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Abstract New spherical integral formulas between com-
ponents of the second- and third-order gravitational tensors
are formulated in this article. First, we review the nomen-
clature and basic properties of the second- and third-order
gravitational tensors. Initial points of mathematical deriva-
tions, i.e., the second- and third-order differential operators
defined in the spherical local North-oriented reference frame
and the analytical solutions of the gradiometric boundary-
value problem, are also summarized. Secondly, we apply the
third-order differential operators to the analytical solutions
of the gradiometric boundary-value problem which gives
30 new integral formulas transforming (1) vertical-vertical,
(2) vertical-horizontal and (3) horizontal-horizontal second-
order gravitational tensor components onto their third-order
counterparts. Using spherical polar coordinates related sub-
integral kernels can efficiently be decomposed into azimuthal
and isotropic parts. Both spectral and closed forms of the
isotropic kernels are provided and their limits are inves-
tigated. Thirdly, numerical experiments are performed to
test the consistency of the new integral transforms and to
investigate properties of the sub-integral kernels. The new
mathematical apparatus is valid for any harmonic potential
field andmay be exploited, e.g., when gravitational/magnetic
second- and third-order tensor components become avail-
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able in the future. The new integral formulas also extend the
well-known Meissl diagram and enrich the theoretical appa-
ratus of geodesy.

Keywords Boundary-value problem · Differential opera-
tors · Gravitational tensor · Gravitational gradient · Integral
transform · Meissl diagram

1 Introduction

Integral transforms represent a fundamental mathematical
apparatus which is important in many branches of science.
In geodesy, many integral transforms have been formulated
to relate scalar-, vector- and tensor-valued gravitational mea-
surements available from sensors on ground (including sea),
and at aerial and satellite altitudes. This mathematical tool
provides a basis formodelling the gravitational fieldwhich in
turn is indispensable for understanding the complex Earth’s
system.

Surface integral solutions to boundary value-problems of
the potential theory form a fundamental class of integral
transforms. These allow for determination of the (disturb-
ing) gravitational potential from known boundary values
such as the (disturbing) gravitational potential itself (Kel-
logg 1929), gravity anomalies (e.g., Stokes 1849; Pizzetti
1911; Molodensky et al. 1962; Moritz 1989), gravity dis-
turbances (e.g., Hotine 1969; Koch 1971; Grafarend et al.
1985), deflections of the vertical (e.g., Grafarend 2001; van
Gelderen and Rummel 2001; Jekeli 2007) and gravitational
tensor components of the second- (e.g., van Gelderen and
Rummel 2001; Martinec 2003; Tóth 2003; Bölling and Gra-
farend 2005; Li 2005; Eshagh 2011a) and third-order (Šprlák
and Novák 2016).

An additional class of integral transforms can be obtained
by applying respective differential operators to analytical
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solutions of the boundary-value problems. This effort has
led to integrals mapping either the (disturbing) gravitational
potential, gravity anomalies or gravity disturbances onto
deflections of the vertical (e.g., Vening-Meinesz 1928; Luy-
ing and Houze 2006; Jekeli 2007), gravity anomalies (e.g.,
Lelgemann 1976; Rummel et al. 1978), gravity disturbances
(e.g., Zhang 1993), gravity disturbance vector (e.g., Heiska-
nen and Moritz 1967; Sünkel 1981), line-of-sight gravity
disturbances, i.e., generalized gravitational gradients (Gar-
cia 2002; Ardalan and Grafarend 2004; Novák et al. 2006;
Novák 2007), gravitational second-order (e.g., Reed 1973;
Heck 1979; Thalhammer 1995; Petrovskaya and Zielinski
1997; van Gelderen and Rummel 2001; Denker 2003; Tóth
2003; Kern and Haagmans 2005; Wolf and Denker 2005;
Wolf 2007; Šprlák et al. 2015) and third-order (Šprlák and
Novák 2015) tensor components.

More complex transforms of the deflections of the vertical
onto the line-of-sight gravity disturbances and second-order
gravitational tensor components were derived by Šprlák
and Novák (2014b). Second-order tensor components were
also transformed to gravity anomalies (e.g., Li 2005), grav-
ity disturbances (e.g., Li 2002), deflections of the vertical
(e.g., Li 2005), line-of-sight gravity disturbances (Šprlák
and Novák 2014a) and second-order components themselves
(e.g., Bölling and Grafarend 2005; Tóth 2005; Tóth et al.
2006; Šprlák et al. 2014). Gravity anomalies can also be
extracted from satellite orbital elements (Eshagh and Ghor-
bannia 2013). Satellite-to-satellite velocity differences can
be transformed to the disturbing gravitational potential, grav-
ity anomalies and gravity disturbances (Eshagh and Šprlák
2016).

In this study, we establish relations between the gravita-
tional tensors of the second- and third-orders. The second-
order gravitational tensor components are observed by gra-
diometrywhich is now awell-established technique covering
various spatial scales and stimulating new applications in
geosciences. The technique was founded by Baron Roland
von Eötvös (1896) whose exceptional theoretical and prac-
tical efforts provided many terrestrial measurements using
torsion balance. Recent technological progress has led to
development of more sophisticated terrestrial gradiometers
based on atom interferometry, see McGuirk et al. (2002),
Fixler (2003) and Sorrentino et al. (2014). Prospects of
gradiometry in regional studies have also been tested and
analysed on moving platforms, such as airplanes (Jekeli
1988, 1993; Dransfield 2007; Douch et al. 2015) and sub-
marines (Bell et al. 1997). The static part of the global
gravitational field was significantly improved with gradio-
metric observations provided by theGOCE (Gravity field and
steady-state Ocean Circulation Explorer, ESA 1999; Rum-
mel 2010) mission.

Also development of sensors for observing the third-order
gravitational tensor components have recently been reported.

In fact, the first terrestrial measurement of the vertical third-
order tensor component have already been performed by
Rosi et al. (2015). Other terrestrial sensors for observing
the third-order derivatives of the gravitational potential were
proposed by Balakin et al. (1997) and patented by, e.g.,
Meyer (2013), Rothleitner (2013), Klopping et al. (2014).
Rothleitner and Francis (2014) proposed observing the ver-
tical third-order tensor component for determination of the
Newtonian gravitational constant. DiFrancesco et al. (2009)
discussed possible benefits of an airborne sensor for observ-
ing the third-order gravitational tensor components. Brieden
et al. (2010) introduced the satellite mission called OPTIMA
(OPTical Interferometry for global MAss change detection
from space) for measuring these parameters in space. Šprlák
et al. (2016) studied properties of the third-order gravita-
tional tensor and analysed requirements for an instrument
that would eventually observe its components by differential
accelerometry at satellite altitudes. Ghobadi-Far et al. (2016)
performed a contribution analysis of the third-order gravita-
tional tensor components.

Below, we provide a rigorous mathematical model for
transforming six unique second-order gravitational com-
ponents onto ten unique third-order gravitational tensor
components in the form of spherical integral formulas. In this
way, we extend the existing theoretical apparatus of geodesy
and complete theMeissl diagram (Meissl 1971; Rummel and
van Gelderen 1995). The presented mathematical formula-
tions can be applied in any harmonic potential field; thus,
they enhance a more general framework of the potential the-
ory. We also expect that the new integral formulas will be
exploited, e.g., for gravitational/magnetic field modelling or
calibration/validation studies, with more observations of the
second- and third-order tensor components available in the
future.

The article is organized as follows: preliminaries, i.e.,
the nomenclature and initial points necessary for the mathe-
matical derivations, are defined in Sect. 2; the new integral
transforms among components of the second- and third-order
gravitational tensors are derived in Sect. 3; numerical experi-
ments focus on testing the consistency of the new theoretical
apparatus with its spectral representation and investigating
the sub-integral kernels, see Sect. 4; finally, conclusions sum-
marizing main contributions and findings of the article can
be found in Sect. 5.

2 Preliminaries

2.1 Nomenclature

To understand the topic properly, we start with defining the
notation used throughout the article. Themathematical appa-
ratus derived below assumes spherical approximation of the
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Fig. 1 Spherical geocentric and polar coordinates. The point P repre-
sents an evaluation point with spherical geocentric coordinates r, � =
(ϕ, λ). The point Q is an integration point defined by spherical coordi-
nates R, �′ = (ϕ′, λ′). The spherical polar angular coordinates are the
spherical distance ψ , direct azimuth α and backward azimuth α′. O is
the centre of the mean sphere of radius R and PN is the North pole. The
spherical local North-oriented reference frame with the origin at the
evaluation and integration points is also depicted. This reference frame
is defined by the right-handed orthonormal basis vectors ex (pointing
to the North), ey (pointing to the West) and ez (pointing in the radial
direction)

Earth. Therefore, it is natural to define spherical geocen-
tric coordinates in terms of the geocentric radius r and two
angular coordinates—spherical latitude ϕ and longitude λ.
Moreover, a short-hand notation � = (ϕ, λ) representing a
geocentric direction is used. The symbol R designates the
radius of the mean sphere which approximates the Earth and
encloses its solid masses.

Because the mathematical apparatus presented below is
in the form of integral formulas, we distinguish between
an evaluation point (r,�), in which a numerical value of a
gravitational field parameter is computed, and an integration
(running) point (R,�′), where �′ = (ϕ′, λ′), representing
an infinitesimal spherical element as the surface integration
over the mean sphere will be considered in our derivations,
see Fig. 1.

The spherical polar angular coordinates are also exploited,
see Fig. 1. The symbol ψ stands for the spherical distance
between the evaluation and integration points. The direct
azimuth α is an azimuth between the evaluation and inte-
gration points measured clock-wise from the North at the
position of the evaluation point. The backward azimuth α′ is
then measured clock-wise from the North at the position of
the integration point. Mathematical formulas transforming
the spherical geocentric angular coordinates of the evalua-
tion and integration points onto the spherical polar angular
coordinates are summarized in “Appendix A”.

Throughout the article we assume that all parameters of
the actual gravitational field are reduced by their normal grav-

ity field counterparts. The normal gravity field is generated
by the international reference ellipsoid. The reduced para-
meters belong to the disturbing gravitational field and are
called correspondingly, e.g., disturbing gravitational poten-
tial or disturbing gravitational tensor components. We prefer
to use the adjective gravitational to gravity as the disturbing
field is free of the centrifugal part.

2.2 Disturbing gravitational tensors of the second- and
third-orders

Mathematical relations between components of the second-
and third-order disturbing gravitational tensors are derived
below. We also briefly summarize basic properties of these
parameters. We assume that the second- and third-order dis-
turbing gravitational tensor components refer to the spherical
local North-oriented reference frame. Such a frame has its
origin at the point of interest, e.g., the evaluation or integra-
tion points. Its right-handed orthonormal basis is defined by
the unit vector ex pointing to the North, ey pointing to the
West and ez pointing in the radial direction, see Fig. 1.

The second-order disturbinggravitational tensor is defined
by nine components Top, o, p ∈ {x, y, z}, and can be rep-
resented by a 2-D square, see Fig. 2a. For the continuous
potential field, the tensor is symmetric, i.e., it holds Top =
Tpo, and can completely be described only by six compo-
nents. Moreover, the Laplace equation Txx + Tyy + Tzz = 0
holds in the mass free-space for the harmonic potential T .
Then the tensor is given only by the five independent com-
ponents. Throughout the article, we explicitly work with the
six second-order tensor components which can systemati-
cally be divided into three groups:

• vertical–vertical (VV) if o, p = z with one Tzz compo-
nent,

• vertical–horizontal (VH) if o ∈ {x, y} and p = z with
two components Txz and Tyz ,

• horizontal–horizontal (HH) if o, p ∈ {x, y} with three
components Txx , Txy and Tyy .

Mathematically, the second-order disturbing gravitational
tensor can be obtained by applying the gradient operator
twice onto the disturbing gravitational potential T . We can
write the tensor for the continuous disturbing gravitational
field as follows:

∇ ⊗ ∇ T (r,�) = Txx (r,�) exx + Txy(r,�) (exy + eyx )

+ Txz(r,�) (exz + ezx )

+ Tyy(r,�) eyy + Tyz(r,�) (eyz + ezy)

+ Tzz(r,�) ezz . (1)

123



170 M. Šprlák, P. Novák

(a) (b)

Fig. 2 a The second-order disturbing gravitational tensor and b the
third-order disturbing gravitational tensor. The second-order tensor
illustrated in the form of a 2-D square is defined by nine components
Top , o, p ∈ {x, y, z}. If the gravitational field is continuous, the second-
order tensor is determined by six components (depicted in blue). The

third-order tensor is formed by 27 components Topq , o, p, q ∈ {x, y, z},
andmay be depicted as a 3-D cube. In the continuous gravitational field,
ten components (depicted in blue) determine the third-order tensor com-
pletely

The symbols eop = eo⊗ep, o, p ∈ {x, y, z}, represent spher-
ical dyadics which form the basis for unique representation
of the second-order disturbing gravitational tensor, see, e.g.,
Simmonds (1994). The six tensor components Txx , Txy , Txz ,
Tyy , Tyz and Tzz are explicitly defined by the differential oper-
ators of Eqs. (6a)–(6f) applied to the disturbing gravitational
potential.

The third-order disturbing gravitational tensor is defined
by 27 components Topq , o, p, q ∈ {x, y, z}. Such a mathe-
matical object may be illustrated as a 3-D cube, see Fig. 2b.
If the disturbing gravitational field is continuous, the ten-
sor is completely represented by ten components only as the
order of indices does not matter, i.e., it holds Topq = Tpoq =
Toqp = Tqop. The ten third-order tensor components, with
which we work below, may be organized into the following
four groups:

• vertical–vertical–vertical (VVV) if o, p, q = z with one
component Tzzz ,

• vertical–vertical–horizontal (VVH) if o ∈ {x, y} and
p, q = z with two components Txzz and Tyzz ,

• vertical–horizontal–horizontal (VHH) if o, p ∈ {x, y}
and q = z with three components Txxz , Txyz and Tyyz ,

• horizontal–horizontal–horizontal (HHH) if o, p, q ∈
{x, y} with four components Txxx , Txxy , Txyy and Tyyy .

