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Abstract When precise positioning is carried out via GNSS
carrier phases, it is important to make use of the property that
every ambiguity should be an integer. With the known float
solution, any integer vector, which has the same degree of
freedom as the ambiguity vector, is the ambiguity vector in
probability. For both integer aperture estimation and inte-
ger equivariant estimation, it is of great significance to know
the posterior probabilities. However, to calculate the pos-
terior probability, we have to face the thorny problem that
the equation involves an infinite number of integer vectors.
In this paper, using the float solution of ambiguity and its
variance matrix, a new approach to rapidly and accurately
calculate the posterior probability is proposed. The proposed
approach consists of four steps. First, the ambiguity vector
is transformed via decorrelation. Second, the range of the
adopted integer of every component is directly obtained via
formulas, and a finite number of integer vectors are obtained
via combination. Third, using the integer vectors, the princi-
pal value of posterior probability and the correction factor are
worked out. Finally, the posterior probability of every integer
vector and its error upper bound can be obtained. In the paper,
the detailed process to calculate the posterior probability and
the derivations of the formulas are presented. The theory and
numerical examples indicate that the proposed approach has
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the advantages of small amount of computations, high cal-
culation accuracy and strong adaptability.

Keywords GNSS · Ambiguity · Posterior probability ·
Bayes’ formula

1 Introduction

The basic principle of GNSS positioning is the method of
distance intersection. There are two ways to measure the dis-
tances between the receiver and the GNSS satellites: one
is via pseudo-range code and the other is via carrier phase.
Because the measurement accuracy of the carrier phase is
far better than that of the pseudo-range, the observations of
carrier phase are indispensable data in GNSS precision posi-
tioning. However, to obtain the distance between the receiver
and the satellite, the result measured via carrier phase needs
to add an unknown integer multiplied by the wavelength. The
unknown integer is called ambiguity.

The observation equations of GNSS precise positioning
can be expressed as the following Gauss–Markov models:

{
ε = Aa + Bb − L
ε ∼ N (0, DLL)

(1)

where L is the observation vector containing the double-
difference (DD)observations of carrier phase; ε is the random
error vector; a is the DD ambiguity vector of order n; b is
all other unknown parameter vector; A and B are the cor-
responding design matrices; and DLL is the variance matrix
of L .

Solving Eq. (1) by least-squares, the float solution â, b̂ and
the corresponding variance and covariance matrix of Dââ ,
Db̂b̂ and Dâb̂ can be obtained. Since ambiguity vector a, in
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theory, should be an integer vector, a further work should be

done to obtain the fixed solution
�
a and

�

b based on the integer

nature. Since
�

b can be obtained based on
�
a , it is the key how

to obtain
�
a based on the integer nature of a. The methods to

obtain
�
a can be divided into three types: integer estimation,

integer aperture estimation and integer equivariant estimation
(Teunissen 2003a).

The method of integer estimation is that all â in a space

defined by a mapping method have the same
�
a . The gen-

eral mapping methods are rounding, bootstrapping (Blewitt
1989; Dong and Bock 1989), and integer least-squares (Teu-
nissen 1993). Different mappingmethods may have different
�
a . To evaluate the properties of the three integer estimators,
Teunissen (1998) proposed the concept of the success rate.
Teunissen (1999) has proved the success rate of the inte-

ger least-squares estimator
�
a ILS is the largest one among

the three integer estimators. Moreover, it is very expedite to

obtain the integer least-squares estimator
�
a ILS (Li et al. 2013;

Verhagen et al. 2013a). So,
�
a ILS is generally adopted as

�
a .

Integer aperture estimation is a class of estimation that

the result may be
�
a ILS or remain as the same as â (Teunissen

2003b; Verhagen and Teunissen 2006). Because
�
a ILS = a is

satisfied in probability, to control the risk of wrong ambigu-

ities, it is necessary to validate
�
a ILS = a . Many validation

methods have been proposed, the early methods were mainly
to compare the minimum quadratic form of the residuals and
the second minimum one, such as F-ratio test (Frei and Beut-
ler 1990), R-ratio test (Euler and Schaffrin 1991), difference
test (Tiberius and Jonge 1995; Zhang et al. 2015) andW-ratio
test (Wang et al. 1998). Based on the success rate and the
failure rate, Teunissen (2004) proposed penalized method.
After controlled failure-rate method (Teunissen 2005a) was
proposed, a series of validation methods of combination
with controlled failure-rate were proposed, such as com-
bined R-ratio test (Teunissen and Verhagen 2009; Verhagen
and Teunissen 2013b; Wang and Feng 2013; Li et al. 2014),
combined W-ratio test (Li and Wang 2014) and combined
difference test (Wang and Verhagen 2015). An evaluation to
some combination validation methods can be seen in Verha-
gen and Teunissen (2006). Specifically, Wu and Bian (2015)
proposed a noteworthy validation method based on the pos-

terior probability of
�
a ILS = a.

Integer equivariant estimation is to obtain the best inte-

ger equivariant estimator
�
aBIE using every integer vector

zk ∈ Zn in probability (Teunissen 2003c). Integer equivari-
ant estimation can avoid the risk of wrong ambiguities, but

before calculating
�
aBIE , the posterior probability of zk = a

need to be worked out in advance.
It can be seen that it is of great significance to rapidly

and accurately calculate the posterior probability. For integer

aperture estimation, the posterior probability of
�
a ILS = a

can provide a very intuitive indicator to validate
�
a ILS = a

(Wu and Bian 2015). For integer equivariant estimation, the
posterior probability of zk = a is the premise to calculate the

best integer equivariant estimator
�
aBIE (Teunissen 2003c).

