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Abstract There has been considerable research in the litera-
ture focused on computing and forecasting sea-level changes
in terms of constant trends or rates. The Antarctic ice sheet is
one of the main contributors to sea-level change with highly
uncertain rates of glacial thinning and accumulation. Geo-
detic observing systems such as the Gravity Recovery and
Climate Experiment (GRACE) and the Global Positioning
System (GPS) are routinely used to estimate these trends.
In an effort to improve the accuracy and reliability of these
trends, this study investigates a technique that allows the esti-
mated rates, along with co-estimated seasonal components,
to vary in time. For this, state space models are defined and
then solved by a Kalman filter (KF). The reliable estimation
of noise parameters is one of the main problems encountered
when using a KF approach, which is solved by numeri-
cally optimizing likelihood. Since the optimization problem
is non-convex, it is challenging to find an optimal solution.
To address this issue, we limited the parameter search space
using classical least-squares adjustment (LSA). In this con-
text, we also tested the usage of inequality constraints by
directly verifying whether they are supported by the data.
The suggested technique for time-series analysis is expanded
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to classify and handle time-correlated observational noise
within the state space framework. The performance of the
method is demonstrated using GRACE and GPS data at the
CAS1 station located in East Antarctica and compared to
commonly used LSA. The results suggest that the outlined
technique allows for more reliable trend estimates, as well as
formore physically valuable interpretations, while validating
independent observing systems.
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1 Introduction

Antarctica is one of the largest contributors to global sea-
level rise (IPCC 2014), making the knowledge of its ice-mass
change of considerable societal and ecological importance.
The GRACE satellite gravimetry mission has provided an
extremely useful tool for observing the global integral effects
of mass changes. Nevertheless, Antarctic ice-mass change
estimates derived from GRACE remain challenging due
to, among others, the effect of glacial isostatic adjustment
(GIA, Velicogna andWahr 2006). GPS vertical site displace-
ments are gaining importance in constraining GIA-induced
rates in Antarctica (Whitehouse et al. 2012; Ivins et al. 2013;
Sasgen et al. 2013; van der Wal et al. 2015).

Normally, all the above-mentioned processes related to
sea-level involving ice mass and GIA rates are estimated as
constant trends along with deterministically modeled sea-
sonal components (e.g., Velicogna et al. 2014; Gunter et al.
2014; Shepherd et al. 2012)without allowing for inter-annual
and seasonal variability, which might not have captured the
true trend estimates (Davis et al. 2012). Accurately modeling
known sources of temporal variation is crucial for inter-
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preting geodetic data properly, especially because of large
inter-annual variations in the Antarctic climate (Ligtenberg
et al. 2012). Moreover, very few geophysical processes are
exactly periodic; instead there are signal constituents which
fluctuate around a reference value, e.g., around a 1-year
period with slightly varying amplitudes. Therefore, model-
ing seasonal processes using traditional deterministic fitting
methods may not provide very accurate results. In this study,
we model them stochastically within a KF framework allow-
ing for physically natural variations of signal constituents in
time. This idea was brought to the geodetic community by
Davis et al. (2012) while being a well-established technique
in econometrics since the 1980s (Harvey 1989). However,
Davis et al. (2012) assumed the statistical noise parameters to
be known. Moreover, the econometric literature lacks meth-
ods for a robust estimation of the noise parameters as the opti-
mization problem to be solved for those parameters turns out
to be non-convex (i.e., there can be multiple local minima).

Therefore, the goal of this study is to provide a robust
tool for estimating time-variable trends from geodetic time
series. For this purpose, detailed descriptions are provided on
how different components, such as trend and known period-
icities, can be modeled stochastically and put into KF form
(Sect. 2). Special attention is paid towards carefully estimat-
ing the noise parameters, which is an essential step in the KF.
The presented statistical framework is appropriate to any time
series, but is demonstrated in this study on GRACE and GPS
time series that have been widely used in the context of trend
estimation (Sect. 3). A spectral analysis of the results shows
that the developed tool yields more reliable estimates com-
pared to those derived from commonly used LSA.Moreover,
the technique presented allows different geodetic time series
to be analyzed for validation purposes.

2 Methodology

The theory described below is largely based on Durbin and
Koopman (2012) and Harvey (1989).

As we demonstrate the methodology on GRACE andGPS
data, Sects. 2.1–2.4 are relevant for both types of datasets,
whereas Sect. 2.5 is devoted to the analysis of features typical
of GPS time series. Section 2.6 summarizes the major steps
of the time-series analysis by the suggested method.

2.1 Trend modeling

The following function is commonly fit to time series data to
obtain a trend:

yt = μt+
2∑

i=1

(ci cos(ωi t)+si sin(ωi t))+εt , t = 1, . . . , n,

(1)

where yt denotes an observation at time t, μt = α + βt
is a linear trend with an intercept α and a slope β, and
(ci cos(wi t) + si sin(wi t)) are harmonic variations with
angular frequency ωi = 2π

Ti
, where T1 = 1 for an annual

signal, and T2 = 0.5 for a semi-annual signal. The irregular
term εt includes unmodeled signal and measurement noise
in the series and is often assumed to be an independent and
identically distributed (iid) random variable with zero mean
and variance σ 2

ε [i.e., εt ∼ N (0, σ 2
ε )].

The deterministic linear trend μt = α + βt can be made
stochastic by lettingα andβ follow randomwalks. This leads
to a discontinuous pattern for μt . A better model is obtained
when working directly with the current μt rather than with
the intercept α. Since μt can be obtained recursively from

μt+1 = μt + β, with μ0 = α, (2)

stochastic terms are now introduced as

μt+1 = μt + βt + ξt , ξt ∼ N (0, σ 2
ξ ),

βt+1 = βt + ζt , ζt ∼ N (0, σ 2
ζ ).