Three Laplace equations, i.e., Txxq + Tyyq + Tzzq = 0,
q ∈ {x, y, z}, hold in the mass-free space. Then the third-
order disturbing gravitational tensor is defined by seven
independent components only. In themathematical sense, the
third-order disturbing gravitational tensor may be defined as
the triple gradient of the disturbing gravitational potential:

∇ ⊗ ∇ ⊗ ∇ T (r,�) = Txxx (r,�) exxx
+ Txxy(r,�) (exxy + exyx + eyxx )

+ Txxz(r,�) (exxz + exzx + ezxx )

+ Txyy(r,�) (exyy + eyxy + eyyx )

+ Txyz(r,�) (exyz + exzy
+ eyxz + eyzx + ezxy + ezyx )

+ Txzz(r,�)(exzz + ezxz + ezzx )

+ Tyyy(r,�) eyyy
+ Tyyz(r,�)(eyyz + eyzy + ezyy)

+ Tyzz(r,�) (eyzz + ezyz + ezzy)

+ Tzzz(r,�) ezzz . (2)

The symbols eopq = eo ⊗ ep ⊗ eq , o, p, q ∈ {x, y, z},
represent the spherical triads which define the basis for
unique representation of the third-order disturbing gravita-
tional tensor. The ten tensor components, which determine
the third-order tensor on the right-hand side of Eq. (2), are
given by the differential operators of Eqs. (8a)–(8j) acting on
the disturbing gravitational potential.

2.3 Spherical gradiometric boundary-value problem

The spherical gradiometric boundary-value problem (GBVP)
aims at determining the harmonic disturbing gravitational
potential T from the second-order disturbing gravitational
tensor components. The disturbing gravitational potential
is sought on and outside of the mean sphere. The second-
order tensor components are continuously given at the mean
sphere, while the regularity condition holds at infinity. Solu-
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tions of the spherical GBVP have been provided by, e.g.,
Rummel et al. (1993), van Gelderen and Rummel (2001),
Martinec (2003), Tóth (2003) and Bölling and Grafarend
(2005).

In this subsection, we briefly summarize selected integrals
of the spherical GBVP as they represent the basis of our
derivations. We consider the solutions derived by Martinec
(2003) which relate the disturbing gravitational potential and
the second-order tensor components by three integral formu-
las:

T (r,�) = R2

4π

∫
�′

Tzz(R,�′) KVV(t, u) d�′, (3a)

T (r,�) = − R2

4π

∫
�′

[
Txz(R,�′) cosα′

− Tyz(R,�′) sin α′] KVH(t, u) d�′, (3b)

T (r,�) = R2

4π

∫
�′

{[
Txx (R,�′) − Tyy(R,�′)

]

× cos 2α′ − 2Txy(R,�′) sin 2α′} KHH(t, u) d�′,
(3c)

Equations (3a)–(3c) show that the disturbing gravitational
potential can be computed independently from the three
groups, i.e., VV, VH and HH, of the second-order gravi-
tational tensor. The isotropic kernels KVV, KVH and KHH

are given by the following spectral and closed expressions
(Martinec 2003, Eqs. 30–32):

KVV(t, u) =
∞∑
n=0

tn+1 2n + 1

(n + 1)(n + 2)
Pn,0(u)

= 3

t
(g − 1) +

(
3u

t
− 1

)
ln

(
g + t − u

1 − u

)
,

(4a)

KVH(t, u) =
∞∑
n=1

tn+1 2n + 1

n(n + 1)(n + 2)
Pn,1(u)

=
√
1 − u2

{
3

2g
+ t2(g + 1)

2g (1 + g − tu)
+

(
1 − 3u

2t

)

×
[

1

1 − u
− g + t

g(g + t − u)

]
− 3

2t
ln

(
g + t − u

1 − u

) }
,

(4b)

KHH(t, u) =
∞∑
n=2

tn+1 2n + 1

(n − 1)n(n + 1)(n + 2)
Pn,2(u)

= − t

2
+ 3

2
ut2 + gt + 1

t
(1 − g) + u2t3

1 + g − tu

+ u(u − t)

t (1 − u)
− u2

t (g + t − u)
. (4c)

The new parameters t, u and g in Eqs. (3a)–(4c) are defined
as follows:

t = R

r
, r ≥ R, u = cosψ, −1 ≤ u ≤ 1,

g =
√
1 − 2tu + t2. (5)

They stand for the attenuation factor, cosine of the spherical
distance and the normalized Euclidean distance. The sym-
bol Pn,m designates the non-normalized associated Legendre
function of the first kind of degree n and order m. For more
details on the solution of the spherical GBVP, such as its
existence and uniqueness, and analytical properties of the
isotropic kernels, see Martinec (2003).

2.4 Differential operators for the second- and
third-order tensor components

Differential operators define relationships between various
gravitational field parameters. In this subsection, we sum-
marize differential operators which are necessary for our
derivations. We begin with differential operators that relate
the disturbing gravitational potential to the six second-order
tensor components, see, e.g., Reed (1973), Wolf (2007) and
Šprlák et al. (2014):

Dxx = 1

r

(
∂

∂r
+ 1

r

∂2

∂ϕ2

)
= 1

R2 (D1
2 + cos 2α D2

2), (6a)

Dxy = − 1

r2 cosϕ

(
tan ϕ

∂

∂λ
+ ∂2

∂ϕ∂λ

)

= − sin 2α

R2 D2
2, (6b)

Dxz = −1

r

(
1

r

∂

∂ϕ
− ∂2

∂r∂ϕ

)
= cosα

R2 D3
2, (6c)

Dyy = 1

r

(
∂

∂r
− tan ϕ

r

∂

∂ϕ
+ 1

r cos2 ϕ

∂2

∂λ2

)

= 1

R2 (D1
2 − cos 2α D2

2), (6d)

Dyz = 1

r cosϕ

(
1

r

∂

∂λ
− ∂2

∂r∂λ

)
= − sin α

R2 D3
2, (6e)

Dzz = ∂2

∂r2
= 1

R2 D4
2. (6f)

The superscripts on the left-hand sides of Eqs. (6a)–(6f)
specify resulting components. The first equalities in these
equations define the operators in terms of the spherical geo-
centric triad (r,�). Such a representation is of interest when
parameters of the disturbing gravitational field are expanded
into a series of spherical harmonics. The second equalities
then define the same operators in terms of the triad (t, u, α)
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that allows decomposing into the azimuthal and isotropic
parts. This fact can efficiently be exploited in relating var-
ious disturbing gravitational field parameters, e.g., through
integral transforms. The isotropic part is defined by the four
isotropic differential operators D1

2, D2
2, D3

2 and D4
2 which

read:

D1
2 = −t3

∂

∂t
+ t2

2

[
(1 − u2)

∂2

∂u2
− 2u

∂

∂u

]
,

D2
2 = t2(1 − u2)

2

∂2

∂u2
,

D3
2 = −t2

√
1 − u2

(
∂

∂u
+ t

∂2

∂t ∂u

)
,

D4
2 = t3

(
2

∂

∂t
+ t

∂2

∂t2

)
. (7)

The subscript on the left-hand sides of Eq. (7) explicitly
indicates the order of the tensor components, while the super-
script value distinguishes between the individual isotropic
differential operators.

The corresponding differential operators for the ten com-
ponents of the third-order disturbing gravitational tensor are
more complex. They are defined in terms of the triads (r,�)

and (t, u, α) as follows, see, e.g., Tóth (2005), Šprlák and
Novák (2015):

Dxxx = − 1

r2

(
2

r

∂

∂ϕ
− 3

∂2

∂r∂ϕ
− 1

r

∂3

∂ϕ3

)

= 1

R3 (cosα D1
3 + cos 3α D2

3), (8a)

Dxxy = − 1

r2 cosϕ

(
2 tan2 ϕ

r

∂

∂λ
+ ∂2

∂r∂λ

+2 tan ϕ

r

∂2

∂ϕ∂λ
+ 1

r

∂3

∂ϕ2∂λ

)

= − 1

R3

(
1

3
sin α D1

3 + sin 3α D2
3

)
, (8b)

Dxxz = −1

r

(
1

r

∂

∂r
− ∂2

∂r2
+ 2

r2
∂2

∂ϕ2 − 1

r

∂3

∂r∂ϕ2

)

= 1

R3

(
D3

3 + cos 2α D4
3

)
, (8c)

Dxyy = − 1

r2

(
1

r cos2 ϕ

∂

∂ϕ
− ∂2

∂r∂ϕ
+ tan ϕ

r

∂2

∂ϕ2

− 2 tan ϕ

r cos2 ϕ

∂2

∂λ2
− 1

r cos2 ϕ

∂3

∂ϕ∂λ2

)

= 1

R3

(
1

3
cosα D1

3 − cos 3α D2
3

)
, (8d)

Dxyz = 1

r2 cosϕ

(
2 tan ϕ

r

∂

∂λ
− tan ϕ

∂2

∂r∂λ

+ 2

r

∂2

∂ϕ∂λ
− ∂3

∂r∂ϕ∂λ

)

= − 1

R3 sin 2α D4
3, (8e)

Dxzz = 1

r

(
2

r2
∂

∂ϕ
− 2

r

∂2

∂r∂ϕ
+ ∂3

∂r2∂ϕ

)

= 1

R3 cosα D5
3, (8f)

Dyyy = 1

r2 cosϕ

(
2

r cos2 ϕ

∂

∂λ
− 3

∂2

∂r∂λ

+3 tan ϕ

r

∂2

∂ϕ∂λ
− 1

r cos2 ϕ

∂3

∂λ3

)

= − 1

R3

(
sin α D1

3 − sin 3α D2
3

)
, (8g)

Dyyz = −1

r

(
1

r

∂

∂r
− 2 tan ϕ

r2
∂

∂ϕ
− ∂2

∂r2
+ tan ϕ

r

∂2

∂r∂ϕ

+ 2

r2 cos2 ϕ

∂2

∂λ2
− 1

r cos2 ϕ

∂3

∂r∂λ2

)

= 1

R3

(
D3

3 − cos 2α D4
3

)
, (8h)

Dyzz = − 1

r cosϕ

(
2

r2
∂

∂λ
− 2

r

∂2

∂r∂λ
+ ∂3

∂r2∂λ

)

= − 1

R3 sin α D5
3, (8i)

Dzzz = ∂3

∂r3
= 1

R3 D6
3. (8j)

The six isotropic differential operators D1
3,D2

3,D3
3,D4

3,D5
3

and D6
3 in Eqs. (8a)–(8j) are defined as follows:

D1
3 = −3t3

√
1−u2

(
∂

∂u
+t

∂2

∂t∂u
+u

∂2

∂u2
− 1 − u2

4

∂3

∂u3

)
,

D2
3 = t3

√
(1 − u2)3

4

∂3

∂u3
,

D3
3 = t3

[
3t

∂

∂t
+ 2u

∂

∂u
+ tu

∂2

∂t∂u
+ t2

∂2

∂t2
− (1 − u2)

×
(

∂2

∂u2
+ t

2

∂3

∂t∂u2

)]
,

D4
3 = −t3(1 − u2)

(
∂2

∂u2
+ t

2

∂3

∂t∂u2

)
,

D5
3 = t3

√
1 − u2

(
2

∂

∂u
+ 4t

∂2

∂t∂u
+ t2

∂3

∂t2∂u

)
,

D6
3 = −t4

(
6

∂

∂t
+ 6t

∂2

∂t2
+ t2

∂3

∂t3

)
. (9)
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Expressions for the third-order differential operators in
terms of the triad (t, u, α) can significantly be simplified
if applied to the isotropic kernels of the form K(t, u) =∑∞

n=0 tn+1 hn Pn,0(u) with hn being eigenvalues of the
isotropic kernel. In this case, the third-order differential oper-
ators read (Šprlák and Novák 2015):

Dxxx = 1

R3

(
cosα D1∗

3 + cos 3α D3∗
3

)
,

Dxxy = − 1

R3

(
1

3
sin α D1∗

3 + sin 3α D3∗
3

)
,

Dxxz = 1

R3

(
D0∗

3 + cos 2α D2∗
3

)
,

Dxyy = 1

R3

(
1

3
cosα D1∗

3 − cos 3α D3∗
3

)
,

Dxyz = − 1

R3 sin 2α D2∗
3 , Dxzz = − 4

3R3 cosα D1∗
3 ,

Dyyy = − 1

R3

(
sin α D1∗

3 − sin 3α D3∗
3

)
,

Dyyz = 1

R3

(
D0∗

3 − cos 2α D2∗
3

)
,

Dyzz = 4

3R3 sin α D1∗
3 , Dzzz = − 2

R3 D0∗
3 , (10)

where

D0∗
3 = t4

2

∂3

∂t3

(
t2.

)
, D1∗

3 = −3t3
√
1 − u2

4

∂3

∂t2∂u

(
t2.

)
,

D2∗
3 = − t2(1 − u2)

2

∂3

∂t∂u2

(
t2.

)
,

D3∗
3 = t

√
(1 − u2)3

4

∂3

∂u3

(
t2.

)
. (11)

Note that the asterisk is used in the superscripts of Eqs. (10)
and (11) to avoid any confusion with the operators of
Eqs. (8a)–(9).

We will also apply recursive relationships between the
differential operators for the second- and third-order tensor
components defined as follows (Šprlák and Novák 2015):

Dxxx = 1

r

(
2Dxz + ∂

∂ϕ
Dxx

)
,

Dxxy = 1

r

(
Dyz + ∂

∂ϕ
Dxy

)
,

Dxxz = ∂

∂r
Dxx , Dxyy = 1

r

∂

∂ϕ
Dyy,

Dxyz = ∂

∂r
Dxy, Dxzz = ∂

∂r
Dxz,

Dyyy = 1

r

[
2

(Dyz − tan ϕ Dxy) − 1

cosϕ

∂

∂λ
Dyy

]
,

Dyyz = ∂

∂r
Dyy, Dyzz = ∂

∂r
Dyz, Dzzz = ∂

∂r
Dzz . (12)

It can be seen from Eq. (12) that the third-order dif-
ferential operators are either linear combinations of their
second-order counterparts and/or their first-order derivatives
with respect to the spherical geocentric coordinates. The
recursions are more efficient in some mathematical deriva-
tions as compared to the original differential operators of
Eqs. (8a)–(8j) which are composed of the derivatives with
respect to the spherical geocentric coordinates up to the
third-order.