Blewitt (1989), based on Bayes’ formula, have given out
the theoretical equation to calculate the posterior probability.
However, because of the infinite number of integer vectors in
the equation, it is impossible to use the equation directly. To
have a practicalmethod for calculating the posterior probabil-
ity, Lacy et al. (2002) presented using Monte Carlo method
to obtain a finite number of integer vectors for calculating
the posterior probability. Because of the complex simulation,
the method has the difficulty to be widely used. Teunissen
(2005b) presented a searching method to obtain a finite num-
ber of integer vectors based onChi-square distribution,which
is built on the basis of explicit theory and convenient to
work out the approximate value of the posterior probabil-
ity of zk = a. Wu and Bian (2015) presented another method
to search the integer vectors based on the lower limit defined
by exponential function.

In this paper, an alternative approach to calculate the pos-
terior probability is proposed. The proposed approach has
the advantages of small amount of computations, high calcu-
lation accuracy and strong adaptability. The remaining parts
of the contribution are organized as follows: in Sect. 2, the
related theories and methods are briefly introduced; In Sect.
3, through dividing the infinite number of integer vectors into
two subsets, the idea which aims to rapidly and accurately
calculate the posterior probability is given out; In Sect. 4, the
method to obtain the first subset containing a finite number
of integer vectors is detailed; In Sect. 5, the method, based on
the first subset, to calculate the correction factor is detailed;
In Sect. 6, to be understood easily, the calculating process and
formulas of the proposed approach are reviewed; In Sect. 7,
several examples are given to demonstrate the performance
of the proposed approach.

2 Related theories and methods

2.1 The theoretical formula for calculating posterior
probability

Bayes’ formula: Suppose that� is the sample space of a test,
K is an event of the test, and P(K ) is the probability that
the event K will occur, then 0 ≤ P(K ) ≤ 1, P(�) = 1. M
is another event of the test; under the circumstance that M
has occurred, the probability that K will occur is written as
P(K |M ). Suppose that � can be compartmentalized to M1,
M2, . . . , Mt , Bayes’ formula is stated mathematically as the
following equation:
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P (Mk |K ) = P (K |Mk ) P (Mk)∑t
i=1 P (K |Mi ) P (Mi )

(2)

where Mk ∈ (M1, M2, . . . , Mt ).
When carrying out precise positioning via the carrier

phase of GNSS, the set that every element is probably the
ambiguity a is (z1, z2, . . . , z∞), (zi ∈ Zn) . Before the obser-
vation vector L is known, the probability of zi = a is written
as P (zi = a). When zk = a, zk ∈ (z1, z2, . . . , z∞), the
probability that â will occur is written as P(â |zk = a).

According to Eq. (2), the posterior probability of zk = a
under the circumstance that â has occurred can be obtained
by

P
(
zk = a

∣∣â ) = P
(
â |zk = a

)
P (zk = a)∑∞

i=1 P
(
â |zi = a

)
P (zi = a)

(3)

Since â ∼ Nn (a, Dââ), Eq. (3) can be written as (Betti et al.
1993)

P
(
zk = a

∣∣â ) =
P (zk = a) exp

[
− 1

2

∥∥â − zk
∥∥2
Dââ

]
∑∞

i=1 P (zi = a) exp
[
− 1

2

∥∥â − zi
∥∥2
Dââ

]
(4)

where ‖•‖2Dââ
stands for (•)T D−1

ââ (•).
Before we know the observation vector L , for z1 = a,

z2 = a, . . . , z∞ = a, we do not know which one is more
likely to be true. So we have to believe

P (z1 = a) = P (z2 = a) = · · · = P (z∞ = a) (5)

Inserting Eqs. (5) into (4), the theoretical equation to cal-
culate the posterior probability can be expressed as (Blewitt
1989; Zhu et al. 2001)

P
(
zk = a

∣∣â ) =
exp

[
− 1

2

∥∥â − zk
∥∥2
Dââ

]
∑∞

i=1 exp
[
− 1

2

∥∥â − zi
∥∥2
Dââ

] (6)

Because of the infinite number of integer vectors, it is impos-
sible to directly calculate P

(
zk = a

∣∣â ) based on Eq. (6). It
is the key, for working out P

(
zk = a

∣∣â ), how to deal with
the infinite number of integer vectors.

2.2 Existing major practical methods

The first method introduced is Chi-square searching method,
which was presented by Teunissen (2005b). The method is
to define a space based on Chi-square distribution, and only
the integer vectors within the space are taken to calculate the
posterior probability P

(
zk = a

∣∣â ).

Given the confidence level 1 − α, a probability equation
can be expressed as

P
(∥∥â − a

∥∥2
Dââ

≤ λ2n

)
= 1 − α (7)

According to Chi-square distribution, λ2n can be determined.
An inequation is given as

∥∥â − zi
∥∥2
Dââ

≤ λ2n (8)

Using searching technique, the integer vectors z1, z2, . . . , zt
that satisfy Eq. (8) can be obtained. Based on the integer
vectors and Eq. (6), the approximate value of P

(
zk = a

∣∣â )
can be obtained by (Teunissen 2005b)

P̂
(
zk = a

∣∣â ) =
exp

[
− 1

2

∥∥â − zk
∥∥2
Dââ

]
∑t

i=1 exp
[
− 1

2

∥∥â − zi
∥∥2
Dââ

] (9)

where zk ∈ {z1, z2, . . . , zt }.
The second method introduced was presented by Wu and

