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Abstract Our present relativistic part of the geodetic VLBI
model forEarthbound antennas is a consensusmodelwhich is
considered as a standard for processing high-precision VLBI
observations. It was created as a compromise between a vari-
ety of relativistic VLBImodels proposed by different authors
as documented in the IERS Conventions 2010. The accuracy
of the consensus model is in the picosecond range for the
group delay but this is not sufficient for current geodetic pur-
poses. This paper provides a fully documented derivation
of a new relativistic model having an accuracy substantially
higher than one picosecond and based upon a well accepted
formalism of relativistic celestial mechanics, astrometry and
geodesy. Our newmodel fully confirms the consensus model
at the picosecond level and in several respects goes to a great
extent beyond it.More specifically, terms related to the accel-
eration of the geocenter are considered and kept in themodel,
the gravitational time-delay due to a massive body (planet,
Sun, etc.) with arbitrary mass and spin-multipole moments
is derived taking into account the motion of the body, and a
new formalism for the time-delay problem of radio sources
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located at finite distance from VLBI stations is presented.
Thus, the paper presents a substantially elaborated theoret-
ical justification of the consensus model and its significant
extension that allows researchers to make concrete estimates
of the magnitude of residual terms of this model for any
conceivable configuration of the source of light,massive bod-
ies, and VLBI stations. The largest terms in the relativistic
time delay which can affect the current VLBI observations
are from the quadrupole and the angular momentum of the
gravitating bodies that are known from the literature. These
terms should be included in the new geodetic VLBI model
for improving its consistency.

Keywords VLBI · Relativity · Gravitational time delay ·
Geodesy

List of symbols

G: Universal gravitational constant
c: Vacuum speed of light
MA: Mass of body A
ML : ML = Mi1...il , where each Cartesian index runs

over 1, 2, 3 or x, y, z. It denotes the Cartesian
mass-multipolemoments of a of degree l (e.g.Mi j

denotes the Cartesian mass-quadrupole moments
of a body)

(t, x): Time and spatial coordinates in the global refer-
ence system; t =TCB in the BCRS

x0: x0 = ct
xi : xi = (x, y, z)
(T,X): Time and spatial coordinates in a local system;

T =TCG in the GCRS
X0: X0 = cT
Xa : Xa = (X,Y, Z)
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gμν : Components of the BCRS metric tensor
Gαβ : Components of the metric tensor in a local coor-

dinate system (mostly the GCRS)
ημν : ημν = diag(−1,+1,+1,+1), the Minkowskian

metric
w(t, x): Global gravito-electric potential, generalizing the

Newtonian potential U (t, x)
wi (t, x): Global gravito-magnetic potential
(W,Wa): Gravito-electric and magnetic GCRS potentials
δi j : δi j = 1 if i = j ; zero otherwise
zA(t): Barycentric coordinate position of body A as

function of global coordinate time t
zA(T ): Barycentric coordinate position of body A as

function of local time T
(w,wi ): External metric potentials
TCB: Barycentric coordinate time
TCG: Geocentric coordinate time
TT: Terrestrial time
TDB: Barycentric dynamical time
LG: A defining constant; defines TT in terms of TCG
LB: Adefining constant; definesTDB in terms ofTCB
xiL(t): Light-ray trajectory in global coordinates; often

the index L is suppressed
ẋ i : Abbreviation for dxiL(t)/dt

1 Introduction

Very Long Baseline Interferometry (VLBI) is a very remark-
able observational and measuring technique. Signals from
radio sources such as quasars, locatednear the edgeof our vis-
ible universe, are recorded by two ormore radio antennas and
the cross-correlation function between each pair of signals is
constructed that leads to the basic observable: the geometric
time delay between the arrival times of a certain feature in
the signal at two antennas. From this, a wealth of information
is deduced: the positions and time and frequency dependent
structure of the radio sources, a precise radio catalogue that
presently defines the International Celestial Reference Frame
(ICRF)with an overall precision of about 40µas for the posi-
tion of individual sources and 10µas for the axis orientation
of the ICRF-2 (Jacobs et al. 2013). In addition to information
derived with other geodetic space techniques such as Satel-
lite Laser Ranging (SLR) and Global Navigation Satellite
Systems (GPS, GLONASS, GALILEO, BEIDOU), it pro-
vides important information for the International Terrestrial
Reference System (ITRF) with accuracies in the mm range.

VLBI is employed for a precise determination of Earth’s
orientation parameters related with precession-nutation,
length of day and polar motion, thus providing detailed infor-
mation about the various subsystems of the Earth (elastic
Earth, fluid outer core, solid inner core, atmosphere, ocean,
continental hydrology, cryosphere, etc.) and their physical

interactions. In this way, VLBI not only contributes signif-
icantly to geophysics but also presents an important tool to
study our environment on a global scale and its change with
time.

To utilize the full power of VLBI, the establishment of a
VLBI model with adequate precision is essential; at present
such a model should have an internal precision below 1 ps
for the delay between the times of arrival of a radio signal
at two VLBI stations separated by a continental baseline.
Any reasonable VLBI model for Earthbound antennas has to
describe a variety of different effects:

(1) the propagation of radio signals from the radio sources
to the antennas,

(2) the propagation of radio signals through the solar
corona, planetary magnetospheres and interstellar
medium,

(3) the propagation through the Earth’s ionosphere,
(4) the propagation through the Earth’s troposphere,
(5) the relation between the ICRS (International Celestial

Reference System (better: GCRS (Geocentric Celestial
Reference System)) and the ITRS (International Terres-
trial Reference System),

(6) the time-dependent motion of antenna reference points
in the ITRS,

(7) instrumental time delays,
(8) clock instabilities.

In this article, we will focus on the first issue. Effects from
the signal propagation through the troposphere are included
in the model. The present VLBI tries to reach mm accuracies
so the underlying theoretical model should have an accuracy
of better than 0.3 ps. This number has to be comparedwith the
largest relativistic terms; e.g. the gravitational timedelay near
the limb of the Sun amounts to about 170 ns for a baseline of
6000 km. So at the required level of accuracy, the model has
to be formulated within the framework of Einstein’s theory
of gravity.

The standard reference to such a relativistic VLBI-model
is the (IERS Conventions 2010) [IERS Technical Note No.
36, G.Petit, B.Luzum (eds.)]. As explained there, the IERS-
model is based upon a consensus model (not necessarily
intrinsically consistent) as described in Eubanks (1991). The
consensus model was based upon a variety of relativistic
VLBI models with accuracies in the picosecond range.

The purpose of the present paper is first to re-derive the
consensus model for Earthbound baselines within a more
consistent framework. Then, we extend and improve this
formalism. With a few exceptions, e.g. for the tropospheric
delay, all results are derived explicitly using a well-accepted
formulation of relativistic celestial mechanics. The paper
tries to be as detailed as possible. This will be of help for
the reading of non-experts but also for further theoretical
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work on the subject. The paper basically confirms the expres-
sions from the consensusmodel. In several respects, however,
we go beyond the standard model. E.g. terms related with
the acceleration of the Earth might become interesting at
the level of a few femtoseconds (fs) for baselines of order
6000 km; they grow quadratically with the station distance
to the geocenter. In the gravitational time delay, we consider
the gravitational field of a moving body with arbitrary mass-
and spin-multipole moments. Another point is the parallax
expansion for radio sources at finite distance which is treated
with a new parallax expansion (Sect. 2).

We believe that our new formulation has an intrinsic accu-
racy of order 10 fs (femtoseconds), but further checks have
to be made to confirm that statement.

The time delay in VLBI measurements is first formu-
lated in the Barycentric Celestial Reference System (BCRS)
where the signal propagation from the radio source to the
antennas is described; at this place, BCRS baselines b are
introduced. Then, the basic time delay Eq. (20) is derived
from the Damour et al. (1991) formulation of relativistic
reference systems. It provides the transformation formulas
from the BCRS to the GCRS where GCRS baselines B are
defined. In this basic time delay equation, only the gravita-
tional (Shapiro) time delay term is not written out explicitly.
In Appendix C, the Shapiro term is treated exhaustively.

The organization of this article is as follows: Sect. 2 con-
tains the main part of the paper where all central results can
be found. In Sect. 3, some conclusions are presented. All
technical details and derivations of results can be found in
the Appendices.

Appendix A presents relevant parts of the theory of rela-
tivistic reference systemswhere the transformations between
the BCRS and the GCRS are discussed in detail.

Appendix B discusses the form of themetric tensor for the
solar system at the first and second post-Newtonian level.