(3)

Equation (3) with σ 2
ξ > 0 allows the intercept of the trend

to move up and down, while σ 2
ζ > 0 allows the slope to vary

over time. A deterministic trend is obtained if σ 2
ξ = σ 2

ζ = 0.
Because there is no physical reason for the intercept to change
over time, we model it deterministically by setting σ 2

ξ = 0;
this leads to a stochastic trend model called an integrated
random walk. The larger the variance σ 2

ζ , the greater the

stochastic movements in the trend. In other words, σ 2
ζ defines

how much the slope β in Eq. (3) is allowed to change from
one time step to another.

A deterministic harmonic term of angular frequency ω is

ct = c cos(ωt) + s sin(ωt), (4)

where
√
c2 + s2 is the amplitude and tan−1(s/c) is the phase.

Equivalent to the linear trend, the harmonic term can be built
up recursively, leading to the stochastic model

ct = ct−1 cosω + st−1 sinω + ςt ,

st = −ct−1 sinω + st−1 cosω + ς∗
t ,

(5)

where ςt and ς∗
t are white-noise disturbances that are

assumed to have the same variance and to be uncorrelated
[i.e., ςt ∼ N (0, σ 2

ς )]. These stochastic components allow
the parameters c and s and hence the corresponding ampli-
tude and phase to evolve over time. Note that ct in Eq. (5) is
the current value of the harmonic signal and st−1 appears by
construction to form ct .

Introducing the stochastic trend and stochastic harmonic
models into Eq. (1) yields

yt = μt + c1,t + c2,t + εt , εt ∼ N (0, σ 2
ε ) (6)
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with c1,t and c2,t being annual and semi-annual terms, respec-
tively. It is straightforward to extend Eq. (6) by additional
harmonic terms using the stochastic model of Eq. (5) with
the corresponding angular frequencies.

2.2 State space model

The state space form of the equations defined in Sect. 2.1 is

yt = Ztαt + εt , εt ∼ N (0, H),

αt+1 = Ttαt + Rtηt , ηt ∼ N (0, Q), t = 1, . . . , n,

α1 ∼ N (a1, P1),

(7)

where yt is still an observation vector, αt is an unknown state
vector, and εt is the irregular term with H = Iσ 2

ε . The first
equation of (7), where the design matrix Z links yt to αt ,
is called the observation equation and the second is called
the state equation. Any model that includes an observation
process and a state process is called a state space model. The
observation equation has the structure of a linear regression
model where the vectorαt varies over time. The second equa-
tion represents a first-order vector autoregressive model. The
transition matrix T describes how the state changes from t
to t + 1, and ηt is the process noise with Q = Iσ 2

η . The
initial state α1 is N (a1, P1) where a1 and P1 are assumed to
be known.

We define the state vector as

αt = [
μt βt c1,t s1,t c2,t s2,t

]T
. (8)

The observation equations read

yt = [
1 0 1 0 1 0

]
αt + εt (9)

and the state space matrices are

T =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0
0 1 0 0 0 0
0 0 cosω1 sinω1 0 0
0 0 − sinω1 cosω1 0 0
0 0 0 0 cosω2 sinω2

0 0 0 0 − sinω2 cosω2

⎤

⎥⎥⎥⎥⎥⎥⎦
, (10)

R =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
,

Q = Iσ 2
η =

⎡

⎢⎢⎢⎢⎣

σ 2
ζ 0 0 0 0
0 σ 2

ς1
0 0 0

0 0 σ 2
ς1

0 0
0 0 0 σ 2

ς2
0

0 0 0 0 σ 2
ς2

⎤

⎥⎥⎥⎥⎦
.

For the defined state space model, the system matrices
Z , T, R, H , and Q are independent of time. Therefore, the
corresponding index t is dropped out hereinafter. Another
reason for not including any time reference is that we use
equally spaced data. It is worth pointing out that a state space
model can also be defined for time series containing data gaps
or for unevenly spaced time series. While dealing with miss-
ing observations is particularly simple as shown in Durbin
and Koopman (2012, chap. 4.10), some modifications might
be required for unevenly spaced time series depending on the
complexity of the desired state space model (Harvey 1989,
chap. 9).

2.3 Kalman filter and smoother

To solve the linear state space model of Sect. 2.2 the Kalman
filter approach described by Durbin and Koopman (2012,
chap. 4.3) is used. The KF recursion for t = 1, . . . , n
processes the data sequentially and comprises the equations:

vt = yt − Zat , Ft = Z Pt ZT + H,

at |t = at + Pt ZT F−1
t vt , Pt |t = Pt − Pt ZT F−1

t Z Pt ,
at+1 = Tat +Ktvt , Pt+1=T Pt (T− Kt Z)T +RQRT ,

(11)

where Kt = T Pt ZT F−1
t is referred to as the Kalman gain

and vt is the innovation with variance Ft . Once at |t and Pt |t
are computed, the following relation can be used to predict
the state vector αt+1 and its variance matrix at time t

at+1 = Tat |t , Pt+1 = T Pt |t T T + RQRT . (12)

While filtering aims at obtaining the expected value for the
state vector using the information available so far, the aim of
Kalman smoothing is to use the information made available
for the entire time series. Because the smoothed estimator
is based on more information than the filtered estimator,
smoothing yields, in general, a smaller mean squared error
than filtering. According to Durbin and Koopman (2012,
chap. 4.4), a smoothed state α̂t and its error variance Vt can
be obtained by evaluating

rt−1 = ZT F−1
t vt + LT

t rt , Nt−1 = ZT F−1
t Z+LT

t Nt Lt ,

α̂t = at + Ptrt−1, Vt = Pt − Pt Nt−1Pt
(13)

in a backward loop for t = n, . . . , 1 initialized with rn = 0
and Nn = 0, where Lt = T − Kt Z .