Bian (2015). In which, the space of integer vectors that are
used to calculate P

(
zk = a

∣∣â ) is defined as

S (z) =

⎧⎪⎪⎨
⎪⎪⎩
zi

∣∣∣∣∣∣∣∣

exp
[
− 1

2

∥∥â − zi
∥∥2
Dââ

]

≥ 10−8 ·
i−1∑
j=1

exp

[
−1

2

∥∥â − z j
∥∥2
Dââ

]
⎫⎪⎪⎬
⎪⎪⎭

(10)

Searching method is used to find zi that satisfies Eq.
(10). Using the integer vectors within S (z), similarly,
P̂
(
zk = a

∣∣â ) can be calculated based on Eq. (9).
However, since the denominator inEq. (9) is a little smaller

than the one in Eq. (6), P̂
(
zk = a

∣∣â ) > P
(
zk = a

∣∣â ).
2.3 Success rate

Success rate can be expressed as (Teunissen 1999)

PS�
a

(
�
a = a

)

=
∫
S�
a

(2π)−
n
2 |Dââ |− 1

2 · exp
{
−1

2
‖X − a‖2Dââ

}
dX

=
∫
S�
a

(2π)−
n
2 |Dââ |− 1

2 · exp
{
−1

2

∥∥∥X − �
a
∥∥∥2
Dââ

}
dX

(11)

where X = (
x1 · · · xn

)T
, S�

a
is the space defined by the

mapping method of integer estimation.
Three integer estimators have different S�

a
. The rela-

tionship among their corresponding success rates can be
expressed as (Teunissen 1999):
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PR
(

�
aR = a

)
≤ PB

(
�
aB = a

)
≤ PILS

(
�
a ILS = a

)
(12)

where
�
aR is the fixed solution of a obtained by rounding,

�
aB = a is obtained by bootstrapping, and

�
a ILS is obtained

by integer least squares.
Only when Dââ is a diagonal matrix, these success rates

are equal. Now, only PB

(
�
a B = a

)
can be worked out

explicitly (Teunissen 1999, 2000; Verhagen 2003), and the
corresponding formula reads

PB
(

�
aB = a

)
=

n∏
j=1

[
2�

(
1

2
√
d j j |J

)
− 1

]
(13)

where J = {1, 2, . . . , j − 1}, and d j j |J is the variance of the
j th ambiguity based on the case that the first j−1 ambiguities
are known.

Posterior probability P(zk = a
∣∣â ) and success rate

PS�
a

(
�
a = a

)
are different. On the one hand, the result of

P(zk = a
∣∣â ) depends on the float solution â, but the result

of PS�
a

(
�
a = a

)
does not; on the other hand, for any integer

vector zk ∈ Zn , it has the corresponding P(zk = a
∣∣â ), but

only
�
aR,

�
aB and

�
a ILS have the corresponding PS�

a

(
�
a = a

)
.

In Sect. 7, a numerical comparison between P(zk = a
∣∣â )

and PS�
a

(
�
a = a

)
will be carried out to show their differ-

ences.

3 Calculation strategy

The set of integers Zn is divided into two subsets, one consists
of z1, z2, . . . zm and the other consists of zm+1, zm+2, . . . z∞.
Equation (6) can be expressed as

P
(
zk = a

∣∣â ) =
exp

[
− 1

2

∥∥â − zk
∥∥2
Dââ

]
∑m

i=1 exp
[
− 1

2

∥∥â − zi
∥∥2
Dââ

] Pm/∞ (14)

with

Pm/∞ =
∑m

i=1 exp
[
− 1

2

∥∥â − zi
∥∥2
Dââ

]
∑∞

i=1 exp
[
− 1

2

∥∥â − zi
∥∥2
Dââ

] (15)

Pm/∞ is called as correction factor. For convenient expres-
sion, let

K1∼m =
m∑
i=1

exp

[
−1

2

∥∥â − zi
∥∥2
Dââ

]
(16)

and

K(m+1)∼∞ =
∞∑

i=m+1

exp

[
−1

2

∥∥â − zi
∥∥2
Dââ

]
(17)

Eq. (15) can be written as

Pm/∞ = K1∼m

K1∼m + K(m+1)∼∞
(18)

Obviously, if z1, z2, . . . zm and K(m+1)∼∞ are known,
P
(
zk = a

∣∣â ) can be easily worked out based on the above
formulas. A flexible and straightforwardmethod to obtain z1,
z2, . . . zm and a matched method to calculate Pm/∞ based on
z1, z2, . . . zm will be given out.

4 Determining the m integer vectors

4.1 Ambiguity decorrelation

In the least-squares ambiguity decorrelation approach
(LAMBDA) (Teunissen 1993, 1995a), to decrease the search
space, the variance matrix Dââ is transformed via decorre-
lation. Similarly, to instantaneously obtain z1, z2, . . . zm , the
decorrelation approach will also be adopted.

According to Dââ , an integer square matrix Z can be
obtained, every element of Z and ZT is an integer, and
|Z | = ±1 (Teunissen 1995b). There are many methods to
obtain Z , for example, Liu et al. (1999), Xu (2001), Lou and
Grafarend (2003), Liu and He (2007), Zhou (2011), Zhang
et al. (2011), and Zhou and He (2014). Using Z to trans-
form Dââ , a real symmetric matrix whose main diagonal is
dominant can be obtained by

Dââ,Z = ZT Dââ Z (19)

Accordingly, several vectors can be transformed by

âZ = ZT â (20)

aZ = ZT a (21)

and

zi,Z = ZT zi (22)

Since â ∼ Nn (a, Dââ), furthermore, we have

âZ ∼ Nn
(
aZ , Dââ,Z

)
(23)
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4.2 Determining the integer subset

Let

XZ ∼ Nn
(
aZ , Dââ,Z

)
(24)

where XZ = (
xZ1 · · · xZn

)T
.