Appendix C focuses on the gravitational time delay in the
propagation of electromagnetic signals or light rays. In the
BCRS, the post-Newtonian equation of a light ray (at various
places we drop the index L referring to light ray) takes the
form

xL(t) = x0 − ck(t − t0) + xG(t) ≡ xN(t) + xG(t), (1)

where n = −k is a Euclidean unit vector (nini = 1) in the
direction of light-ray propagation. I.e. to the Newtonian form
of the light-ray trajectory,

xNL (t) = x0 − ck(t − t0) (2)

one adds a post-Newtonian term proportional to 1/c2 that is
determined by the gravitational action of the solar system
bodies (the gravitational light-deflection and the gravita-
tional time delay (Shapiro)). In this Appendix, results for
the Shapiro term can be found for a (moving) gravitating

bodywith arbitrarymass- and spin-multipolemoments. Here
technically the so-called Time Transfer Function (TTF) is
employed.

Finally, Appendix D provides additional derivations of
certain statements of the main section.

2 An advanced relativistic VLBI model for geodesy

Since this article concentrates on Earthbound baselines, it is
obvious that at least two space–time reference systems have
to be employed:

(i) One global coordinate system (t, xi ), in which the light
propagation from remote sources (e.g. a quasar) can be
formulated and the motion of solar system bodies can
be described. The origin of this system of coordinates
will be chosen as the barycenter of the solar system,
thus our global system will be the Barycentric Celestial
Reference System (BCRS). Its time coordinate will be
TCB (Barycentric Coordinate Time).

(ii) Some geocentric coordinate system (T, Xa), comov-
ing with the Earth, in which geodetically meaningful
baselines can be defined. We will employ the Geo-
centric Celestial Reference System (GCRS) to this end
with T =TCG (Geocentric Coordinate Time) as basic
timescale.

One might employ additional reference systems for a
highly accurate VLBI model. One might introduce topocen-
tric reference systems, but they will not be needed in the
following. One might introduce some galacto-centric celes-
tial reference system; but since the problem of galactic
rotation will not be touched (e.g. Lambert 2011; Titov et al.
2011), this also will not be needed. One might modify the
BCRS to account for the Hubble expansion of the universe;
an attempt in this direction can be found, e.g. in Klioner
and Soffel (2004). There it was shown that if the generalized
BCRS coordinates are chosen properly “effects” from the
Hubble expansion on planetary orbits and the propagation of
light rays are completely negligible in the solar system.

Barycentric Coordinate Time, TCB, andGeocentric Coor-
dinate Time, TCG, are the fundamental time coordinates
of the BCRS and the GCRS, respectively. The relationship
between them, according to (A-18), is given by

TCB − TCG=c−2

[∫ t

t0

(
v2E
2

+ w(zE)

)
dt + viEr

i
E

]
+O(c−4),

(3)

with r iE = xi − ziE.
Note that no real clock on Earth will show directly TCG.

Real atomic clocks on Earth define International Atomic
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Fig. 1 Geometry in the problem of an elementary VLBI measurement

Time, TAI, that differs from Terrestrial Time, TT, only by
a shift of 32.184 s. According to an IAU-2000 resolution
B1.9 Terrestrial time TT is defined by

TT = TCG− LG × (JDTCG − 2443144.5003725)× 86400,

(4)

where JDTCG is TCG-time expressed as Julian date. LG is a
defining constant with

LG = 1 − d(TT)

d(TCG)
= 6.969290134 × 10−10. (5)

For the use in ephemerides, the time scale TDB (Barycen-
tric Dynamical Time) was introduced. IAU resolution 3 of
2006 defines TDB as a linear transformation of TCB. As of
the beginning of 2011, the difference between TDB and TCB
was about 16.6 s. TDB is defined by (e.g. Soffel et al. 2003)

TDB = TCB − LB × (JDTCB − T0) × 86400 + TDB0, (6)

LB = 1.550519768 × 10−8,

TDB0 = −6.55 × 10−5 s,

T0 = 2443144.5003725.

Due to the Earth’s acceleration, the GCRS is only a local
reference system, i.e. its spatial coordinates do not extend to
infinity (e.g. Misner et al. 1973). For that reason, the signal
propagation from a sufficiently remote radio source to the
antennae has to be formulated in the BCRS. For the problem
of propagation times, we consider two light rays, both orig-
inating from a source at BCRS position x0 and time t0 (see
Fig. 1).

Each of these two light rays is described in BCRS coor-
dinates by an equation of the form:

x(i)
L (t) = x0 − cki (t − t0) + xGi (t) ≡ xNi (t) + xGi (t), (7)

where the Euclidean unit vector ki points from antenna i
towards the radio source,

ki = x0 − xi
|x0 − xi | .

We now assume that light-ray number i (i = 1, 2) reaches
antenna i at barycentric coordinate position xi at barycentric
coordinate time ti , so that

x(i)
L (ti ) = xi (ti ). (8)

From (7) and including influences of the atmosphere, we
then get

�t ≡ t2 − t1 = (�t)geom + (�t)grav + (�t)atm (9)

with

(�t)geom = −1

c
k2 · (x2(t2) − x0) + 1

c
k1 · (x1(t1) − x0)

(10)

(�t)grav = +1

c
k2 · (xG2 (t2)) − 1

c
k1 · (xG1 (t1)) (11)

(�t)atm = δtatm2 − δtatm1 . (12)

From Kopeikin and Han (2015), the atmospheric delay
can be written as:

δtatmi =
∫ ti

tai
(n − 1)

(
1 + 2

c
k · vatm

)
dt, (13)

where tai is TCB time when the light ray enters the
atmosphere, n is the index of refraction of the troposphere
and vatm is the BCRS velocity of some tropospheric element
on the path of the signal’s propagation.

2.1 Very remote radio sources

2.1.1 Barycentric model

We will consider very remote sources first, so that we can
neglect the parallaxes; for them, we can put k1 = k2 = k so
that

k = x0
|x0| , (14)

and

(�t)geom = −1

c
k · (x2(t2) − x1(t1)) (15)

(�t)grav = +1

c
k · (xG2 (t2) − xG1 (t1)). (16)

Let us define baselines at signal arrival time t1 at antenna
1. Let the barycentric baseline b be defined as:

b ≡ b(t1) ≡ x2(t1) − x1(t1), (17)
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then, a Taylor expansion of x2(t2) in (15) about t1 yields

(�t)geom = 1

c
(b · k)

(
1 − 1

c
(ẋ2 · k) + 1

c2
(ẋ2 · k)2

− 1

2c2
(b · k)(ẍ2 · k)

)
+ O(c−4), (18)

all quantities now referring to TCB t1.

2.1.2 Geocentric baselines

Clearly for Earth-bound baselines, we want to define them
in the GCRS. Let us define a GCRS baseline via

B ≡ X2(T1) − X1(T1). (19)

Using the coordinate transformations between barycentric
and geocentric spatial coordinates (resulting from Lorentz-
contractions terms and corresponding terms related with
gravitational potentials and acceleration terms of the geocen-
ter) and time coordinates (resulting from time dilation and
gravitational redshift terms), one finds a relation between a
barycentric baseline b and the corresponding geocentric one
B [the baseline Eq. (D-3)].

Let�t = t2−t1 and�T = T2−T1 be the coordinate time
difference between signal arrival times at antenna 2 and 1 in
the BCRS and in the GCRS, respectively. A detailed analysis
of the time transformation then leads to a relation between
�t and �T [relation (D-5) from Appendix D]. Using this
relation, we get a delay equation of the form

�T = −1

c
(B · k)

+ 1

c2
(B · k)(k · v2) − 1

c2
(B · vE)

+ 1

c3
(B · k)

[
(vE · V2) − (k · v2)2 + 2w(zE) + 1

2
v2E

− 1

2
(B · k)(k · a2) + (aE · X2)

]

+ 1

c3
(B · vE)

[
(k · V2) + 1

2
(k · vE)

]

−1

c
k · �ξ + �tgrav

1 + k · v2/c
+(δTatm2 − δTatm1) + δTatm1

k · (V2 − V1)

c
. (20)

with [ξ is defined in (A-7) of Appendix A]

�ξ = ξ(T1,X2) − ξ(T1,X1)

= 1

c2

[
1

2
aE(B · (X1 + X2)) − X2(aE · X2) + X1(aE · X1)

]
.

(21)

In this basic time delay equation B is the geocentric
baseline from (19), k is the Euclidean unit vector from the
barycenter to the radio source from (14), v2 is the barycen-
tric coordinate velocity of antenna 2,V2 is the corresponding
geocentric velocity (to Newtonian order v2 = vE + V2),
w(zE) is the external gravitational potential resulting from
all solar system bodies except the Earth taken at the geo-
center, vE and aE are the BCRS velocity and acceleration
of the geocenter and Xi is the GCRS coordinate position of
antenna i . The atmospheric terms can be derived to sufficient
accuracy from

δTatm = δtatm
1 + 1

ck · v2
. (22)

Explicit expressions for�tgrav are given below. In Appen-
dix D, it is shown that the basic time delay Eq. (20) can
be derived directly without the introduction of some BCRS
baseline.

