
J Geod (2017) 91:151–166
DOI 10.1007/s00190-016-0945-2

ORIGINAL ARTICLE

An analytical study on the carrier-phase linear combinations
for triple-frequency GNSS

Jinlong Li1 · Yuanxi Yang1,2 · Haibo He1 · Hairong Guo1

Received: 5 February 2016 / Accepted: 26 July 2016 / Published online: 8 August 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract The linear combinations of multi-frequency
carrier-phase measurements for Global Navigation Satellite
System (GNSS) are greatly beneficial to improving the per-
formance of ambiguity resolution (AR), cycle slip correction
as well as precise positioning. In this contribution, the exist-
ing definitions of the carrier-phase linear combination are
reviewed and the integer property of the resulting ambiguity
of the phase linear combinations is examined. The general
analytical method for solving the optimal integer linear com-
binations for all triple-frequency GNSS is presented. Three
refined triple-frequency integer combinations solely deter-
mined by the frequency values are introduced, which are the
ionosphere-free (IF) combination that the Sum of its integer
coefficients equal to 0 (IFS0), the geometry-free (GF) com-
bination that the Sum of its integer coefficients equal to 0
(GFS0) and the geometry-free and ionosphere-free (GFIF)
combination. Besides, the optimal GF, IF, extra-wide lane
and ionosphere-reduced integer combinations for GPS and
BDS are solved exhaustively by the presented method. Their
potential applications in cycle slip detection, AR as well as
precise positioning are discussed. At last, a more straight-
forward GF and IF AR scheme than the existing method is
presented based on the GFIF integer combination.
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1 Introduction

Global Navigation Satellite System (GNSS) precise posi-
tioning at the centimeter level can be attained when the
carrier-phase integer-cycle ambiguity is resolved correctly.
If multi-frequency carrier-phasemeasurements are available,
some linear combinations of these measurements can be
formed to improve positioning performance and to achieve
ambiguity resolution (AR) as well as cycle slip correction
more efficiently.

The linear combinations of GPS dual-frequency carrier-
phase measurements were studied firstly, such as wide-lane
(WL) combination, the ionosphere-free (IF) combination
(Blewitt 1989; Dong and Bock 1989) and the geometer-free
(GF) combination (Blewitt 1990). Afterward, the system-
atic research on the theory of linear combination arose.
The systematic search for all possible WL combination
of the dual-frequency GPS was presented by Cocard and
Geiger (1992). The general definition of linear combination
in cycles was given by Han (1995), Han and Rizos (1996).
The comprehensive study of the inter-frequency combina-
tions was presented by Collins (1999), in which the WL,
reduced-ionosphere and noise-reduction combinations were
examined in detail.

For the three or four frequency carrier-phase measure-
ments case, such as the modernized GPS, Beidou navigation
satellite system (BDS) and GALILEO, the linear combina-
tions are much more complicated. Based on the pre-defined
extra-wide lane (EWL) andWL linear combinations, Forssell
et al. (1997) and Jung et al. (2000) presented the three-
carrier ambiguity resolution (TCAR)method and the cascade
integer resolution (CIR) method for GALILEO and GPS,
respectively.Han andRizos (1999) presented the definition of
the carrier-phase linear combination for the triple-frequency
case and discussed the AR strategies without and with
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distance constraints by applying the LAMBDA method
(Teunissen 1995) to the GF GNSS model. Richert and El-
Sheimy (2007) studied theoptimalGPSandGALILEO linear
combinations for differential positioning over medium–long
baselines. Feng (2008) introduced the optimal ionosphere-
reduced linear combinations for the geometry-based TCAR.
Cocard et al. (2008) systematically investigated the GPS
triple-frequency integer phase combinations with an analyt-
ical method firstly and found that the sum of the integer
coefficients of the combinations was an important indica-
tor for systematic classification of sets of combinations, and
this method was extended to BDS by Li et al. (2012a).
Zhang andHe (2015) examined theBDS triple-frequency lin-
ear combinations based on the relevant methods of Richert
and El-Sheimy (2007) and Cocard et al. (2008). Besides,
Odijk (2003) examined the IF combinations for the mod-
ernized triple-frequency GPS. Simsky (2006) presented a
triple-frequency GF and IF combination for extracting the
carrier-phase multipath information. Hatch (2006) presented
a GF and refraction-corrected method for long baseline AR
by using some refined linear combinations. Li et al. (2010)
also studied the GF and IF combinations for estimating the
narrow lane (NL) ambiguity without distance constraints. Li
et al. (2012b) presented the optimal triple-frequency IF com-
bination and theGF and IF combination for long baseline AR
and precise positioning and shown that the GALILEO (E1,
E6, E5a) has the best performance of long baselines AR,
and the similar study was presented by Wang and Rothacher
(2013).

A review of the existing study on linear combination for
triple-frequency GNSS reveals that at least the following
four problems have not been dealt with completely: (1) some
phase combinations expressed in units of meter are still con-
sidered to be suffering from a loss of the integer nature of
ambiguities, for example the GF and IF combination or the
phase multipath-combination (Henkel 2009) ; (2) though the
analytical method presented by Cocard et al. (2008) for solv-
ing optimal integer combinations for GPS frequencies can be
applied to other GNSS system, some tiny modification may
be still needed when it is applied to the GNSS system with
especial frequency distribution, for instance BDS; (3) a sys-
tematic search for the GF integer combinations is still absent;
(4) though several GF and IF schemes for solving the third
or NL ambiguity without distance constraints have been pre-
sented, such as Forssell et al. (1997), Bonillo-Martínez et al.
(1999), Hatch (2006), Li et al. (2010, 2012b), Wang and
Rothacher (2013), it is still ambiguous that whether they are
equivalent or which scheme should be the best choice.

In this contribution, the existing several definitions of the
carrier-phase linear combination are reviewed and the integer
property of the resulting ambiguity of the phase linear com-
binations is examined in Sect. 2. Extending to the approach
described in Cocard et al. (2008), the optimal integer linear

combinations are solved rigorously by a generalized analyt-
ical method in Sect. 3. Then three refined triple-frequency
integer linear combinations solely determined by the fre-
quency values are introduced. In Sect. 4, the optimal GF, IF,
EWL and ionosphere-reduced integer linear combinations
are presented for GPS and BDS, followed by the analysis
on their potential application in cycle slip detection, short or
long baseline AR as well as precise positioning. In Sect. 5,
a more straightforward scheme for the third or NL ambigu-
ity is developed based on the presented GF and IF integer
combination. The summaries are given in Sect. 6.

We make use of the following notation: the integer and
nonzero integer sets are denoted as Z and Z

∗, gcd() is the
greatest common divisor operator, det() is the determinate
operator. Three frequency values f1, f2 and f3 of GNSS
can be expressed as the product of the virtual fundamental
frequency f0 and three prime integer multiplier l1, l2 and l3,
with f0 = gcd( f1, f2, f3) and l1 > l2 > l3. λ0 = c

f0
is

the virtual fundamental wavelength respecting to the virtual
fundamental frequency f0. The overview of different GNSS
frequency triplets is given in Table 1.

2 Definition of the carrier-phase linear
combination

The original phase measurements in cycles and meters can
be, respectively, expressed as:

ϕ j = f j
c

ρ − κ j dion + N j + υ j (1a)

φ j = λ jϕ j = ρ − μ j dion + Bj + ε j , (1b)

where ϕ j is the original phase measurement in units of cycle;
f j is the j th frequency; c is the velocity of light in vac-
uum; ρ is the frequency-independent term containing the
geometrical distance between receiver and satellite antenna
phase center, the receiver and satellite clock biases and the

troposphere delay; κ j = f 21
c f j

is a frequency-dependent ampli-
fication factor; dion is the first-order ionosphere delay on
the first frequency f1 in meters; N j is the sum of the ini-
tial phase, the phase ambiguity and the instrumental phase
delay; υ j is the unmodeled errors in units of cycle, such as
the measurement noise and the multipath error; λ j = c

f j
is the wavelength of the j th frequency; φ j = λ jϕ j is the

original phase measurement in meters; μ j = λ jκ j = f 21
f 2j
,

Bj = λ j N j , ε j = λ jυ j are the counterparts in meters of κ j ,
N j , υ j , respectively.