Under the circumstance that â has occurred, â and âZ are
two constant vectors. A following space is assigned as

SâZ =
⎧⎨
⎩
[
âZ (1)

] − 1
2 ≤ xZ1 ≤ [

âZ (1)
] + 1

2· · ·[
âZ (n)

] − 1
2 ≤ xZn ≤ [

âZ (n)
] + 1

2

⎫⎬
⎭ (25)

where âZ ( j) is the j th component of âZ , [•] denotes round-
ing.

Let

Y = aZ + [
âZ

] − XZ (26)

where Y = (
y1 · · · yn

)T
.

Inserting Eqs. (26) into (24), we have

Y ∼ Nn
([
âZ

]
, Dââ,Z

)
(27)

When zi,Z = aZ , inserting Eqs. (26) into (25), the space SâZ
can be expressed as

Szi,Z = {
SâZ

∣∣zi,Z = aZ
}

=
⎧⎨
⎩
zi,Z (1) − 1

2 ≤ y1 ≤ zi,Z (1) + 1
2· · ·

zi,Z (n) − 1
2 ≤ yn ≤ zi,Z (n) + 1

2

⎫⎬
⎭

(28)

Noting that Szi,Z stands for SâZ with zi,Z = aZ . According
to Eq. (28), a larger space can be expressed as

S1∼m =
m⋃
i=1

Szi,Z

=
⎧⎨
⎩
min

[
zi,Z (1)

] − 1
2 ≤ y1 ≤ max

[
zi,Z (1)

] + 1
2· · ·

min
[
zi,Z (n)

] − 1
2 ≤ yn ≤ max

[
zi,Z (n)

] + 1
2

⎫⎬
⎭
(29)

The space S1∼m is designated as a centrosymmetric space to[
âZ

]
, we have

max
[
zi,Z ( j)

] = 2
[
âZ ( j)

] − min
[
zi,Z ( j)

]
(30)

According to Eq. (30), Eq. (29) can be written as

S1∼m

=
⎧⎨
⎩
min

[
zi,Z (1)

]− 1
2 ≤ y1≤2

[
âZ (1)

]−min
[
zi,Z (1)

]+ 1
2· · ·

min
[
zi,Z (n)

]− 1
2 ≤ yn ≤2

[
âZ (n)

]−min
[
zi,Z (n)

]+ 1
2

⎫⎬
⎭

(31)

To guarantee the representative of z1, z2, . . . zm , according
to Eq. (27), the first constraint condition can be expressed as

min
[
zi,Z ( j)

] ≤ [
âZ ( j)

] + 1

2
− c

√
d j j,Z (32)

with

∫ c

−c

1√
2π

exp

(
− x2

2

)
dx = 1 − α (33)

where 1 − α denotes the confidence level, d j j,Z is the j th
diagonal element of Dââ,Z .

According toEq. (32),when c
√
d j j,Z ≤0.5,min

[
zi,Z ( j)

]
may be equal to

[
âZ ( j)

]
. If min

[
zi,Z ( j)

] = [
âZ ( j)

]
,

according to Eq. (31), the j th component of S1∼m has only
one integer

[
âZ ( j)

]
. Under the circumstances, it is difficult to

accurately calculate the correction factor Pm/∞, which may
lead to an inaccurate result of P

(
zk = a

∣∣â ) based on Eq.
(14). To avoid the problem, the second constraint condition
can be written as

min
[
zi,Z ( j)

] ≤ [
âZ ( j)

] − 1 (34)

The number ofmin
[
zi,Z ( j)

]
that satisfy Eqs. (32) and (34) is

infinite. To keep the minimal calculation workload of K1∼m ,
the third constraint condition reads

min
[
zi,Z ( j)

] = arg min
1≤i≤m

{[
âZ ( j)

] − min
[
zi,Z ( j)

]}
(35)

Based on Eqs. (32), (34) and (35), min
[
zi,Z ( j)

]
in Eq. (31)

can be obtained by

⎧⎨
⎩
min

[
zi,Z ( j)

]=⌊[
âZ ( j)

]+ 1
2 −c

√
d j j,Z

⌋
c
√
d j j,Z > 1

2

min
[
zi,Z ( j)

] = [
âZ ( j)

] − 1 c
√
d j j,Z ≤ 1

2

(36)

where 	•
 denotes rounding down.

4.3 Integer combination

According to the value range defined by Eqs. (31) and (36),
the integer vectors z1,Z , z2,Z , . . . , zm,Z can be obtained via
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combination. Furthermore, the integer vectors that are prob-
ably DD ambiguity vector a can be obtained by

⎧⎪⎨
⎪⎩
z1 = (

ZT
)−1

z1,Z
· · ·
zm = (

ZT
)−1

zm,Z

(37)

5 Calculating the correction factor

5.1 Equation transformation

To calculate the correction factor Pm/∞ expediently, Eq. (18)
need to be transformed from based on z1, z2, . . . z∞ to only
based on z1, z2, . . . zm . The complementary space of S1∼m

can be expressed as

S(m+1)∼∞ =
∞∑

i=m+1

Szi,Z = Rn − S1∼m (38)

For ∀zi,Z , obviously, the volume of Szi,Z is equal to the one
of SâZ , which can be expressed as

VS =
∫
SâZ

dX =
∫ [âZ (1)]+1

2

[âZ (1)]−1
2

· · ·
∫ [âZ (n)]+1

2

[âZ (n)]−1
2

dx1 · · · dxn =1

(39)

The occurring probability of Szi,Z can be expressed as

P
(
Szi,Z

) =
∫
Szi,Z

R · exp
{
−1

2

∥∥Y − [
âZ

]∥∥2
Dââ,Z

}
dY (40)

where R = (2π)− n
2
∣∣Dââ,Z

∣∣− 1
2 .