A comparison of (20) with expression (11.9) from the
IERS Conventions shows that all terms from the Conven-
tions are contained in the basic time delay equation after an
expansion in terms of 1/c. The k · �ξ -term is missing in
the Conventions since for earthbound baselines the order of
magnitude is of order a few fs; note that this term grows
quadratically with the station distance to the geocenter (this
term is known from the literature; Soffel et al. 1991).

2.1.3 Scaling problems

Our baseline Bwas defined by a difference of spatial coordi-
nates in theGCRS, i.e. it is relatedwith TCG, the basicGCRS
timescale. In modern language of the IAU Resolutions (e.g.
IERS Technical Note No. 36), our B is TCG-compatible,
B = BTCG.

We will assume that the station clocks are synchronized
to UTC, i.e. their rates are TT-compatible. The geocentric
space coordinates resulting from a direct VLBI analysis,
XVLBI = XTT, are therefore also TT-compatible. Accord-
ing to (5), the TRS space coordinates recommended by IAU
and IUGG resolutions, XTCG, may be obtained a posteriori
by

X = XTCG = XVLBI

1 − LG
. (23)

2.2 The gravitational time delay in VLBI

The gravitational time delay or Shapiro effect for a single
light ray is discussed extensively in Appendix C. In this
Appendix, it is treated with the method of the Time Transfer
Function (TTF) defined by

123



788 M. Soffel et al.

T (t0, x0; x) = t − t0. (24)

Here, it is assumed that a light ray starts from coordinate
position x0 at coordinate time t0 and reaches the point x at
time t . We had assumed that such a light ray reaches antenna
i at BCRS position xi at TCB ti so that

ti − t0 = T (t0, x0; xi ). (25)

The VLBI gravitational time delay is just a differential
delay, as time difference in the arrival time of a signal at the
two radio antennas:

(�t)grav = (t2 − t0) − (t1 − t0)

= T (t0, x0; x2) − T (t0, x0; x1). (26)

From this relation, (�t)grav can be derived from the
expressions given in Appendix C. The dominant terms
resulting from the mass-monopole, mass-quadrupole and
spin-dipole of solar system bodies are given explicitly in the
next subsections; they are already known from the literature.

2.2.1 Mass-monopoles to 1PN order at rest

Let us first consider the Sun at xS = 0 (moving bodies are
considered in the next Subsection). From (C-17), we get

(�t)SunpN = 2GMS

c3

[
ln

( |x2| − x2 · k2
|x1| − x1 · k1

)
+ln

( |x0| − x0 · k1
|x0| − x0 · k2

)]
.

(27)

An expansion yields

ki = k + 1

|x0| [k · (xi · k) − xi ]

− 1

|x0|2
(
xi (xi · k) + 1

2
kx2i − 3

2
k(xi · k)2

)
+ · · · .

(28)

Using this result, we find

|x0| − x0 · k1
|x0| − x0 · k2 = 1 − k · k1

1 − k · k2 = x21 − (x1 · k)2

x22 − (x2 · k)2

so that (Finkelstein et al. 1983; Soffel 1989)

(�t)SunM,pN = 2GMS

c3
ln

( |x1| + x1 · k
|x2| + x2 · k

)
. (29)

The time difference �t can be neglected in the ln-term and
writing

xi = xE + Xi ,

we obtain (Finkelstein et al. 1983; Zeller et al. 1986):

(�t)SunM,pN = 2GMS

c3

ln

(
rE(1 + eE · k) + X1 · (eE + k) + X2

1/2rE − (eE · X1)
2/2rE

rE(1 + eE · k) + X2 · (eE + k) + x22/2rE − (eE · x2)2/2rE

)
,

(30)

with

eE ≡ xE/rE , rE = |xE| = (xiEx
i
E)1/2.

Next, we consider some planet A at rest in the BCRS. The
corresponding time delay is then given by

(�t)planet AM,pN = 2GMA

c3
ln

( |rA1| + rA1 · k
|rA2| + rA2 · k

)
, (31)

where

rAi ≡ xi (ti ) − xA.

For the gravitational time delay due to the Earth, one finds

(�t)EarthM,pN = 2GME

c3
ln

( |X1| + X1 · k
|X2| + X2 · k

)
, (32)

if the motion of the Earth during signal propagation is
neglected.

Note that the maximal gravitational time delays due to
Jupiter, Saturn, Uranus and Neptune are of order 1.6 (Jup),
0.6 (Sat), 0.2 (U), and 0.2 (N) nanosec, respectively, but these
values decrease rapidlywith increasing angular distance from
the limb of the planet (Klioner 1991). E.g. 10 arcmin from
the center of the planet the gravitational time delay amounts
only to about 60 ps for Jupiter, 9 ps for Saturn, and about 1 ps
for Uranus.

2.2.2 Mass-monopoles to 1PN order in motion

If the motion of a gravitational body A, say a planet in
the solar system, is considered, we face several problems
(Kopeikin 1990; Klioner 1991, 2003). One is the instant of
timewhen the position of themassive bodyA should be taken
in the equation of the time delay. According to Kopeikin
(1990) and Klioner (1991), the errors are minimized if the
moment of the closest approach of the unperturbed light ray
to the body A is taken. Kopeikin and Schäfer (1999) proved
that the time at which the body is taken on its orbit in the time
delay equation is the retarded time while the time of the clos-
est approach is an approximation. The difference between the
two instants of time is practically small but important from
the principal point of view, in the physical interpretation of
time-delay experiments. We had written the unperturbed
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light ray in the form xNL (t) = x0 − ck(t − t0). Because the
light rays moving from the source of light to each VLBI sta-
tion are different, we define the impact parameter vector of
each light ray with respect to body A as follows (Kopeikin
and Schäfer 1999):

dAi = k × (rAi × k) (33)

with

rAi ≡ xi (ti ) − xA(tAi ), (34)

where tAi is the retarded time

tAi = ti − rAi
c

. (35)

The gravitational time delay in the time of arrivals of two
light rays at two VLBI stations resulting from body A was
given by Kopeikin and Schäfer (1999) and has the following
form:

(�t)AM,l=0 = 2GMA

c3
[
1 + k · βA(tA1)

]
ln

( |rA1| + rA1 · k
|rA2| + rA2 · k

)
,

(36)

where rA1 and rA2 are to be taken from (34) with the retarded
times tA1 and tA2 calculated from (35) for i = 1, 2, respec-
tively. The time delay (36) has the same form as (C-29)
of Appendix C for the case of the body A moving with
a constant velocity (Kopeikin 1997; Klioner and Kopeikin
1992). Klioner (1991) has estimated the effects from the
translational motion of gravitating bodies. For an earthbound
baseline of 6000 km, the additional effect near the limb of
the Sun amounts to 0.01 ps, of Jupiter 0.07 ps and of Saturn
0.02 ps.

2.2.3 The influence of mass-quadrupole moments

The gravitational time delay due to the mass-quadrupole
moment of body A can be described by

(�t)M,l=2 = G

c3
MA

pq( f
pq
A2 − f pqA1 ) (37)

with

f pqAi = (1 − (k · nAi )3) k
pkq

d2Ai
+ 2k pdqAi

r3Ai

+ (2 − 3k · nAi + (k · nAi )3) d
p
Aid

q
Ai

d4Ai
. (38)

Here,

nAi ≡ rAi/rAi

and dAi = ni × (rAi × ni ) (Kopeikin 1997; Klioner and
Kopeikin 1992).Maximal effects from theoblateness of grav-
itating bodies for b ∼ 6000 km are of order 0.2 ps for the
Sun, 21 ps for Jupiter, 8 ps for Saturn, 2 ps for Uranus and
0.7 ps for Neptune (Klioner 1991).

2.2.4 The influence of higher mass-multipole moments

InAppendixC,we present all necessary formulas to compute
the gravitational time delay due to higher mass-multipole
moments (potential coefficients with l > 2). For the Sun,
there are indications that the J4 term is surprisingly large,
only a factor of ten smaller than J2 (Ulrich and Hawkins
1980). This implies that very close to the limb of the Sun
the J4-term might lead to a time delay as large as 0.02 ps.
More detailed studies are needed to better estimate the J4-
effect from the Sun. For Jupiter, J4 is about −587 × 10−6,
roughly a factor of 25 smaller than J2 = 14696 × 10−6

(Jacobsen 2003) so the maximal time delay might be slightly
less than 1 ps. Note that the gravitational field of a body
produced by its hexadecapole moment falls of much faster
with distance from the body than the quadrupole field. So for
real geodetic VLBI observations, such hexadecapole effects
might be smaller than an fs and hence negligible.