2.4 Estimation of hyperparameters

Until now, we have assumed that the parameters σ 2
ε and

σ 2
η , which determine the stochastic movements of the state

variables and therefore have a significant influence on the
results, are known. In practical applications, they are usually
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unknown except for the measurement noise error where we
often have some level of a priori information. The estima-
tion of these so-called hyperparameters is itself based on the
Kalmanfilter and is performed bymaximizing the likelihood.
If a process is governed by hyperparametersψ , which gener-
ate observations yt , the likelihood of producing the given data
for known hyperparameters is according to Harvey (1989)

L(Yn|ψ) = p(y1, . . . , yn) = p(y1)
n∏

t=2

p(yt |Yt−1), (14)

where p(yt |Yt−1) represents the distribution of yt condi-
tional on the information set at time t − 1, that is Yt−1 =
{yt−1, yt−2, . . . , y1}. The hyperparameters ψ are chosen in
such a way that the likelihood function is maximized. Equiv-
alently, we may maximize the loglikelihood log L

log L(Yn|ψ) =
n∑

t=1

p(yt |Yt−1). (15)

The distribution of yt , conditional on Yt−1, is assumed to be
normal (or gaussian). Therefore, substituting N (Ztat , Ft ) for
p(yt |Yt−1) in Eq. (15) yields

log L(Yn|ψ)=−n

2
log(2π) − 1

2

n∑

t=1

(
log |Ft |+vTt F

−1
t vt

)
,

(16)

which is computed from the Kalman filter output (Eq. 11)
according to Durbin and Koopman (2012, chap. 7).

The hyperparameters are defined as

ψ = 0.5 log
[
σ 2

ε σ 2
η

]T = 0.5 log
[
σ 2

ε σ 2
ζ σ 2

ς1
σ 2

ς2

]T
, (17)

which ensures that they are non-negative, since here they
represent standard deviations.

2.4.1 Optimization

Maximizing log L is equivalent to minimizing − log L . We
search numerically for a set of optimal parameters that
provides the minimum value for negative log L , given the
process and the observed data. This optimization problem
is carried out by using an interior-point (IP) algorithm as
described in Byrd et al. (1999). The function − log L(Yn|ψ)

to be minimized is called the objective function. Since
the IP algorithm of Byrd et al. (1999) is a gradient-based
local solver, the gradient for the objective function is com-
puted analytically according to Durbin and Koopman (2012,
chap. 7):

Parameter ψ
a 2 3 4 5 b 7 8 c 10

−l
og

L
(Y

n
|ψ
)

0

1

2

3

4

5

Fig. 1 The importance of an initial guess in the context of non-convex
optimization problem illustrated using a fictitious one parameter model.
Depending on the starting point (initial guess), globally suboptimal
(e.g., starting from points a or b) or globally optimal solution (e.g.,
starting from point c) can be found

∂ log L(Yn|ψ)

∂ψ
= 1

2

n∑

t=1

tr
{(
utuTt − Dt

)
∂Ht
∂ψ

}

+ 1

2

n∑

t=2

tr
{(
rt−1rTt−1 − Nt−1

) ∂Rt Qt RT
t

∂ψ

}

(18)

using quantities calculated in Sect. 2.3 with ut = F−1
t vt −

KT
t rt and Dt = F−1

t + KT
t Nt Kt .

The IP algorithm is used because it accounts for a poten-
tial non-convexity, and the problem we are dealing with is
non-convex. If an optimization problem is non-convex, there
can bemultiple localminimumpointswith objective function
values different from the global minimum (Horst et al. 2000).
Finding a globally optimal solution of a multivariate objec-
tive function that has many local minima is very challenging.
One of the main difficulties is the choice of the initial guess
for the starting point ψ0 (initial solution) that is required for
the optimization. If the initial guess is sufficiently close to a
local minimum, the optimization algorithm terminates at this
local minimum (Fig. 1). Visualizing the objective function is
helpful to choose a suitable initial guess, but the problem we
are describing is at least four-dimensional. Dimensionality
may further increase, for instance, if other periodic con-
stituents are considered (e.g., the S2 tidal alias in GRACE
data analysis); another example of a higher dimension is dis-
cussed in Sect. 2.5.3. Therefore, our approach is to compute
the objective function for a number of starting points and
use the solution in further computations that provides the
smallest objective function value and thus is more likely to
be a global minimum (Anderssen and Bloomfield 1975). The
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question, however, is how to define suitable starting points
that allow all or as many as possible local minima to be iden-
tified, which in turn will increase the probability of finding
the global minimum. For this, a set of uniformly distributed
starting points is randomly generated within a finite search
space. As a result, the same optimal solution is obtained after
each run despite the fact that the method is heuristic, ensur-
ing the existence of an optimal solution within the predefined
bounds.

2.4.2 Limiting the parameter space

In the following, we limit the parameter search space in the
context of a non-convex optimization problem to improve the
chance of finding a global optimum. First, all lower bounds
are set equal to zero. The upper bounds are chosen fromLSAs
to the given data as follows. We fit the model described by
Eq. (1) to the data, and use the variance of the postfit resid-
uals as an upper bound for σ 2

ε in Eq. (9). This choice is
justified, since LSA-residuals contain the unmodeled signal,
measurement noise and possible fluctuations in the modeled
terms (in our case in trend, annual and semi-annual com-
ponents), whereas σ 2

ε in Eq. (9) does not include possible
fluctuations in the modeled terms, because we model them
stochastically as described in Sect. 2.1. Similarly, the upper
bounds for annual and semi-annual terms are found. After
subtracting a deterministic trend from the time series, annual
and semi-annual signals are simultaneously estimated using
LSA within a sliding window that has a minimum timespan
of 2 years. The maximum size of the sliding window corre-
sponds to the length of the time series used. Done this way,
a sufficient amount of annual and semi-annual amplitudes

are estimated and the corresponding variances are used as
upper bounds for σ 2

ς1
and σ 2

ς2
, respectively. The choice of

the upper bounds is justified by the fact that the standard
deviation of the signal computed for different time inter-
vals is never smaller than the process noise of this signal,
since here standard deviations indicate possible signal varia-
tions within the considered time span, whereas process noise
represents the signal variations from one time step to the
next only. Moreover, these upper bounds still include pos-
sible variations within the trend component supporting the
idea of being the upper limits for the process noise associ-
ated with estimated harmonics. Regarding the process noise
associated with the trend component σ 2

ζ , no upper bound is
set.