For ∀Szi,Z ∈ S(m+1)∼∞, the approximate probability that
Szi,Z will occur can be expressed as

P̄
(
Szi,Z

) = VS · R · exp
[
−1

2

∥∥zi,Z − âZ
∥∥2
Dââ,Z

]
(41)

When the space S1∼m is large enough, based on Eqs. (38),
(40) and (41), an approximate equation can be expressed as

∞∑
i=m+1

P̄
(
Szi,Z

) =
∞∑

i=m+1

P
(
Szi,Z

)

= P
(
S(m+1)∼∞

) = 1 − P (S1∼m) (42)

where P
(
S(m+1)∼∞

)
denotes the occurring probability of

S(m+1)∼∞, and P (S1∼m) denotes the one of S1∼m .
Proof see Appendix.

According to Eqs. (39), (41) and (42), Eq. (17) can be
expressed as

K(m+1)∼∞ =
∞∑

i=m+1

exp

[
−1

2

∥∥âZ − zi,Z
∥∥2
Dââ,Z

]

=
∞∑

i=m+1

1

VS · R P̄
(
Szi,Z

) = 1

R
[1 − P (S1∼m)]

(43)

Inserting Eqs. (43) into (18), yields

Pm/∞ = R · K1∼m

R · K1∼m + 1 − P (S1∼m)
(44)

When 1− α ≥ 0.997 in Eq. (33), namely c ≥ 3, the error of
Eq. (44), which is caused by the approximation of Eq. (42),
can be neglected in general.

5.2 Valuation and error

According to Eq. (44), for calculating Pm/∞, P (S1∼m)

should be worked out in advance, which can be expressed
as

P (S1∼m) =
∫
S1∼m

R · exp
{
−1

2

∥∥Y − [
âZ

]∥∥2
Dââ,Z

}
dY

(45)

Since Dââ,Z is not a diagonal matrix, it is discommodious
to work out P (S1∼m) based on Eq. (45). Referring to Eq.
(14) in Teunissen (1998), the lower bound of P (S1∼m) can
be obtained by

P (S1∼m) ≥ P	 (S1∼m)

=
n∏
j=1

[
2�

([
âZ ( j)

] − min
[
zi,Z ( j)

] + 1
2√

d j j,Z

)
− 1

]
(46)

where �(s) = ∫ s
−∞

1√
2π

exp
(
− x2

2

)
dx .

According to Eq. (44), the lower bound of the correction
factor Pm/∞ can be obtained by

Pm/∞ ≥ R · K1∼m

R · K1∼m + 1 − P	 (S1∼m)
(47)

Referring to Eq. (20) in Teunissen (1998), an upper bound of
P (S1∼m) can be obtained by

P (S1∼m) ≤ PB (S1∼m)

=
n∏
j=1

[
2�

([
âZ ( j)

] − min
[
zi,Z ( j)

] + 1
2√

d j j |J,Z

)
− 1

]
(48)
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where J = {1, 2, . . . , j − 1}, and d j j |J ,Z is the variance of

y j based on the case that
(
y1 · · · y j−1

)T
are known.

Accordingly, the upper bound of Pm/∞ can be obtained
by

Pm/∞ ≤ R · K1∼m

R · K1∼m + 1 − PB (S1∼m)
(49)

According to Eqs. (47) and (49), the correction factor Pm/∞
can be estimated by

P̂m/∞

= 1

2

[
R · K1∼m

R · K1∼m+1−P	 (S1∼m)
+ R · K1∼m

R · K1∼m+1−PB (S1∼m)

]

(50)

The error upper bound of P̂m/∞ can be obtained by


P̂m/∞ ≤ 
̄P̂m/∞

= 1

2

(
R · K1∼m

R · K1∼m+1−PB (S1∼m)
− R · K1∼m

R · K1∼m+1−P	 (S1∼m)

)

(51)

6 The calculation process in practice

(a) The first step is to realize the ambiguity decorrelation.
Based on Eq. (1), the float solution â of DD ambiguity and
the corresponding variancematrix Dââ are obtained. Further,
an integer transformationmatrix Z is obtained based on Dââ .
Then, â and Dââ can be transformed by

âZ = ZT â (52)

and

Dââ,Z = ZT Dââ Z (53)

(b) The second step is to determinem integer vectors. Adopt-
ing an appropriate c (in general, c = 3 is adopted), the lower
bound of every component can be calculated by⎧⎨
⎩
min

[
zi,Z ( j)

] = ⌊[
âZ ( j)

] + 1
2 − c

√
d j j,Z

⌋
c
√
d j j,Z > 1

2

min
[
zi,Z ( j)

]=[
âZ ( j)

] − 1 c
√
d j j,Z ≤ 1

2

(54)

where 	•
 denotes rounding down.
The upper bound of every component can be obtained by

max
[
zi,Z ( j)