2.2.5 The influence of spin-dipole moments

The gravitational time delay due to the spin-dipole moment
of body A can be obtained from (C-22) as difference for the
two antennas. Using dAi = rAi − k(rAi · k) and d2Ai =
(rAi + k · rAi )(rAi − k · rAi ), one finds ((4.11) of Klioner
1991; Kopeikin and Mashhoon 2002)

(�t)Sa = 2G

c4
(k × SA) · (FA2 − FA1), FAi ≡ nAi

rAi + k · rAi .
(39)

Spin-dipole effects for b ∼ 6000 km near the limb of the
rotating body are of order 0.06 ps for the Sun, and 0.02 ps for
Jupiter (Klioner 1991). Effects from higher spin-moments
with l > 4 are even smaller (see, e.g. Meichsner and Soffel
2015 for related material).

2.2.6 2PN mass-monopoles at rest

From Klioner (1991) (see also Brumberg 1987), we get the
gravitational time delay from a mass-monopole A to post–
post Newtonian order in the form

(�t)M,ppN = G2M2
A

c5

[
− 4

rA2 + k · rA2
+ 4

rA1 + k · rA1 + k · nA2
4rA2

− k · nA1
4rA1
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+ 15

4|k × rA2| arccos(k · nA2)

− 15

4|k × rA1| arccos(k · nA1)
]

. (40)

The first two terms are the dominant ones and a further
expansion of these two terms leads to expression (11.14) in
the IERS-2010 (Richter and Matzner 1983; Hellings 1986).
Maximal time delays from 2PN effects (b ∼ 6000 km) are of
order 307 ps for the Sun, 1.5 ps for Jupiter, 0.4 ps for Saturn,
0.1 ps for Uranus and 0.3 ps for Neptune (Klioner 1991).

2.3 Radio sources at finite distance

Let us now consider the case of a radio source at finite dis-
tance. The vacuum part of the time delay is

(�t)v = tv2 − tv1 = |x2(t2) − x0|
c

− |x1(t1) − x0|
c

+�tgrav,

(41)

where x0 is the coordinate of the radio source taken at the
time of emission: x0 = x0(t0), and x1, x2 are the spatial
coordinates of the first and second VLBI stations taken at
the times t1 and t2, respectively. A geometric demonstration
of these coordinates and corresponding vectors is shown in
Figs. 2 and 3.

Coordinates of all VLBI stations should be referred to
the time of reception of the radio signal at the clock of the
first VLBI station which is considered as the primary time
reference.

Let us introduce the vectors

L2 ≡ x2(t1) − x0, L1 ≡ x1(t1) − x0, (42)

Fig. 2 Geometry in the problem of a VLBI observation of an object at
finite distance

Fig. 3 A spacetime diagram of the VLBI observation of a close object

then in Appendix D, it is shown that the vacuum part of the
time delay to sufficient accuracy can be written in the form:

(�t)v = (�t0 + �tgrav)
[
1 − c−1k2 · ẋ2 + c−2(k2 · ẋ2)2

−c−3(k2 · ẋ2)3
]

−1

2
c−1k2 · ẍ2(�t0)

2 + 1

2
c−1L−1

2 |k2 × ẋ2|2(�t0)
2

(43)

with

�t0 ≡ L2 − L1

c
(44)

and

k2 ≡ −L2

L2
. (45)

We omit�tgrav in the quadric term because of�tgrav � �t0.
Equation (43) is sufficient for processing VLBI observation
with the precision about 10 fs level. Sekido and Fukushima
(Sekido and Fukushima 2006) used the Halley’s method to
solve the quadratic Eq. (D-10). Their result is fully consis-
tent with our (approximate) solution (43). In (43), the two
vectors L1 and L2 are employed. These vectors are directed
from the radio source to the first and second VLBI stations,
respectively, and cannot be calculated directly in practical
work. Instead, a decomposition in two vectors is used. More
specifically,
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L1 = L + R1, L2 = L + R2, (46)

where L ≡ xE(t1) − x0 is a vector directed from the radio
source to the geocenter having coordinates xE = xE(t1), and
R1 ≡ x1(t1)−xE(t1),R2 ≡ x2(t1)−xE(t1) are the geocentric
vectors of the first and secondVLBI stations calculated in the
BCRS.

For an analytical treatment, one might employ a parallax
expansion of the quantities �t0 and k2 with respect to the
powers of the small parameters ε1 ≡ R1/L and ε2 ≡ R2/L .
These small parameters are of the order ε � 2 × 10−2 for a
radio source at the distance of the lunar orbit or smaller for
any other radio sources in the solar system.

For the parallax expansion of k2, we use the relation(
1 − 2εx + ε2

)−1/2 =
∞∑
n=0

Pn(x)ε
n, (47)

where Pn(x) are the usual Legendre polynomials. For the
parallax expansion of �t0, we employ the relation(
1 − 2εx + ε2

)1/2 =
∞∑
n=0

Cn(x)ε
n, (48)

where Cn(x) ≡ C (−1/2)
n are the Gegenbauer polynomials

with index −1/2: (see Eq. 8.930 in Gradshteyn and Ryzhik
1994):

C0(x) = 1,

C1(x) = −x,

nCn(x) = (2n − 3)xCn−1 − (n − 3)Cn−2 (n ≥ 2). (49)

We obtain the following expressions where terms of order
less than 10 fs have been ignored:

(�t)v � (�t0 + �tgrav)

{
1 −

(
σ 2 · ẋ2

c

) 4∑
n=0

Pn(cos θ2)

(
R2
L

)n

+
(

σ 2 · ẋ2
c

)2
[
1 + 2 cos θ2

R2
L

+ (4 cos2 θ2 − 1)
R2
2

L2

]

−
(

σ 2 · ẋ2
c

)3 }

−1

2
c−1σ 2 · ẍ2�t20 + 1

2
c−1L−1 |σ 2 × ẋ2|2(

1 + cos θ2
R2
L

)
�t20 . (50)

and

c�t0 = L2 − L1 = |L + R2| − |L + R1|
≈ −(kE · b)+ 1

2L

(
|n2 × kE|2R2

2 − |n1 × kE|2R1
2
)

+
7∑

n=3

1

Ln−1

[
Cn(cos θ2)R2

n − Cn(cos θ1)R1
n],
(51)

where

σ 2 ≡ kE − n2 · (R2/L) (52)

ni ≡ Ri

Ri
(53)

cos(θi ) = kE · ni . (54)

In (51), the parallax terms have been expanded up to the
7th order in Gegenbauer polynomials to achieve an accuracy
of order 10 fs. For transferring the vacuum time delay in (51)
from the BCRS to the GCRS, and including a tropospheric
delay, the reader is referred to Sect. 2.1.

3 Conclusions

The purpose of this paper is a presentation of an advanced and
fully documented relativistic VLBImodel for geodesywhere
earthbound baselines are considered. In contrast to the stan-
dard consensus model described in the IERS Conventions
(2010), our model is derived explicitly step by step from a
well-accepted formulation of relativistic celestial mechanics
and astrometry. A schematic diagram of the structure of our
relativistic VLBI model for the group delay is presented in
Fig. 4.

First, all terms from the consensus model are derived jus-
tifying this current standard model of VLBI data processing.
However, in various respects our model goes beyond the
consensusmodel: terms related to the acceleration of the geo-
center are included and arbitrary mass- and spin-multipole
moments are considered for the gravitating bodies in the
problem of gravitational time delay (Shapiro delay) in gen-
eral relativity. For the problem of radio sources located at
finite distance, a new parallax expansion is suggested here.
Thus, with the results from this paper realistic errors of the

Fig. 4 Schematic diagram of the structure of the relativistic VLBI
model for the group delay. The numbers refer to corresponding equa-
tions in the text (definitions or relations)
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Table 1 Maximal time delays due to special effects from solar system
bodies on VLBI observations with an earthbound baseline of 6000 km

Body 2pN (ps) J2 (ps) J4 (ps) Spin (ps) Motion (ps)

Sun 307 0.2 <0.02 0.06 0.01

Jupiter 1.5 21 <1 0.02 0.07

Saturn 0.4 8 – – 0.02

Uranus 0.1 2 – – –

Neptune 0.3 0.7 – – –

consensus model can be computed which is an essential the-
oretical addition to the (IERS Conventions 2010).