From Eq. (1a), the triple-frequency phase combination
expressed in units of cycle can be written as (Han 1995; Han
and Rizos 1996, 1999; Cocard et al. 2008):
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Table 1 Overview of different GNSS frequency triplets

System Nominal frequency
(MHz)

Virtual fundamental
frequency (MHz)

Integer multiplier Virtual fundamental
wavelength (m)

f1 f2 f3 f0 l1 l2 l3 λ0

GPS (L1,L2,L5) 1575.42 1227.60 1176.45 10.23 154 120 115 29.3

BDS (B1,B3,B2) 1561.098 1268.52 1207.14 2.046 763 620 590 146.5

GAL-a (E1,E6,E5b) 1575.42 1278.75 1207.14 10.23 154 125 118 29.3

GAL-b (E1,E6,E5) 1575.42 1278.75 1191.795 5.115 308 250 233 58.6

GAL-c (E1,E6,E5a) 1575.42 1278.75 1176.45 10.23 154 125 115 29.3

GAL-d (E1,E5b,E5a) 1575.42 1207.14 1176.45 10.23 154 118 115 29.3

ϕ(i. j.k) = i · ϕ1 + j · ϕ2 + k · ϕ3 = f(i. j.k)
c

ρ − κ(i. j.k)dion

+ N(i. j.k) + υ(i. j.k), (2)

where ()(i. j.k) = i · ()1 + j · ()2 + k · ()3, for example,
the resulting frequency of the phase combination f(i. j.k) =
i · f1+ j · f2+k · f3. When f(i. j.k) �= 0, this combination can
be expressed in meters again in the form of Eq. (1b) (Feng
2008; Li et al. 2010):

φ〈i. j.k〉 = c

f(i. j.k)
ϕ(i. j.k) = i · f1 · φ1+ j · f2 · φ2+k · f3 · φ3

i · f1+ j · f2+k · f3
= ρ − μ〈i. j.k〉dion + B〈i. j.k〉 + ε〈i. j.k〉, (3)

where ()〈i. j.k〉 = i · f1·()1+ j · f2·()2+k· f3·()3
i · f1+ j · f2+k· f3 . Though the linear

coefficients i , j and k are not necessary to be integer in Eqs.
(2) and (3), it is only necessary to consider the case of integer
because any rational coefficients can be converted to integer
coefficients bymultiplying a common integer. In otherwords,
the resulting ambiguities in Eqs. (2) and (3) still preserve the
integer characteristic as long as the linear coefficients are the
rational number.

From Eq. (1b), the triple-frequency phase combination in
meters can be written as (Cocard and Geiger 1992; Collins
1999; Urquhart 2009):

φ(x,y,z) = x · φ1 + y · φ2 + z · φ3 = (x + y + z)

·ρ − μ(x,y,z)dion + B(x,y,z) + ε(x,y,z), (4)

where ()(x,y,z) = x · ()1 + y · ()2 + z · ()3. When the triple-
frequency phase combinations are expressed as Eq. (4), the
integer property of the resulting ambiguity is implicit or is
even considered to be lost. Actually, for the any phase com-
bination in the form of Eq. (4), it is easy to validate that the
resulting ambiguity still retains the integer nature as long as
the linear coefficients are the rational number. In other words,
it can always find their counterparts in cycles with the form
of Eq. (2).

3 Solving optimal phase combinations by the
analytical method

From Eqs. (2) and (4), we know that the number of linear
combinations is unlimited. Among the infinite number of
linear combinations, however, only those that satisfy some
important criteria are of interest (Seeber 2003): the resulting
ambiguity retains the integer nature, reasonably large wave-
length to help ambiguity fixing, low ionosphere influence and
limited observation noise.

3.1 Optimal phase combination in cycles

The resulting frequency (or wavelength) f(i, j,k), ionosphere
amplification factor κ(i, j,k) and the noise amplification fac-
tor are the key criteria for evaluating a linear combination.
The frequency and the ionosphere amplification factor can
be expressed by the so-called lane number ln and ion number
in with the definitions as follows (Cocard et al. 2008; Li et al.
2012a):

ln = l1 · i + l2 · j + l3 · k (5a)

in = l2l3
g

· i + l1l3
g

· j + l1l2
g

· k, (5b)

where g = gcd (l2l3, l1l3, l1l2). Then the wavelength and
ionosphere amplification factor can be rewritten as:

λ[i, j,k] = c

f(i, j,k)
= c

ln · f0
= λ0

ln
(6a)

κ(i, j,k) = i · f 21
c f1

+ j · f 21
c f2

+ k · f 21
c f3

= in · g

l2l3
· 1

λ1
= qn · 1

λ1

(6b)

where, λ0 = c
f0
, qn = in · g

l2l3
. Considering Eq. (5b), we

know that for the combination ϕ(1,0,0) or ϕ1, the value of qn
is equal to 1 because of in = l2l3

g when (i, j, k) = (1, 0, 0).
Assuming that the noise of the original phase measure-

ments expressed in cycles on all three frequencies are the
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same and statistically independent, then the standard devia-
tion of the combined noise υ(i, j,k) can be expressed as:

σ[i. j.k] =
√
i2 + j2 + k2 · συ = η · συ, (7)

where η = √
i2 + j2 + k2 is the noise amplification factor,

συ is the standard deviation of the phase noise in cycles.
Cocard et al. (2008) presented an analytical method for

solving the optimal integer linear combination (i, j, k) with
a given integer pair of ln and in . The key of the method is
that the integer linear coefficients (i, j, k) are expressed as the
integer linear function of the lane number ln , the ion number
in and an arbitrary integer sn by solving the Diophantine
equationEq. (5).Namely, there is an integer triplet (s1, s2, s3)
existing to make the determinant of the following integer
matrix Z equal to 1, i.e., det (Z) = ±1:

⎡
⎣
ln
in
sn

⎤
⎦ =

⎡
⎣
l1 l2 l3
l2l3
g

l1l3
g

l1l2
g

s1 s2 s3

⎤
⎦

⎡
⎣
i
j
k

⎤
⎦ = Z

⎡
⎣
i
j
k

⎤
⎦ (8)

where sn = s1 ·i+s2 · j+s3 ·k. For GPS (l1 = 154, l2 = 120,
l3 = 115), from Eq. (8), we get that

det (Z)GPS = 18, 095s1 − 125,892s2 + 107,134s3 (9)

Because of gcd (18,095, −125,892, 107,134) = 1, there are
integer triplets (s1, s2, s3) existing to make the determinant
det (Z)GPS equal to 1, for example (−121, 146, 192), then
we have:

⎡
⎣
i
j
k

⎤
⎦
GPS

= Z−1

⎡
⎣
ln
in
sn

⎤
⎦
GPS

=
⎡
⎣
70,224 −6250 18,095
−488,568 43,483 −125,892
415,771 −37,004 107,134

⎤
⎦

⎡
⎣
ln
in
sn

⎤
⎦
GPS

(10)

For BDS (l1=763, l2=620, l3=590), however

det (Z)BDS = 2,769,690s1 − 14,512,278s2 + 1,166,8371s3

(11)

Because of gcd (2,769,690, −14,512,278, 11,668,371)=33,
there is no integer triplet (s1, s2, s3) existing to make the
determinant det (Z)BDS equal to 1. Namely, there are no
integer linear combinations (i, j, k) existing for some given
integer pairs (ln, in). However, we can make the determi-
nant det (Z)BDS equal to the greatest common divisor of the
coefficients, for example (s1, s2, s3) = (−71,−143,−161),
then:

⎡
⎣
i
j
k

⎤
⎦
BDS

= 1

33

⎡
⎣

−482,979 15,450
2,530,654 −80,953
−2,034,733 65,089

⎤
⎦

[
ln
in

]

+
⎡
⎣
83,930
−439,766
353,587

⎤
⎦ sn (12)