3 Integral transforms between the second- and
third-order disturbing gravitational tensor
components

In the following subsections, we provide 30 new integral
formulas that transform the VV, VH and HH second-order
tensor components onto the ten third-order tensor compo-
nents, see Fig. 3.Withmoremeasurements of the second- and
third-order gravitational tensor components available in the
future, such mathematical connections can be exploited for
validation purposes or gravitational fieldmodelling. Besides,
the development of the mathematical apparatus is challeng-
ing theoretically and reveals interesting properties of the new
integral transforms.

3.1 Transformation of the VV disturbing gravitational
component onto the third-order disturbing
gravitational components

We begin with the mathematical derivation of the inte-
gral transforms which map the VV disturbing gravitational
component onto the third-order disturbing gravitational com-
ponents. Such transforms may be obtained in a relatively
simple way that originates from the isotropic property of
the kernel KVV in Eq. (3a). In other words, the kernel in
Eq. (3a) is of the form KVV(t, u) = ∑∞

n=0 t
n+1 hn Pn,0(u),

where hn = 2n+1
(n+1)(n+2) . Therefore, the differential opera-

tors of Eqs. (10) and (11) can directly be applied to Eq. (3a)
to get the required transforms. After performing this math-
ematical operation, we obtain ten integral transforms of the
form:

Topq(r,�) = R2

4π

∫
�′

Tzz(R,�′) Dopq KVV(t, u) d�′,

o, p, q ∈ {x, y, z}. (13)

The sub-integral kernels Dopq KVV are:

Dxxx KVV(t, u)

= 1

R3

[
cosα K1

VV(t, u) + cos 3α K3
VV(t, u)

]
, (14a)
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Fig. 3 Schematic relations between the vertical–vertical (black lines),
vertical–horizontal (blue lines) and horizontal–horizontal (red lines)
second-order disturbing gravitational components and their third-order
counterparts. The second-order components are depicted at the lower

level as functions of the position of the integration point (R, �′). The
corresponding isotropic kernels are located in the middle level along
the connecting lines. The third-order components are functions of the
position of the evaluation point (r, �) and are placed at the upper level

Dxxy KVV(t, u)

= − 1

R3

[
1

3
sin α K1

VV(t, u) + sin 3α K3
VV(t, u)

]
, (14b)

Dxxz KVV(t, u)

= 1

R3

[
K0

VV(t, u) + cos 2α K2
VV(t, u)

]
, (14c)

Dxyy KVV(t, u)

= 1

R3

[
1

3
cosα K1

VV(t, u) − cos 3α K3
VV(t, u)

]
, (14d)

Dxyz KVV(t, u) = − 1

R3 sin 2α K2
VV(t, u), (14e)

Dxzz KVV(t, u) = − 4

3R3 cosα K1
VV(t, u), (14f)

Dyyy KVV(t, u)

= − 1

R3

[
sin α K1

VV(t, u) − sin 3α K3
VV(t, u)

]
, (14g)

Dyyz KVV(t, u)

= 1

R3

[
K0

VV(t, u) − cos 2α K2
VV(t, u)

]
, (14h)

Dyzz KVV(t, u) = 4

3R3 sin α K1
VV(t, u), (14i)

Dzzz KVV(t, u) = − 2

R3 K0
VV(t, u). (14j)

Obviously, they reflect the structure of the differential opera-
tors of Eq. (10), such as the decomposition into the azimuthal
and isotropic parts. The azimuthal part is represented by

cosines and sines of the multiples of the direct azimuth α.
The isotropic part is defined by the isotropic kernels Kk

VV,
k = 0, 1, 2, 3.

Equations (14a)–(14j) reveal symmetries of the sub-
integral kernels. One can see that every group of the
third-order disturbing gravitational components, i.e., VVV,
VVH, VHH and HHH, is defined by the same isotropic ker-
nels, see also Fig. 3. For example, the evaluation of the purely
horizontal third-order disturbing gravitational components
Txxx , Txxy , Txyy and Tyyy requires only the isotropic kernels
K 1
VV and K 3

VV. Moreover, the numbers in the superscripts
of the isotropic kernels and the corresponding multiples of
the direct azimuth are the same. By inspecting the isotropic
differential operators ofEq. (11)wecanobserve that the num-
ber in the superscript of the isotropic kernels agrees with the
order of differentiation with respect to the parameter u.

The spectral forms of the isotropic kernels Kk
VV, k =

0, 1, 2, 3, can concisely be written as follows:

Kk
VV(t, u) = Dk∗ KVV(t, u)

= ak

∞∑
n=k

tn+4 (2n + 1)(n + 3)
n!

(n+k)! Pn,k(u),

k = 0, 1, 2, 3, (15)

where a0 = 1/2, a1 = −3/4, a2 = −1/2 and a3 = 1/4. We
can arrive at Eq. (15) by applying the operators of Eq. (11) to
the spectral form of the isotropic kernelKVV of Eq. (4a) and
by exploiting the definition of the non-normalized Legendre
functions of thefirst kind (Heiskanen andMoritz 1967,Eq. 1–
60):

Pn,m(u) =
(
1 − u2

)m
2 ∂m

∂um
Pn,0(u). (16)
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The spectral forms of the isotropic kernels are of impor-
tancewhen the second- or third-order disturbing gravitational
components are band-limited. However, when the disturb-
ing gravitational components contain all frequencies, the
closed forms of the isotropic kernels are necessary. They
can be obtained by summing up the corresponding infinite
series of Eq. (15). For this purpose, we apply the summation
rules provided by, e.g., Pick et al. (1973, Appendix 18) and
get:

K0
VV(t, u) = t4

g

[
3

2
+ t (9u − 11t)

2g2
+ 3t2(t − u)2

g4

]
, (17a)

K1
VV(t, u) = 3t3

√
1 − u2

2

{
1

1+u
− t2

2g3

[
7 + 6t (u − t)

g2

]

+ t − g

g(g − t + u)

}
, (17b)

K2
VV(t, u) = −t2(1 − u2)

[
6 + 2t + 3u

2(1 + u)2
− 3t2

2g3

(
1 − 2t2

g2

)

− 1

2g(g − t + u)

{
6(g − t) + 2t − 3u

g

×
[
t2

g
+ (t − g)2

g − t + u

]}]
, (17c)

K3
VV(t, u) = − t2(1 − u2)3/2

4

[
9 + 2t + 3u

(1 + u)3
+ 9t3

g5

− 1

g2(g − t + u)

{
3t2

g

[
3 − t (t − 3u)

g2

]

+ t − g

g − t + u

[
9(t − g) − 3t2(t − 3u)

g2

− 2(t − g)2(t − 3u)

g(g − t + u)

]}]
. (17d)

Alternatively, the differential operators of Eq. (11) can
directly be applied to the closed form of the isotropic ker-
nel KVV of Eq. (4a).

Equations (17a)–(17d)maybecome singular for some lim-
iting values of the parameters t and u. Therefore, we also
provide explicit expressions for their limiting values which
follow from the L’Hospital rule:

K0
VV(t, 1) = t4

2(1 − t)

[
3 + t (9 − 5t)

(1 − t)2

]
,

K1
VV(t, 1) = K2

VV(t, 1) = K3
VV(t, 1) = 0, (18a)

K0
VV(t,−1) = t4

2(1 + t)

[
3 − t (9 + 5t)

(1 + t)2

]
,

K1
VV(t,−1) = K2

VV(t,−1) = K3
VV(t,−1) = 0, (18b)

K0
VV(1, 1) = K1

VV(1, 1) = K2
VV(1, 1) = −K3

VV(1, 1)

= −∞, (18c)

K0
VV(1,−1) = −1

8
, K1

VV(1,−1) = K2
VV(1,−1)

= K3
VV(1,−1) = 0. (18d)

It can be seen that each of the four isotropic kernels is singular
for t = u = 1. On the other hand, they are bounded for the
other limiting values, while only the kernelK0

VV is non-zero.

3.2 Transformation of the VH disturbing gravitational
components onto the third-order disturbing
gravitational components

We now proceed with the transformation between the VH
disturbing gravitational components and their third-order
counterparts. The startingpoint for such relationships is given
by Eq. (3b). However, by inspecting this formula, we can
observe that its sub-integral kernels are no longer isotropic
as they depend also on the backward azimuth α′. There-
fore, to derive the desired integral transforms, we must apply
the more general differential operators of Eqs. (8a)–(9). By
employing these operators to Eq. (3b), we derive ten integral
transforms:

Topq(r, �) = − R2

4π

∫
�′

{
Txz(R, �′) Dopq[ cosα′ KVH(t, u)

]

− Tyz(R, �′) Dopq[ sin α′ KVH(t, u)
]}
d�′,

o, p, q ∈ {x, y, z}. (19)

The sub-integral kernels of Eq. (19) represent the action
of the differential operators Dopq to the multiplications of
cosα′ and sin α′ by KVH. Such a mathematical operation
is investigated in “Appendix B” for two general functions
f = f (�,�′) and h = h(r, R,�,�′). Equations (36a)–
(36j) reveal that the action is composed of three parts (1)
the application of the third-order differential operators to
the functions f and h, (2) the action of the second-order
differential operators to the functions f and h, and (3) the
auxiliary terms, i.e., the derivatives of the functions f and h
with respect to the spherical geocentric coordinates.

We can arrive at the resulting formulas for the sub-integral
kernels of Eq. (19) in terms of the parameters (t, u, α, α′)
by considering f = cosα′, or f = sin α′, and h = KVH

in Eqs. (36a)–(36j). Explicit expressions for the individual
terms are obtained as follows:
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• the terms of the type f Dopq h are defined by the action
of the third-order differential operators in terms of the
parameters (t, u, α), see Eqs. (8a)–(9), to the isotropic
kernel KVH,

• the terms of the type hDopq f originate fromEqs. (39a)–
(39i), see also the paragraph below these equations,
which are defined in “Appendix C”,

• the terms of the type ∂ f
∂ϕ

Dop h and ∂ f
∂λ

Dop h are given
by Eqs. (37a) and (37b), see also the paragraph below
these equations, together with the action of the second-
order differential operators in terms of the parameters
(t, u, α), see Eqs. (6a), (7), to the isotropic kernel KVH,

• the terms of the type ∂h
∂r Dop f , 1

r
∂h
∂ϕ

Dop f and
1

r cosϕ
∂h
∂λ

Dop f make use of the expressions:

∂

∂r
= − t2

R

∂

∂t
,

1

r

∂

∂ϕ
= t cosα

√
1 − u2

R

∂

∂u
,

1

r cosϕ

∂

∂λ
= t sin α

√
1 − u2

R

∂

∂u
, (20)

when differentiating the isotropic kernelKVH. Equations
(38a)–(38e), see also the paragraph below these equa-
tions, define the action of the second-order operators to
cosα′ or sin α′,

• formulas for the auxiliary terms are summarized in
“Appendix D”.

By combining the individual terms,we obtain the resulting
formulas for the sub-integral kernels of Eq. (19):

Dxxx [ cosα′ KVH(t, u)
]

= − 1

R3

{
cosα′

[
3

4
cosα K1

VH(t, u) − cos 3α K3
VH(t, u)

]

− sin α′
[
3

4
sin α K0∗

VH(t, u) − sin 3α K2∗
VH(t, u)

]}
,

(21a)

Dxxy[ cosα′ KVH(t, u)
]

= 1

R3

{
cosα′

[
1

4
sin α K1

VH(t, u) − sin 3α K3
VH(t, u)

]

+ sin α′
[
1

4
cosα K0∗

VH(t, u) − cos 3α K2∗
VH(t, u)

]}
,

(21b)

Dxxz[ cosα′ KVH(t, u)
]

= − 1

R3

{
cosα′

[
1

2
K0

VH(t, u) + cos 2α K2
VH(t, u)

]

− sin α′ sin 2α K1∗
VH(t, u)

}
, (21c)

Dxyy[ cosα′ KVH(t, u)
]

= − 1

R3

{
cosα′

[
1

4
cosα K1

VH(t, u)+cos 3α K3
VH(t, u)

]

− sin α′
[
1

4
sin α K0∗

VH(t, u) + sin 3α K2∗
VH(t, u)

]}
,

(21d)
Dxyz[ cosα′ KVH(t, u)

]

= 1

R3

[
cosα′ sin 2α K2

VH(t, u)+sin α′ cos 2α K1∗
VH(t, u)

]
,

(21e)

Dxzz[ cosα′ KVH(t, u)
]

= 1

R3

[
cosα′ cosα K1

VH(t, u) − sin α′ sin α K0∗
VH(t, u)

]
,

(21f)
Dyyy[ cosα′ KVH(t, u)

]

= 1

R3

{
cosα′

[
3

4
sin α K1

VH(t, u) + sin 3α K3
VH(t, u)

]

+ sin α′
[
3

4
cosα K0∗

VH(t, u) + cos 3α K2∗
VH(t, u)

]}
,

(21g)
Dyyz[ cosα′ KVH(t, u)

]

= − 1

R3

{
cosα′

[
1

2
K0

VH(t, u) − cos 2α K2
VH(t, u)

]

+ sin α′ sin 2α K1∗
VH(t, u)

}
, (21h)

Dyzz[ cosα′ KVH(t, u)
]

= − 1

R3

[
cosα′ sin α K1

VH(t, u) + sin α′ cosα K0∗
VH(t, u)

]
,

(21i)

Dzzz[ cosα′ KVH(t, u)
] = cosα′

R3 K0
VH(t, u). (21j)

By changing cosα′ → sin α′ and sin α′ → − cosα′ in these
equations, we get the sub-integral kernelsDopq (sin α′ KVH),
o, p, q ∈ {x, y, z}.