For remote radio sources, a central result is the basic time
delay Eq. (20) where the explicit form of the BCRS gravita-
tional time delay is left open. In principle, it can be derived
from the results of Appendix C by means of formula (26).
The dominant terms resulting from themass-monople, mass-
quadrupole, spin-dipole and second post-Newtonian effects
of some solar system body, that are already known from the
literature, are written out explicitly. Some orders of magni-
tude are presented in Table 1 (Klioner 1991).

If the consensus model is extended to include effects from
the mass-quadrupoles, spin-dipoles, 2PN effects and motion
effects, then, it will be sufficient for most geodetic VLBI
measurements also in the near future. We believe that the
intrinsic accuracy of ourmodel is of the order of 10 fs; further
analyses will be made to check the orders of magnitude of
all terms that have been neglected.

For some radio source at finite distance, the main results
are relations (50) and (51), where two different parallax
expansions were employed. For more details on the problem
of relativistic effects in the tropospheric delay, the reader is
referred to Kopeikin and Han (2015).
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Appendix A: Theory of astronomical reference sys-
tems in brief

A theory of relativistic reference system has been formulated
by (Damour et al. 1991, DSX-I), improving and extending
earlier work by Brumberg and Kopeikin (1989a, b). A stan-
dard reference is Soffel et al. (2003). For the VLBI model,

this theory provides precise definitions of the BCRS and
the GCRS and the relations between them. The importance
of such two distinct reference systems results from relativ-
ity; even without gravity fields a geocentric baseline defined
in the barycentric system of coordinates would experience
periodic relative variations due to the Lorentz contraction of
order 10−8 which disappear completely in a suitably defined
GCRS. Note that also the basic time scales (TCG and TCB)
for the BCRS and GCRS are different due to time dilation
and gravitational redshifts.

The theory of astronomical reference systems that will
be outlined below is formulated in the first post-Newtonian
approximation of Einstein’s theory of gravity. The post-
Newtonian approximation is a weak field slow motion
approximation with small parameters εM = (GM/c2r) (M
being a mass of the system and r the radial distance to M
in suitably chosen coordinates) and εv = (v/c)2 (v being
a translational or rotational coordinate velocity of a body
or material element of the system). According to the Virial
theorem, one assumes that these two small parameters in the
solar system have the same orders ofmagnitude, i.e. εM ∼ εv

and one is using c−1 as book-keeping parameter for a post-
Newtonian expansion of the metric tensor although it is not
dimensionless.

Note that what is called the first post-Newtonian approx-
imation depends upon the problem of interest. If one talks
about gravitational fields and celestial mechanical problems
of motion of massive bodies, one neglects terms of order c−6

in the time–time component of the metric tensor, terms of
order c−5 in the time–space components and terms of order
c−4 in the space–space components. If, however, we talk
about the propagation of light rays, we only consider c−2

terms in the time–time component in the first PN approxi-
mation.

In what follows small letters refer to the BCRS, whereas
capital letters refer to the GCRS.We will use letters from the
second part of the Greek alphabet like μ, ν, etc. for BCRS
space–time indices and letters from the second part of the
roman alphabet like i, j , etc. for BCRS spatial indices; we
useGreek indices likeα, β, etc. forGCRSspace–time indices
and roman indices like a, b, etc. for GCRS spatial indices.
The symbol O(c−n) means that all terms of order c−n are
neglected.

In Einstein’s theory of gravity, the gravitational field is
described by a metric tensor that provides the geometry of
spacetime. In both systems, the BCRS and the GCRS, the
metric tensor is written in the convenient form:

g00 = −e−2w/c2 ; G00 = −e−2W/c2 ,

g0i = − 4

c3
wi ; G0a = − 4

c3
Wa,

gi j = γi j e
+2w/c2 ; Gab = �abe

+2W/c2 . (A-1)
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Note that in (A-1), there is no approximation involved:
the scalar potential w replaces g00, the vector potential wi

replaces the time–space component of the metric tensor, g0i ,
and the quantities γi j replace the space components of the
metric, gi j .

Here, thew andW are the gravito-electric scalar potentials
in the BCRS and GCRS, respectively. They generalize the
usual Newtonian potential U ; e.g. w = U + O(c−2).

Einstein’s field equations determine the components of the
metric tensor (the gravitational field components) only up to
four degrees of freedom. This gauge freedom corresponds
to the free choice of the coordinate system. We will use the
harmonic gauge (e.g. Weinberg 1972) in every coordinate
system. This has the consequence that (e.g. DSX-I)

γi j = δi j + O(c−4); �ab = δab + O(c−4), (A-2)

so that the canonical form of the metric tensor in the first
post-Newtonian approximation takes the form

g00 = −e−2w/c2 ; G00 = −e−2W/c2 ,

g0i = − 4

c3
wi ; G0a = − 4

c3
Wa,

gi j = δi j e
+2w/c2 + O(c−4) ; Gab = δab e

+2W/c2 + O(c−4).

(A-3)

In DSX-I, the transformation Xα → xμ, i.e. from the GCRS
to the BCRS is given, whereas the inverse transformation,
xμ → Xα , is given in BK. The Xα → xμ transformation is
written in the form:

xμ(T, Xa) = zμ(T ) + eμ
a (T )Xa + ξμ(T, Xa), (A-4)

where the functions ξμ are at least of order |Xa |2. zi (T )

describes the worldline of some central point associated with
the Earth that serves as origin of the spatial GCRS coordi-
nates, i.e.

zi (T ) = ziE(T ), (A-5)

parametrized with T =TCG. For practical purposes, it is
convenient to choose this central point as the post-Newtonian
center of mass of the Earth. z0(T ) is related with the T → t
transformation that will be discussed below. We also intro-
duce a vector quantity eμ

0 (T ) by

eμ
0 (T ) ≡ 1

c

dzμ(T )

dT
. (A-6)

Under general post-Newtonian assumptions (see DSX-I
for more details), one finds that

ξ0(T,X) = O(c−3),

ξ i (T,X) = 1

c2
eia(T )

[
1

2
AaX2 − Xa(A · X)

]
+ O(c−4),

(A-7)

where A is the coordinate acceleration of the geocenter pro-
jected into the local geocentric system. The quantities eμ

a (T )

will be chosen as a tetrad field along the central worldline,
orthonormal with respect to the external metric. Let us define

g00(x) ≡ −e−2w/c2 ,

g0i (x) ≡ − 4

c3
wi , (A-8)

gi j (x) ≡ δi j e
+2w/c2 ,

where the external gravitational potentials, w and wi ,
describe the gravitational fields of all bodies other than the
Earth:

w =
∑
B 
=E

wB wi =
∑
B 
=E

wi
B . (A-9)

The orthogonality condition for the quantities eμ
a (T ) then

reads:

gμνe
μ
α e

ν
β = ηαβ + O(6, 5, 4). (A-10)

The order symbolO(6, 5, 4)means that in g00 terms of order
c−6, in g0i terms of order c−5 and in gi j of order c−4 are
neglected. From the tetrad conditions (A-10), the following
expressions can be derived (DSX I):

e00 = 1 + 1

c2

(
1

2
v2 + w

)

+ 1

c4

[
3

8
v4 + 1

2
(w)2 + 5

2
wv2 − 4wiv

i
]

+ O(c−6)

e0a = Ri
a

[
vi

c

[
1 + 1

c2

(
1

2
v2 + 3w

)]
− 4

c3
wi

]
+ O(c−5)

eia =
(
1 − 1

c2
w

) (
δi j + 1

2c2
viv j

)
Ri
a + O(c−4), (A-11)

in which the external potentials must be evaluated at the
geocenter, i.e. the coordinate origin of the local system at
Xa = 0. v is the barycentric coordinate velocity of the Earth,

vi ≡ dzi

dt
(A-12)

so that

ei0 = e00
vi

c
. (A-13)
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In (A-11), Ri
a is a rotation matrix satisfying

Ri
a R

j
a = δi j + O(c−4). (A-14)

The matrix describes the orientation of the spatial GCRS
coordinates, Xa , with respect to the barycentric ones, xi .
According to IAU 2000 resolution B1.3, we consider the
GCRS to be kinematically non-rotating with respect to the
BCRS by writing

Ri
a(T ) = δia . (A-15)