Without loss of universality, a groupof the integer linear com-
binations with the given integer pair (ln ,in) can be expressed
as:

c =
⎡
⎣
i
j
k

⎤
⎦ = Zadj

det (Z)

⎡
⎣
ln
in
sn

⎤
⎦ = l · ln + i · in + s · sn

det (Z)

= h + s · sn
det (Z)

sn ∈ Z, (13)

where Zadj denotes the adjoint of the matrix Z; l , i and s
are the first, second and third column of the matrix Zadj;
h = l · ln + i · in . Then, the noise amplification factor can be
expressed as:

η =
√
cTc =

√
(h + s · sn)T (h + s · sn)

det (Z)

=
√
sTs · s2n + 2sTh · sn + hTh

det (Z)
(14)

The noise amplification factor can be minimized when

sn = round

(
− sTh

sTs

)
= round

(
− sTl · ln + sT i · in

sTs

)

= round

(
− sTl
sTs

ln − sT i
sTs

l2l3
g

qn

)
(15)

Because the det (Z) is equal to the greatest common divisor
of the elements of the column vector s, if the column vector h
can be divided exactly by the det (Z), then the optimal integer
coefficients (i, j, k) with the given integer pair (ln ,in) can be
solved by Eqs. 13 and 15. Consequently, with given lane
number ln and ion number in , the process for solving the
optimal integer combination (i, j, k) in terms of the noise
amplification factor is as follows:

• From Eq. (8), the elements of the first and second row of
the matrix Z can be determined based on the given triple-
frequency values of GNSS. Then the determinant of the
matrix Z can be expressed as det (Z) = A31 · s1 + A32 ·
s3 + A33 · s3, where A31, A32 and A33 are the algebraic
complements corresponding to the elements s1, s2 and s3
of the third row, respectively.

• Solving a particular solution of the integer linear equation
A31 ·s1+A32 ·s3+A33 ·s3 = gcd (A31, A32, A33) in order
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Fig. 1 GPS (left) and BDS (right) optimal integer phase combinations in the ln–qn plane

to determine the elements of the third row of the matrix
Z. As a result, we have det (Z) = gcd (A31, A32, A33).

• Computing the adjoint Zadj of the matrix Z;
[
l i s

] =
Zadj, computing h = l ·ln+i ·in with the given integer pair
(ln ,in). If h can be divided exactly by the det (Z), then
the optimal integer linear coefficients (i, j, k) is solved

by c = h+s·sn
det Z with sn = round

(
− sTh

sTs

)
; otherwise, there

will be no relevant integer linear coefficients for the given
lane number ln and ion number in .

From the above algorithms, forGPS: 0 ≤ ln ≤ 300 and |in| ≤
5 × 1380 (|qn| ≤ 5), for BDS: 0 ≤ ln ≤ 1500 and |in| ≤
5 × 36,580 (|qn| ≤ 5), η ≤ 100, we can find 4994 and 5829
optimal integer combinations forGPS andBDS, respectively.
The results are shown in the ln–qn plane (see Fig. 1). In
Fig. 1, the color of the point denotes the sum of the integer
coefficients; the smaller the point, the smaller the noise is.

It is found from Fig. 1 that these optimal integer combina-
tions are reclassified by the sum of their integer coefficients
for both GPS and BDS. For each group of combinations dis-
tinguished by the sum of their coefficients, there is a lowest
noise axis in the ln–qn plane: the nearer to this axis the lower
the noise amplification factor is. These conclusions are the
same as that given by Cocard et al. (2008).

3.2 Sum of the integer coefficients and three refined
integer combinations

If we make all elements of the third row of the matrix Z
equal to 1, namely, (s1, s2, s3)=(1, 1, 1), the integer number
sn denotes the sum of the integer coefficients. Considering
Eq. (13), for GPS and BDS, we have

⎡
⎣
i
j
k

⎤
⎦
GPS

= 1

−663

⎡
⎣

−77 −5 18,095
468 39 −125,892
−391 −34 107,134

⎤
⎦

⎡
⎣
ln
in
sn

⎤
⎦
GPS

(16a)

⎡
⎣
i
j
k

⎤
⎦
BDS

= 1

−74,217

⎡
⎣

−2289 −30 2,769,690
10726 173 −14,512,278
−8437 −143 11,668,371

⎤
⎦

⎡
⎣
ln
in
sn

⎤
⎦
BDS

(16b)

From Eqs. (16a,b) if we make any two elements of the triplet
(ln, in, sn) equal to zero, we can find three special integer
combinations, namely: IFS0 (IF combination that the Sum
of its integer coefficients equal to 0), GFS0 (GF combina-
tion that the Sum of its integer coefficients equal to 0) and
GFIF (GF and IF combination), as shown in Table 2. For any
triple-frequencyGNSS, there exist similar three integer com-
binationswhich are solely determined by the triple-frequency
values of GNSS.

The GPS IFS0 integer combination (77, −468, 391) is
first used to assist AR over long baseline by Han and Rizos
(1999) and also given in theCocard et al. (2008). ForBDS, the
relevant IFS0 combination is (2289, −10,726, 8437), which
also can be applied in the long baseline AR similar to that
of GPS. The GFS0 combination is useful in the cycle slip
detection and the GFIF combination is crucial for AR over
long baseline. The practicality of these three combinations
will be introduced in detail in Sect. 4.

When (s1, s2, s3)=(1, 1, 1), from Eq. (15), we can depict
the value of the sum of optimal integer combinations in the
ln–qn plane. For example, |qn| ≤ 5, for GPS: 0 ≤ ln ≤ 300,
for BDS: 0 ≤ ln ≤ 1500, the sum values of the optimal
integer combinations for GPS and BDS in the ln–qn plane
are shown in Fig. 2.

From Fig. 2, it is demonstrated again that the sum of
the integer coefficients of the combinations is an impor-
tant indicator for grouping the optimal integer combinations.
From Figs. 1 and 2, we find that the sums of the integer
coefficients of the optimal combinations with larger wave-
length and lower ionosphere amplification factor have small
absolute value (≤2) for GPS and BDS. For the EWL and
WL combinations with long wavelength (GPS, 1 ≤ ln ≤ 39;
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Table 2 Three refined integer
combinations for GPS and BDS

ln in sn i j k λ[i, j,k] (m)

GPS

IFS0 663 0 0 77 −468 391 0.044

GFS0 0 663 0 5 −39 34 –

GFIF 0 0 −663 18,095 −125,892 107,134 –

BDS

IFS0 74,217 0 0 2289 −10,726 8437 0.002

GFS0 0 74,217 0 30 −173 143 –

GFIF 0 0 −2249 83,930 −439, 766 353,587 –

Fig. 2 The sum of the integer coefficients of the optimal combinations in the ln–qn plane for GPS (left) and BDS (right)

BDS, 1 ≤ ln ≤ 173 ), their ionosphere amplification factor
increases with the absolute value of the sum of their coeffi-
cients. Therefore, the sum of the integer coefficients for the
optimal EWL and WL combinations with lowest ionosphere
influence should be equal to zero, namely, the area: |qn| ≤ 1,
GPS: 1 ≤ ln ≤ 39, BDS: 1 ≤ ln ≤ 173, shown in
Figs. 1 and 2. Besides, the sum of the integer coefficients for
the optimal NL combinations with lowest ionosphere influ-
ence should be equal to 1, namely, the area: |qn| ≤1, GPS:
240 ≤ ln ≤ 300, BDS: 1200 ≤ ln ≤ 1500, shown in Figs. 1
and 2.