The sub-integral kernels of Eqs. (21a)–(21j) posses anal-
ogous properties as those of Eqs. (14a)–(14j) in the previous
subsection. Namely, we can clearly resolve the decomposi-
tion into their azimuthal and isotropic parts. Similarly, every
group of the third-order disturbing gravitational components
can be evaluated from the same isotropic kernels, see Fig. 3.
On the other hand, the azimuthal part is nowmore complex as
it is composed of multiplications of the trigonometric func-
tions of both the direct and backward azimuth. Moreover,
seven isotropic kernels are introduced in Eqs. (21a)–(21j) as
compared to only four in Eqs. (14a)–(14j), i.e.:

K0
VH(t, u) = −t4

∂3

∂t3
[
t2 KVH(t, u)

]
, (22a)
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K0∗
VH(t, u) = t3√

1 − u2
∂2

∂t2
[
t2 KVH(t, u)

]
, (22b)

K1
VH(t, u) = t3

√
1 − u2

∂2

∂t2
∂

∂u

[
t2 KVH(t, u)

]
, (22c)

K1∗
VH(t, u) = t2

∂

∂t

{
u t2 KVH(t, u)

1 − u2

+ ∂

∂u

[
t2 KVH(t, u)

] }
, (22d)

K2
VH(t, u) = t2

2

∂

∂t

{
t2 KVH(t, u)

1 − u2
+ (1 − u2)

× ∂2

∂u2
[
t2 KVH(t, u)

]}
, (22e)

K2∗
VH(t, u) = 3t (1 − u2)

4

∂2

∂u2

[
t2 KVH(t, u)√

1 − u2

]
, (22f)

K3
VH(t, u) = − t (1 − u2)

4

{
3u

∂2

∂u2

[
t2 KVH(t, u)√

1 − u2

]

− (1 − u2)
∂3

∂u3

[
t2 KVH(t, u)√

1 − u2

]}
. (22g)

The numbers in the superscripts on the left-hand sides indi-
cate the highest order of differentiation with respect to the
parameter u. Such a notation is in correspondence to the
isotropic kernels in the previous subsection, see Eq. (15) or
Eqs. (17a)–(17d). However, we append the asterisk to dis-
tinguish between different kernels with the same numerical
value in the superscripts.

The seven isotropic kernels in the spectral form read:

K0
VH(t, u) = −

∞∑
n=1

tn+4 (2n + 1)(n + 3)

n
Pn,1(u), (23a)

K0∗
VH(t, u) = 1

2

∞∑
n=1

tn+4 (2n + 1)(n + 3)

n(n + 1)

× [
n(n + 1)Pn+1,0(u) + Pn+1,2(u)

]
, (23b)

K1
VH(t, u) = −1

2

∞∑
n=1

tn+4 (2n + 1)(n + 3)

n(n + 1)

× [
n(n + 1)Pn,0(u) − Pn,2(u)

]
, (23c)

K1∗
VH(t, u) = 1

4

∞∑
n=1

tn+4 (2n + 1)(n + 3)

n(n + 1)(n + 2)

× [
(n − 1)nPn+1,1(u) + Pn+1,3(u)

]
, (23d)

K2
VH(t, u) = −1

4

∞∑
n=1

tn+4 (2n + 1)(n + 3)

n(n + 1)(n + 2)

× [
(n − 1)(n + 2)Pn,1(u) − Pn,3(u)

]
, (23e)

K2∗
VH(t, u) = 1

8

∞∑
n=1

tn+4 2n + 1

n(n + 1)(n + 2)

× [
(n − 1)(n − 2)Pn+1,2(u) + Pn+1,4(u)

]
,

(23f)

K3
VH(t, u) = −1

8

∞∑
n=1

tn+4 2n + 1

n(n + 1)(n + 2)

× [
(n − 2)(n + 3)Pn,2(u) − Pn,4(u)

]
. (23g)

We arrive at these equations by substituting the spectral form
of the kernelKVH, see Eq. (4b), into Eqs. (22a)–(22g).More-
over, the following identities for the Legendre functions of
the first kind are exploited, see, e.g.,Arfken andWeber (2005,
Sect. 12.5), Eshagh (2008):

u√
1 − u2

Pn,m(u) = 1

2m

[
(n + m)(n − m + 1) Pn,m−1(u)

+Pn,m+1(u)
]
, ∀m > 0, (24)

Pn,m(u)

1 − u2
= 1

4m

{
(n + m)(n + m − 1)(n − m + 1)(n − m + 2)

m − 1

×Pn,m−2(u) +
[

(n + m)(n + m − 1)

m − 1
+ (n − m)(n − m − 1)

m + 1

]

×Pn,m(u) + Pn,m+2(u)

m + 1

}
, ∀m > 1. (25)

We can see in Eqs. (23a)–(23g) that the kernel K0
VH needs

only the Legendre function of the first order. The other
isotropic kernels are defined by two distinct Legendre func-
tions with the orders which differ by two.Moreover, the pairs
of the isotropic kernels (K0∗

VH,K1
VH), (K1∗

VH,K2
VH) and (K2∗

VH,
K3

VH) are defined by the Legendre functions of the same
orders.

The spatial forms of the isotropic kernels can be derived
by summing up the infinite series of Eqs. (23a)–(23g). Such
a mathematical operation gives:

K0
VH(t, u) = −3t5

√
1 − u2

g

{
1

g2

[
3 + 2t (u − t)

g2

]

+ 1 + g

1 + g − tu

}
, (26a)

K0∗
VH(t, u) = t3

2

{
2 − 3tu − 2 − 3t (3u − t)

g3
+ t2(1 − u2)

1 + g − tu

×
[
3 + 5

g3
+ (3g + 5)(1 + g)2

g2(1 + g − tu)

]}
, (26b)

K1
VH(t, u) = t3

[
3t

2

(
1 − 1

g

)
− 1 − u

1 + u
+ t2

2g3

×
[
11t − 9u − 6t (t − u)2

g2

]
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+ 1 − u2

g2

{
3t3

g3
+ 1

g−t + u

[
t2

g
+ (t−g)2

g − t + u

]

+ 3t3

2(1 + g − tu)

[
1

g
+ (1 + g)2

1 + g − tu

] }]
,

(26c)

K1∗
VH(t, u) = t2

√
1 − u2

8

[
3t2 − 2t2

g3

[
1 − 6t (u − t)

g2

]

+ 18

g + t − u

(
1 + t

g
− 1 + u

g − t + u

)

+ 8t2(1 + g)

g(1 + g − tu)
− (1 − u2)

{
6

(1 + u)3

+ 3

g3(g − t + u)

[
3t3

g2
+ 3t2(t − g)

g(g − t + u)

+ 2(t − g)3

(g − t + u)2

]
− t4

g3(1 + g − tu)

×
[
21

g2
+ 3(7 + 8g + g4)

g(1 + g − tu)

+ 2(3g + 7)(1 + g)3

(1 + g − tu)2

]} ]
, (26d)

K2
VH(t, u) = t2

√
1 − u2

(
t

1 + u
− t3

4g3

[
5 + 6t (u − t)

g2

]

+ t (t − g)

g(g − t + u)
+ 3t3(1 + g)

4g(1 + g − tu)

+ 1 − u2

8

[
9t3

g5
+ 9 + 3u + 8t

(1 + u)3

− 1

g2(g − t + u)

{
3t2(3 − 3tu − t2)

g3

+ 3(t − g)

g − t + u

[
3(t − g) + t2(3u − 4t)

g2

]

+ 2(3u − 4t)(t − g)3

g(g − t + u)2

}

+ 3t5

g3(1 + g − tu)

[
3

g2
+ 3(1 + g)

g(1 + g − tu)

+ 2(1 + g)3

(1 + g − tu)2

] ])
, (26e)

K2∗
VH(t, u) = t2(1 − u2)

16

(
12t3

g5
+ 36

(1 + u)2

− 36

g2(g − t + u)

[
t2

g
+ (t − g)2

g − t + u

]

+ 2t3

1 + g − tu

[
1 + 7

g3
+ (1 + g)2(g + 7)

g2(1 + g − tu)

]

+ (1 − u2)

[
18

(1 + u)4
− 9

g4(g − t + u)

×
[
5t4

g3
+ t3(5t − 4g)

g2(g − t + u)
+ 4t2(t − g)2

g(g − t + u)2

+ 2(t − g)4

(g − t + u)3

]
+ t5

g4(1 + g − tu)

×
{
45

g3
+ 3(13g + 15)

g2(1 + g − tu)

+ 2(1 + g)2
[
g(g2 − 2g + 3) + 18

]
g(1 + g − tu)2

+ 6(1 + g)4(g + 3)

(1 + g − tu)3

}])
, (26f)

K3
VH(t, u) = t2(1 − u2)

16

(
12t2

g3

(
1 − t2

g2

)

− 12(2 + t + u)

(1 + u)2
+ 12

g(g − t + u)

×
{
2(g − t) + t − u

g

[
t2

g
+ (t − g)2

g − t + u

] }

+ 6t4

g2(1 + g − tu)

[
1

g
+ (1 + g)2

1 + g − tu

]

+ (1 − u2)

[
45t4

g7
− 6(4 + 2t + u)

(1 + u)4

− 1

g3(g − t + u)

{
3t3

g2

[
12 − 5t (2t − 3u)

g2

]

− 6(t − g)4(2t − 3u)

g(g − t + u)3
+ t2

g(g − t + u)

×
[
36(t − g) − 4t (9u − 6t)

g
− 15t2(2t−3u)

g2

]

+ 12(t − g)2

(g − t + u)2

[
2(t − g) − t2(2t − 3u)

g2

] }

+ 3t6

g4(1 + g − tu)

[
5

g3
+ 4g + 5

g2(1 + g − tu)

+ 4(1 + g)2

g(1 + g − tu)2
+ 2(1 + g)4

(1 + g − tu)3

]])
.

(26g)

By exploiting the L’Hospital rule, we obtain the corre-
sponding limits:

K0∗
VH(t, 1) = −K1

VH(t, 1) = t5(12 − 11t + 3t2)

2(1 − t)3
,

K0
VH(t, 1) = K1∗

VH(t, 1) = K2
VH(t, 1) = K2∗

VH(t, 1)

= K3
VH(t, 1) = 0, (27a)
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K0∗
VH(t,−1) = K1

VH(t,−1) = t5(12 + 11t + 3t2)

2(1 + t)3
,

K0
VH(t,−1) = K1∗

VH(t,−1) = K2
VH(t,−1) = K2∗

VH(t,−1)

= K3
VH(t,−1) = 0, (27b)

K0∗
VH(1, 1) = K1

VH(1, 1) = K1∗
VH(1, 1) = K2

VH(1, 1)

= K2∗
VH(1, 1) = K3

VH(1, 1) = −K0
VH(1, 1)

= ∞, (27c)

K0∗
VH(1,−1) = K1

VH(1,−1) = 13

8
, K0

VH(1,−1)

= K1∗
VH(1,−1) = K2

VH(1,−1)

= K2∗
VH(1,−1) = K3

VH(1,−1) = 0. (27d)

Equations (27a)–(27d) show that the seven isotropic kernels
are singular for t = u = 1. For the other limiting values of
the parameters t and u, only the kernels K0∗

VH and K1
VH have

non-zero values.

3.3 Transformation of the HH disturbing gravitational
components onto the third-order disturbing
gravitational components

We complete our mathematical derivations with the integral
formulas transforming the HH disturbing gravitational com-
ponents onto the third-order components. For this purpose,
we exploit Eq. (3c) as our initial point. Obviously, the sub-
integral kernels of Eq. (3c) are again non-isotropic as they
are functions of the backward azimuth α′. Therefore, the dif-
ferential operators of Eqs. (8a)–(9) are applied to Eq. (3c)
that yields ten integral transforms:

Topq(r,�) = R2

4π

∫
�′

{[
Txx (R,�′) − Tyy(R,�′)

]

× Dopq[ cos 2α′ KHH(t, u)
]

− 2Txy(R,�′) Dopq[ sin 2α′ KHH(t, u)
]}

d�′,

o, p, q ∈ {x, y, z}. (28)

Taking f = cos 2α′ or f = sin 2α′, h = KHH, and following
the steps described in the paragraphs below Eq. (19), the sub-
integral kernels of Eq. (28) read:

Dxxx [ cos 2α′ KHH(t, u)
]

= − 1

R3

{
cos 2α′

[
3

4
cosα K1

HH(t, u) − cos 3α K3
HH(t, u)

]

− sin 2α′
[
3

4
sin α K0∗

HH(t, u) − sin 3α K2∗
HH(t, u)

]}
,

(29a)

Dxxy[ cos 2α′ KHH(t, u)
]

= 1

R3

{
cos 2α′

[
1

4
sin α K1

HH(t, u) − sin 3α K3
HH(t, u)

]

+ sin 2α′
[
1

4
cosα K0∗

HH(t, u) − cos 3α K2∗
HH(t, u)

]}
,

(29b)

Dxxz[ cos 2α′ KHH(t, u)
]

= − 1

R3

{
cos 2α′

[
1

2
K0

HH(t, u) + cos 2α K2
HH(t, u)

]

− sin 2α′ sin 2α K1∗
HH(t, u)

}
, (29c)

Dxyy[ cos 2α′ KHH(t, u)
]

= − 1

R3

{
cos 2α′

[
1

4
cosα K1

HH(t, u) + cos 3α K3
HH(t, u)

]

− sin 2α′
[
1

4
sin α K0∗

HH(t, u) + sin 3α K2∗
HH(t, u)

]}
,

(29d)

Dxyz[ cos 2α′ KHH(t, u)
]

= 1

R3

[
cos 2α′ sin 2α K2

HH(t, u) + sin 2α′ cos 2α K1∗
HH(t, u)

]
,

(29e)

Dxzz[ cos 2α′ KHH(t, u)
]

= 1

R3

[
cos 2α′ cosα K1

HH(t, u) − sin 2α′ sin α K0∗
HH(t, u)

]
,

(29f)

Dyyy[ cos 2α′ KHH(t, u)
]

= 1

R3

{
cos 2α′

[
3

4
sin α K1

HH(t, u) + sin 3α K3
HH(t, u)

]

+ sin 2α′
[
3

4
cosα K0∗

HH(t, u) + cos 3α K2∗
HH(t, u)

]}
,

(29g)

Dyyz[ cos 2α′ KHH(t, u)
]

= − 1

R3

{
cos 2α′

[
1

2
K0

HH(t, u) − cos 2α K2
HH(t, u)

]

+ sin 2α′ sin 2α K1∗
HH(t, u)

}
, (29h)

Dyzz[ cos 2α′ KHH(t, u)
]

= − 1

R3

[
cos 2α′ sin α K1

HH(t, u) + sin 2α′ cosα K0∗
HH(t, u)

]
,

(29i)

Dzzz[ cos 2α′ KHH(t, u)
] = cos 2α′ K0

HH(t, u). (29j)

It is not necessary to provide explicit expressions for the
sub-integral kernelsDopq (sin 2α′ KHH), o, p, q ∈ {x, y, z},
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as they come directly from Eqs. (29a)–(29j) by chang-
ing cos 2α′ → sin 2α′ and sin 2α′ → − cos 2α′. In fact,
Eqs. (29a)–(29j) do not have to be presented either as they can
be obtained by changing cosα′ → cos 2α′, sin α′ → sin 2α′
and KVH → KHH in Eqs. (21a)–(21j). Such a transition
implies that properties of sub-integral kernels for the integral
formulas of Eqs. (19) and (28), e.g., decomposition into the
azimuthal and isotropic parts or definition of the third-order
components by the same set of isotropic kernels, are equiv-
alent; they are discussed in detail in the paragraphs below
Eq. (21j).