It is useful to invert the Xα → xν transformation and to
write it as xμ → Xα . Note that the solar system ephemerides
are given in the BCRS with coordinates xμ. To this end,
we have to keep in mind that the general coordinate trans-
formation (A-4) related the global coordinate (ct, xi ) with
the corresponding local coordinates (cT, Xa) of one and
the same event E in spacetime. Now, (A-4) involves func-
tions f (T ) (e.g. zi (T ), eμ

a (T ), etc.) defined at the central
worldline. The T = const. hypersurface through E hits the
central worldline Xa = 0 at a point being different from
the intersection of this central worldline with the t = const.
hypersurface. To derive the inverse transformation, we have
to set f (t) = f (Tsim), where Tsim is the local coordinate
time value of the intersection of the central worldline with
the t =const. hypersurface. Tsim is related with the T value
of E by

T sim = T + v · X
c2

+ O(c−4). (A-16)

Details and an illustrating figure can be found in Appendix
A of (Damour et al. 1994). With this, the BK transformation
of spatial coordinates takes the form

Xa = δai

{
r i + 1

c2

[
1

2
vi (v · r) + wr i + r i (a · r) − 1

2
ai r2

]}

+O(c−4), (A-17)

where r(t) ≡ x − z(t) and a is the coordinate acceleration
of the Earth, a = d2z/dt2. The transformation of time coor-
dinates is more complicated. Basically, the function ξ0 is
not fixed completely by the choice of harmonic gauge in the
BCSR and theGCRS. The IAU2000Resolution B.3 has cho-
sen a special T (t) transformation in accordance with (A-4):

T = t − 1

c2
[A(t) + v · r]

+ 1

c4
[B(t) + Bi (t)r i + Bi j (t)r i r j + C(t, x)] + O(c−5),

(A-18)

with

d

dt
A(t) = 1

2
v2 + w,

d

dt
B(t) = −1

8
v4 − 3

2
v2w + 4viwi + 1

2
w2,

Bi (t) = −1

2
v2vi + 4wi − 3viw

Bi j (t) = −viδaj Q
a + 2

∂

∂x j
wi − vi

∂

∂x j
w + 1

2
δi jẇ,

C(t, x) = − 1

10
r2(ȧi r i ).

Here, the dot stands for the total derivative with respect to t ,
i.e.

ẇ ≡ w,t + viw,i (A-19)

and

Qa(t) = δai

(
∂

∂xi
w − ai

)
. (A-20)

The quantity Qa describes a relative acceleration of the
worldline of the Earth’s center of mass with respect to the
worldline of a freely falling, structure-less test particle.

Appendix B: The metric tensor in the N-body sys-
tem

The first post-Newtonian metric

The gravity field of a single body

Let us consider the gravitational field a single body that we
will describe in a single, global coordinate system (t, x). In
harmonic gauge, the field equations for the metric potentials,
w and wi take the form

�w = −4πGσ + O(c−4), (B-1)

�wi = −4πGσ i + O(c−2). (B-2)

Here, � is the flat space d’Alembertian

� ≡ − 1

c2
∂2

∂t2
+ �, (B-3)

� is the Laplacian and

σ ≡ T 00 + T ss

c2
, σ i = T 0i

c
. (B-4)

The quantity σ might be considered as the active gravita-
tional mass-energy density and σ i as the active gravitational
mass-energy current that gives rise to gravito-magnetic
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effects described by the vector potentialwi (theword ‘active’
refers to a field-generating quantity). We can even combine
the source- and the field variables to form four-dimensional
vectors

σμ ≡ (σ, σi ), wμ ≡ (w,wi ) (B-5)

and write in obvious notation

�wμ = −4πGσμ + O(4, 2). (B-6)

We will consider an isolated system with

gμν → ημν |x| → ∞, (B-7)

i.e. we consider our space–time manifold to be asymptot-
ically flat. As is well known that under this condition the
retarded and the advanced integrals are solutions to the field
equations (B-6):

w
μ
ret/adv(t, x) = G

∫
d3x ′ σμ(tret/adv; x′)

|x − x′| , (B-8)

with

tret/adv ≡ t ∓ |x − x′|/c. (B-9)

Another possible solution is

w
μ
mixed(t, x) = 1

2

[
w

μ
ret(t, x) + w

μ
adv(t, x)

]
. (B-10)

This mixed solution (the time symmetric solution) is in
fact used in standard versions of the post-Newtonian formal-
ism. The reason for that is the following: if we expand σμ

around the coordinate time t , we encounter a sequence of
time derivative terms and the term with the first derivative is
related with time irreversible processes such as the emission
of gravity waves that do not occur in the first post-Newtonian
approximation of Einstein’s theory of gravity. Therefore, one
chooses wμ = w

μ
mixed with

w
μ
mixed(t, x) = G

∫
d3x ′ σμ(t; x′)

|x − x′| + G

2c2
∂2

∂t2∫
d3x ′ σμ(t; x′)|x − x′|. (B-11)

Next, we shall discuss the gravitational field outside of
some single body.

It will be characterized with the help of Cartesian Sym-
metric and Trace Free (STF) tensors. Here, special notations
are used. Cartesian indices always run from 1 to 3 (or over
x, y, z). Cartesian multi-indices, written with capital letters
like L will be used, meaning L = i1i2 . . . il , i.e. L stands for

a whole set of l different Cartesian indices i j , each running
from 1 to 3. E.g.

ML = Mi1...il

has a total of 3l components such as, e.g. M121 or M233 for
l = 3. If one faces a Cartesian tensor that is symmetric in all
indices and is free of traces such as Mssa (summation of two
equal dummy indices is always assumed), then it is called
STF tensor. STF tensors will be indicated with a caret on
top or, equivalently, by a group of indices included in sharp
parentheses:

T̂L ≡ T<L> ≡ T<i1...il>. (B-12)

Mathematical algorithms how to get the STF part of an
arbitrary tensor can be found inThorne (1980) (see alsoDSX-
I).

To give an example, consider some arbitrary Cartesian
tensor Ti j . If we write a symmetrization of a group of certain
indices with a round bracket as in

T(i j) = 1

2
(Ti j + Tji )

then

T̂i j = T(i j) − 1

3
δi j Taa .

An STF tensor of special importance is N̂L with

nL = ni1...il = xi1 . . . xil

r l
, (B-13)

where r2 = xs xs = x2 + y2 + z2. The importance of n̂L
results from the fact that these quantities are equivalent to the
usual scalar spherical harmonics used in traditional expan-
sions of the gravity field outside a body. In relativity, due
to problems related with the Lorentz transformation, expan-
sions in terms of n̂L are used rather than in terms of spherical
harmonics. Since

∂L

(
1

r

)
= (−1)l(2l − 1)!! n̂L

rl+1 , (B-14)

in the exterior region of a body the gravitational potential w
in the Newtonian approximation can be written as

w(t, x) = G
∑
l≥0

(−1)l

l! ML∂L

(r−1) = G
∑
l≥0

(2l − 1)!!
l! ML

n̂L
rl+1 , (B-15)
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where ML are the (Newtonian) Cartesian mass multipole
moments of the body.

A theorem due to Blanchet and Damour (1989) states:
there is a special choice of harmonic coordinates (called
skeletonized harmonic coordinates) such that outside of some
coordinate sphere that completely encompasses the matter
distribution (body) the metric potentials

wμ(t, x) = G
∫

d3x ′ σμ(t±; x′)
|x − x′|

with

t± ≡ tmixed = 1

2
(tret + tadv)

admit a convergent expansion of the form

w(t, x) = G
∑
l≥0

(−1)l

l! ∂L [r−1ML(t±)] + O(c−4)

wi (t, x) = −G
∑
l≥1

(−1)l

l!
[
∂L−1

(
r−1 d

dt
MiL−1(t±)

)

+ l

l + 1
εi jk∂ j L−1(r

−1SkL−1(t±))

]
+ O(c−2).

(B-16)

Here, the mass moments, ML , and the spin moments, SL , are
formally defined by certain integrals of the body (Blanchet
and Damour 1989; DSX-I). In the following, these expres-
sions, however, will not be needed. The external gravity
potentials, wμ, of a body are just determined by the set of
multipole-moments.

The metric tensor of N moving bodies

In the gravitational N -body problem, we introduce a total
of N + 1 different coordinate systems: one global system
of coordinates (t, xi ) like the BCRS and a set of N local
coordinates like the GCRS (TA, Xa

A) for each body A of the
system.