] = 2
[
âZ ( j)

] − min
[
zi,Z ( j)

]
(55)

According to the range of every component, the integer
vectors z1,Z , z2,Z , . . . , zm,Z can be easily obtained via com-
bination. Furthermore, the adopted integer vectors that are

probably DD ambiguity vector can be obtained by

zi =
(
ZT

)−1
zi,Z zi,Z ∈ (

z1,Z , z2,Z , . . . , zm,Z
)

(56)

(c) The third step is to calculate the correction factor Pm/∞.
Using z1, z2, . . . , zm , K1∼m can be obtained by

K1∼m =
m∑
i=1

exp

[
−1

2

∥∥â − zi
∥∥2
Dââ

]
(57)

The lower bound and the upper bound of P (S1∼m) can be
obtained by

P	 (S1∼m)

=
n∏
j=1

[
2�

([
âZ ( j)

] − min
[
zi,Z ( j)

] + 1
2√

d j j,Z

)
− 1

]
(58)

and

PB (S1∼m)

=
n∏
j=1

[
2�

([
âZ ( j)

] − min
[
zi,Z ( j)

] + 1
2√

d j j |J,Z

)
− 1

]
(59)

The estimation value of Pm/∞ can be worked out by

P̂m/∞

= 1

2

[
R · K1∼m

R · K1∼m + 1 − P	 (S1∼m)
+ R · K1∼m

R · K1∼m + 1 − PB (S1∼m)

]

(60)

The error upper bound of P̂m/∞ can be obtained by


̄P̂m/∞
= 1

2

(
R · K1∼m

R · K1∼m + 1 − PB (S1∼m)
− R · K1∼m

R · K1∼m + 1 − P	 (S1∼m)

)

(61)

(d) The fourth step is to calculate the posterior probabilities.
The probability of zk = a with the known â can be calculated
by

P̂
(
zk = a

∣∣â ) =
exp

[
− 1

2

∥∥â − zk
∥∥2
Dââ

]
K1∼m

P̂m/∞ (62)

The error upper bound of P̂
(
zk = a

∣∣â ) can be obtained by


P̂
(
zk = a

∣∣â ) ≤
exp

[
− 1

2

∥∥â − zk
∥∥2
Dââ

]
K1∼m


̄P̂m/∞ (63)

Specially, because
∥∥∥â − �

a ILS

∥∥∥2
Dââ

is the smallest one, P̂(
�
a ILS=a

∣∣â ) is the largest one. Obviously, P̂ (
�
a ILS=a

∣∣â )
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and
P̂
(

�
a ILS = a

∣∣â ) can be calculated usingEqs. (62) and
(63). Because

�
a R,

�
a B ∈ Zn , obviously, P̂

(
�
a R = a

∣∣â ),
P̂
(

�
a B = a

∣∣â ) and their corresponding error upper bounds

can also be expediently worked out based on Eqs. (62)
and (63).

7 Example of verification

In this case, the baseline is about 500 m long. Static relative
measurement was implemented by two GPS receivers, and
the epoch interval was 5 s. Referring to Eq. (1), observation
equations were established, and based on least-square, the
float solution â of DD ambiguity and its variance matrix Dââ

were worked out.

7.1 Computation process and performance

(a) Taking the DD observations of the carrier phase of 120
epochs in 10 min as L , the float solution vector and its vari-
ance matrix are

â = (6.404272 14.122925 12.627364 − 0.001465

−3.447006 2.309204)T

and

Dââ

=

⎛
⎜⎜⎜⎜⎜⎜⎝

373.294 257.933 −195.394 290.875 200.985 −152.257
257.933 178.269 −134.960 200.985 138.908 −105.165

−195.394 −134.960 103.973 −152.257 −105.165 81.015
290.875 200.985 −152.257 226.660 156.614 −118.640
200.985 138.908 −105.165 156.614 108.244 −81.945

−152.257 −105.165 81.015 −118.640 −81.945 63.133

⎞
⎟⎟⎟⎟⎟⎟⎠

To clearly illustrate the proposed approach, the calculation
process was given step by step as follows.

The first step is to realize the ambiguity decorrelation.
Based on Dââ , we gained the integer transformation matrix

Z =

⎛
⎜⎜⎜⎜⎜⎜⎝

−3 2 0 1 1 2
2 −2 −2 −3 2 1

−1 −1 0 0 0 −3
4 −3 −1 0 −1 −2

−3 3 4 2 −3 −2
1 1 0 0 0 4

⎞
⎟⎟⎟⎟⎟⎟⎠

Then, the decorrelated ambiguity vector âZ and the corre-
sponding variance matrix Dââ,Z were obtained by Eqs. (52)
and (53).

The second step is to determinem integer vectors. Adopt-
ing c = 3, according to Eqs. (54) and (55), the minimum

integer value and the maximum one of every component of
S1∼m can be obtained, which are

min
[
zi,Z (1)

] = 8, max
[
zi,Z (1)

] = 10
min

[
zi,Z (2)

] = −37, max
[
zi,Z (2)

] = −35
min

[
zi,Z (3)

] = −43, max
[
zi,Z (3)

] = −41
min

[
zi,Z (4)

] = −44, max
[
zi,Z (4)

] = −42
min

[
zi,Z (5)

] = 44, max
[
zi,Z (5)

] = 46
min

[
zi,Z (6)

] = 4, max
[
zi,Z (6)

] = 6

Via combination, 729 integer vectors, namely z1,Z , z2,Z ,

. . . , z729,Z , were obtained. Furthermore, the adopted inte-
ger vectors that are probably DD ambiguity vector, namely
z1, z2, . . . , z729, can be obtained by Eq. (56).