By bounding the search space for ψ in the manner
described above and by setting the amount of start points
to 200 (chosen by trial and error), we obtain after each run
numerically the same optimal solution. To substantiate the
reliability of the estimated hyperparameters, we additionally
analyze the amplitude distribution of the estimated signal
constituents (Eq. 8) as a function of frequency. Investigat-
ing whether the amplitude spectrum shows a peak around
the expected frequency allows us to draw conclusions on the
reasonableness of the estimated noise parameters, since they
determine the estimation of the signal constituents.

To illustrate the idea of the analysis in the spectral
domain, an example based on GPS time series, which will be
described later, is presented in Fig. 2. To produce this figure,
we first estimated noise parameters stored inψ (Eq. 17) with
and without limiting the parameter space for σ 2

ε , σ 2
ς1
and σ 2

ς2
.

For these two cases, we then estimated the state vector αt and
computed the amplitude spectrum for the rate βt , annual c1,t
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Fig. 2 Amplitude spectrums of the estimated slope (top), annual (mid-
dle) and semi-annual (bottom) components inmm.The estimation of the
signal components is based on differently estimated hyperparameters

(noise parameters): a by limiting the parameter search space for finding
an optimal minimum and bwithout limiting the parameter search space
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and semi-annual c2,t estimates. Figure 2a provides an indi-
cation of reasonably estimated hyperparameters, since the
amplitude spectrums of the corresponding signal estimates
show significant peaks over the expected frequencies and
there are no significant peaks elsewhere. For comparison,
Fig. 2b provides an example generated without limiting the
parameter space, where the hyperparameter associated with
the annual signal is overestimated including variations of the
rate/slope component while the amplitude of the slope has
an unrealistically small magnitude of zero mm. This exam-
ple also emphasizes the importance of limiting the parameter
search space within a non-convex optimization problem.

The solution we obtain for the hyperparameters ψ is
referred to as an unconstrained solution hereinafter, since
only the search space for the global solver has been limited,
but no restrictions are applied yet to the parameters them-
selves.

2.4.3 Constrained optimization

Introducing constraints on some of the noise parameters may
improve the chance of finding a global minimum within a
non-convex optimization. Sometimes, we have prior knowl-
edge about some noise parameters, e.g., we know that σ 2

ε

must be larger than some threshold. This inequality constraint
can be easily applied within the numerical optimization
(Nocedal andWright 2006). However, if the introduced con-
straints are not supported by the data, applying them may
significantly change the estimated noise parameters and, in
turn, the estimate of the state vector αt , yielding erroneous
geophysical interpretations. As we are dealing with a non-
convex problem, the testing procedure proposed in Roese-
Koerner et al. (2012) cannot be applied. Therefore,we outline
a method to verify whether the data support the applied con-
straints, paying particular attention to non-convexity.

Firstly, we perform a so-called basic test to check the
plausibility of the applied constraints. For this, we compute
the absolute difference between the constrained and uncon-
strained case which should be smaller than the estimated
standard deviations of the unconstrained hyperparameters:

|ψcon − ψuncon| < σψuncon , (19)

where σψuncon is derived using the corresponding Hessian.
This is a quick test for serious mistakes meaning that
constraints are absolutely not supported by the data if the left-
hand side of the equation is larger than the right-hand side.
If the basic test does not reject introduced constraints (mean-
ing the test is positive), the second, computationally more
comprehensive likelihood ratio test (LR-test) is performed.

The basic idea of the LR-test is the following: if the con-
straint is valid, imposing it should not lead to a large reduction
in the loglikelihood function (Greene 1993). Therefore, the

test statistic is

LR = 2(log L(Yn|ψuncon) − log L(Yn|ψcon)). (20)

LR is asymptotically χ2 distributed with degrees of freedom
equal to the number of constraints imposed (Wilks 1938). The
null hypothesis is rejected (the test is negative) if this value
exceeds the appropriate critical value from the χ2 tables,
meaning that the data do not support the constraints applied.

According to Greene (1993) the parameter spaces, and
hence the likelihood functions of the two cases must be
related. Moreover, the degrees of freedom of the χ2 sta-
tistic for the LR-test (Eq. 20) equals the reduction in the
number of dimensions in the parameter space that results
from imposing the constraints. Hence, the degree of free-
dom equals the amount of active constraints. A constraint
is called active (or binding) if it is exactly satisfied, and
therefore, holds as an equality constraint (Boyd and Vanden-
berghe 2004, p. 128). In short, the LR-test is usually applied
in the equality constrained case. However, if one constraint
is active it reduces the number of dimensions in the para-
meter space by one, since it defines one parameter on which
this constraint is applied. If a constraint is active it simul-
taneously means that this constraint strongly influences the
solution. Since we are dealing with a non-convex optimiza-
tion problem having multiple local minima, it may be the
case that a constraint can still strongly affect the solution
without becoming active, e.g., by simply shifting the solu-
tion to the next minima. Therefore, to estimate the degree of
freedom for the LR-test performed in the context of a non-
convex optimization problemwith inequality constraints, we
have to estimate how many restrictions do indeed influence
the solution. This will be achieved by using a brute force
method summarized in Algorithm 1. The idea of the method
is to successively apply the constraints until all restrictions
are satisfied and thereby, to control the number of degrees of
freedom for the LR-test. As it might be the case that apply-
ing a constraint to one parameter will already satisfy the
constraints to the other parameters, we check whether newly
added restrictions make previously added ones superfluous.

Algorithm 1 : A method for determining the degrees of free-
dom for the LR-test performed in the context of a non-convex
optimization problem with inequality constraints
Require: ψuncon
while the constraints are not satisfied do
add the most violated constraint
compute ψcon
if the number of constraints applied > 1 then
check whether newly added restriction makes previously added
constraints negligible

end if
end while
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It is important to note that the degrees of freedom of the
χ2 statistic may differ already because of the used state space
form; for details, the reader is referred toHarvey (1989, chap.
5). If both tests, i.e., the basic test and the LR-test, indicate
that the data do not support the constraints, the constraints
are relaxed towards unconstrained values until both tests are
positive (see Algorithm 2). In this context, it is worth men-
tioning again that the basic test is performed for the purpose
of reducing the computational complexity: if the constraints
do not pass the basic test, there is no need to perform the LR
test.