Let us consider themetric tensorGαβ in the local systemE
(e.g. the Earth) defined by the two potentialsWα ≡ (W,Wa).
In the gravitational N -body system, these local potentials can
be split into two parts

W (T,X) = Wself(T,X) + Wext(T,X)

Wa(T,X) = Wa
self(T,X) + Wa

ext(T,X) (B-17)

with

Wself(T,X) = G
∫
E
d3X ′ �(T,X′)

|X − X′|

+ G

2c2
∂2

∂T 2

∫
E
d3X ′�(T,X′)|X − X′|,

Wa
self(T,X) = G

∫
E
d3X ′ �a(T,X′)

|X − X′| , (B-18)

where the integrals extend over the support of body E
only; � is the gravitational mass-energy density in local
E-coordinates, and �a is the corresponding gravitational
mass-energy current. In DSX-I, it was shown that the
Blanchet–Damour theorem applies for the self-potentials
when mass- and spin-multipole of body E, ME

L and SEL , are
defined by corresponding integrals taken over the support of
body E only. This implies that in the local E-system the self-
part of the metric outside the body E admits an expansion of
the form (B-16) with BD-moments of body E.

In DSX-I, it was also shown how to transform the self-
parts of the local E-metric into the global system. Let

wE(t, x) = G
∫
E
d3x ′ σ(t, x′)

|x − x′| + G

2c2
∂2

∂t2

∫
E
d3x ′σ(t, x′)|x − x′|,

wi
E(t, x) = G

∫
E

σ i (t, x′)
|x − x′| , (B-19)

then (DSX-I)

wE =
(
1 + 2v2

c2

)
Wself + 4

c2
vaWa

self + O(c−4)

wi
E = δiaW

a
self + viWself + O(c−2). (B-20)

This remarkable result says that the self-parts of the met-
ric tensor simply transform with a post-Newtonian Lorentz
transformation. The metric of our system, composed of
N moving, extended, deformable, rotating bodies, is then
obtained from

wμ(t, x) =
∑
A

w
μ
A(t, x). (B-21)

E.g. for a system of mass monopoles, ML = 0 for l ≥ 1 and
SL = 0, we have

WA = GMA/RA; Wa
A = 0

in the local A-system and from (53) we get

wA(t, x) =
(
1 + 2v2A

c2

)
GMA

RA
+ O(c−4)

wi
A(t, x) = viA

GMA

RA
+ O(c−2). (B-22)

To get the right hand side entirely in terms of global coor-
dinates one has to express the inverse local distance, 1/RA,
in these. Using (26) one obtains:
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1

RA
= 1

rA

[
1 − w(zA)

c2
− 1

2c2
(vA · nA)2 − 1

2c2
aA · rA

]
+O(c−4), (B-23)

where rA(t) = x − zA(t) and nA = rA/|rA|.

The second post-Newtonian metric

In the 2PN-approximation, we consider only a single mass-
monopole at rest. The corresponding metric for light-ray
propagation, where we do not consider a c−6 term in g00,
in harmonic coordinates reads up to terms of order c−5 (e.g.
Anderson and DeCanio 1975; Fock 1964)

g00 = −1 + 2wA

c2
− 2w2

A

c4
g0i = 0 (B-24)

gi j = δi j

(
1 + 2wA

c2
+ 2w2

A

c4

)
+ 1

c4
qAi j

with

wA = GMA

rA

and

qAi j = G2M2
A

r2A
(niAn

j
A − δi j ). (B-25)

Here, at the 2PN level, the canonical form of the metric (A-1)
is not used.

Appendix C: The gravitational time delay

In Einstein’s theory of gravity, light rays are geodesics of
zero length (null-geodesics). Gravitational fields lead to a
light deflection and a gravitational time delay. In VLBI, it
is the gravitational time delay that has to be considered and
modelled at the necessary level of accuracy.

The gravitational time delay can be computed from the
null condition, ds2 = 0, along the light ray. Writing gμν =
ημν + hμν , we get

dt2 = 1

c2
dx2 +

(
h00 + 2h0i

dxi

dt
+ 1

c2
hi j

dxi

dt

dx j

dt

)
dt2

or (|hμν | � 1)

dt � |dx|
c

+ |dx|
2c

(hμνn
μnν), (C-1)

where we have inserted ẋ i = cni from the unperturbed light-
ray equation, x(t) = x0 + nc(t − t0) and nμ ≡ (1,n).
For our metric, (A-3), the Time Transfer Function (TTF),
T (t0, x0; x) ≡ t − t0 with ds = |x| reads (e.g. Soffel and
Han 2015)

T (t0, x0; x) = R

c
+ 1

2c

∫ s

s0
(hμνn

μnν)ds = R

c

+ 2

c3

∫ s

s0

(
w − 2

c
w · n

)
ds + O(c−4).

(C-2)

The TTF allows the computation of t if t0, x0 and x are given.

A single gravitating body at rest

Weconsider first a single body at rest at the origin of our coor-
dinate system. Space–time outside of the body is assumed
to be stationary (“time independent”; e.g. Soffel and Frutos
2016). Then, the metric potentials outside the body take the
form (B-16) with time-independent mutipole moments ML

and SL.
We now use the a special parametrization of the unper-

turbed light ray (Kopeikin 1997)

xs = d + n · s (C-3)

withd·n = 0, i.e.d = n×(x×n) = n×(x0×n) is the vector
that points from the origin to the point of closest approach of
the unperturbed light ray. We then have s = n ·xs . Following
Kopeikin (1997), we can now split the partial derivative with
respect to xi in the form

∂i = ∂⊥
i + ∂

‖
i (C-4)

with

∂⊥
i ≡ ∂

∂di
, ∂

‖
i ≡ ni

∂

∂s
, (C-5)

Then, (Kopeikin 1997, Eq. (24)):

∂L =
l∑

p=0

l!
p!(l − p)!nP∂⊥

L−P∂
p
s , (C-6)

where nP = ni1 . . . nip and ∂
p
s = ∂ p/∂s p. Inserting this into

expression (C-2), we get (the symbol (expr)0 stands for the
expression taken at the initial point)

TM = 2G

c3

∞∑
l=0

l∑
p=0

(−1)l

l!
l!

p!(l − p)!MLnP∂⊥
L−P∂

p
s
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ln
s + r

s0 + r0
− (expr)0 (C-7)

for the time delay induced by the mass multipole moments
ML and

TS = 4G

c4

∞∑
l=1

l∑
p=0

(−1)l

l!
l!

p!(l − p)!
l

l + 1
εi jk SkL−1nP∂⊥

j L−P−1

ln
s + r

s0 + r0
− (expr)0 (C-8)

for the time delay induced by the spin-multipole moments
SL , since (rs = |xs |)
∫ s

s0

ds

rs
= ln

s + r

s0 + r0
. (C-9)

These results are in agreement with the ones found by
Kopeikin (1997). Let

�(s,d) ≡ ln(s +
√
d2 + s2), (C-10)

then the first derivatives appearing in (C-7) and (C-8) read:

∂s� = 1

r
(C-11)

∂2s � = − s

r3
(C-12)

∂⊥
i � = di

r(r + s)
(C-13)

∂⊥∂s� = −di

r3
(C-14)

∂⊥
<i j>� = − (s + 2r)

(r + s)2r3
did j − nin j

r(r + s)
, (C-15)

where the last term results from the fact that (Kopeikin 1997):

∂⊥
j d

i = δi j − nin j . (C-16)

The mass-monopole moment

Considering, e.g. the mass-monopole term, we have

TM,l=0 = 2
GM

c3
ln

s + r

s0 + r0

and since s = n · xs , we obtain

TM,l=0 = 2GM

c3
ln

(
n · x + r

n · x0 + r0

)
. (C-17)

The mass-quadrupole

For the mass-quadrupole, we get

TM,l=2 = G

c3
Mi j Ii j (C-18)

with

Ii j = (nin j∂2s + 2ni∂s∂
⊥
j + ∂⊥

i j )�|s0
= −nin j

(
s

r3
+ 1

r(r + s)

)
− 2nid j

r3
− did j (s + 2r)

(r + s)2r3
.

