. OXYC and CIT1
are 7Km apart. The red and black points denote the residual time series

after subtracting liner regression terms plus 3 harmonics of the annual
signal for first and second reprocessing campaigns, respectively. The
dashed red and solid black lines denote the draconitic signal estimated
for the first and second reprocessing campaigns, respectively

Fig. 11 Effect of periodic pattern of first reprocessing (red) and second
reprocessing (black) campaign estimated for a typical example (CHIL
versus ALIC) in which stations are far from each other. CHIL is the
site at San Gabriel Mountains, US. ALIC is the site at Alice Springs,
Australia. The two sites are 13,000Km apart. The red and black points

denote the residual time series after subtracting liner regression terms
plus 3 harmonics of the annual signal for first and second reprocessing
campaigns, respectively. The dashed red and solid black lines denote
the draconitic signal estimated for the first and second reprocessing
campaigns, respectively
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3.5 Geodetic and geophysical impact of new time series

This contribution showed improvement on both the func-
tional and stochastic models of GPS position time series of
the second reprocessing campaign. Parts of geodetic and geo-
physical impacts of these improvements are highlighted as
follows:

• There is research ongoing in the field of Earth’s elastic
deformation response to ocean tidal loading (OTL) using
kinematic GPS observations. Martens et al. (2016) esti-
mated GPS positions at 5-min intervals using PPP. They
studied the dominant astronomical tidal constituents and
computed the OTL-induced surface displacements of
each component. Such kinematic GPS processing can
have many other geophysical applications. Precise deter-
mination of Love numbers, as dimensionless parameters
characterizing the elastic deformation of Earth due to
body forces and loads, is considered to be another appli-
cation. Therefore, as a direct effect of the new time series,
one would expect further improvements in the realization
of such geophysical applications.

• GPS position time series have been widely used to study
various geophysical phenomena such as plate tectonics,
crustal deformation, post-glacial rebound, surface subsi-
dence, and sea-level change (Thatcher 2003; Argus et al.
2010; Kreemer et al. 2014; Johansson et al. 2002; King
et al. 2010; Peltier et al. 2015; Wöppelmann et al. 2007;
Lü et al. 2008; Bock et al. 2012). Long-term homo-
geneous time series reanalysis using the new methods
and strategies will directly affect all such phenomena—
site velocities along with their uncertainties for instance.
Reduction in noise components and the GPS draconitic
effect allows other signals to be detected (for exam-
ple signals with periods of 432.5 and 380days). More
appropriate geophysical interpretation can thus directly
be expected, although many of the above references use
position time series with CME filtering and hence such
signals can be attenuated relative to the “global” solutions
discussed in this paper.

• Strain analysis using permanent GPS networks requires
proper analysis of time series in which all functional
effects are taken into consideration and all stochastic
effects are captured using an appropriate noise model. To
investigate the effect of the normalized strain parameters
on geophysical interpretation, wemay recall the statistics
theory on the significance of the estimated parameters. To
have a statistically significant parameter, one has to com-
pare the parameter with its standard deviation. Flicker
noise is the main contributor to make these parameters
insignificant (Razeghi et al. 2015). Reduction in flicker
noise has thus a direct impact on the significance of the
deformation parameters.

Fig. 12 Spatial correlation originated from draconitic signal of three
coordinate components (north, east, and up) for the data set with the
time span of 7years

• Reduction in colored noise, their spatial correlation, and
the GPS draconitic signal have significant benefits on the
realization of International Terrestrial Reference Frame
(ITRF). These improvements will significantly affect the
estimation of the parameters of interest and their uncer-
tainty (Altamimi and Collilieux 2009). They indicated
that “IGS is undertaking a great effort of reprocessing the
entire time span of the GPS observations with the aim to
produce a long-term homogeneous time series. Prelimi-
nary analysis of some reprocessed solutions indicates a
high performance of these solutions which will play a
significant role in the next ITRF release”. This came true
based on the results presented in this contribution.