Algorithm 2 : The procedure of validating and potentially
relaxing the inequality constraints applied within a non-
convex optimization
Require: ψuncon and ψcon
while basic and LR-test negative do
relax the most violated constraint
perform basic test
if basic test negative then
LR-test negative

else
perform Algorithm 1
perform LR-test

end if
end while

By doing so, we avoid using constraints that are too
strong and not supported by the data, but still try to find
a compromise between a statistically based and a physically
meaningful estimate.

2.5 GPS

The analysis of GPS time series often differs substantially
from that of GRACE data. GRACE time series have a sam-
pling period of typically one month, data gaps are sparse,
and noise correlations between the monthly data (if there are
any) are negligible. GPS data are known to contain colored
(temporally correlated) observational noise that cannot be
neglected (Williams 2003a). Moreover, GPS time series are
frequently unevenly spaced in time and may contain large
data gaps as well as outliers. In the following sections, we
describe how we handle these different features present in
the GPS data.

2.5.1 Pre-processing

AKF can easily deal with unevenly distributed observations.
However, equally spaceddatawill be beneficialwhenwe later
define the state space model for temporally correlated noise.
Therefore, we generate equally spaced data by filling short
gapswith interpolated values and long gapswithNaNvalues.
We define a gap to be long if more than seven consecutive

measurements are missing, i.e., more than 1 week of daily
GPS data.

Since the KF is not robust to outliers, they should be
removed beforehand. Outliers are detected here by a Ham-
pel filter according to Pearson (2011). The measurements are
removed from the time series where horizontal or vertical site
displacements of a GPS station were identified as outliers.

2.5.2 Colored noise

The white noise assumption in Sect. 2.2 is too strong for
the observational noise when dealing with GPS measure-
ments. A classical approach to consider the colored noise
within the framework of KF is to extend the state vector αt

in Eq. (7) with the noise (so-called “shaping filter”) (Bryson
and Johansen 1965). To do so, we first need to assess the type
of noise. For this reason, we estimate the state vector from
Eq. (8) using filtering and smoothing recursions described
in Sect. 2.3, but now the components of the state vector are
made deterministic by setting the process noise variance σ 2

η

to zero and σ 2
ε to one. This is equivalent to the classical LSA.

Dealingwithmissing observations in the derivation of theKF
and smoother is particularly simple as shown in Durbin and
Koopman (2012, chap. 4.10). Using KF here instead of LSA
permits us to compute smoothed residuals at each time step
t = n, . . . , 1

ε̂t = H
(
F−1
t vt − KT

t rt
)

(21)

by using quantities computed in Sect. 2.3. In this way com-
puted residuals are now equally distributed in time. They
represent an approximation of the noise, which we model as
an autoregressive moving average (ARMA) process of order
(p, q). The ARMA process is defined as

εt =
l∑

j=1

φ jεt− j + �t +
l−1∑

j=1

θ j�t− j , t = 1, . . . , n, (22)

where φ1, . . . , φp are the autoregressive parameters, θ1, . . . ,
θq are the moving average parameters and �t is a seri-
ally independent series of N (0, σ 2

� ) disturbances and l =
max(p, q + 1) with p, q ∈ {0, . . . , 5}. Some parameters
of an ARMA model can be zero, which yields two special
cases: if q = 0, the process is autoregressive (AR) of order
p; if p = 0, the process is a moving-average (MA) process
of order q.

The postfit residuals obtained after fitting a deterministic
model to the data represent colored noise. It is impor-
tant to understand that it is only an approximation of the
observational noise, since the residuals contain a potentially
unmodeled time-dependent portion of the signal. To parame-
terize this approximate colored noise using an ARMA(p, q)
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model, we need to determine how p and q should be chosen.
For this, we follow the idea of Klees et al. (2003) and use
the ARMA(p, q) model that best fits the noise power spec-
tral density (PSD) function. Thus, using the PSD function of
the approximate colored noise we estimate the pure recur-
sive part of the filter (MA) and non-recursive part of the filter
(AR) by applying the standard Levinson–Durbin algorithm
(Farhang-Boroujeny 1998). The parameters of the MA and
AR models are computed using a defined p and q, which
are then used to compute the PSD function of the combined
ARMA(p, q) solution. To control the dimension of the state
vector αt we limit the maximum order of the ARMA process
to 5, which means we compute the PSD for ARMA(p, q)

generated for p, q ∈ {0, . . . , 5} (including two special cases
AR(p) and MA(q)). Then, we use GIC (Generalized Infor-
mation Criterion) order selection criterion to select the PSD
of theARMAmodel that best fits the PSD of the approximate
colored noise. The p and q of this ARMA model define the
number of φ and θ coefficients used to parameterize colored
noise εt . More details about the use of ARMAmodels in the
context of GPS time series can be found in accompanying
Supplement.

2.5.3 State space model

GPS data are often contaminated by offsets (Gazeaux et al.
2013). If undetected, they might produce an error in trend
estimates (Williams 2003b). For Antarctica, the offsets are
usually related to hardware changes and thus are step-like.
To incorporate an offset into state space form we define a
variable wt as:

wt =
{
0, t < τ,

1, t ≥ τ.
(23)

Adding this to the observation Eq. (6) gives

yt = μt + c1,t + c2,t + δ wt + εt , t = 1, . . . , n, (24)

where δ measures the change in the offset at a known epoch
τ . For k offsets, the state vector can be written as

α
[δ]
t = [δ1 · · · δk]T. (25)

Colored noise εt can be included into the state space model
as:

α
[ε]
t =

⎡

⎢⎢⎢⎢⎢⎣

εt
φ2εt−1 + · · · + φlεt−l+1 + θ1�t + · · · + θl−1�t−l+2

φ3εt−1 + · · · + φlεt−l+2 + θ2�t + · · · + θl−1�t−l+3
...