The isotropic parts of the sub-integral kernels of
Eqs. (29a)–(29j) are represented by the seven isotropic ker-
nels. These are defined as follows:

K0
HH(t, u) = −t4

∂3

∂t3
[
t2 KHH(t, u)

]
, (30a)

K0∗
HH(t, u) = 2t3√

1 − u2
∂2

∂t2
[
t2 KHH(t, u)

]
, (30b)

K1
HH(t, u) = t3

√
1 − u2

∂2

∂t2
∂

∂u

[
t2 KHH(t, u)

]
, (30c)

K1∗
HH(t, u) = 2t2

∂

∂t

{
u t2 KHH(t, u)

1 − u2

+ ∂

∂u

[
t2 KHH(t, u)

]}
, (30d)

K2
HH(t, u) = t2

2

∂

∂t

{
4t2 KHH(t, u)

1 − u2

+ (1 − u2)
∂2

∂u2
[
t2 KHH(t, u)

]}
, (30e)

K2∗
HH(t, u) = 3t

2

{
t2 KHH(t, u)

(1 − u2)3/2

+ (1 − u2)
∂2

∂u2

[
t2 KHH(t, u)√

1 − u2

]}
, (30f)

K3
HH(t, u) = t (1 − u2)

4

{
9√

1 − u2
∂

∂u

[
t2 KHH(t, u)

1 − u2

]

− 3u
∂2

∂u2

[
t2 KHH(t, u)√

1 − u2

]

+ (1 − u2)
∂3

∂u3

[
t2 KHH(t, u)√

1 − u2

] }
. (30g)

The notation used for the isotropic kernels is in correspon-
dence with that of Eqs. (22a)–(22g). Namely, the numbers
in the superscripts on the left-hand sides are the same as the
highest order of differentiation with respect to the parame-
ter u. The asterisk is added to distinguish between various
kernels with the same superscript value.

Note that some similarities between the defining isotropic
differential operators may be observed by comparing
Eqs. (30a)–(30g) with those of Eqs. (22a)–(22g). The corre-
sponding differential operators for the isotropic kernelsK0

HH
and K1

HH are identical to those of K0
VH and K1

VH. The differ-
ential operators for the kernels K0∗

HH and K1∗
HH differ only by

the factor of two from those of the kernelsK0∗
VH andK1∗

VH. The
differential operators for the kernelsK2

HH andK2
VH differ by

the factor of four in the first term inside the curly brackets.
On the other hand, the defining operators for K2∗

HH and K3
HH

are significantly different from those of the kernelsK2∗
VH and

K3
VH.
The spectral forms of the isotropic kernels can be derived

by substituting the series representation of the kernelKHH of
Eq. (4c) into Eqs. (30a)–(30g). After applying the identities
of Eqs. (24) and (25), we get:

K0
HH(t, u) = −

∞∑
n=2

tn+4 (2n + 1)(n + 3)

(n − 1)n
Pn,2(u), (31a)

K0∗
HH(t, u) = 1

2

∞∑
n=2

tn+4 (2n + 1)(n + 3)

(n − 1)n(n + 1)

× [
(n − 1)nPn+1,1(u) + Pn+1,3(u)

]
, (31b)

K1
HH(t, u) = −1

2

∞∑
n=2

tn+4 (2n + 1)(n + 3)

(n − 1)n(n + 1)

× [
(n − 1)(n + 2)Pn,1(u) − Pn,3(u)

]
, (31c)

K1∗
HH(t, u) = −1

4

∞∑
n=2

tn+4 (2n + 1)(n + 3)

(n − 1)n(n + 1)(n + 2)

× [
(n − 1)n(n + 1)(n + 2)Pn+1,0(u)

+ 4(n − 1)Pn+1,2(u) − Pn+1,4(u)
]
, (31d)

K2
HH(t, u) = 1

4

∞∑
n=2

tn+4 (2n + 1)(n + 3)

(n − 1)n(n + 1)(n + 2)

× [
(n − 1)n(n + 1)(n + 2)Pn,0(u)

+ 8Pn,2(u) + Pn,4(u)
]
, (31e)

K2∗
HH(t, u) = −1

8

∞∑
n=2

tn+4 2n + 1

(n − 1)n(n + 1)(n + 2)

× [
(n − 2)(n − 1)n(n + 3)Pn+1,1(u)

+ 6(n − 2)Pn+1,3(u) − Pn+1,5(u)
]
, (31f)

K3
HH(t, u) = 1

8

∞∑
n=2

tn+4 2n + 1

(n − 1)n(n + 1)(n + 2)

× [
(n − 2)(n − 1)(n + 2)(n + 3)Pn,1(u)

+ 18Pn,3(u) + Pn,5(u)
]
. (31g)
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Clearly, the kernel K0
HH requires only the Legendre func-

tion of the second order, while the kernelsK0∗
HH andK1

HH are
defined by two different Legendre functions of the orders one
and three. On the other hand, three distinct Legendre func-
tions are necessary to compute the isotropic kernels K1∗

HH,
K2

HH, K2∗
HH and K3

HH.
By exploiting the summation rules for the infinite series

of Legendre polynomials and their derivatives, we get the
closed forms of the isotropic kernels:

K0
HH(t, u) = −3t6(1 − u2)

{
2

g5
+ 1

1 + g − tu

[
4 + 3

g3

+ (1 + g)2(4g + 3)

g2(1 + g − tu)

]}
, (32a)

K0∗
HH(t, u) = −t4

√
1 − u2

(
3

2
+ 9tu− 1

g3

[
5

2
+ 3t (u−t)

g2

]

+ 1+g

g(1+g−tu)
−t2(1 − u2)

[
9

2g3

[
3 + 1 + 3tu

g2

]

+ 1

g(1 + g − tu)

{
27

[
1 + g + tu

g2

+ tu(1 + g)2

g(1 + g − tu)

]
− 3t2(1 − 3u2)

2g2

×
[
3

g2
+ 3(1 + g)

g(1 + g − tu)
+ 2(1 + g)3

(1 + g − tu)2

]

− 1

2g2

[
12

g2
+ 3(4 + 5g + g4)

g(1 + g − tu)

+ 2(1 + g)3(3g + 4)

(1 + g − tu)2

]}])
, (32b)

K1
HH(t, u) = t3

√
1 − u2

[
9t2 − t2

2g3

[
11 + 6t (u − t)

g2

]

+ 1

g + t − u

[
1 + t

g
− 1 + u

g − t + u

]

− 3t2(1 + g)

g(1 + g − tu)
− (1 − u2)

{
1

(1 + u)3

+ 1

2g3(g − t + u)

[
3t3

g2
+ 3t2(t − g)

g(g − t + u)

+ 2(t − g)3

(g − t + u)2

]
− 3t4

2g3(1 + g − tu)

×
[
3

g2
+ 3 + 5g + 2g4

g(1 + g − tu)

+ 2(1 + g)3(1 + 2g)

(1 + g − tu)2

]}]
, (32c)

K1∗
HH (t, u) = −t3

4

{
2 − 3t

[
u − 2t (1 − 3u2)

]

− 1

g

[
2 − t (5u − 7t)

g2
− 6t2(t − u)2

g4

] }

+ t2(1 − u2)

2

(
12t3 − 3

(1 + u)2
+ 3

g2(g − t + u)

×
[
t2

g
+ (t − g)2

g − t + u

]
− t3

1 + g − tu

[
3 + 7

g3

+ (1 + g)2(7 + 3g)

g2(1 + g − tu)

]
− 3(1 − u2)

4

[
2

(1 + u)4

−2t5

g5

[
12 + 5(1 + 3tu)

g2

]
− 1

g4(g − t + u)

×
[
5t4

g3
+ t3(5t − 4g)

g2(g − t + u)
+ 4t2(t − g)2

g(g − t + u)2

+ 2(t − g)4

(g − t + u)3

]
− t5

g2(1 + g − tu)

×
{

1

g3

[
24(1 + t2) − 25

g2

]
+ 1

1 + g − tu

×
[
24(1 + g)2 + 48tu(1 + g)

g2
− 23g + 25

g4

]

+ 2(1+g)2

g(1+g−tu)2

[
2−g + 16tu(1+g)− 1

g

(
3 + 10

g

)]

− 2(5 + 3g)(1 + g)4

g2(1 + g − tu)3
− 2t2(1 − 3u2)

g2

×
[
5

g3
+ 5 + 4g

g2(1 + g − tu)
+ 4(1 + g)2

g(1 + g − tu)2

+ 2(1 + g)4

(1 + g − tu)3

]} ] )
, (32d)

K2
HH (t, u) = −t4

4

{
3(1 + 4tu) − 1

g

[
3 + t (9u − 11t)

g2

+6t2(t − u)2

g4

] }
+ t2(1 − u2)

(
2 + 2t + u

(1 + u)2

− t2

g3
+ 1

g(g − t + u)

[
2(t − g) + t2(u − 2t)

g2

+ (t − g)2(u − 2t)

g(g − t + u)

]
+ t4

1 + g − tu

[
4 + 1

g3

+ (1 + g)2(1 + 4g)

g2(1 + g − tu)

]
+ 1 − u2

8

[
2(4 + 6t + u)

(1 + u)4

−15t4

g7
+ 1

g3(g − t + u)

{
3t3

g2

[
4 + 5t (u − 2t)

g2

]

+ 6(u − 2t)(t − g)4

g(g − t + u)3
+ 3t2

g(g − t + u)

[
4(t − g)
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+ t (u − 2t)(5t − 4g)

g2

]
+ 4(t − g)2

(g − t + u)2

[
2(t − g)

+3t2(u − 2t)

g2

] }
+ t6

g4(1 + g − tu)

[
15

g3

+ 3(8g + 5)

g2(1+g − tu)
+ 4(1+g)2(2g3 − 4g2 + 6g + 3)

g(1 + g − tu)2

+6(1 + g)4(4g + 1)

(1 + g − tu)3

] ] )
, (32e)

K2∗
HH(t, u) = −3t2

√
1 − u2

8

(
t2(1 + 2tu) − t2(1 − 4tu + 3t2)

g5

+ 4

g + t − u

(
1 + t

g
− 1 + u

g − t + u

)
+ 2t2(1 + g)

g(1 + g − tu)

− 1 − u2

2

{
16

(1 + u)3
+ 3t4(4 − 3tu + 3t2)

g5

+ 8

g3(g − t + u)

[
3t3

g2
+ 3t2(t − g)

g(g − t + u)

+ 2(t − g)3

(g − t + u)2

]
+ 2t4

1 + g − tu

×
[
9 + 9(1 − tu + t2)

g3
− 15

g5
+ 9tu(1 + g)2

g2(1 + g − tu)

− 2g4 + 17g + 15

g4(1 + g − tu)
− 2(1 + g)3(5 + 2g)

g3(1 + g − tu)2

]

− t6(1 − 3u2)

g3(1 + g − tu)

[
3

g2
+ 3(1 + g)

g(1 + g − tu)

+ 2(1 + g)3

(1 + g − tu)2

]}
− (1 − u2)2

2

×
[

8

(1 + u)5
+ 5t6(22 − 9tu + 15t2)

2g9

+ 1

g5(g − t + u)

[
35t5

g4
+ 5t4(7t − 5g)

g3(g − t + u)

+ 20t3

(g − t + u)2
+ 10t4(3t − 5g)

g2(g − t + u)2

+ 20t2(t − g)3

g(g − t + u)3
+ 8(t − g)5

(g − t + u)4

]

+ t6

g3(1 + g − tu)

{
5

g2

(
6 + 15tu

g2
− 14

g4

)

+ 5

g(1 + g − tu)

[
6(1 + g) + 12tu

g

+ 15tu

g2
− 11

g3
− 14

g4

]
+ 10(1 + g)

(1 + g − tu)2

×
[
2(1 + g)2 + 6tu(1 + g)

g2
− 5

g3
− 6

g4

]

− 2(1 + g)3

(1 + g − tu)3

[
1 − 15tu(1 + g) + 3

g

+ 6

g2
+ 20

g3

]
− 8(1 + g)5(g + 2)

g2(1 + g − tu)4

− t2(1 − 3u2)

2g2

[
35

g4
+ 5(5g + 7)

g3(1 + g − tu)