4 Conclusions

This contribution compared the results of the processing
the data derived from the first and second reanalysis cam-
paigns to identify the areas of improvement and/or possible
degradation. Daily position time series of 89 (7years) and
66 (21years) permanent GPS stations, obtained from the
JPL second reprocessing campaign, were analyzed. The
former data sets were also derived from the first reprocess-
ing campaign to compare the possible improvements in the
most realistic manner. Spatial and temporal correlations and
MPS were obtained using the formulas and methodologies
presented by Amiri-Simkooei (2013a). The following con-
clusions are drawn:
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• Although the time series of the second reprocessing cam-
paign showed reduction in the spatial correlation among
the series by a factor of 1.25, it is nevertheless significant.
The spatial cross-correlation also decreases; it is less than
0.1 for the three coordinate components.

• The amplitudes of white noise and flicker noise are
reduced by factors ranging from1.40 to 2.33. The random
walk amplitudes are higher than the zero values deter-
mined for the first reanalysis campaign. This is likely
due to the new time series benefiting from a kind of
uniform ‘processing’ noise over time, while the noise
of the older series is reduced with time. As a result of
the revised analysis techniques, the random walk noise
has been detected. Further, white and flicker noise have
significantly reduced resulting in better detection of the
randomwalk noise amplitude. For the 89 permanent GPS
stations with 7years of data, white noise, flicker noise,
and random walk noise rate errors are 0.01, 0.12, and
0.09mm/yr, respectively, for the horizontal component.
The vertical rate errors are larger than those of the hori-
zontal by the factors ranging from 3.33 to 4.

• Unlike the results derived from thefirst reprocessing cam-
paign, the noise amplitude of the north component equals
that of the east. This is attributed to incorporating the new
model for the tropospheric delay and to taking the higher-
order ionospheric terms into consideration, which likely
improves ambiguity resolution.

• Both MPS applied to the three components and to the
individual components clearly show signals with periods
of 13.63 and 14.76days. In addition, the spectra show a
cluster of periods around 5.5days. A cluster of periods
around 2.75days has been identified in the data set with
89 (7years) and66 (21years)GPS stations.Regarding the
signals with lower frequencies, a significant signal with
period of around 351.4days (up to its eighth harmon-
ics) is detected. This closely follows the GPS draconitic
year. Two other signals with periods of nearly 432.5 and
380days have been found.While the period of the former
signal equals the well-known Chandler period, the latter
signal is not known.

• The mean range of variations (max and min) of the dra-
conitic pattern for the series derived from the second
reprocessing campaign shows a reduction of 46, 46 and
41% for the north, east, and up components, respectively,
compared to those of the first campaign. This significant
reduction can be a direct corollary of the improved mod-
els in the new campaign. While the first, fourth, sixth,
and eight draconitic peaks have been reduced by less
than 15%, the third draconitic harmonic has been nearly
halved. The reduction in the second and fifth draconitic
peaks was nearly 25%.

• Two independent measures of visual inspection and cor-
relation analysis were used to investigate the nature of

the draconitic pattern. While the effect of the draconitic
signal is of similar pattern for nearby stations (Fig. 10),
it differs significantly for distant stations (Fig. 11). The
periodic pattern was reduced in the second reanalysis
campaign.

• A similar behavior for the spatial correlation of the
time series (Fig. 2) and the periodic pattern (Fig. 12)
is observed. This indicates that although newmodels and
methodologies in the latest reanalysis have reduced the
spatial correlation among the series to an extent, the dra-
conitic pattern is still an error source inducing spatial
correlation to the time series.

• There are three factors that may prevent random walk to
be detected. The first is the dominance of flicker noise,
which masks random walk noise (Williams et al. 2004).
Flicker noise has been significantly reduced in the sec-
ond reprocessing. The second factor is the small length
of the time series. For some stations, however, there are
currently more than two decades of data. A few pre-
liminary tests confirm significant random walk noise on
longer time series. 3) The third factor originates from our
observation in this contribution, which states that second
reprocessing has not only reduced noise but also it shows
a kind of uniform processing noise over time (see Fig. 4).
These three factors thus indicate that random walk noise
can in principle be the subject of the intensive research
in future GPS position time series analysis.
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5 Appendix 1: models employed within the second
IGS reanalysis campaign