φlεt−1 + θl−1�t

⎤

⎥⎥⎥⎥⎥⎦

(26)

with η[ε] = �t+1; then, the corresponding system matrices
are given by

T [ε] =

⎡

⎢⎢⎢⎣

φ1 1 0
...

. . .

φl−1 0 1
φl 0 · · · 0

⎤

⎥⎥⎥⎦ , R[ε] = [
1 θ1 · · · θl−1

]T
,

Z [ε] = [
1 0 0 · · · 0] .

(27)

It is worth noting that for irregularly spaced observations,
it is less straightforward to put an ARMA(p, q) process for
models of order p > 2 into state space form. Therefore, the
data were pre-processed as outlined in Sect. 2.5.1.

Combining the parameterization of k offsets (Eq. 25) and
of the “shaping filter” (Eq. 26) with the basic model defined
in Eq. (8) (hereafter αt used with the index b for basic), we
take the state vector as

αt =
(
α

[ε]
t , α

[b]
t , α

[δ]
t

)
, (28)

and the system matrices as

Zt = (
Z [ε], Z , Ik

)
, T = diag

(
T [ε], T, Ik

)
,

R = diag
(
R[ε], R, 0k

)
,

Q = Iσ 2
η = diag

([
σ 2

�t+1
σ 2

ζ σ 2
ς1

σ 2
ς1

σ 2
ς2

σ 2
ς2

]) (29)

with Z , T and R being defined in Eqs. (9)–(10).
After defining this modified state space model, GPS time

series can be processed in the same way as the GRACE time
series. In particular, the search space for the global solver
associated with the ARMA parameters does not experience
any bounds.

2.6 Summary of the developed framework

The flow diagram in Fig. 3 outlines the major steps of the
time-series analysis by the suggested method. The method
can be applied to any equally spaced data; it can cope
with missing observations and different stochastic proper-
ties of the data. Once the components of interest are defined
in the state vector, the corresponding state space model
with all required matrices can be formulated. If present,
time-correlated observational noise can be modeled using
a general ARMA model that subsumes two special cases
(AR and MA) as described in Sect. 2.5.3 or in more detail
in the accompanying Supplement. Another representation of
the colored observational noise within the state space formal-
ism can be found in, e.g., Dmitrieva et al. (2015), in which a
linear combination of independent first-orderGauss–Markov
(FOGM) processes is used to approximate the noise.

Once in the state space form, the parameters governing
the stochastic movements of the state components are esti-
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Fig. 3 Flow diagram to summarize the major steps of the described
approach for time-series analysis

mated by numerically optimizing likelihood. The likelihood
function is computed using the by-products of the Kalman
filter (Eq. 16). Finding an optimal solution as demonstrated
in Sect. 2.4 is the key of the proposed methodology, since
it ensures optimal estimates for the hyperparameters, which
in turn determine the estimates of the signal constituents.
Limiting the parameter search space (Sect. 2.4.2), as well as
imposing constraints (Sect. 2.4.3) that are supported by the
data, both increase the likelihood of getting the optimal solu-
tion. Once the hyperparameters are estimated, the Kalman
filter and smoother can be used (Sect. 2.3) for obtaining
the best estimate of the state at any point within the ana-
lyzed time span. This can be important for investigating the
way in which a component such as trend has evolved in the
past.

3 Application to real data

In this section, we demonstrate the performance of the pro-
posed methodology compared with the commonly used LSA
techniqueon twodifferent types of geodetic time series.As an
example, we use GRACE and GPS time series, although the
methodology can be applied to any other time series. After a

brief description of the data sets, the results of computational
experiments are presented and discussed.

3.1 Data

We use daily GPS vertical site velocities at the CAS1 station,
which is located in Wilkes Land, East Antarctica. There are
three reasons for selecting this GPS station: first, it is a GPS
sitewith continuous long-termobservations; second, the time
series data contain all the features described in Sect. 2.5; and
third, because of its geolocation. A significant accumulation
anomaly event was concentrated along theWilkes Land coast
in 2009 (Luthcke et al. 2013). Due to a high signal-to-noise
ratio, we expect this event to be detected by both observing
systems, GPS and GRACE. Consequently, we can use this
prior knowledge about geophysical processes to verify the
plausibility of the proposed methodology.

The GPS data at CAS1 are processed similar to Thomas
et al. (2011). The GPS time series contains two step-like
offsets (in Oct. 2004 and Dec. 2008) within the chosen esti-
mation period, which is Feb. 2003 to Dec. 2010. For the
same period, GRACE monthly time series are computed at
Delft University of Technology (Farahani 2013) complete to
spherical harmonic degree/order 120 and optimally filtered
using a Wiener filter (Klees et al. 2008). Stokes coefficients
representing the monthly gravity fields were converted into
vertical deformations following Kusche and Schrama (2005)
making GRACE data comparable with GPS observations.
This conversion is done for potential validation which, as
will be shown later, leaves room for physical interpretations
if the proposed methodology is applied.

3.2 Results

Results derived by modeling signal constituents stochasti-
cally within the KF framework are called hereinafter KF
results for brevity. We show plots in the time and frequency
domain for GPS and GRACE time series at the same geolo-
cation. Both time series represent vertical deformations due
to GIA and the elastic response of the solid Earth to the sur-
face load. Before discussing the results it is worth noting
that what is called trend (in mm) thereafter is the integrated
random walk part of the signal (μt in Eq. 8) with determin-
istically modeled intercept and time-varying slope (or rate)
in mm/year introduced as βt in Eq. (8).