+ 10(1 + g)(2g + 3)

g2(1 + g − tu)2
+ 20(1 + g)3

g(1 + g − tu)3

+ 8(1 + g)5

(1 + g − tu)4

]}])
, (32f)

K3
HH(t, u) = 3t2

√
1 − u2

8

(
2t3 − 2t

1 + u

+ t3

g3

[
1 + 2t (u − t)

g2

]
+ 2t (g − t)

g(g − t + u)

− 2t3(1 + g)

g(1 + g − tu)
− 3(1 − u2)

{
3t3

g5

+ 3 + u + 2t

(1 + u)3
− 1

g2(g − t + u)

[
3t2(1 − tu)

g3

+ 3(t − g)2

g − t + u
+ 3t2(t − g)(u − t)

g2(g − t + u)

− 2(t − g)3(t − u)

g(g − t + u)2

]
− t5

(1 + g − tu)2

×
[
1 + 1

g3
+ 2(1 + g)3

g2(1 + g − tu)

]}
− (1 − u2)2

2

×
[
35t5

g9
+ 2(5 + u + 4t)

(1 + u)5
− 1

g3(g − t + u)

×
{
5t4(5 − 3tu − 2t2)

g6
− 5t3

g2(g − t + u)

×
[
4 − 5t

g
− t (t − u)(5g − 7t)

g3

]

− 10t2

g(g − t + u)2

[
4t − 2(1 − tu + t2)

g

− t2(t − u)(5g − 3t)

g3

]
− 10(t − g)3

(g − t + u)3

×
[
1 − t (1 − t2)

g3

]
+ 8(t − g)5(u − t)

g2(g − t + u)4

}

− t7

g3(1 + g − tu)2

[
5

g4
+ 10(1 + g)

g3(1 + g − tu)

+ 2(1 + g)3

(1 + g − tu)2

(
1 − 3

g
+ 6

g2

)

+ 8(1 + g)5

g(1 + g − tu)3

]])
. (32g)
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It can be observed that the closed forms of the isotropic ker-
nels are more complex as those of Eqs. (26a)–(26g). The
complexity originates mainly from the spectral forms which
are composed of more terms and contain the Legendre func-
tions of higher orders.

We conclude our mathematical derivations with the lim-
iting values of the isotropic kernels of Eqs. (32a)–(32g). By
employing the L’Hospital rule, they read as follows:

K1∗
HH(t, 1) = −K2

HH(t, 1) = −t6(25 − 33t + 12t2)

4(1 − t)3
,

K0
HH(t, 1) = K0∗

HH(t, 1) = K1
HH(t, 1) = K2∗

HH(t, 1)

= K3
HH(t, 1) = 0, (33a)

K1∗
HH(t,−1) = K2

HH(t,−1) = t6(25 + 33t + 12t2)

4(1 + t)3
,

K0
HH(t,−1) = K0∗

HH(t,−1) = K1
HH(t,−1)

= K2∗
HH(t,−1) = K3

HH(t,−1) = 0, (33b)

K0∗
HH(1, 1) = K1

HH(1, 1) = K1∗
HH(1, 1) = K2

HH(1, 1)

= K2∗
HH(1, 1) = K3

HH(1, 1) = −K0
HH(1, 1) = ∞,

(33c)

K1∗
HH(1,−1) = K2

HH(1,−1) = 35

16
, K0

HH(1,−1)

= K0∗
HH(1,−1) = K1

HH(1,−1)

= K2∗
HH(1,−1) = K3

HH(1,−1) = 0. (33d)

In correspondence to Eqs. (27a)–(27d), each of the seven
isotropic kernels is singular for t = u = 1. For the other
limiting values, these are bounded and only two kernels, i.e.,
K1∗

HH and K2
HH, are non-zero.

Generally, the isotropic kernels of the integral transforms
of Eqs. (13), (19) and (28) are bounded for t < 1 and
−1 ≤ u ≤ 1. In other words, the upward continuation of
the second-order disturbing gravitational tensor components
onto the third-order disturbing gravitational tensor compo-
nents is not problematic. However, all isotropic kernels are
singular for t = u = 1, see Eqs. (18c), (27c), (33c). The sin-
gularities indicate that the transformation of the second-order
disturbing gravitational tensor components onto their third-
order counterparts is inherently unstable when both tensor
quantities are given at the same sphere. This is very similar
to the much simpler and more frequent transformation of the
disturbing gravitational potential (or geoid undulation) onto
gravity anomalies, see, e.g., Vaníček and Krakiwsky (1986,
p. 562).

4 Numerical experiments

4.1 Closed-loop test of the new integral transforms

The complex mathematical derivations performed in the pre-
vious section may be prone to potential errors. Therefore, the
resulting integral transforms of Eqs. (13), (19) and (28) are
implemented in the form of computer programs written in
the programming language C. The accuracy of the computer
programs, thus also the internal consistency of the newmath-
ematical apparatus with respect to its spectral representation,
is subsequently verified in a closed-loop test.

We opt for testing the integral transforms of Eqs. (13), (19)
and (28) by solving the direct problem. Namely, the second-
order disturbing gravitational components are assumed to be
known at the mean sphere of radius R, while their third-
order counterparts are evaluated at the sphere of radius r =
R + 250 km. In this way, both transformation and upward
continuation of the input data are validated.

Such a geometric configuration may also be exploited in
the future for calibration/validation of satellite third-order
gravitational components (potentially observed by the mis-
sion OPTIMA) through ground gradiometric measurements.
However, terrestrial data does not cover the entire Earth and
is usually available only in limited geographic areas. There-
fore, the ground gradiometric measurements would have to
be combined with a global gravitational model in realistic
calibration/validation experiments.

We firstly synthesize the six second-order disturbing grav-
itational components from the global gravitational model
EGM2008 (Pavlis et al. 2012) in the form of global equiangu-
lar grids with the steps 	ϕ = 	λ = 0.5◦. Correspondingly,
the synthesis is performed between the degrees 2-360 on the
mean sphere of radius R = 6378.1363 km. The normal grav-
ity field generated by the international equipotential ellipsoid
GRS80 (Moritz 2000) is adopted throughout all numerical
simulations.

Secondly, the true values of the ten third-order disturbing
gravitational components are synthesized from EGM2008
at the sphere of radius r = R + 250 km. We calculate the
true values with the steps 	ϕ = 	λ = 0.5◦ in the test
area bounded by the spherical geocentric angular coordi-
nates ϕ ∈ [−50◦, 0◦] and λ ∈ [−85◦,−60◦]. For the reasons
explained below, the true third-order disturbing gravitational
components are synthesized in the two different bandwidths
(1) between the degrees 2–360 and (2) between the degrees
100–200.

The test area covers the majority of the Andes. Variations
of the third-order disturbing gravitational components in this
region are twice as high as their corresponding global aver-
ages. Thus, the closed-loop test is performed for the case of
a complex gravitational field. The statistics of the true val-
ues for both spectral bandwidths are summarized in Table 1
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Table 1 Statistics of the true values of the third-order disturbing
gravitational components in the test area ϕ ∈ [−50◦, 0◦] and λ ∈
[−85◦,−60◦]
Bandwidth Component Min. Max. Mean Std. dev.

2–360 Txxx −6.737 5.145 −0.027 0.842

Txxy −3.695 3.185 0.005 0.548

Txxz −6.098 5.975 0.026 1.010

Txyy −3.259 3.176 −0.007 0.617

Txyy −4.350 4.167 −0.017 0.830

Txzz −8.129 9.610 0.033 1.319

Tyyy −6.214 7.946 0.072 1.683

Tyyz −6.925 7.494 0.119 1.811

Tyzz −8.989 7.745 −0.076 2.014

Tzzz −9.628 9.666 −0.145 2.431

100–200 Txxx −1.320 1.327 0.001 0.210

Txxy −0.788 0.838 0.000 0.135

Txxz −1.630 1.580 −0.001 0.251

Txyy −0.737 0.706 0.000 0.154

Txyy −1.110 1.072 0.000 0.205

Txzz −1.969 2.024 −0.001 0.325

Tyyy −1.898 1.764 −0.001 0.422

Tyyz −1.932 1.877 −0.003 0.451

Tyzz −1.966 2.168 0.001 0.498

Tzzz −3.002 2.678 0.004 0.597

The true values are synthesised from EGM2008 at the sphere of radius
r = 6628.1363 km. The statistics are given in 10−15 m−1 s−2

reaching magnitudes of the order of 10−15 m−1 s−2. We can
also see that the variations of the third-order gravitational
components between the degrees 100–200 are approximately
four times lower as compared to those between the degrees
2–360. For both bandwidths, the largest signal is observed
for the vertical component Tzzz . Also, we can clearly identify
larger signals for Tyyy , Tyyz and Tyzz as compared to Txxx ,
Txxz and Txzz . This is in correspondence with larger varia-
tions of the gravitational field in the East-West direction, i.e.,
in the direction of the y axis, over the Andes.

Thirdly, the numerical integration over the global grids of
the second-order disturbing gravitational components is per-
formed according to the integral transforms of Eqs. (13), (19)
and (28). The evaluation points are identical to those for the
true values of the third-order disturbing gravitational compo-
nents. Both the spectral and isotropic kernels are validated by
the numerical integration. When the closed isotropic kernels
are employed, the expected spectral content must be con-
sistent with the input data, i.e., between the degrees 2–360
as for the second-order disturbing gravitational components.
On the other hand, the spectral isotropic kernels are limited to
the degrees 100–200 corresponding to the limited bandwidth
of the true values.

Table 2 Statistics of the differences between the third-order disturb-
ing gravitational components calculated by the integral transform of
Eq. (13) and the corresponding true values

Bandwidth Component Min. Max. Mean Std. dev.

2–360 Txxx −7.53 5.71 −0.03 0.94

Txxy −4.13 3.57 0.01 0.61

Txxz −6.84 6.67 0.03 1.13

Txyy −3.65 3.56 −0.01 0.69

Txyy −4.86 4.66 −0.02 0.93

Txzz −9.06 10.75 0.04 1.48

Tyyy −6.97 8.89 0.08 1.88

Tyyz −7.73 8.38 0.13 2.03

Tyzz −10.07 8.62 −0.09 2.25

Tzzz −10.75 10.84 −0.16 2.72

100–200 Txxx −1.49 1.50 0.00 0.24

Txxy −0.88 0.94 0.00 0.15

Txxz −1.84 1.763 0.00 0.28

Txyy −0.83 0.79 0.00 0.17

Txyz −1.24 1.20 0.00 0.23

Txzz −2.20 2.28 0.00 0.37

Tyyy −2.12 1.97 0.00 0.47

Tyyz −2.16 2.10 0.00 0.51

Tyzz −2.20 2.43 0.00 0.56

Tzzz −3.38 2.98 0.00 0.67

The statistics are given in 10−18 m−1 s−2

Finally, the third-order disturbing gravitational compo-
nents calculated by the numerical integration and their true
values are compared. The corresponding statistics for the
integral transform of Eq. (13) is provided in Table 2. It can be
seen that themagnitudes of the differences between the third-
order disturbing gravitational components computed by the
numerical integration and their true values are of the order of
10−18 m−1 s−2. Compared to the signals inTable 1, the differ-
ences are three orders ofmagnitude smaller. Almost identical
statistics, differing by several hundredths of 10−18 m−1 s−2

for the minima and maxima, are obtained for the integrals
of Eqs. (19) and (28). Thus, we show the consistency of the
new integral transforms of Eqs. (13), (19) and (28) derived
in Sect. 3 with their corresponding spectral representations.

4.2 Properties of the sub-integral kernels in the spatial
domain

We now examine the spatial behaviour of the new sub-
integral kernels. The investigation is performed to better
understand properties of the corresponding integral trans-
forms, e.g., symmetries of the sub-integral kernels, or posi-
tion and occurrence of their extreme values. These properties
are closely related to practical aspects of the integral trans-
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forms, such as exploitation of fast numerical algorithms for
their numerical evaluation, significance of the distant zones
or suitability of the integral transforms for solving inverse
problems.

Šprlák and Novák (2015) studied the performance of the
sub-integral kernels for the integral formulas transforming
the mass density, disturbing gravitational potential, gravity
anomaly and gravity disturbance onto the third-order disturb-
ing gravitational components. Similar findings may also be
extended for the kernel functions of the integral transform of
Eq. (13). Examination of these properties is not duplicated
in this article. Therefore, we restrict to the sub-integral ker-
nels for the integral formulas of Eqs. (19) and (28), which
are investigated for the first time. However, some properties
of the sub-integral kernels are commented for all three inte-
gral transforms to illustrate possible similarities and contrasts
between them.

The investigation is performed for the same geometric
configuration as already discussed above, i.e., the second-
order components are prescribed at themean sphere of radius
R = 6378.1363 km and the third-order components at the
sphere of radius r = R + 250 km. The geometric formation
may be of practical importance for solving both the direct and
inverse problems when the third-order components become
observable in space in the future.

The first idea on the general behaviour of the sub-integral
kernels can be obtained by inspecting the corresponding
mathematical formulas derived inSect. 3.Thekernel function
of Eq. (14j) for the integral formula of Eq. (13) is isotropic as
it depends only on the spherical distance ψ . The other sub-
integral kernels for the same integral transform are functions
of the direct azimuth α, thus they are anisotropic, see also
Šprlák andNovák (2015). On the other hand, the kernel func-
tions for the integrals of Eqs. (19) and (28) are anisotropic
and also non-homogeneous with the spherical latitude of
the evaluation point. The non-homogeneity originates from
the backward azimuth α′, see Eqs. (21a)–(21j) and (29a)–
(29j).

The ten kernel functions Dopq
(
cosα′ KVH

)
, o, p, q ∈

{x, y, z}, defined by Eqs. (21a)–(21j) are illustrated in Fig. 4.
For numerical reasons, they are multiplied by the factor of
R3. The computation is performed at the evaluation point
with the spherical coordinates ϕ = 60◦ and λ = 0◦ that
is located in the centres of the polar plots. The kernels are
depicted as functions of the spherical polar coordinates, i.e.,
the spherical distance ψ ∈ [0◦, 30◦] and the direct azimuth
α ∈ [0◦, 360◦). The spherical distance is measured from the
centres of the polar plots and indicated by the concentric
dashed circles. Values of the direct azimuth are measured
clock-wise from the North and are marked along the circum-
ference of each polar plot.