(C-19)

Taking the integral expression for TM,l=2, one gets the same
form as in (C-18) but with Ii j being replaced by

I ′
i j = 3

∫ s

s0

(di + niτ)(d j + n jτ)

(d2 + s2)5/2
ds

=
(
s3

r3
nin j

d2
− 2nid j

r3
+ 3sd2 + 2s3

r3
did j

d4

)∣∣∣∣
s

s0

. (C-20)

With some re-writing, using d2 = r2 − s2, one finds that
I ′
i j = Ii j + const.. Expression (C-18) agrees with the one
given by Klioner (1991):

Ii j = nin j
(n · r

r

)
(d−2 − r−2) − 2nid j

r3

+did j

d2

[n · r
r

(2d−2 + r−2)
]
. (C-21)

The spin-dipole moment

The contribution from the spin-dipole can be written in the
form:

TS,l=1 = −2G

c4
εi jkn

i I j Sk (C-22)

with

I j = ∂ j

∫
ds

rs
= (∂⊥

j + n j∂s) ln
s + r

s0 + r0
(C-23)

or, since the n j -term does not contribute,

I = − d s
d2r

+ d s0
d2r0

. (C-24)

The TTF for a body slowly moving with constant
velocity

Let us now consider the situation where the gravitating body
(called A) moves with a constant slow velocity vA; we will
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neglect terms of order v2A in this section. Let us denote a
canonical coordinate system moving with body A, Xα =
(cT, Xa) (see, e.g.Damour et al. 1991) and the corresponding
metric potentials by W and Wa . Under our conditions, the
transformation from co-moving coordinates Xα to xμ is a
linear Lorentz transformation of the form (βA ≡ vA/c):

xμ = zμA(T ) + �μ
α X

α (C-25)

with zμA ≡ (0, zA(T )) and �0
0 = 1,�0

a = βa
A,�i

0 =
β i
A,�i

a = δia . A transformation of the co-moving metric
to the rest-system then yields (see also Damour et al. 1991)

w = W + 4

c
βA · W

wi = WviA + Wi . (C-26)

In the following, we will only consider a moving mass-
monopole for which, in our approximation, w = GM/r and
wi = (GM/r) · vi so that the TTF takes the form

T (t0, x0; x) = R

c
+ 2GM

c3

∫ [
(1 − 2βA · n)

r

]
ds

= R

c
+ 2GMgβ

c3

∫
ds′

r
, (C-27)

where gβ ≡ 1 − βA · n and s′ = gβs.
We now parametrize the unperturbed light ray in the form

xτ = zA + dβ + nβτ, (C-28)

where nβ ≡ gβ/gβ , gβ ≡ n − βA, and dβ = nβ × (rA ×
nβ) is perpendicular to nβ so that rA(τ ) =

√
d2β + τ 2 and

τ = rA · nβ . The TTF, therefore, for our mass-monopole in
uniform motion takes the form

TM,l=0 = 2
GMA

c3
gβ ln

rA + τ

r0A + τ 0

and since τ = nβ · rA = gβ · rA/gβ , we obtain

TM,l=0 = 2GMA

c3
gβ ln

(
gβ · rA + gβrA
gβ · r0A + gβr0A

)
(C-29)

in accordancewith the results from the literature (e.g.Klioner
and Kopeikin 1992; Bertone et al. 2014).

Appendix D: More technical details

The baseline equation

To relate some BCRS baseline bwith the corresponding geo-
centric one, Eqs. (17) and (19), we now consider two events:

e1 is signal arrival time at antenna 1with coordinates (T1,X1)

in the GCRS and (t1, x1) in the BCRS. The second event e2
will be the position of antenna 2 at GCRS-time T1, with
coordinates (T1,X2(T1) in the GCRS and (t∗1 , x2(t∗1 ) in the
BCRS. From (A-4), we get

xi1(t1) = ziE(T1) + eia(T1)X
a
1 (T1) + ξ i (T1,X1)

xi2(t
∗
1 ) = ziE(T1) + eia(T1)X

a
2 (T1) + ξ i (T1,X2).

From the time transformation, we get t∗1 = t1 + δt∗ with

δt∗ = 1

c2
(vE · B) + O(c−4) (D-1)

so that

xi2(t
∗
1 ) = xi2(t1) + 1

c2
(vE · B)vi2 + O(c−4), (D-2)

where v2 = vE + V2 is the barycentric coordinate veloc-
ity of antenna 2. Finally, we get a formula for the baseline
transformation in the form

b = B − 1

c2

(
1

2
(B · vE)vE + (B · vE)V2 + w(zE)B

)
+�ξ + O(c−4). (D-3)

Transformation of time intervals

Using the general time transformation, we get

�t = �T + 1

c2

∫ t2

t1
dt ′

(
w(zE) + 1

2
v2E

)

+ 1

c2
δiav

i
E(T2)X

a
2 (T2) − 1

c2
δiav

i
E(T1)X

a
1 + O(c−4).

(D-4)

To lowest order with respect to 1/c we have �T � �t �
−(B · k)/c and we can approximate the relativistic terms in
(D-4) bymaking a Taylor expansionwith respect to�t , using

viE(T2) = viE − aiE

(
B · k
c

)
+ O(c−2)

Xa
2 (T2) = Xa

2 − V a
2

(
B · k
c

)
+ O(c−2),

where vE ≡ vE(T1), etc. In this way, we get the �t transfor-
mation equation in the form

�Tgeom = �tgeom − 1

c2
(B · vE)

+ 1

c3
(B · k)

[
w(zE) + 1

2
v2E + aE · X2 + vE · V2

]
+O(c−4), (D-5)
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and for the gravitational and atmospheric time delaywe have,
to sufficient accuracy,

�Tgrav = �tgrav

1 + 1
ck · v2

(D-6)

�Tatm = �tatm
1 + 1

ck · v2
(D-7)

Independent derivation of the basic delay equation

This basic time delay Eq. (20) can be derived directly with-
out the introduction of some BCRS baseline b. One starts
with expression (15). The left hand side is transformed with
relation (D-5) and for the right hand side we have

xi2(t2) − xi1(t1) = ziE(T2) − ziE(T1)

+ eia(T2)X
a
2 (T2) − eia(T1)X

a
1 (T1)

+ �ξ i + O4

= Bi + vi2(�T ) + 1

2
ai2

(Bk)2

c2
+ O(c−3),

The right hand side of (15) can, therefore, be written in the
form:

RHS = −1

c
B · k − 1

c
(k · v2)�T + 1

c3
(B · k)[

w(zE) − 1

2
(B · k)(k · a2)

]

− 1

2c3
(B · vE)(k · vE) − 1

c
k · �ξ + O(c−4).

The transformed equation can then be solved for (�T ),
considering that there is one (�T )-term on the left hand side
and another one on the right hand side. The result is again
Eq. (20) given above in Sect. 2.

The problem of nearby radio sources

Let us start with the vacuum part of the time delay, Eq. (41).
We then make a Taylor expansion of x2(t2) at t1,

x2(t2) = x2(t1) + ẋ2(t1)(t2 − t1) + 1

2
ẍ2(t1)(t2 − t1)

2,

(D-8)

where the higher-order terms have been omitted. This is fully
sufficient for the Earth-bounded VLBI measurements with a
baseline c(t2−t1) ∼ 6000 kmbecause even for themost close
case of a radio transmitter on the Moon, the third term in the
right side of (D-8) will produce a time delay of the order of 3
fs (femtosecond), which is two orders of magnitude smaller
than the current precision of VLBI. A substitution of (D-8)
into (41) then yields

�t = c−1
[∣∣L2 + ẋ2(t1)�t + 1

2
ẍ2(t1)�t2

∣∣−∣∣L1
∣∣] + �tgrav,

(D-9)

where for the sake of convenience we have suppressed the
index “geom” in �tgeom. We now expand (D-9) in a Taylor
series with respect to�t keeping all terms up to the quadratic
order. It gives us

�t = (�t0 + �tgrav) − c−1(k2 · ẋ2)�t − 1

2
c−1(k2 · ẍ2)�t2

+1

2
c−1L−1

2 |k2 × ẋ2|2�t2, (D-10)

with k2 ≡ (x0−x2)/|x0−x2| = −L2/L2 and the arguments
of x2, ẋ2, ẍ2 are taken at time t1, and �t0 = L2 − L1/c . Eq.
(D-10) is a quadratic equation with a very small quadratic
term so that it is more convenient to solve it by iteration.
This yields

�t = (�t0 + �tgrav)
(
1 + c−1k2 · ẋ2

)−1

−1

2
c−1k2 · ẍ2(�t0 + �tgrav)

2

+1

2
c−1L−1

2 |k2 × ẋ2|2(�t0 + �tgrav)
2. (D-11)

For an analytical treatment, one might employ a Taylor
expansion of the denominator of the first term on the right
hand side of (D-11) which results in Eq. (43) above.

For the derivation of remaining results from Sect. 2.2, the
following relations are useful. The Euclidean normof vectors
L1, L2 is

L1 = L

[
1 − 2(kE · n1) R1

L
+ R2

1

L2

]1/2

, (D-12)

L2 = L

[
1 − 2(kE · n2) R2

L
+ R2

2

L2

]1/2

, (D-13)

and the corresponding unit vectors are expressed by

k1 =
(
kE − R1

L
n1

) [
1 − 2(kE · n1) R1

L
+ R2

1

L2

]−1/2

,

(D-14)

k2 =
(
kE − R2

L
n2

) [
1 − 2(kE · n2) R2

L
+ R2

2

L2

]−1/2

,

(D-15)

where kE ≡ −L/L , n1 ≡ R1/R1, n2 ≡ R2/R2 are auxiliary
unit vectors.
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