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Abstract PPP-RTK has the potential of benefiting enor-
mously from the integration of multiple GNSS/RNSS sys-
tems.However, since unaccounted inter-systembiases (ISBs)
have a direct impact on the integer ambiguity resolution per-
formance, the PPP-RTK network and user models need to be
flexible enough to accommodate the occurrence of system-
specific receiver biases. In this contribution we present such
undifferenced, multi-system PPP-RTK full-rank models for
both network and users. By an application of S-system the-
ory, the multi-system estimable parameters are presented,
thereby identifying how each of the three PPP-RTK com-
ponents are affected by the presence of the system-specific
biases. As a result different scenarios are described of how
these biases can be taken into account. To have users bene-
fit the most, we propose the construction of an ISB look-up
table. It allows users to search the table for a network receiver
of their own type and select the corresponding ISBs, thus
effectively realizing their own ISB-corrected user model. By
applying such corrections, the usermodel is strengthened and
the number of integer-estimable user ambiguities is maxi-
mized.
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1 Introduction

PPP-RTK is integer ambiguity resolution-enabled precise
point positioning (PPP) (Wubbena et al. 2005; Mervart et al.
2008; Teunissen et al. 2010). It extends the PPP concept
(Zumberge et al. 1997; Kouba and Heroux 2001; Bisnath
and Gao 2008) by providing single-receiver users, next to
the orbits and clocks, also information about the satellite
phase biases. In this contribution we discuss PPP-RTK in the
context ofmulti-system integration and in particular with ref-
erence to the occurrence of system-specific receiver biases
(Hegarty et al. 2004; Montenbruck et al. 2011).

To gain from the enormous benefits that the integration
of multiple GNSS/RNSS systems can bring (Teunissen et al.
2014; He et al. 2014; Chu and Yang 2014; Odolinski et al.
2015; Nadarajah et al. 2015; Li et al. 2015), it is impor-
tant that any misalignments between the systems is properly
taken care of. Indeed, as recent contributions have shown,
the existence of non-zero inter-system biases—experienced
by receivers of different types—results, if ignored, in a
catastrophic failure of integer ambiguity resolution (Odijk
andTeunissen 2013a; Paziewski andWielgosz 2014;Nadara-
jah et al. 2014; Torre and Caporali 2015). It is the goal
of the present contribution to present the undifferenced,
multi-system PPP-RTK enabled functional models for both
network and users, and to present different scenarios of
how these system-specific receiver biases can be taken into
account. By an application of S-system theory (Baarda
1973; Teunissen 1985), the estimable parameters of the
multi-system mixed-receiver network and user models are
described, thereby identifying how each of the three compo-
nents of PPP-RTK (Fig. 1) are affected by the presence of
these biases. Although we have chosen for a specific S-basis
in this contribution, the presentation is such that our conclu-
sions can be replicated for any such S-basis, thus also for
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Fig. 1 Three components of PPP-RTK: (1) network-component, (2)
correction-component and (3) user-component

those chosen in e.g. (Laurichesse and Mercier 2007; Collins
2008; Ge et al. 2008; Bertiger et al. 2010; Geng et al. 2012),
see the review (Teunissen and Khodabandeh 2015).

This contribution is organized as follows. In Sect. 2 we
first present and discuss the full-rank undifferenced network
system of observation equations for a single system. Such a
description of its estimable parameters, and how they relate
to the chosen S-basis, is crucial to properly understand their
propagation into the PPP-RTK corrections and user mod-
els. A fivefold decomposition of the PPP-RTK corrections
is therefore presented in Sect. 3. It shows that next to the
primary function of the corrections, which is the removal
of satellite clocks and satellite phase/code biases from the
user observation equations, the corrections also establish an
additional fourS-basis dependent links between network and
user. As a result the decomposition directly makes clear how
the estimability of the user parameters is linked to the estima-
bility of the network parameters.

In Sect. 4, we generalize the single-system networkmodel
to the multi-system case, thereby taking the possible pres-
ence of system-specific receiver biases into account. Two
different parametrizations of the full-rank multi-system net-
work system of observation equations are presented. In the
first formulation use is made of the system-specific estimable
receiver clocks and receiver phase/code biases, while in the
second formulation the estimable Inter-system biases (ISBs)
are introduced, thereby taking the system-specific nature of
the parameters relative to a reference system. Although there
is no preference per se between the two parametrizations, the
ISB parametrization is usually considered more appealing as
it shows the effect of having system-specific receiver biases
explicitly.

In Sect. 5, we discuss the role of the inter-system biases
in the context of PPP-RTK. The effect of the estimable ISBs
is shown and three different ISB-scenarios are presented and
discussed, the ISB-unknown model, the ISB-known model

and the ISB-correctedmodel. This also showswhichmodel a
multi-systemPPP-RTKuser has to usewhen confrontedwith
PPP-RTK corrections derived from a multi-system network
of mixed receivers. Such is the case, for instance, for many
networks that provide information in the public domain, like
e.g. the IGS network.

In Sect. 6, we show how PPP-RTK users can benefit from
network-derived ISBs. Next to the provision of the PPP-RTK
corrections, the idea is to provide an ISB look-up table as a
means to support multi-system PPP-RTK. It consists of accu-
rately determined network-derived estimable ISB solutions.
As the ISBs may be considered stable in time, the look-up
table is made up of calibrated estimable ISBs having low
refreshment rates.The user can then search the table for a
network receiver of the same type and select the correspond-
ing ISBs, thus effectively realizing his own ISB-corrected
user model. By applying such corrections, the user model is
strengthened and the number of integer-estimable user ambi-
guities is maximized.