3.3 Some especial phase combinations in meters and
their counterparts in cycles

For the phase combinations inmeters, their linear coefficients
(x, y, z) can also be expressed as the linear function of three
characteristic parameters with their definitions as follows:

⎡
⎣
sr
μr

λr

⎤
⎦ =

⎡
⎣
1 1 1
μ1 μ2 μ3

λ1 λ2 λ3

⎤
⎦

⎡
⎣
x
y
z

⎤
⎦ (17)

where sr is the sum of the real coefficients, μr is the
ionosphere amplification factor, λr is the weighted sum of

the real coefficients by their correspondingwavelength. From
Eq. (17), we have

⎡
⎣
x
y
z

⎤
⎦ =

⎡
⎢⎢⎢⎣

f 21
( f1− f2)( f1− f3)

f2 f3
( f1− f2)( f1− f3)

− f 21 ( f2+ f3)
( f1− f2)( f1− f3)

1
c

f 22
( f2− f1)( f2− f3)

f2 f3
( f2− f1)( f2− f3)

f2
f1

− f 22 ( f1+ f3)
( f2− f1)( f2− f3)

1
c

f 23
( f3− f1)( f3− f2)

f2 f3
( f3− f1)( f3− f2)

f3
f1

− f 23 ( f1+ f2)
( f3− f1)( f3− f2)

1
c

⎤
⎥⎥⎥⎦

×
⎡
⎣
sr
μr
λr

⎤
⎦ (18)

FromEq. (18), we can get the generic expression of the linear
coefficients for the GF combinations if we make the sr equal
to zero; we can also get the generic expression of the linear
coefficients for the IF combinations if we make the μr equal
to zero. A special GF combination can be obtained if we
make both sr and λr equal to zero, with its coefficients as
follows:

xGF = f2 f3μr

( f1 − f2) ( f1 − f3)
yGF = f2 f3μr

( f2 − f1) ( f2 − f3)

f2
f1

zGF = f2 f3μr

( f3 − f1) ( f3 − f2)

f3
f1

(19)

If we make both μr and λr equal to zero, an especial IF
combination can be derived with its coefficients as follows:
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xIF = f 21
( f1 − f2) ( f1 − f3)

sr yIF = f 22
( f2 − f1) ( f2 − f3)

sr

zIF = f 23
( f3 − f1) ( f3 − f2)

sr (20)

If wemake both sr andμr equal to zero, a GFIF combination
can be is obtained with its coefficients as follows:

xGFIF = − f 21 ( f2 + f3)

( f1 − f2) ( f1 − f3)

λr

c
yGFIF = − f 22 ( f1 + f3)

( f2 − f1) ( f2 − f3)

λr

c

zGFIF = − f 23 ( f1 + f2)

( f3 − f1) ( f3 − f2)

λr

c
(21)

It should be noted that the variablesμr , sr andλr inEqs. (19)–
(21) only perform a scale function. As a result, the Eqs. (19)–
(21) can be simplified as follows, respectively:

xGF = f1
( f1 − f2) ( f1 − f3)

yGF = f2
( f2 − f1) ( f2 − f3)

zGF = f3
( f3 − f1) ( f3 − f2)

(22a)

xIF = f 21
( f1 − f2) ( f1 − f3)

yIF = f 22
( f2 − f1) ( f2 − f3)

zIF = f 23
( f3 − f1) ( f3 − f2)

(22b)

xGFIF = f 21

(
f 22 − f 23

)
yGFIF = f 22

(
f 23 − f 21

)

zGFIF = f 23

(
f 21 − f 22

)
(22c)

It is easy to find that the Eq. (22b) is the same as the Eq.
(12) in Hatch (2006) and the Eq. (22c) is a scaled version of
the Eq. (2) in Simsky (2006), the Eqs. (29), (30) and (34) in
Hatch (2006) and the Eq. (7) in Li et al. (2012b). Besides, it is
not difficult to validate that the integer combinations GFS0,
IFS0 and GFIF in Sect. 3.2 are namely the counterparts in
cycles of the real combinations Eq. (22a)–(22c), respectively.

4 Optimal phase combinations for cycle slip
detection and AR

4.1 GF combinations for cycle slip detection

For cycle slip detection, the GF combinations in cycles with
low noise amplification factor and low ionosphere amplifi-
cation factor are helpful. The lower the noise amplification
factor is, the fewer the number of insensitive cycle slip groups
is. The low ionosphere amplification factor can ease the
ionosphere influence on cycle slip detection and make them
still efficient when dealingwith those data with low sampling
rate or under high ionosphere activity. When f(i. j.k) = 0, the

epoch-difference GF phase combinations from Eq. (2) can
be expressed as:

�ϕ(i. j.k) = −κ(i. j.k)�dion + �N(i. j.k) + �υ(i. j.k)

f(i. j.k) = 0, (23)

where �dion and �N(i. j.k) are, respectively, the ionospheric
delay variation and the possible cycle slip value between
consecutive epoch. The cycle slip detector based on the GF
phase combinations can be defined as (Li 2014)

T = �ϕ(i. j.k)√
2
√
i2 + j2 + k2

= �ϕ(i. j.k)√
2 · η

> ι · συ f(i. j.k) = 0,

(24)

where ι = 3 (with confidence level of 99.7%). The influence
of the ignored ionosphere delay on the cycle slip detection
by the Eq. (24) is evaluated by the following factor:

γ = κ(i, j,k)√
2 · √

i2 + j2 + k2
= κ(i, j,k)√

2 · η
(25)

Considering ln = 0, for GPS: 0 ≤ in ≤ 7× 1380 (0 ≤ qn ≤
7), η ≤ 300, for BDS: 0 ≤ in ≤ 7 × 36,580 (0≤ qn ≤12),
η ≤600, we get the optimal GF integer combinations by the
algorithms of Sect. 3.1, which are listed in the Tables 3 and
4 for GPS and BDS, respectively. For comparison, the most
frequently used dual-frequency GF combinations are also
shown in the second and third row.

FromTables 3 and 4,we can know that both the ionosphere
and noise amplification factor of the triple-frequency GF
combinations are evidently smaller than those of the dual-
frequency GF combinations. It indicates that the better
performance of cycle slip detection can be achieved in
the triple-frequency case. If the ionospheric delay variation
between consecutive epoch can be ignored (<0.001 m), the
best two GF phase combinations for cycle slip detection are
(−10, 9, 4) and (−5,−7, 14) for GPS, (−20, 17, 8) and (−10,
−21, 35) for BDS because of their lowest noise amplifica-
tion factor. If the ionospheric delay variation is the mm-level
(<0.01 m), the GF combinations (−5, 16,−10) and (0,−23,
24) for GPS and (−10, 38, −27) and (0, −59, 62) for BDS
are the best two selections. If the ionospheric delay variation
reach the cm-level (<0.1 m), the GF combinations (5, −39,
34) and (−15, 94, −78) for GPS, (30, −173, 143) and (40,
−211, 170) for BDS should be the best two GF phase combi-
nations. Moreover, the GF combinations (−25, 172, −146)
and (30,−211, 180) forGPS, (40,−211, 170) and (−90, 460,
−367) for BDS are still applicable for the dm-level (<1 m)
ionospheric delay variation due to their very small ionosphere
amplification factor. Besides, these GF phase combinations
shown in Tables 3 and 4 can be also used for GF phase-only
AR using multi-epoch observations.
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Table 3 GPS optimal GF
combinations