For GRACE time series, we estimate the slope, and
annual, semi-annual and tidal S2 periodic terms deterministi-
cally using LSA and stochastically using the KF framework.
In both cases, the intercept is co-estimated deterministi-
cally. Figure 4 shows vertical deformation derived based on
GRACE data, the LSA fit and the KF fit, as well as estimated
trends using different techniques. Error bars represent one-
sigma uncertainties. Figure 4a, b serves as a visual inspection
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Fig. 4 Vertical site displacements in mm derived based on GRACE data (black), the fit of a trend function (blue), and the fit of a trend function
together with annual, semi-annual and tidal S2 periodic terms (red) using a LSA and b KF framework. Error bars are 1σ

Fig. 5 Vertical site displacements in mm observed by GPS (grey), the
fit of a trend function (blue), and the fit of a trend function together with
annual and semi-annual terms and two offsets (red) using a LSA and b
KF framework. Error bars are 1σ . Starting from Oct. 2004, there are

inflated uncertainty estimates in b, because of the co-estimation of two
step-like offsets. In a, the over-optimistic formal LSA errors are barely
perceptible

and indicate that the model which allows signal components
to vary in time represents the data considerably better than
the model that assumes a linear trend and exactly periodic
processes with constant amplitudes.

Figure 5 demonstrates similar results as Fig. 4, but forGPS
vertical site displacements. LSAresults shown inFig. 5awere
generated by fitting intercept, slope, annual and semi-annual
terms and two offsets to the time series without modeling
colored noise. Time-correlated noise model is usually used
to estimate more realistic parameter uncertainties than those
resulting from white noise assumption (Thomas et al. 2011).
However, to generate the KF results, we co-estimated time-
correlated noise parameters as well. Following the procedure

described in Sect. 2.5.2, we computed the noise PSD function
of the LSA residuals, which is shown in black in Fig. 6. An
AR(3) model (red in Fig. 6) was found to provide the best
fit to the PSD of the approximate colored noise. Colored
noise in the GPS time series was then parameterized with
three autoregressive coefficients and co-estimated alongwith
signal components. The results in Fig. 5 suggest that the KF
method (Fig. 5b) outperforms the LSA method (Fig. 5a).

Because estimating rates/slopes as accurately as possi-
ble is the primary motivation of this study, Fig. 7 outlines
the corresponding results. A constant slope as a result of
a deterministic fitting along with the stochastically mod-
eled time-varying slope are shown for GRACE (Fig. 7a)
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Fig. 6 The PSD (power spectral density) of AR(3) model (red) that
best fits the PSD of the postfit residuals (black), whereby LSAwas used
to fit a multi-parameter model to the GPS time series at the CAS1 site

and GPS time series (Fig. 7b). To allow for a direct com-
parison between LSA and KF results, we compute a mean
slope from the time-varying slope. If there were no changes
in the rates of vertical deformation, the two constant val-
ues should be the same. In fact they differ significantly, as
the proposed methodology suggests the presence of low-
frequency variability in the slope component (black curves
in Fig. 7) that cannot be explained by any other modeled
component. For GRACE, the constant slope estimated using
LSA is 0.20±0.07 mm, whereas the mean slope determined
from the time-varying estimates is 0.36±0.12mm.Although
these are small numbers in absolute terms, their relative dif-

ference is larger than 50%. For GPS, the slope derived based
on KF is almost 2.5 times smaller than the LSA based slope
estimate being 0.77±0.46 and 1.89±0.11 for KF and LSA,
respectively.

To explain the different uncertainty estimates shown in
Fig. 7, it is worth mentioning here that we propagated the
correlations between errors of subsequentKF slope estimates
into the mean slope. To compute the covariance matrix for
the smoothed state vector α̂t , that is, Cov(αt − α̂t , α j − α̂ j )

for t = 1, . . . , n and j = t +1, . . . , n, the quantities defined
in Sect. 2.3 were used according to Durbin and Koopman
(2012, chap. 4.7):

Cov(αt − α̂t , α j − α̂ j ) = Pt L
T
t L

T
t+1 · · · LT

j−1(I − N j−1Pj ).

(30)

For the case j = t + 1, LT
t+1 · · · LT

t is replaced by the iden-
tity matrix I , which has a dimension of the estimated state
vector. To compute the uncertainty estimates from LSA, for-
mal errors were rescaled by the a posteriori variance. This is
a commonly used approach (e.g., Baur 2012) which yields
over-optimistic uncertainties (e.g., Williams 2003a).

In the context of slope estimation, we find it worth not-
ing that, especially for Antarctic GPS site velocities that are
used to constrain GIA rates, each erroneously estimated mil-
limeter of vertical deformation corresponds to significantly
erroneous ice-mass change estimates (Gunter et al. 2014)
highlighting the need to estimate these rates as accurately as
possible.

To prove the presence of low-frequency variability in the
slope component estimated with the KF technique, we com-

Fig. 7 Slope estimates in mm/year: KF time-varying slope (black),
mean slope derived from KF time-varying slope (red), and LSA esti-
mated slope (blue). a GRACE time series and b GPS time series. Error

bars are 1σ . The legend shows the values for the mean slope derived
from KF time-varying slope (red) and for the LSA estimated slope
(blue). Note, that different scales are used
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Fig. 8 Amplitude spectra for observations (black), postfit residuals using the proposed KF technique (red) and the LSA technique (blue). aGRACE
time series and b GPS time series. Root mean square (RMS) misfits are indicated for both KF and LSA. Note, that different scales are used

pute the amplitude spectrum of the GRACE and GPS time
series (cf. Fig. 8a, b, respectively). The results confirm the
presence of long-term variations that deviate from a linear
trend in both time series. While these inter-annual variations
are absorbed in the residuals when using LSA (blue graphs
in Fig. 8), they are captured by the KF (red graphs in Fig. 8)
and map into the time-varying slope component (Fig. 7).
Considering root mean square (RMS) misfits for quantita-
tive comparison, there is an approximate 41% and 13 %
reduction in RMS misfits for GRACE and GPS time series,
respectively, as a result of using the proposed KF instead of
the LSA technique. As can be seen from Fig. 8, the domi-
nant reduction of the RMS misfit is due to the time-varying
slope with a smaller part being explained by the time-varying
annual signal (the amplitude of the KF residuals around the 1
cycle-per-year frequency is smaller than the amplitude of the
LSA residuals). The signals in the high-frequency domain
are considered as noise.