5.1 Yaw attitude variations

Inconsistent yaw attitude models affects the precision of the
IGS combined clock solutions (Hesselbarth and Wanninger
2008). Therefore, the reliability of the IGS combined clocks
is impaired. To diminish the effect of the eclipsing satellites
on the IGS clock solutions, consistent modeling of attitude
changes is needed (Ray 2009). Distortions in the orientation
of the eclipsing satellites follow a simplified yaw attitude
model for Block II/IIA and Block IIR satellites (see Kouba
2009a). Attitude behavior of the Block IIF-1 (launched on
May 27, 2010) spacecraft during the eclipse has been studied
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byDilssner (2010). In addition,with completemodernization
of the GLONASS satellites, ACs should include GLONASS
observations as well. An appropriate yaw attitude modeling
of these satellitesmay follow themodel proposed byDilssner
et al. (2011).

5.2 Modeling of orbit dynamics

Urschl et al. (2007) observed anomalous pattern in the plot
of GPS-SLR residuals which they attributed to the GPS orbit
mismodeling. This anomalous pattern (particularly, the GPS
draconitic year signal) was also identified in the geocenter Z-
component (Hugentobler et al. 2006) and GPS position time
series (Ray et al. 2008).

One of the potential sources for GNSS orbit mismodel-
ing is the deficiencies in the Earth radiation pressure (ERP)
model. Not all IGS ACs are yet modeling ERP. Utilizing a
model for Earth radiation, proposed by Rodriguez-Solano
et al. (2012), results in the reduction in root mean square
(RMS) of orbit’s height component by about 1–2cm and
smaller perturbations of other components related to the
orbit. Rodriguez-Solano et al. (2012) showed that the model
can compensate the SLR residual bias observed.

The GPS orbit perturbations due to ERP depend on the
relative position of Sun, Earth, and satellite. Parts of the
observed periodic patterns in GPS time series may stem
from failure to correctlymodel ERP (Rodriguez-Solano et al.
2012). They found that the inclusion of theERPmodel results
in the reduction in the sixth draconitic signal for the north
component at a submillimeter level (equal to reduction of
around 38%). Ray (2009) also suggested taking ERP into
consideration. Hence, the model proposed by Rodriguez-
Solano et al. (2011) has been used within the IGS in the
operational reprocessing.

Earth albedo radiation (EAR) is another source for orbit
modeling deficiencies. This radiation consists of both visible
reflected light and infrared emitted radiation. Most AC con-
tributors have not taken into account the effect of EAR. The
albedo acceleration may have a significant effect on the orbit
of GPS satellites (a mean reduction in the orbit radial compo-
nent by 1–2 cm) (Hugentobler et al. 2009). They concluded
that for the high-precisionGPSorbit determination, EARand
antenna thrust should be taken into consideration. However,
regarding the spectra of geocenter and position time series,
no significant impact has been observed when the model for
EAR was used (Hugentobler et al. 2009). This indicates that
there could be still unmodeled effects on the GPS orbit which
can be larger than the albedo radiation.

5.3 Geopotential field

In terms of the geopotential model, a new model referred to
as EGM2008 has been defined (see Ray 2009). EGM2008

exhibits significant improvements compared to its previous
counterpart EGM96, thanks to the availability of CHAMP
and most importantly GRACE data in the 2000s. Compared
to EGM96, used for the 1st processing campaign, EGM2008
has been modified in the following aspects:

1. Its degree and order have been increased by a factor of 6.
2. Updated value for secular rate of low-degree coefficients.
3. A new model for the mean pole trajectory was proposed.
4. Model for geopotential ocean tide has been updated for

FES2004.
5. A new ocean pole tide model has been introduced.

For more information, the reader is referred to IERS 2010
conventions (Petit and Luzum 2010).