in sn i j k Sum κ(i. j.k) η qn γ

53,567 18,502 −60 77 0 17 204.0 97.62 38.82 1.4776

125,892 43,483 −115 0 154 39 479.4 192.20 91.23 1.7637

9531 3292 −10 9 4 3 36.3 14.04 6.91 1.8285

6575 2271 −5 −7 14 2 25.0 16.43 4.76 1.0774

2956 1021 −5 16 −10 1 11.3 19.52 2.14 0.4078

3619 1250 0 −23 24 1 13.8 33.24 2.62 0.2931

663 229 5 −39 34 0 2.5 51.98 0.48 0.0343

2293 792 −10 55 −44 1 8.7 71.14 1.66 0.0868

4282 1479 5 −62 58 1 16.3 85.05 3.10 0.1356

5249 1813 −15 71 −54 2 20.0 90.45 3.80 0.1563

8205 2834 −20 87 −64 3 31.2 109.84 5.95 0.2011

7901 2729 5 −85 82 2 30.1 118.21 5.73 0.1800

1630 563 −15 94 −78 1 6.2 123.07 1.18 0.0357

4945 1708 10 −101 92 1 18.8 136.99 3.58 0.0972

7542 2605 −25 126 −98 3 28.7 161.57 5.47 0.1257

967 334 −20 133 −112 1 3.7 175.02 0.70 0.0149

5608 1937 15 −140 126 1 21.4 188.95 4.06 0.0799

3923 1355 −25 149 −122 2 14.9 194.19 2.84 0.0544

9227 3187 15 −163 150 2 35.1 222.02 6.69 0.1119

304 105 −25 172 −146 1 1.2 226.99 0.22 0.0036

6271 2166 20 −179 160 1 23.9 240.92 4.54 0.0701

6216 2147 −35 204 −166 3 23.7 265.32 4.50 0.0631

359 124 30 −211 180 −1 1.4 278.96 0.26 0.0035

6934 2395 25 −218 194 1 26.4 292.89 5.02 0.0637

2597 897 −35 227 −190 2 9.9 298.08 1.88 0.0235

4.2 IF combinations for AR over long baselines

From the algorithms of Sect. 3.1, considering in=0, for GPS:
0 ≤ ln ≤ 10,491, η ≤ 200, for BDS: 0 ≤ ln ≤ 234,069,
η ≤ 1000, we find the optimal IF integer combinations,
which are shown in the Tables 5 and 6 for GPS and BDS,
respectively. The IFS0 combinations presented in Sect. 3.2
are also shown in the first row. In Tables 5 and 6, σε is the
standard deviation of the linear combinations noise in meters
and λe is the effective wavelength when the EWL ambiguity
N(0,1,−1) and/or theWL ambiguity N(1,−1,0) have been fixed
to their integer values in advance.

From Tables 5 and 6, we know that except for the combi-
nations (0, 24, −23), (0, 62, −59) and IFS0, the wavelength
of the optimal IF combinations are smaller than 1 cm for
GPS and 1 mm for BDS. Furthermore, considering their
large noise standard deviation in meters, we can infer that
it is almost impossible to fix their ambiguities directly. How-
ever, when the EWL ambiguity N(0,1,−1) and/or N(1,−1,0) are
fixed in advance, the effective wavelength of all optimal IF
combinations are larger than 10 cm. For the IFS0 combina-

tions, the effective wavelengths even reach to 3.4 m for GPS
and 4.5 m for BDS. As a result, it becomes possible to solve
their ambiguities to their integer values.

The minimal noise standard deviation in meters for the
IF combinations is desired for precise positioning applica-
tion.Themost optimal triple-frequency IF combinations have
smaller noises than those of the dual-frequency IF combina-
tions. For example, the standard deviations in meters of the
triple-frequency IF combinations (77, −36, −23), (77, −12,
−46) and (154, −48, −49) for GPS, (763, −248, −354),
(763, −186, −413) and (763, −124, −472) for BDS, are
very close to the minimum value and at the same time have
relatively small integer coefficients. Hence, better precise
baseline or coordinates estimation will be achieved in the
triple-frequency case.

As a whole, it can be concluded that the improvement
in position estimation and AR for the triple-frequency IF
combinations is insignificant for GPS and BDS compared to
the dual-frequency IF combinations, considering the slight
differences in noise standard deviations σε and the effective
wavelength λe.
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Table 4 BDS optimal GF
combinations

in sn i j k Sum κ(i. j.k) η qn γ

11,668,371 −65,089 −620 763 0 143 1661.02 983.14 318.98 1.1947

14,512,278 −80,953 −590 0 763 173 2065.86 964.50 396.73 1.5145

412,137 −2299 −20 17 8 5 58.67 27.44 11.27 1.5118

344,553 −1922 −10 −21 35 4 49.05 42.02 9.42 0.8253

67,584 −377 −10 38 −27 1 9.62 47.68 1.85 0.1427

276,969 −1545 0 −59 62 3 39.43 85.59 7.57 0.3257

209,385 −1168 10 −97 89 2 29.81 132.02 5.72 0.1596

141,801 −791 20 −135 116 1 20.19 179.11 3.88 0.0797

74,217 −414 30 −173 143 0 10.56 226.45 2.03 0.0330

6633 − 37 40 −211 170 −1 0.94 273.90 0.18 0.0024

351,186 −1959 30 −232 205 3 49.99 311.05 9.60 0.1136

60,951 −340 −50 249 −197 2 8.68 321.42 1.67 0.0191

128535 −717 −60 287 −224 3 18.30 368.98 3.51 0.0351

216,018 −1205 50 −308 259 1 30.75 405.52 5.91 0.0536

196,119 −1094 −70 325 −251 4 27.92 416.56 5.36 0.0474

263,703 −1471 −80 363 −278 5 37.54 464.17 7.21 0.0572

80,850 −451 70 −384 313 −1 11.51 500.32 2.21 0.0163

331,287 −1848 −90 401 −305 6 47.16 511.79 9.06 0.0652

398,871 −2225 −100 439 −332 7 56.78 559.41 10.90 0.0718

357,819 −1996 70 −443 375 2 50.94 584.61 9.78 0.0616

54,318 −303 −90 460 −367 3 7.73 595.31 1.48 0.0092

Table 5 GPS optimal IF
combinations

ln sn i j k Sum λ (cm) η σε (cm) λe (cm)

663 −2573 77 −468 391 0 4.42 614.68 27.17 340.35

235 −912 0 24 −23 1 12.47 33.24 4.15 12.47

3718 −14,429 77 −156 92 13 0.79 196.80 1.55 10.25

3953 −15,341 77 −132 69 14 0.74 167.67 1.24 10.38

4188 −16,253 77 −108 46 15 0.70 140.39 0.98 10.50

4423 −17,165 77 −84 23 16 0.66 116.25 0.77 10.60

4658 −18,077 77 −60 0 17 0.63 97.62 0.61 10.70

4893 −18,989 77 −36 −23 18 0.60 88.06 0.53 10.78

5128 −19,901 77 −12 −46 19 0.57 90.49 0.52 10.86

5363 −20,813 77 12 −69 20 0.55 104.09 0.57 10.93

5598 −21,725 77 36 −92 21 0.52 125.26 0.66 10.99

5833 −22,637 77 60 −115 22 0.50 150.84 0.76 11.05

6068 −23,549 77 84 −138 23 0.48 178.97 0.86 11.11

9551 −37,066 154 −96 −23 35 0.31 182.92 0.56 10.74

10,021 −38,890 154 −48 −69 37 0.29 175.45 0.51 10.82

10,491 −40,714 154 0 −115 39 0.28 192.20 0.54 10.89

4.3 EWL combinations for AR over short baselines

For geometry-free AR over short baseline, these combina-
tions with large wavelength and small noise are helpful.
From the algorithms of Sect. 3.1, for GPS: 0 < ln ≤
10, |in| ≤ 5 × 1380 (|qn| ≤ 5), η ≤ 15, for BDS:
0< ln ≤ 50, |in| ≤ 5 × 36,580 (|qn| ≤ 5), η ≤ 15,

the optimal EWL integer combinations are obtained and
shown in the Tables 7 and 8 for GPS and BDS, respec-
tively.