To validate the results based on the proposed method-
ology from the geophysical point of view, we plot the
estimated time-varying rates derived from GPS and GRACE
time series, respectively, in Fig. 9. The known accumula-
tion anomaly event from 2009 is clearly evident. In this
year, GPS and GRACE observe maximum subsidence of
the solid Earth as an immediate response to the high levels
of accumulation within the analyzed time period. Although
the two observing systems do not agree perfectly, they do
observe similar processes starting from 2005. In fact, there
are a number of different factors to be considered when
comparing GPS and GRACE time series, such as the spa-
tial resolutions of the data sets (GPS-derived deformations
are discrete point measurements, while GRACE results rep-

Fig. 9 Time-varying slope for GRACE and GPS time series at the
geolocation of the CAS1 site when using the proposed KF technique.
Time-varying error bars are 1σ

resent a spatial average), the effects of geocenter motion
should be considered when converting GRACE coefficients
into vertical deformation, etc. Though the validation of dif-
ferent geodetic observing techniques is beyond the scope of
this study, we feel the proposed methodology provides bet-
ter interpretation opportunities (Fig. 9) than the traditional
LSA approach. It should also be noted that once GRACE
and GPS time series are corrected such that they represent
the same signal, it is straightforward to combine them within
the described approach. However, the GRACE and GPS time
series are used in this study only to validate the proposed
methodology, and their data combination is also beyond the
scope of this paper. It is also worth mentioning here that
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Fig. 10 Estimated time-varying slope (top) and annual signal (bottom,
dashed line) along with the time-varying annual amplitude (bottom,
solid line) for GPS vertical site displacements using the proposed KF

framework. a When limiting the parameter search space for finding an
optimal minimum and b without limiting the parameter search space.
Note, that different scales are used

we have chosen this GPS station because of the existing
prior knowledge about the geophysical process (accumula-
tion anomaly) that took place there in 2009. Two different
observing systems, GPS andGRACE, detected this geophys-
ical process because of its high magnitude. While estimating
time-variable rates, the time series from these two different
observing systems were treated in two different ways with
respect to the observational noisemodel used: white noise for
GRACE and colored noise for GPS time series. Nonetheless,
the time-varying trends derived from the GRACE and GPS
time series show the same behavior. We therefore interpret
this behavior as a signal and not as potentially mismodeled
observational noise.

The target of this study is to provide a robust tool for
reliable trend estimation. The robustness of the proposed
methodology is determined by finding an optimal mini-
mum that is necessary for estimating the noise parameters
(Sect. 2.4) which, in turn, are the key for reliable rate esti-
mates. To demonstrate the role of the noise parameters on
the estimated signal components, we use the example shown
in Fig. 2. Based on the GPS time series, we estimate the
noise parameters by limiting the parameter search space for
finding an optimal solution (as it is done through this section)
and without limiting the parameter search space. Using these
differently estimated noise parameters, we estimate modeled
signal constituents. In Fig. 10, we illustrate the results for the
slope and the annual component in the time domain (there is
no evident difference in the semi-annual component, as can
be seen in Fig. 2). By limiting the parameter search space,
the process noise for the slope and annual component is esti-
mated to be 0.37 mm/year and 0.06 mm, respectively. The

corresponding estimates are shown in Fig. 10a suggesting a
correlation between both the changes in the rates of vertical
deformation and their annual variability. This is physically
reasonable, as both are responses to the changing climate.

If the parameter search space is not limited, the process
noise for slope and annual signal is 5.75×10−8 mm/year and
0.34 mm, respectively. Figure 10b shows the corresponding
plots. Because the slope is not allowed to vary much, it is
comparable with the LSA estimate shown in Fig. 7b. How-
ever, the variance of the annual component is much higher
than the one used in Fig. 10a, which is why the corresponding
annual amplitude in Fig. 10b shows an erratic behavior.

We could also assume the noise parameters to be known,
e.g., bymodeling the slope deterministically and using afixed
standard deviation for the annual signal. The higher we set
this standard deviation the more we force the annual sig-
nal to absorb long-term variations and possible variations
originating from other sources, yielding wrong interpreta-
tions. Therefore,we recommend to limit the parameter search
space as described in Sect. 2.4.2 and to verify potentially
existing prior knowledge about noise parameters according
to Sect. 2.4.3 to ensure the reliability of the estimated sig-
nal constituents. Moreover, we suggest modeling all signal
components stochastically to ensure a reliable noise parame-
ter estimation, unless there are good reasons not to do so.

4 Conclusions

We developed a robust method for estimating time-variable
trends fromgeodetic time series. Thismethod ismore sophis-
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ticated compared to commonly usedLSA, as it allows the rate
and seasonal signals to change in time. The advantages are
twofold: more reliable trend estimation, because (i) there is
no contamination by seasonal variability and (ii) it accounts
for any long-term evolution in the time series, which would
appear as noise when modeled as a time-invariant slope.

The right choice of the noise parameters is at the heart of
the proposed methodology. We suggested a method which
allows a robust estimation of the noise parameters. We veri-
fied the reliability of the estimates using spectral analysis.
The plausibility of the estimated time-varying rates was
additionally confirmed by existing geophysical knowledge.
Furthermore, the results estimated using the KF framework
were visually compared with those derived using LSA in the
time and frequency domains. Visual inspections and RMS
misfits suggested that the KF outperforms LSA. The pro-
posed methodology is not limited to GPS and GRACE time
series, but can be used for any other time series.

Our results suggest that potential changes in rates may
yield significantly different trendswhen post-processed com-
pared to the deterministic linear trend. Indeed, the longer the
time series, the more deviations can be expected from the
deterministic linear trend assumption aswell as from the con-
stant seasonal amplitudes and phases. Moreover, any change
in the trend term reflects an acceleration, making the stochas-
tic approachmuchmore flexible than the deterministic one. It
can therefore be reasonable to consider signal as a stochastic
process in particular when analyzing climatological data.
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