The third step is to calculate the correction factor Pm/∞.
Based on Eq. (57), we have

K1∼m = 0.987995391211628

According to Eq. (58), the lower bound of P (S1∼m) reads

P	 (S1∼m)=0.998813975481466

According to Dââ,Z , the variance of y j , based on the case

that
(
y1 · · · y j−1

)T
are known, can be obtained as follows

d11|J,Z = 0.190000000001078 d22|J,Z = 0.173263157895045

d33|J,Z = 0.129425577156756 d44|J,Z = 0.116314834921560

d55|J,Z = 0.085889475191953 d66|J,Z = 0.092514336521617

According to Eq. (59), the upper bound of P (S1∼m) is

PB (S1∼m) = 0.999064762343891

According to Eq. (60), the estimation value of Pm/∞ is

P̂m/∞ = 0.999471860778787

According to Eq. (61), the error upper bound of P̂m/∞ is


̄P̂m/∞ = 0.000062406902962

The fourth step is to calculate the posterior probabilities of
z1 = a, z2 = a, . . . , z729 = a using Eqs. (62) and (63).
The top ten integer vectors and their corresponding posterior
probabilities are listed in Table 1.

(b) Taking the DD observations of the carrier phase of
384 epochs in 32 min as L , the float solution vector and its
variance matrix are

â = (8.514432 15.653847 11.231013 1.632104

−2 .256995 1.196251)T
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Table 1 The top ten integer
vectors and their posterior
probabilities based on the
observations of 120 epochs

Order Integer vector P̂
(
zk = a

∣∣â ) 
P̂
(
zk = a

∣∣â ) ≤
1 9 16 11 2 −2 1 0.780072832269148 0.000048707653969

2 −4 7 16 −8 −9 5 0.062817886138114 0.000003922341266

3 −4 7 20 −8 −9 8 0.032222706590091 0.000002011981929

4 22 25 6 12 5 −3 0.023683429329100 0.000001478790483

5 9 16 12 2 −2 2 0.017950600822511 0.000001120833359

6 −9 3 20 −12 −12 8 0.011394768085337 0.000000711487950

7 22 25 2 12 5 −6 0.008034808457466 0.000000501692475

8 −36 −15 34 −33 −26 19 0.006395082558889 0.000000399308187

9 −50 −25 43 −44 −34 26 0.003738608998242 0.000000233438296

10 37 35 −2 24 13 −9 0.003424754946043 0.000000213841288

Table 2 The top ten integer
vectors and their posterior
probabilities based on the
observations of 384 epochs

Order Integer vector P̂
(
zk = a

∣∣â ) 
P̂
(
zk = a

∣∣â ) ≤
1 9 16 11 2 −2 1 0.999999999999259 0

2 9 16 12 2 −2 2 0.000000000000378 0

3 9 16 10 2 −2 0 0.000000000000364 0

4 23 26 3 13 6 −5 0.000000000000000 0

5 −5 6 19 −9 −10 7 0.000000000000000 0

6 −4 7 17 −8 −9 6 0.000000000000000 0

7 5 13 13 −1 −4 3 0.000000000000000 0

8 22 25 5 12 5 −4 0.000000000000000 0

9 5 13 12 −1 −4 2 0.000000000000000 0

10 13 19 9 5 0 −1 0.000000000000000 0

and

Dââ =

⎛
⎜⎜⎜⎜⎜⎜⎝

9.885 6.960 −5.315 7.702 5.423 −4.142
6.960 4.902 −3.744 5.423 3.819 −2.918

−5.315 −3.744 2.901 −4.142 −2.918 2.259
7.702 5.423 −4.142 6.003 4.226 −3.227
5.423 3.819 −2.918 4.226 2.977 −2.273

−4.142 −2.918 2.259 −3.227 −2.273 1.762

⎞
⎟⎟⎟⎟⎟⎟⎠

Adopting c = 3, similar to the calculation steps above,
729 integer vectors were obtained. The estimation result
of Pm/∞ is P̂m/∞ ≈ 1 and the corresponding error
upper bound is 
̄P̂m/∞ ≈ 0. The top ten integer vectors
and their corresponding posterior probabilities are listed in
Table 2.

According to the above-mentioned calculation process
and the results in Tables 1 and 2, we can conclude: (a) the
adopted integer vectors can be directly obtained via formu-
las, without the searching step; (b) using the correction factor
Pm/∞, the accuracy of P̂

(
zk = a

∣∣â ) can be improved; (c)

the error upper bound of P̂
(
zk = a

∣∣â ) can be obtained and
the numerical example shows which is so small that it can
almost be neglected; and (d) for both the high-precision float
solution and the low-precision one, all the estimators of the
posterior probabilities are very accurate.

7.2 Comparison with the success rate

To explain the differences between the posterior probability

P(zk = a
∣∣â ) and the success rate PS�

a

(
�
a = a

)
, the poste-

rior probabilities and the success rates of
�
aR = a,

�
aB = a

and
�
a = a were calculated based on the experiment data.

Based on the DD observations of the carrier phase of 384
epochs in 32 min, the posterior probabilitis and the success

rates of
�
aR = a,

�
aB = a and

�
a ILS = a are listed in Table 3.