From Tables 7 and 8, we can know that the ionosphere
amplification factor of all optimal EWL combinations for
GPS and BDS is proportionally increasing with the sum of
their integer linear coefficients. The proportion of the factor
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Table 6 BDS optimal IF
combinations

ln sn i j k Sum λ (cm) η σε (cm) λe(cm)

74,217 12,942 2289 −10,726 8437 0 0.197 13,837.25 27.319 451.92

3630 633 0 62 −59 3 4.037 85.59 3.455 12.11

197,769 34,487 763 −620 0 143 0.074 983.14 0.728 10.59

201,399 35,120 763 −558 −59 146 0.073 947.11 0.689 10.62

205,029 35,753 763 −496 −118 149 0.071 917.66 0.656 10.65

208,659 36,386 763 −434 −177 152 0.070 895.46 0.629 10.67

212,289 37,019 763 −372 −236 155 0.069 881.05 0.608 10.70

215,919 37,652 763 −310 −295 158 0.068 874.81 0.594 10.72

219,549 38,285 763 −248 −354 161 0.067 876.92 0.585 10.75

223,179 38,918 763 −186 −413 164 0.066 887.32 0.583 10.77

226,809 39,551 763 −124 −472 167 0.065 905.72 0.585 10.79

230,439 40,184 763 −62 −531 170 0.064 931.65 0.592 10.81

234,069 40,817 763 0 −590 173 0.063 964.50 0.604 10.83

Table 7 GPS EWL
combinations

ln in sn i j k Sum λ (m) κ(i. j.k) μ〈i. j.k〉 η qn

1 −3104 −1076 4 −8 3 −1 29.31 −11.82 −346.39 9.43 −2.25

1 −148 −55 −1 8 −7 0 29.31 −0.56 −16.52 10.68 −0.11

1 6427 2216 −6 1 7 2 29.31 24.47 717.22 9.27 4.66

2 −3252 −1131 3 0 −4 −1 14.65 −12.38 −181.45 5.00 −2.36

2 3323 1140 −2 −7 10 1 14.65 12.65 185.41 12.37 2.41

2 6279 2161 −7 9 0 2 14.65 23.91 350.35 11.40 4.55

3 −6356 −2207 7 −8 −1 −2 9.77 −24.20 −236.43 10.68 −4.61

3 −3400 −1186 2 8 −11 −1 9.77 −12.95 −126.47 13.75 −2.46

3 3175 1085 −3 1 3 1 9.77 12.09 118.10 4.36 2.30

4 71 9 1 −7 6 0 7.33 0.27 1.98 9.27 0.05

4 3027 1030 −4 9 −4 1 7.33 11.53 84.45 10.63 2.19

5 −77 −46 0 1 −1 0 5.86 −0.29 −1.72 1.41 −0.06

6 −3181 −1122 4 −7 2 −1 4.88 −12.11 −59.16 8.31 −2.31

6 −225 −101 −1 9 −8 0 4.88 −0.86 −4.18 12.08 −0.16

7 −3329 −1177 3 1 −5 −1 4.19 −12.68 −53.07 5.92 −2.41

7 3246 1094 −2 −6 9 1 4.19 12.36 51.75 11.00 2.35

7 6202 2115 −7 10 −1 2 4.19 23.62 98.87 12.25 4.49

8 −6433 −2253 7 −7 −2 −2 3.66 −24.50 −89.74 10.10 −4.66

8 3098 1039 −3 2 2 1 3.66 11.80 43.21 4.12 2.24

9 −6581 −2308 6 1 −9 −2 3.26 −25.06 −81.60 10.86 −4.77

9 −6 −37 1 −6 5 0 3.26 −0.02 −0.07 7.87 0.00

9 2950 984 −4 10 −5 1 3.26 11.23 36.58 11.87 2.14

10 6421 2179 −5 −5 12 2 2.93 24.45 71.65 13.93 4.65

and the sum is about 12. Therefore, the optimal EWL com-
binations with Sum = 0 are the best selection for AR since
they suffer from the lowest ionosphere influence. However,
it is impossible to find three linear independent EWL combi-
nations with low noise and ionosphere amplification factors
simultaneously since there are only two linear independent
combinations with Sum = 0. It means that the third EWL
combination will inevitably suffer from about 12 times larger

ionosphere influence than that of the other two combinations
with Sum = 0.

For short baselines, however, all the optimal EWL com-
binations shown in Tables 7 and 8 are helpful to reduce the
influence of large pseudorange multipath error and noise on
AR. For example, the GPS EWL combinations (−6, 1, 7),
(−1, 8, −7) and (4, −8, 3) can be used at one time to reduce
the influence of pseudorange multipath error on geometry-
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Table 8 BDS EWL
combinations

ln in sn i j k Sum λ[m] κ(i. j.k) μ〈i. j.k〉 η qn

1 −167,405 934 7 −1 −8 −2 146.53 −23.83 −3491.80 10.68 −4.58

4 87,070 −485 −2 −8 11 1 36.63 12.39 454.04 13.75 2.38

5 −80,335 449 5 −9 3 −1 29.31 −11.44 −335.13 10.72 −2.20

6 164,397 −916 −8 7 3 2 24.42 23.40 571.51 11.05 4.49

7 −3008 18 −1 6 −5 0 20.93 −0.43 −8.96 7.87 −0.08

11 84,062 −467 −3 −2 6 1 13.32 11.97 159.40 7.00 2.30

12 −83,343 467 4 −3 −2 −1 12.21 −11.86 −144.87 5.39 −2.28

16 3727 −18 2 −11 9 0 9.16 0.53 4.86 14.35 0.10

18 81,054 −449 −4 4 1 1 8.14 11.54 93.93 5.74 2.22

19 −86,351 485 3 3 −7 −1 7.71 −12.29 −94.80 8.19 −2.36

23 719 0 1 −5 4 0 6.37 0.10 0.65 6.48 0.02

25 78,046 −431 −5 10 −4 1 5.86 11.11 65.12 11.87 2.13

29 165,116 −916 −7 2 7 2 5.05 23.50 118.76 10.10 4.51

30 −2289 18 0 1 −1 0 4.88 −0.33 −1.59 1.41 −0.06

31 −169,694 952 7 0 −9 −2 4.73 −24.16 −114.18 11.40 −4.64

34 84,781 −467 −2 −7 10 1 4.31 12.07 52.01 12.37 2.32

35 −82,624 467 5 −8 2 −1 4.19 −11.76 −49.24 9.64 −2.26

37 −5297 36 −1 7 −6 0 3.96 −0.75 −2.99 9.27 −0.14

41 81,773 −449 −3 −1 5 1 3.57 11.64 41.60 5.92 2.24

42 −85,632 485 4 −2 −3 −1 3.49 −12.19 −42.53 5.39 −2.34

47 −165,967 934 9 −11 0 −2 3.12 −23.63 −73.66 14.21 −4.54

48 78,765 −431 −4 5 0 1 3.05 11.21 34.23 6.40 2.15

49 −88,640 503 3 4 −8 −1 2.99 −12.62 −37.73 9.43 −2.42

free AR to the greatest extent since all their wavelengths
reach to the maximum 29.3 m.

4.4 Ionosphere-reduced combinations for AR over
medium–long baselines

From Sect. 3.1, we know that there are two optimal
ionosphere-reduced areas in the ln–qn plane and the sum of
the corresponding linear coefficients are 0 and 1, respectively.

From the algorithms of Sect. 3.1, when η ≤ 10, if
0 < ln ≤ 39 and |in| < 1380 (|qn| < 1) for GPS and
0 < ln ≤ 50 and |in| < 36,580 (|qn| < 1) for BDS, then
we get the optimal ionosphere-reduced combinations that the
sum of their coefficients equal to 0. The results are shown in
the Tables 9 and 10 for GPS and BDS, respectively.

From Tables 9 and 10, we know that the optimal
ionosphere-reduced combinations with the sum of their
coefficients being 0 are EWL or WL combinations. The
ionosphere amplification factor for the ionosphere-reduced
combinations (1, −6, 5), (1, −7, 6), (0, 1, −1) and (1, −5,
4) for GPS, (1, −5, 4), (1, −4, 3), (0, 1, −1) and (−1,
6, −5) for BDS are very small. Especially for the GPS
combination (1, −6, 5) and the BDS combination (1, −5,
4), the influence of 1 m ionosphere delay in the first fre-
quency on AR are smaller 0.02 and 0.10 cycles, respectively.