5.4 Tidal effects

Tidal effects are categorized to the following two contribu-
tions. (1) Tidal displacement of station positions; (2) Tidal
EOP variations. For the former, within the new processing
campaign, a newmodelwhich is introduced for themean pole
trajectory IERS 2010 (Petit and Luzum 2010) has been used
for the pole tide correction. Moreover, model for ocean pole
tide loading presented by Desai (2002) should be used. For
the latter, the Earth rotation axial component in terms of UT1
contains small diurnal and subdiurnal signals. Thus, the tidal
gravitation effect on those features of Earth’s mass distribu-
tion results in the astronomical precession-nutation of Earth
rotation (Brzeziński 2008). A minor part of the astronomical
variations, called libration, is a result of the tidal gravitation
effect on the non-zonal terms of geopotential (Brzeziński
2008). In case of UT1, the perturbation is semidiurnal with
total amplitude up to 75µas.Brzeziński andCapitaine (2009)
studied the subdiurnal libration in UT1. They derived a solu-
tion for the structural model of the Earth composing of
an elastic mantle and a liquid core not coupling to each
other.

A key expectation in tidal EOP variations modeling com-
pared to the 1st reprocessing campaign is the addition of the
UT1 libration effect introduced by Brzeziński and Capitaine
(2009). It is noted that the maximum effect of UT1 libra-
tion is about 105µas, or 13mm at GPS altitude. It probably
severely aliases into the orbit parameters.

5.5 Tropospheric propagation delay

In the second reprocessing, a new slant delay model (GPT2)
was suggested. It improves its older models GPT/GMF with
refined horizontal resolution, enhanced temporal coverage,
and increased vertical resolution (37 isobaric levels com-
pared to 23 ones utilized for GPT/GMF) (Lagler et al.
2013). In addition to mean value, a0, and annual amplitude,
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A, estimated using the least-squares method in GPT/GMF,
semiannual harmonics are incorporated within GPT2. This
better accounts for regions with very rainy or dry peri-
ods. As for the temperature reduction, in contrast to the
GPT/GMF in which a constant −6.5 ◦C/km was assumed,
mean, annual, and semiannual variations of temperature lapse
rate are determined each grid point in GPT2. Regarding
the pressure reduction, unlike the GPT/GMF which utilizes
an exponential formula based on the standard atmosphere,
GPT2 deploys an exponential formula based on virtual tem-
perature (Lagler et al. 2013). The improved performance
of GPT2 compared to the previous model GPT/GMF has
been examined by Lagler et al. (2013). They have recom-
mended to replace GPT/GMF with GPT2 as an empirical
model.

Because of the partial compensation of the atmospheric
loadingbymismodeling the zenith hydrostatic delays (ZHDs)
(Kouba 2009b), GPT-derived ZHDs give rise to a better
station height repeatability compared to ECMWF ZHDs if
atmospheric loading is not corrected for (Steigenberger et al.
2009). On the other hand, if one needs to examine the coor-
dinates time series to reveal atmospheric loading signals,
application of ZHDs derived from numerical weather models
is a key element.

5.6 Higher-order ionospheric terms

A linear combination ofmulti-frequency observations allows
for taking into consideration the first-order ∼ 1

f 2
ionospheric

term (Hofmann-Wellenhof et al. 2008). The first-order iono-
spheric delay is in the order of 1 to 50 meters, which depends
on the satellite elevation, ionospheric activities, local time,
season and solar cycle (Kedar et al. 2003). The higher-order
ionospheric terms, which are in the order of submillimeters
to several centimeters, are usually neglected. Kedar et al.
(2003) stated that the effect of second-order ionospheric term
introduced by Bassiri and Hajj (1993) can likely improve the
position repeatability and reduce the small biases in geocen-
ter estimates. Fritsche et al. (2005) and Hernández-Pajares
et al. (2007) showed that the second-order ionospheric term
affects the geocenter Z-component estimates. Fritsche et al.
(2005) processed thedouble differencephase observationof a
global network and compared solutions with and without the
higher-order ionospheric terms. They concluded that apply-
ing these higher terms will became a standard part of precise
GPS applications. IERS 2010 conventions (Petit and Luzum
2010) suggested that while the first- and second-order iono-
spheric terms are to be considered for GNSS applications,
the third order is at the limited significance and the fourth
order can be neglected.