Figure 4 reveals that there are no mutual symmetries
between the ten kernel functions as their behaviours are

different. In other words, the kernels are not interrelated
by any azimuthal rotation. This is in contrast to the sub-
integral kernels of Eqs. (14a)–(14j). Among them the pairs
(Dxxx KVV, Dyyy KVV), (Dxyy KVV, Dxxy KVV) and
(Dxzz KVV, Dyzz KVV) are related by the azimuthal rota-
tion of π/2. In addition, the pair (Dxxz KVV, Dyyz KVV) is
symmetric by rotating the direct azimuth α by ±π/2, see
Šprlák and Novák (2015).

By inspecting the individual sub-integral kernels in Fig. 4,
we can clearly identify their symmetry or anti-symmetry
with respect to the meridional plane passing through the
computational point. Specifically, the sub-integral kernels
with the y coordinate either missing or occurring twice in
the superscript, i.e.,Dxxx

(
cosα′ KVH

)
,Dxxz

(
cosα′ KVH

)
,

Dxzz
(
cosα′ KVH

)
, Dzzz

(
cosα′ KVH

)
, Dxyy

(
cosα′ KVH

)
and Dyyz

(
cosα′ KVH

)
, are symmetric with respect to the

meridional plane. On the other hand, the kernels with the
y coordinate occurring an odd number of times in the
superscript, i.e., Dxxy

(
cosα′ KVH

)
, Dxyz

(
cosα′ KVH

)
,

Dyzz
(
cosα′ KVH

)
and Dyyy

(
cosα′ KVH

)
, are anti-sym-

metric with respect to themeridional plane. Both the symme-
try and anti-symmetry require only half of the kernel values
to be computed. Moreover, values of the sub-integral kernels
do not change with the spherical longitude of the evaluation
point. Thus, assuming a regular equiangular grid of evalu-
ation points, the sub-integral kernels need to be calculated
only once for all evaluation points with the same spherical
latitude. These properties allow for exploiting fast and rigor-
ous numerical algorithms, e.g., the 1-D fast Fourier transform
(Haagmans et al. 1993) or the fast numerical integration
(Huang et al. 2000), in practical computations of the cor-
responding integral transforms.

Looking at the position andoccurrence of the extremes,we
can distinguish between two types of kernel functions. Obvi-
ously, the kernels Dxxx

(
cosα′ KVH

)
, Dxyy

(
cosα′ KVH

)
and Dxzz

(
cosα′ KVH

)
reach their extreme magnitudes at

the evaluation point. However, the other kernels are exactly
zero at the evaluation point, while their extremes can be seen
for the spherical distances of several degrees of arc. Themag-
nitudes of all kernels are significantly reduced by at least two
orders beyond ψ = 8◦.

The two types of kernel functions can determine suitabil-
ity of the integral transforms for solving inverse problems.
Eshagh (2011b) showed that the first type of the sub-integral
kernels is superior for integral inversions. However, he
considered different gravitational field parameters, i.e., inte-
gral inversion of the second-order disturbing gravitational
components onto the gravity anomaly and only small inte-
gration radii. Therefore, we do not definitely conclude on
this issue as the suitability of the integral transforms of
Eq. (19) for inverse problems should be shown by an inde-
pendent numerical experiment. This task is left for our future
research.
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Fig. 4 The behaviour of the sub-integral kernels: a)
Dxxx

(
cosα′ KVH

)
, b) Dxxy

(
cosα′ KVH

)
, c) Dxxz

(
cosα′ KVH

)
,

d) Dxyy
(
cosα′ KVH

)
, e) Dxyz

(
cosα′ KVH

)
, f) Dxzz

(
cosα′ KVH

)
, g)

Dyyy
(
cosα′ KVH

)
, h) Dyyz

(
cosα′ KVH

)
, i) Dyzz

(
cosα′ KVH

)
and

j) Dzzz
(
cosα′ KVH

)
, see Eqs. (21a)–(21j). The kernels are calculated

for R = 6378.1363 km and r = R + 250 km with the closed isotropic
kernels of Eqs. (26a)–(26g) as functions of the spherical distance
ψ ∈ [0◦, 30◦] and direct azimuth α ∈ [0◦, 360◦). The spherical

distanceψ is measured from the centres of the polar plots and indicated
by the dashed concentric circles. The direct azimuth α is measured
clock-wise from the North and marked along the circumference of each
of the polar plots. The evaluation point with the spherical coordinates
ϕ = 60◦ and λ = 0◦ is located at the centres of the polar plots. The
kernel values are unitless as they are multiplied by the factor R3 for
numerical reasons. Black lines inside the plots indicate zero crossings
of the sub-integral kernels.
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Fig. 5 The behaviour of the sub-integral kernels: a
Dxxx

(
cos 2α′ KHH

)
, b Dxxy

(
cos 2α′ KHH

)
, c Dxxz

(
cos 2α′ KHH

)
, d

Dxyy
(
cos 2α′ KHH

)
, e Dxyz

(
cos 2α′ KHH

)
, f Dxzz

(
cos 2α′ KHH

)
, g

Dyyy
(
cos 2α′ KHH

)
, h Dyyz

(
cos 2α′ KHH

)
, i Dyzz

(
cos 2α′ KHH

)
and

j Dzzz
(
cos 2α′ KHH

)
, see Eqs. (29a)–(29j). The kernels are calculated

for R = 6378.1363 km and r = R + 250 km with the closed isotropic
kernels of Eqs. (32a)–(32g) as functions of the spherical distance
ψ ∈ [0◦, 30◦] and direct azimuth α ∈ [0◦, 360◦). The spherical

distanceψ is measured from the centres of the polar plots and indicated
by the dashed concentric circles. The direct azimuth α is measured
clock-wise from the North and marked along the circumference of each
of the polar plots. The evaluation point with the spherical coordinates
ϕ = 60◦ and λ = 0◦ is located at the centres of the polar plots. The
kernel values are unitless as they are multiplied by the factor R3 for
numerical reasons. Black lines inside the plots indicate zero crossings
of the sub-integral kernels

123



188 M. Šprlák, P. Novák

The spatial behaviour of the sub-integral kernels
Dopq

(
cos 2α′ KHH

)
, o, p, q ∈ {x, y, z}, see Eqs. (29a)–

(29j), is depicted in Fig. 5. They are again multiplied by the
factor of R3. Clearly, we do not observe any mutual symme-
tries between the kernels. The symmetry or anti-symmetry
with respect to the meridional plane according to the occur-
rence of the y coordinate in the superscripts can also be seen.
Also, the two types of kernel functions may be identified
based on the position and occurrence of the extremes. These
properties are in correspondence to those for the kernel func-
tions illustrated in Fig. 4.

However, the spatial behaviour for the kernels in Fig. 5
is different as compared to their counterparts in Fig. 4.
Different kernel functions, i.e., Dxxz

(
cos 2α′ KHH

)
and

Dyyz
(
cos 2α′ KHH

)
, reach their extremevalues at the compu-

tational point. In addition, the magnitudes of the sub-integral
kernels are still significant even at ψ = 10◦. Therefore, we
suppose that the effect of the truncation error could be more
crucial for the integral transforms of Eq. (28) as compared to
those of Eq. (19) when assuming a truncated integration of
input data.

The sub-integral kernels Dopq
(
cosα′ KVH

)
and Dopq(

cos 2α′ KHH
)
, o, p, q ∈ {x, y, z}, are illustrated in two ani-

mations which are included in the electronic supplementary
material. The animations are created for the same para-
meters as already discussed above for Figs. 4 and 5, i.e.,
R = 6378.1363 km, r = R + 250 km, ψ ∈ [0◦, 30◦], α ∈
[0◦, 360◦) and λ = 0◦. However, each animation sequence
differs by the spherical latitude of the evaluation point ϕ ∈
[−80◦, 80◦] with the changes of 20◦.

The animations show the non-homogeneity of the sub-
integral kernels. Obviously, the non-homogeneity still pos-
sesses a symmetric feature for the evaluation pointswhich are
symmetric with respect to the equatorial plane. For example,
the sub-integral kernels at ϕ = −60◦ can be retrieved from
those at ϕ = 60◦ by the azimuthal rotation of ±π and vice
versa. However, the spatial behaviour of the kernels changes
as a function of the spherical latitude of the evaluation point.
This is clearly indicated by the zero crossing lineswhich form
different shapes for different values of the spherical latitude
of the evaluation pointϕ and originate from the trigonometric
functions of the backward azimuth α′.

So far, the functions Dopq
(
cosα′ KVH

)
and Dopq(

cos 2α′ KHH
)
, o, p, q ∈ {x, y, z}, were investigated. They

represent only half of the sub-integral kernels of the inte-
gral transforms of Eqs. (19) and (28). The other half
of the kernel functions is completed by 20 functions,
i.e., Dopq

(
sin α′ KVH

)
and Dopq

(
sin 2α′ KHH

)
, o, p, q ∈

{x, y, z}. For the sake of brevity, the properties of these func-
tions are only briefly summarized and contrasted to their
formerly investigated counterparts.

The spatial behaviour of Dopq
(
sin α′ KVH

)
and Dopq(

sin 2α′ KHH
)
, o, p, q ∈ {x, y, z}, differs from the ker-

nels discussed above. This originates from the fact that
there is no mutual azimuthal symmetry between the pairs
(cosα′, sin α′) and (cos 2α′, sin 2α′), i.e., the trigonomet-
ric functions of the backward azimuth α′. Another distinct
point is that these kernel functions are anti-symmetric with
respect to the meridional plane for the y coordinate either
missing or occurring twice in the superscript. The symme-
try with respect to the meridional plane holds for the kernel
functions with the y coordinate occurring an odd number
of times. Also, there is a difference when looking at the
position and occurrence of the extreme values. In particu-
lar, the extreme values at the evaluation point can be found
for the functions Dxxy

(
sin α′ KVH

)
, Dyyy

(
sin α′ KVH

)
,

Dyzz
(
sin α′ KVH

)
, and Dxyz

(
sin 2α′ KHH

)
. Note that the

other properties observed in Figs. 4 and 5 may also be
extended to the sub-integrals kernels Dopq

(
sin α′ KVH

)
and

Dopq
(
sin 2α′ KHH

)
, o, p, q ∈ {x, y, z}.

5 Conclusions

New spherical integral formulas transforming the second-
order gravitational components onto their third-order coun-
terparts were presented in this article. For this purpose, we
firstly defined the preliminaries necessary for the mathe-
matical derivations, see Sect. 2. Namely, we reviewed the
nomenclature exploited throughout the article, basic proper-
ties of the second- and third-order gravitational tensors and of
the related differential operators, and summarized the analyt-
ical solutions of the gradiometric boundary-value problem.
Secondly, the third-order differential operators were applied
to the three analytical solutions of the gradiometric boundary-
value problem, see Sect. 3. In this way, we obtained 30
new integral formulas transforming (1) vertical–vertical, (2)
vertical–horizontal and (3) horizontal–horizontal second-
order gravitational tensor components onto their third-order
counterparts, see Eqs. (13), (19) and (28). The correspond-
ing sub-integral kernels were concisely expressed in terms
of the spherical polar coordinates, see Eqs. (14a)–(14j),
(21a)–(21j) and (29a)–(29j) which allow for decomposing
the kernel functions into their azimuthal and isotropic parts.
The isotropic kernels were provided both in the spectral and
closed forms; their limits were also estimated. Thirdly, the
consistency of the new integral transforms with correspond-
ing spectral representations was successfully verified by a
closed loop test over the test area of the Andes, see Sect. 4.1.
Moreover, the properties of the sub-integral kernels were
investigated in detail in Sect. 4.2.

The new mathematical formulas enrich the theoretical
apparatus of physical geodesy by extending the Meissl
diagram, see Fig. 3, which concisely connects various para-
meters of the gravitational field. The new integral transforms
can be applied, e.g., for calibration/validation studies or grav-
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itational field modelling, when observations of the second
and third-order gravitational components become available
in the future. The new mathematical apparatus formulated
in this article can also be exploited for other potential fields,
such as the geomagnetic field; moreover, it also enhances the
general framework of the potential theory.
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Appendix A: Formulas for u = cosψ , direct
azimuth α and backward azimuth α′

In this appendix, we provide equations for numerical calcu-
lation of the parameter u = cosψ , direct azimuth α and
backward azimuth α′. Given the spherical coordinates of
the evaluation and integration points, these parameters are
defined as follows:

u = cosψ = sin ϕ sin ϕ′ + cosϕ cosϕ′ cos(λ′ − λ), (34a)

cosα = 1√
1 − u2

[
sin ϕ′ cosϕ

− cosϕ′ sin ϕ cos(λ′ − λ)
]
, (34b)

sin α = 1√
1 − u2

cosϕ′ sin(λ′ − λ), (34c)

cosα′ = 1√
1 − u2

[
sin ϕ cosϕ′

− cosϕ sin ϕ′ cos(λ′ − λ)
]
, (34d)

sin α′ = −1√
1 − u2

cosϕ sin(λ′ − λ). (34e)

Equations (34a)–(34e) can be derived by using cosine, sine
and sine-cosine rules of spherical trigonometry, see, e.g.,
Chauvenet (1875, pp. 151–154).

Cosines and sines of multiples of α and α′ also appear in
Sect. 3. They read

cos 2α = 2 cos2 α − 1, (35a)

sin 2α = 2 cosα sin α, (35b)

cos 3α = cosα (cos2 α − 3 sin2 α), (35c)

sin 3α = − sin α (sin2 α − 3 cos2 α), (35d)

cos 2α′ = 2 cos2 α′ − 1, (35e)

sin 2α′ = 2 cosα′ sin α′. (35f)

Equations (35a)–(35f) can be obtained from the multiple-
angle formulas for trigonometric functions, see, e.g.,
Abramowitz and Stegun (1972), p. 72.