Table 9 GPS ionosphere-reduced integer combinations (Sum = 0)

ln in sn i j k λ (m) κ(i. j.k) μ〈i. j.k〉 η qn

4 71 9 1 −7 6 7.33 0.27 1.98 9.27 0.05

5 −77 −46 0 1 −1 5.86 −0.29 −1.72 1.41 −0.06

9 −6 −37 1 −6 5 3.26 −0.02 −0.07 7.87 −0.004

14 −83 −83 1 −5 4 2.09 −0.32 −0.66 6.48 −0.06

19 −160 −129 1 −4 3 1.54 −0.61 −0.94 5.10 −0.12

24 −237 −175 1 −3 2 1.22 −0.90 −1.10 3.74 −0.17

29 −314 −221 1 −2 1 1.01 −1.20 −1.21 2.45 −0.23

34 −391 −267 1 −1 0 0.86 −1.49 −1.28 1.41 −0.28

39 −468 −313 1 0 −1 0.75 −1.78 −1.34 1.41 −0.34

Considering the ionosphere amplification factor and noise
amplification factor synthetically, the EWL combinations (0,
1, −1) and (1, −6, 5) for GPS, (0, 1, −1) and (1, −5, 4) for
BDS are the first and second selection for AR in the triple
case. Besides, compared to the dual-frequency ionosphere-
reducedWLcombination (1,−1, 0), the triple frequency ones
have larger wavelength and smaller ionosphere amplification
factor in cycles.

From the algorithms of Sect. 3.1, when η ≤ 10, if
240 < ln ≤ 300 and |in| ≤ 1380 (|qn| ≤ 1) for GPS
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Table 10 BDS
ionosphere-reduced integer
combinations (Sum = 0)

ln in sn i j k λ (m) κ(i. j.k) μ〈i. j.k〉 η qn

7 −3008 18 −1 6 −5 20.93 −0.43 −8.96 7.87 −0.08

23 719 0 1 −5 4 6.37 0.10 0.65 6.48 0.02

30 −2289 18 0 1 −1 4.88 −0.33 −1.59 1.41 −0.06

37 −5297 36 −1 7 −6 3.96 −0.75 −2.99 9.27 −0.14

53 −1570 18 1 −4 3 2.76 −0.22 −0.62 5.10 −0.04

83 −3859 36 1 −3 2 1.77 −0.55 −0.97 3.74 −0.11

113 −6148 54 1 −2 1 1.30 −0.88 −1.13 2.45 −0.17

136 −5429 54 2 −7 5 1.08 −0.77 −0.83 8.83 −0.15

143 −8437 72 1 −1 0 1.02 −1.20 −1.23 1.41 −0.23

173 −10,726 90 1 0 −1 0.85 −1.53 −1.29 1.41 −0.29

Table 11 GPS
ionosphere-reduced integer
combinations (Sum = 1)

ln in sn i j k λ (cm) κ(i. j.k) μ〈i. j.k〉 η σε (cm) qn

154 1380 −121 1 0 0 19.03 5.255 1.000 1.00 0.19 1.00

241 438 −784 4 −6 3 12.16 1.668 0.203 7.81 0.95 0.32

242 290 −839 3 2 −4 12.11 1.104 0.134 5.39 0.65 0.21

246 361 −830 4 −5 2 11.91 1.375 0.164 6.71 0.80 0.26

247 213 −885 3 3 −5 11.86 0.811 0.096 6.56 0.78 0.15

251 284 −876 4 −4 1 11.68 1.081 0.126 5.74 0.67 0.21

252 136 −931 3 4 −6 11.63 0.518 0.060 7.81 0.91 0.10

256 207 −922 4 −3 0 11.45 0.788 0.090 5.00 0.57 0.15

257 59 −977 3 5 −7 11.40 0.225 0.026 9.11 1.04 0.04

261 130 −968 4 −2 −1 11.2 0.495 0.056 4.58 0.51 0.09

266 53 −1014 4 −1 −2 11.02 0.202 0.022 4.58 0.50 0.04

271 −24 −1060 4 0 −3 10.81 −0.091 −0.010 5.00 0.54 −0.02

275 47 −1051 5 −7 3 10.66 0.179 0.019 9.11 0.97 0.03

276 −101 −1106 4 1 −4 10.62 −0.385 −0.041 5.74 0.61 −0.07

280 −30 −1097 5 −6 2 10.47 −0.114 −0.012 8.06 0.84 −0.02

281 −178 −1152 4 2 −5 10.43 −0.678 −0.071 6.71 0.70 −0.13

285 −107 −1143 5 −5 1 10.28 −0.407 −0.042 7.14 0.73 −0.08

286 −255 −1198 4 3 −6 10.25 −0.971 −0.099 7.81 0.80 −0.18

290 −184 −1189 5 −4 0 10.11 −0.701 −0.071 6.40 0.65 −0.13

291 −332 −1244 4 4 −7 10.07 −1.264 −0.127 9.00 0.91 −0.24

295 −261 −1235 5 −3 −1 09.93 −0.994 −0.099 5.92 0.59 −0.19

300 −338 −1281 5 −2 −2 09.77 −1.287 −0.126 5.74 0.56 −0.24

and 1200 < ln ≤ 1500 and |in| ≤ 36,580 (|qn| ≤ 1 ) for
BDS, then we obtain the optimal ionosphere-reduced com-
binations with the sum of their coefficients being 1, which
are shown in the Tables 11 and 12 for GPS and BDS, respec-
tively.

From Tables 11 and 12, we know that the optimal
ionosphere-reduced combinations that the sum of their coef-
ficients equal to 1 are theNL combinationswith awavelength
of about 11 cm and a noise standard deviation of 5–10 mm.
Unlike the IF combinations presented in Sect. 4.2, it is pos-
sible to solve their ambiguities to the integer values directly.
The ionosphere influence of the combinations (4, 0, −3)

for GPS, (4, 2, −5) and (5, −3, −1) for BDS can be still
ignored in the process of AR and position estimation even
if the ionosphere delay on the first frequency reaches to the
level of 1 m. The ionosphere-reduced combinations (4, −1,
−2) and (4, −2, −1) for GPS, (4, 0, −3), (4, 1, −4) and
(5, −2, −2) for BDS may be the appropriate choices for
the ionosphere delay level of 0.1 m. Besides, considering the
fact that the noise standard deviation inmeters for the optimal
ionosphere-reduced combinations is comparativewith that of
the optimal IF combinations presented in Sect. 4.2, they can
be used for precise positioning directly over medium–long
baselines.
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Table 12 BDS
ionosphere-reduced integer
combinations (Sum = 1)

ln in sn i j k λ (cm) κ(i. j.k) μ〈i. j.k〉 η σε (cm) qn

763 36,580 −71 1 0 0 19.20 5.207 1.000 1.00 0.19 1.00

1222 8980 163 4 −2 −1 11.99 1.278 0.153 4.58 0.55 0.25

1229 5972 181 3 4 −6 11.92 0.850 0.101 7.81 0.93 0.16

1245 9699 163 5 −7 3 11.77 1.381 0.162 9.11 1.07 0.27

1252 6691 181 4 −1 −2 11.70 0.952 0.111 4.58 0.54 0.18

1259 3683 199 3 5 −7 11.64 0.524 0.061 9.11 1.06 0.10

1275 7410 181 5 −6 2 11.49 1.055 0.121 8.06 0.93 0.20

1282 4402 199 4 0 −3 11.43 0.627 0.072 5.00 0.57 0.12

1305 5121 199 5 −5 1 11.23 0.729 0.082 7.14 0.80 0.14

1312 2113 217 4 1 −4 11.17 0.301 0.034 5.74 0.64 0.06

1335 2832 217 5 −4 0 10.98 0.403 0.044 6.40 0.70 0.08

1342 −176 235 4 2 −5 10.92 −0.025 −0.003 6.71 0.73 −0.005

1365 543 235 5 −3 −1 10.73 0.077 0.008 5.92 0.64 0.01

1372 −2465 253 4 3 −6 10.68 −0.351 −0.037 7.81 0.83 −0.07

1395 −1746 253 5 −2 −2 10.50 −0.249 −0.026 5.74 0.60 −0.05

1402 −4754 271 4 4 −7 10.45 −0.677 −0.071 9.00 0.94 −0.13

1418 −1027 253 6 −7 2 10.33 −0.146 −0.015 9.43 0.97 −0.03

1425 −4035 271 5 −1 −3 10.28 −0.574 −0.059 5.92 0.61 −0.11

1448 −3316 271 6 −6 1 10.12 −0.472 −0.048 8.54 0.86 −0.09

1455 −6324 289 5 0 −4 10.07 −0.900 −0.091 6.40 0.64 −0.17

1478 −5605 289 6 −5 0 9.91 −0.798 −0.079 7.81 0.77 −0.15

1485 −8613 307 5 1 −5 9.87 −1.226 −0.121 7.14 0.70 −0.24

5 GF and IF AR over long baselines

From Sect. 3.2 and Eq. (2), we know that

(ϕGFIF)GPS = ϕ(18,095,−125,892,107,134)