As can be seen from Table 3, under the current data,
�
aR =

�
aB = �

a ILS and P̂
(

�
aR = �

aB = a
∣∣â ) = P̂

(
�
aB = a

∣∣â ) =
P̂
(

�
a ILS = �

aB = a
∣∣â ). However, based on the theory of

success rate, under the current data, PR
(

�
aR = �

aB = a
)

<

PB
(

�
aB = a

)
< PILS

(
�
a ILS = �

aB = a
)
, which seem to be

paradoxical. So, the posterior probability can reflect the prob-

ability of
�
a = a under the current data.

8 Concluding remarks

The float solution â of DD ambiguity is a real vector of
order n, but the DD ambiguity vector a should be an inte-
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Table 3 Comparison between
the posterior probability and the
success rate based on the
observations of 384 epochs

Integer vector P̂
(

�
a = a

∣∣â ) PS�
a

(
�
a = a

)

�
a ILS 9 16 11 2 −2 1 0.999999999999259 >0.9862
�
aB 9 16 11 2 −2 1 0.999999999999259 0.9862
�
aR 9 16 11 2 −2 1 0.999999999999259 <0.9862

ger vector. Since a is unknown, any integer vector of order
n is a probably. It is necessary to obtain the probability
that an integer vector is DD ambiguity a based on prob-
ability and statistics theory. In this paper, an approach to
calculate the posterior probability of zk = a, using the float
solution â and the corresponding variance matrix Dââ , is
proposed.

In the proposed approach, first, the space of integers Zn

is divided into two subspaces, one subspace consists of z1,
z2, . . . zm , and the complementary space consists of zm+1,
zm+2, . . . z∞. Using the integer vectors z1, z2, . . . , zm , a
symmetric space S1∼m ∈ Rn can be structured, and the cor-
responding complementary space is S(m+1)∼∞. It should be
noted that to avoid losing the strict dependence between the
posterior probability P

(
zk = a

∣∣â ) and the float solution
â, every component of S1∼m should consist of more than
one integer. The upper and lower bounds of S1∼m can be
directly worked out by formulas, and the integer vectors z1,
z2, . . . , zm can be obtained by combination. The formula
to calculate the correction factor Pm/∞, which involves the
space S(m+1)∼∞, is transformed to only involve the space
S1∼m . Then, the estimator of P

(
zk = a

∣∣â ) and the corre-
sponding upper bound of the estimator error can be obtained.
In this paper, the process of calculating P

(
zk = a

∣∣â ) and
the derivations of the formulas have been presented in
detail.

The proposed approach has the following advantages: (a)
less calculation workload, which benefits from the ability
that the integers of every component can be immediately
obtained by calculation without searching, (b) high accuracy
of result benefitting from the correction factor, and (c) strong
adaptability for any float solutions with various levels of
precision.

Acknowledgements The authors thank the Editor Dr Sandra Verhagen
and three anonymous reviewers for their detailed comments and valu-
able suggestions that improve the quality of the manuscript. This work
was financially supported by the National Natural Science Foundation
of China (Nos. 41674035, 41574026 and 41574022).

Appendix: Proof of Eq. (42)

For ∀Szi,Z ∈ S(m+1)∼∞, the approximate probability that
Szi,Z will occur can be expressed as

P̄
(
Szi,Z

)=VS · R · exp
[
−1

2

∥∥zi,Z − âZ
∥∥2
Dââ,Z

]

=VS · R · exp
{
−1

2

∥∥zi,Z −[
âZ

]+δ
∥∥2
Dââ,Z

}
(64)

where δ = [
âZ

] − âZ .
Because S1∼m is a centrosymmetric space to

[
âZ

]
, there

is a subspace Szq,Z ∈ S(m+1)∼∞ that is symmetrical to
[
âZ

]
with Szi,Z . And the relation between zi,Z and zq,Z , which are
the entre points of the two subspaces, can be expressed as

zq,Z = 2
[
âZ

] − zi,Z (65)

Referring to Eq. (64), the approximate probability that Szq,Z

will occur can be expressed as

P̄
(
Szq,Z

) = VS · R · exp
[
−1

2

∥∥zq,Z − âZ
∥∥2
Dââ,Z

]

= VS · R · exp
{
−1

2

∥∥2 [âZ ] − zi,Z − âZ
∥∥2
Dââ,Z

}

= VS · R · exp
{
−1

2

∥∥zi,Z − [
âZ

] − δ
∥∥2
Dââ,Z

}

(66)

The sum of Eqs. (64) and (66) can be expressed as

P̄
(
Szi,Z

) + P̄
(
Szq,Z

)

= VS · R · exp
{
−1

2

∥∥zi,Z + δ − [
âZ

]∥∥2
Dââ,Z

}
(67)

+VS · R · exp
{
−1

2

∥∥zi,Z − δ − [
âZ

]∥∥2
Dââ,Z

}

The probability that Szi,Z occur can be expressed as

P
(
Szi,Z

) =
∫
Szi,Z

R · exp
{
−1

2

∥∥Y − [
âZ

]∥∥2
Dââ,Z

}
dY (68)

Because − 1
2 ≤ δ ( j) ≤ 1

2 , both zi,Z + δ and zi,Z − δ are
within Szi,Z and symmetric to the entre point zi,Z of Szi,Z .
When S1∼m is larger enough, Eq. (67) can be approximately
expressed as

P̄
(
Szi,Z

) + P̄
(
Szq,Z

) = 2P
(
Szi,Z

)
(69)
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Further, we have

∞∑
i=m+1

P̄
(
Szi,Z

) =
∞∑

i=m+1

P
(
Szi,Z

) = P
(
S(m+1)∼∞

)
(70)

End of proof. 
�
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