Appendix B: Action of the third-order differential
operators on multiplication of two functions

In this appendix, the general form resulting from the applica-
tion of the third-order differential operators onmultiplication
of two functions is provided. This is exploited in Sects. 3.2
and 3.3 to derive integral transforms of theVH andHHgravi-
tational tensor components onto the third-order gravitational
tensor components.

We suppose two functions, i.e., f = f (�,�′) and
h = h(r, R,�,�′). The function f depends only on the
geocentric angular coordinates, while h also depends on the
geocentric radii of the evaluation and integration points. We
now apply the recursive formulas between the second- and
third-order differential operators of Eq. (12) to the multipli-
cation of f and h that gives:

Dxxx ( f h) = f Dxxxh + h Dxxx f + 1

r

∂ f

∂ϕ
Dxxh

+ 1

r

∂h

∂ϕ
Dxx f + 2

r2
∂h

∂r

∂ f

∂ϕ

+ 2

r3
∂

∂ϕ

(
∂ f

∂ϕ

∂h

∂ϕ

)
, (36a)

Dxxy( f h) = f Dxxyh + h Dxxy f + 1

r

∂ f

∂ϕ
Dxyh

+ 1

r

∂h

∂ϕ
Dxy f − 1

r2 cosϕ

∂h

∂r

∂ f

∂λ

− 1

r

∂

∂ϕ

[
1

r2 cosϕ

(
∂ f

∂ϕ

∂h

∂λ
+ ∂h

∂ϕ

∂ f

∂λ

)]
,

(36b)

Dxxz( f h) = f Dxxzh + h Dxxz f + ∂h

∂r
Dxx f

+ ∂

∂r

(
2

r2
∂ f

∂ϕ

∂h

∂ϕ

)
, (36c)

Dxyy( f h) = f Dxyyh + h Dxyy f

+ 1

r

∂ f

∂ϕ
Dyyh + 1

r

∂h

∂ϕ
Dyy f

+ 1

r

∂

∂ϕ

(
2

r2 cos2 ϕ

∂ f

∂λ

∂h

∂λ

)
, (36d)
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Dxyz( f h) = f Dxyz h + hDxyz f + ∂h

∂r
Dxy f

− ∂

∂r

[
1

r2 cosϕ

(
∂ f

∂ϕ

∂h

∂λ
+ ∂h

∂ϕ

∂ f

∂λ

)]
, (36e)

Dxzz( f h) = f Dxzz h + h Dxzz f

+ ∂h

∂r
Dxz f + ∂

∂r

(
1

r

∂h

∂r

∂ f

∂ϕ

)
, (36f)

Dyyy( f h) = f Dyyy h + h Dyyy f − 1

r cosϕ

∂ f

∂λ
Dyy h

− 1

r cosϕ

∂h

∂λ
Dyy f − 2

r2 cosϕ

∂h

∂r

∂ f

∂λ

+ 2 tan ϕ

r3 cosϕ

(
∂ f

∂ϕ

∂h

∂λ
+ ∂h

∂ϕ

∂ f

∂λ

)

− 1

r cosϕ

∂

∂λ

(
2

r2 cos2 ϕ

∂ f

∂λ

∂h

∂λ

)
, (36g)

Dyyz( f h) = f Dyyz h + h Dyyz f + ∂h

∂r
Dyy f

+ ∂

∂r

(
2

r2 cos2 ϕ

∂ f

∂λ

∂h

∂λ

)
, (36h)

Dyzz( f h) = f Dyzz h + h Dyzz f + ∂h

∂r
Dyz f

− ∂

∂r

(
1

r cosϕ

∂h

∂r

∂ f

∂λ

)
, (36i)

Dzzz( f h) = f Dzzz h. (36j)

Appendix C: Derivatives of the backward azimuth
α′

In Eqs. (36a)–(36i), the first-order derivatives with respect
to the spherical geocentric angular coordinates ϕ and λ

as well as the second- and third-order differential opera-
tors are applied to the function f . In this appendix, we
provide formulas for the action of such differential oper-
ators assuming f = cosα′, sin α′, cos 2α′ and sin 2α′.
These are expressed in terms of the parameters t, u, α

and α′, and exploited for the mathematical derivations in
Sect. 3.

The first-order derivatives of cosα′ read as follows, see,
e.g., Winch and Roberts (1995):

∂ cosα′

∂ϕ
= −1√

1 − u2
sin α′ sin α, (37a)

∂ cosα′

∂λ
= cosϕ√

1 − u2
sin α′ cosα. (37b)

We can easily obtain:

• derivatives of sin α′ by changing sin α′ → − cosα′,

• derivatives of cos 2α′ by changing sin α′ → 2 sin 2α′,
• derivatives of sin 2α′ by changing sin α′ → −2 cos 2α′,

in Eqs. (37a)–(37b).
Formulas for the action of the second-order operatorsDxx ,

Dxy ,Dxz ,Dyy andDyz to cosα′ are of the form (Šprlák et al.
2014):

Dxx cosα′ = −t2

2R2(1 − u2)

× [
cosα′(1 − cos 2α) + 2u sin α′ sin 2α

]
,

(38a)

Dxy cosα′ = −t2

2R2(1 − u2)

× (cosα′ sin 2α + 2u sin α′ cos 2α), (38b)

Dxz cosα′ = t2

R2
√
1 − u2

sin α′ sin α, (38c)

Dyy cosα′ = −t2

2R2(1 − u2)

[
cosα′(1 + cos 2α)

−2u sin α′ sin 2α
]
, (38d)

Dyz cosα′ = t2

R2
√
1 − u2

sin α′ cosα. (38e)

One can also obtain the action of the second-order differential
operators to:

• sin α′ by changing sin α′ → − cosα′ and cosα′ →
sin α′,

• cos 2α′ by changing sin α′ → 2 sin 2α′ and cosα′ →
4 cos 2α′,

• sin 2α′ by changing sin α′ → −2 cos 2α′ and cosα′ →
4 sin 2α′,

in Eqs. (38a)–(38e).
By applying the third-order differential operators Dxxx ,

Dxxy ,Dxxz ,Dxyy ,Dxyz ,Dxzz ,Dyyy ,Dyyz andDyzz to cosα′
we get:

Dxxx cosα′ = 3t3

4R3(1 − u2)3/2
[
sin α′(3 sin α − sin 3α)

− 2u cosα′(cosα − cos 3α)

− 2u2 sin α′(sin α + sin 3α)
]
, (39a)

Dxxy cosα′ = t3

4R3(1 − u2)3/2
[
3 sin α′(cosα − cos 3α)

+ 2u cosα′(sin α − 3 sin 3α)

− 2u2 sin α′(cosα + 3 cos 3α)
]
, (39b)
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Dxxz cosα′ = t3

R3(1 − u2)

[
cosα′(1 − cos 2α)

+ 2u sin α′ sin 2α
]
, (39c)

Dxyy cosα′ = t3

4R3(1 − u2)3/2
[
3 sin α′(sin α + sin 3α)

− 2u cosα′(cosα + 3 cos 3α)

− 2u2 sin α′(sin α − 3 sin 3α)
]
, (39d)

Dxyz cosα′ = t3

R3(1 − u2)
(cosα′ sin 2α

+2u sin α′ cos 2α), (39e)

Dxzz cosα′ = −2t3

R3
√
1 − u2

sin α′ sin α, (39f)

Dyyy cosα′ = 3t3

4R3(1 − u2)3/2
[
sin α′(3 cosα + cos 3α)

+ 2u cosα′(sin α + sin 3α)

− 2u2 sin α′(cosα − cos 3α)
]
, (39g)

Dyyz cosα′ = t3

R3(1 − u2)

[
cosα′(1 + cos 2α)

−2u sin α′ sin 2α
]
, (39h)

Dyzz cosα′ = −2t3

R3
√
1 − u2

sin α′ cosα. (39i)

We arrive at the formulas for the application of the third-order
differential operators for:

• sin α′ by changing sin α′ → − cosα′ and cosα′ →
sin α′.

• cos 2α′ by changing cosα′ → 4 cos 2α′; in addition, we
change sin α′ → 2 sin 2α′ for the operators Dxxz , Dxyz ,
Dxzz ,Dyyz and also when sin α′ is multiplied by u2, i.e.,
in the third terms inside the square brackets for the opera-
torsDxxx ,Dxxy ,Dxyy andDyyy ; for the purely horizontal
operators, another change sin α′ → 4 sin 2α′ is applied
in the first terms inside the square brackets,

• sin 2α′ by changing cosα′ → 4 sin 2α′; moreover, the
substitution sin α′ → −2 cos 2α′ is applied for the oper-
ators Dxxz , Dxyz , Dxzz , Dyyz and also when sin α′ is
multiplied byu2 in the third terms inside the square brack-
ets for the operatorsDxxx ,Dxxy ,Dxyy andDyyy ; for the
purely horizontal differential operators, we also change
sin α′ → −4 cos 2α′ in the first terms inside the square
brackets,

in Eqs. (39a)–(39i).

Appendix D: Auxiliary terms from the action of the
third-order differential operators on multiplication
of two functions

In this appendix, formulas for the auxiliary terms in
Eqs. (36a)–(36i), i.e., all terms except for the action of the
second and third-order differential operators, are provided.
Similar to “Appendix C”, the auxiliary terms are given for
f = cosα′, sin α′, cos 2α′ and sin 2α′ in terms of the para-
meters t , u, α and α′. However, we still assume the general
function h = h(r, R,�,�′) specified in Sect. 3.

The auxiliary terms of Eqs. (36a)–(36i) for f = cosα′
read:

2

r2
∂h

∂r

∂ f

∂ϕ
+ 2

r3
∂

∂ϕ

(
∂ f

∂ϕ

∂h

∂ϕ

)

= t3

R3

{
sin α′

[
sin α

(
2t√
1 − u2

∂h

∂t
+ u√

1 − u2
∂h

∂u

−
√
1 − u2

2

∂2h

∂u2

)
− sin 3α

(
u√

1 − u2
∂h

∂u

+
√
1 − u2

2

∂2h

∂u2

) ]
− cosα′ (cosα − cos 3α)

2
√
1 − u2

∂h

∂u

}
,

(40a)

− 1

r2 cosϕ

∂h

∂r

∂ f

∂λ
− 1

r

∂

∂ϕ

[
1

r2 cosϕ

(
∂ f

∂ϕ

∂h

∂λ
+ ∂h

∂ϕ

∂ f

∂λ

)]

= t3

R3

{
sin α′

[
cosα

(
t√

1 − u2
∂h

∂t

+ u√
1 − u2

∂h

∂u
−

√
1 − u2

2

∂2h

∂u2

)

− cos 3α

(
u√

1 − u2
∂h

∂u
+

√
1 − u2

2

∂2h

∂u2

) ]

+ cosα′ (sin α − sin 3α)

2
√
1 − u2

∂h

∂u

}
, (40b)

∂

∂r

(
2

r2
∂ f

∂ϕ

∂h

∂ϕ

)
= t3

R3 sin α′ sin 2α
(
2
∂h

∂u
+ t

∂2h

∂t∂u

)
,

(40c)

1

r

∂

∂ϕ

(
2

r2 cos2 ϕ

∂ f

∂λ

∂h

∂λ

)

= t3

R3

{
sin α′

[
sin α

(√
1 − u2

2

∂2h

∂u2
− u√

1 − u2
∂h

∂u

)

+ sin 3α

(
u√

1 − u2
∂h

∂u
+

√
1 − u2

2

∂2h

∂u2

) ]

+ cosα′ (cosα − cos 3α)

2
√
1 − u2

∂h

∂u

}
, (40d)
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− ∂

∂r

[
1

r2 cosϕ

(
∂ f

∂ϕ

∂h

∂λ
+ ∂h

∂ϕ

∂ f

∂λ

)]

= t3

R3 sin α′ cos 2α
(
2
∂h

∂u
+ t

∂2h

∂t∂u

)
, (40e)

∂

∂r

(
1

r

∂h

∂r

∂ f

∂ϕ

)

= − t4

R3
√
1 − u2

sin α′ sin α

(
3
∂h

∂t
+ t

∂2h

∂t2

)
, (40f)

− 2

r2 cosϕ

∂h

∂r

∂ f

∂λ
+ 2 tan ϕ

r3 cosϕ

(
∂ f

∂ϕ

∂h

∂λ
+ ∂h

∂ϕ

∂ f

∂λ

)

− 1

r cosϕ

∂

∂λ

(
2

r2 cos2 ϕ

∂ f

∂λ

∂h

∂λ

)

= t3

R3

{
sin α′

[
cosα

(
2t√
1 − u2

∂h

∂t

+ u√
1 − u2

∂h

∂u
−

√
1 − u2

2

∂2h

∂u2

)

+ cos 3α

(
u√

1 − u2
∂h

∂u
+

√
1 − u2

2

∂2h

∂u2

)]

+ cosα′ (sin α + sin 3α)

2
√
1 − u2

∂h

∂u

}
, (40g)

∂

∂r

(
2

r2 cos2 ϕ

∂ f

∂λ

∂h

∂λ

)

= − t3

R3 sin α′ sin 2α
(
2
∂h

∂u
+ t

∂2h

∂t∂u

)
, (40h)

− ∂

∂r

(
1

r cosϕ

∂h

∂r

∂ f

∂λ

)

= − t4

R3
√
1 − u2

sin α′ cosα

(
3
∂h

∂t
+ t

∂2h

∂t2

)
. (40i)

We can also obtain the auxiliary terms for:

• f = sin α′ by changing sin α′ → − cosα′ and cosα′ →
sin α′,

• f = cos 2α′ by changing sin α′ → 2 sin 2α′ and
cosα′ → 4 cos 2α′,

• f = sin 2α′ by changing sin α′ → −2 cos 2α′ and
cosα′ → 4 sin 2α′,

in Eqs. (40a)–(40i).
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