5.7 Analysis constraints

Ferland (2010) found that high-frequency smoothing may be
due to unremovable continuity constraints for someACs.Ray
(2009) suggested that, for the 2nd reprocessing campaign,
ACs constraints and procedures should be reconsidered
from the following aspects: (1) Reviewing the necessity of
applying constraints, (2) Paying particular attention to the
constraint on the orbit and UT1/LOD, (3) Elimination and
minimization of the constraints as many as possible, and (4)
Better understanding of the impacts of constrains retained
is necessary. Accordingly, in the IGS2008 recommendations
(http://igs.org/overview/pubs/IGSWorkshop2008/), all ACs
should report their a-priori constraints. Although remov-
able constraints are acceptable, unconstrained solutions are
preferred. Inner constraints (origin, orientation, scale) are
acceptable.

6 Appendix 2: rate errors in multivariate model

Having r time series available, a multivariate linear model is
of the form (Koch 1999)

E (vec (Y )) = (Ir ⊗ A) vec (X) , D (vec (Y )) = Qvec(Y )

(1)

where vec is the vector operator and⊗ is theKronecker prod-
uct. Ir is the identitymatrix of size r . X andY are thematrices
of the sizes n × r and m × r collecting unknown parame-
ters and observations from r number of series, respectively.
A and Qvec(Y ) are, respectively, the functional and stochas-
tic models describing all deterministic effects and statistical
characteristics of the observables. E indicates the expectation
operator, and D is the dispersion operator.

The following structure for the stochastic model, referred
to as the more practical model, is used (Amiri-Simkooei
2009)

D (vec (Y )) = � ⊗ Q = � ⊗
∑p

k=1
skQk (2)

where Qk’s are the known cofactor matrices of size m × m.
The matrix� and the unknown factors sk are to be estimated
using LS-VCE.

The least-squares estimate of X reads then (Koch 1999)

X̂ =
(
AT Q−1A

)−1
AT Q−1Y (3)

The covariance matrix of the nr -vector vec
(
X̂

)
is

Q
vec

(
X̂

) = � ⊗
(
AT Q−1A

)−1 = � ⊗ N−1 (4)
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where N = AT Q−1A is the normal matrix. Here, we assume
that the functional model contains two columns for the linear
regression terms plus two columns for each of the annual,
semiannual, and tri-annual signal. A is thus of sizem×8. Its
i th row at the time instant ti is

[
1 ti cos 2π ti sin 2π ti cos 4π ti sin 4π ti cos 6π ti sin 6π ti

]

(5)

Therefore, the unknown parameters are the intercept, rate,
and amplitudes of the annual, semiannual, and tri-annual sig-
nals. The covariance matrix of the slopes (for all series) is
given as Qr = � × (N−1)22, where (N−1)22 is the second
diagonal element of N−1. It is further assumed that Q matrix
has the form

Q = sw I + sfQf + srwQrw (6)

where sw, sf , srw are the white, flicker, and random walk
noise amplitudes, respectively. Qf and Qrw are the flicker and
random walk noise cofactor matrices, respectively. LS-VCE
has been employed to estimate sw, sf , srw, and�. As the three
coordinate components of all stations have been processed
simultaneously,� is of the size r×r . Its corresponding, north,
east, and up components are referred to as �N , �E , and �U ,
respectively (block diagonals). To compute the white, flicker,
and random walk noise rate errors for the east components,
matrixQ inEq. (4) is substitutedwithQw = sw I ,Qf = sfQf

or Qrw = srwQrw, respectively. Matrices Nw, Nf , Nrw are
then obtained. The rate errors of the east component read

σw
r =

√
diag

(
�EN

−1
w (2, 2)

)
(7)

σ f
r =

√
diag

(
�EN

−1
f (2, 2)

)
(8)

σ rw
r =

√
diag

(
�E N

−1
rw (2, 2)

)
(9)

where σw
r , σ f

r and σ rw
r are the vector of rate errors for the east

component of all stations. Their mean indicate the average
error rates over all stations. The corresponding values for the
north and up components can accordingly be obtained.
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