= N(18,095,−125,892,107,134)

+ υ(18,095,−125,892,107,134) (26a)

(ϕGFIF)BDS = ϕ(83,930,−439,766,353,587)

= N(83,930,−439,766,353,587)

+ υ(83,930,−439,766,353,587) (26b)

On the assumption that the combined ambiguity N(i, j,k) can
bedecomposed as the linear combinationof three ambiguities
N(0,1,−1), N(1,−1,0) and N(1,0,0), namely:

N(i, j,k) = c1 · N(0,1,−1) + c2 · N(1,−1,0) + c3 · N(1,0,0)

(27)

Then the decomposition coefficients can be obtained by the
following formula:

[
c1 c2 c3

] = [
i j k

]
⎡
⎣
0 1 −1
1 −1 0
1 0 0

⎤
⎦

−1

(28)

As a result, we can get

N(18,095,−125,892,107,134) = −107,134 · N(0,1,−1)

+18,758 · N(1,−1,0) − 663 · N(1,0,0) (29a)

N(83,930,−439,766,353,587) = −353,587 · N(0,1,−1)

+86,179 · N(1,−1,0) − 2249 · N(1,0,0) (29b)

It is well known that the EWL ambiguity N(0,1,−1) and the
WL ambiguity N(1,−1,0) can be solved to their integer values
effortlessly by the GF and IF method (Hatch et al. 2000).
Consequently, the ambiguity N(1,0,0) for GPS and BDS can
be solved by the following estimator:
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(
N̂(1,0,0)

)
GPS

= −107134 · N(0,1,−1) + 18758 · N(1,−1,0) − ϕ(18,095,−125,892,107,134)

663

= N(1,0,0) − 1

663
υ(18,095,−125,892,107,134) (30a)

(
N̂(1,0,0)

)
BDS

= 86,179 · N(1,−1,0) − 353,587 · N(0,1,−1) − ϕ(83,930,−439,766,353,587)

2249

= N(1,0,0) − 1

2249
υ(83,930,−439,766,353,587) (30b)

The performance of the estimator Eq. (30) is not affected
by the orbit error, the troposphere delay error and first-order
ionosphere delay error, etc., and only suffers from the carrier-
phase measurement noise and multipath error. As a result,
it is applicable to AR over long baselines without distance
constraint. However, the standard deviation of the estimate
N̂(1,0,0) reach to 5.016 and 5.073 cycles for GPS and BDS,
respectively,with the assumption that the rawphasemeasure-
ment noise is 0.01 cycles on each of the three frequencies.
A multi-epoch averaging process has to be implemented to
reduce the noise of the ambiguity estimates. Regardless of
the correlation between epochs, theoretically 1119 and 1145
epochs are required for GPS andBDS, respectively, to reduce
the standard deviation to 0.15 cycles or improve the rounding
success rate to 99.9%. It should be noted that the standard
deviation is independent of the integer coefficients of the
three ambiguities in the right hand of Eq. 30a, 30b (Li 2011,
2014; Li et al. 2012b).

The GFIF-based AR schemes for different GNSS fre-
quency triplets are shown in Table 13. It is shown that the
GALILEO frequency triplet (E1, E6, E5a) has the best out-
come among all frequency triplets, which agrees with the
results of Li et al. (2012b), Wang and Rothacher (2013).
Besides, the standard deviations σNL are the same as those
presented in Li et al. (2010, 2012b), Wang and Rothacher
(2013) when the different assumptions for the raw phase
measurement noise are taken into account. Consequently, it
is evident that these GF and IF schemes for solving the third

or NL ambiguity are equivalent. However, the estimator Eq.
(30) for the third or NL ambiguity is more straightforward
than those presented in Hatch (2006), Li et al. (2010, 2012b),
Wang and Rothacher (2013).

6 Summary and conclusions

This paper presented a systematical analysis on the carrier-
phase linear combination for triple-frequency GNSS. The
integer property of the resulting ambiguity of the phase
linear combinations is examined. It is concluded that the
resulting ambiguity of all linear combinations still retains
the integer nature as long as their linear coefficients are the
rational number. The present analytical method for solving
the optimal integer linear combinations is generalized for
all triple-frequency GNSS. Three refined integer phase com-
binations, namely, IFS0, GFS0, GFIF, are introduced for
triple-frequency GNSS and they are (77, −468, 391), (5,
−39, 34) and (18,095, −125,892, 107,134) for GPS, (2289,
−10,726, 8437), (30, −173, 143) and (83, 930, −439,766,
353,587) for BDS.

The optimal GF, IF, EWL and ionosphere-reduced integer
combinations for GPS and BDS are solved by the presented
method. It is shown that when the ionospheric delay variation
can be ignored between consecutive epoch, the best two GF
phase combinations for cycle slip detection are (−10, 9, 4)
and (−5,−7, 14) for GPS, (−20, 17, 8) and (−10,−21, 35)

Table 13 GFIF-based AR schemes for different GNSS frequency triplets

System GFIF integer coefficients Decomposition coefficients σNL Number of epochs

i j k c1 c2 c3 (Cycles)

GPS (L1, L2, L5) 18,095 −125,892 107,134 −107,134 18,758 −663 5.016 1119

BDS (B1, B3, B2) 83,930 −439,766 353,587 −353,587 86,179 −2249 5.073 1145

GAL-a (E1, E6, E5b) 14,553 −68,000 53,041 −53,041 14,959 −406 4.308 826

GAL-b (E1, E6, E5) 421,498 −1,690,625 1,256,802 −1,256,802 433,823 −12,325 3.486 541

GAL-c (E1, E6, E5a) 24,640 −87,425 62,031 −62,031 25,394 −754 2.917 379

GAL-d (E1, E5b, E5a) 17,941 −206,323 187,680 −187,680 18,643 −702 7.962 2819
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for BDS. The GF combinations (−25, 172,−146) and (30,
−211, 180) for GPS, (40,−211, 170) and (−90, 460,−367)
for BDS are still valid for cycle slip detection in the pres-
ence of high ionosphere activity of dm-level. The optimal
triple-frequency IF combinations have smaller noise than
those of the dual-frequency IF combinations. The triple-
frequency IF combinations (77, −36,−23), (77, −12,−46)
and (154, −48,−49) for GPS, (763, −248,−354), (763,
−186,−413) and (763,−124,−472) forBDS, have themin-
imum standard deviations in meters and have relatively small
integer coefficients at the same time. However, compared
to the dual-frequency IF combinations, the improvement of
the triple-frequency IF combinations in position estimation
and AR should be trivial for GPS and BDS. The ionosphere
amplification factor of all optimal EWL combinations for
GPS and BDS is proportionally increasing with the sum of
their integer linear coefficients and the proportion of the fac-
tor and the sum is about 12 for GPS and BDS. As a result, it
cannot find three linear independent optimal EWL combina-
tionswith low noise and low ionosphere influence at the same
time. The optimal ionosphere-reduced combinations that the
sum of their coefficients equal to 1 are the NL combina-
tions with a wavelength of about 11 cm and a noise standard
deviation of 5–10 mm. The ionosphere-reduced combina-
tions (4, 0, −3) for GPS, (4, 2, −5) and (5, −3, −1) for
BDS can be used for precise positioning over medium–long
baselines.

All existing GF and IF AR schemes for solving the third
or NL ambiguity without distance constraints are equivalent
and it can be achieved by a more straightforward manner
based on the GF–IF integer combination.
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