2 Single-system network estimability

To understand multi-system PPP-RTK estimability, one
first needs a rigorous estimability description of an indi-
vidual single system. Let the single-system phase and
code observation equations of a network receiver r (r =
1, . . . , n), tracking satellite s (s = 1, . . . ,m) on frequency j
( j = 1, . . . , f ), (Teunissen and Kleusberg 1998; Hofmann-
Wellenhof et al. 2008) be given as

�φs
r, j = (�ρs

r + dtr − dt s) − μ j ι
s
r + λ j (zsr, j + δr, j − δs, j )

�psr, j = (�ρs
r + dtr − dt s) + μ j ι

s
r + (dr, j − ds, j ),

(1)

where �φs
r, j and �psr, j denote the ‘observed minus com-

puted’ phase and code observations, respectively. Here and
in the following, the precise orbital corrections are assumed
included in the observed minus computed observations. The
increment of the geometric range, lumped with that of the
zenith tropospheric delay (ZTD), is denoted by �ρs

r . This
increment can be further parametrized into a position and
ZTD increment �xr through �ρs

r = gsT�xr , with gs

containing the receiver–satellite direction vector and the
tropospheric mapping function. The common receiver and
satellite clock parameters are, respectively, denoted as dtr
and dts . They are accompanied by the frequency-dependent
code receiver and satellite biases dr, j and ds, j . Ambiguities, in
units of cycles, are composed of the integer part zsr, j and the
receiver/satellite non-integer parts δr, j and δs, j , respectively.
They manifest themselves through their wavelength λ j . The
(first-order) slant ionospheric delay, as experienced on the
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first frequency, is denoted by ιsr . Thus we have the scalars
μ j = (λ2j/λ

2
1) linking the ionospheric delays to the observa-

tions. Apart from zsr, j , δr, j and δs, j , the rest of the quantities
are all expressed in units of range.

The above network system of equations (1) is rank-defect.
The information content of the network observations is not
sufficient to determine all the network’s ‘absolute’ parame-
ters. Only estimable combinations of these parameters can
be solved for. Through a careful application of S-system
theory (Teunissen 1985), the underlying rank-deficiency of
the network model can be identified and then removed. Dif-
ferent choices of such S-bases for rank-deficiency removal
are possible, see e.g. Odijk et al. (2015); Khodabandeh and
Teunissen (2015). For a given S-basis, a full-rank version of
the network model (1) reads

�φs
r, j = �ρ̃s

r + dt̃r − dt̃ s − μ j ι̃
s
r + λ j (z̃sr, j + δ̃r, j − δ̃s, j )

�psr, j = �ρ̃s
r + dt̃r − dt̃ s + μ j ι̃

s
r + d̃r, j − d̃s, j

(2)

for r = 1, . . . , n, where �ρ̃s
r = gsT�x̃r .

The chosen S-basis and the corresponding interpretation
of the estimable parameters, indicated with the .̃-symbol,
are given in Table 1. The table shows how each estimable
parameter is formed as a certain linear combination of the
original parameters. The subscripts ‘IF’ and ‘GF’ stand
for the ‘ionosphere-free’ and ‘geometry-free’ combinations,
respectively (see the table for their definition).

Note that in the S-basis choice given here, the estimable
parameters are formed by lumping the parameters of the ref-
erence receiver r = 1 and the satellite code biases on the first
two frequencies.Would one choose another S-basis, a differ-
ent set of estimable parameters is formed. Thus the estimable
functions can be formed in many different ways, presenting
different interpretations. Each set canbe linked to one another
byS-transformations (Baarda 1973; Teunissen 1985). Exam-
ples of such linkages are given in Odijk et al. (2015).

The following three important remarks can be made with
respect to the estimable parameters of (2). First, the GNSS
observations are not capable of determining the ‘absolute’
parameters, but only estimable parameters that can act as
such. After forming a full-rank model, one can therefore not
speak of the satellite clock or the satellite phase biases. It
is instead the S-dependent estimable functions, dt̃ s and δ̃s, j ,
that take their role.

Second, with the chosen S-basis, the estimable code
biases, d̃s, j and d̃r, j , only exist on the third frequency and
beyond (i.e. j > 2). Thus, given the full-rank model (2), no
estimable code biases exist in the dual-frequency setup.

Third note that, with the chosen S-basis, the estimable
phase and code biases, δ̃s, j and d̃

s
, j , become functions of their

‘absolute’ versions, i.e. δs, j and ds, j , and (in case of δ̃s, j ) the
integer-valued ambiguities zs1, j only (cf. Table 1). Thismeans
that if the absolute parameters δs, j , d

s
, j , and zs1, j are assumed

constant in time, that the estimable parameters δ̃s, j and d̃
s
, j can

be assumed time-constant aswell. One is therefore allowed to
directly apply such a dynamic model to the stated estimable
parameters rather than to their absolute versions.
Large-scale networks In our analysis so far, we have assumed
the network to be such that the receivers view satellite s from
almost the same direction angle, i.e. gsr ≈ gs , r = 1, . . . , n.
This assumption holds for small-to-regional networks. In
case of a large-scale network, however, i.e. when gsr �= gs ,
the linear dependency between the position increment �xr
and the satellite clocks dt s vanishes. The estimability of the
stated parameters changes then to (compare with Table 1)

�x̃r �→ �xr
dt̃ s �→ (dt s + ds,IF) − (dt1 + d1,IF),

(3)

while the estimability of the rest of the estimable parameters
remains unaffected. In the following, without loss of gener-
ality, we therefore keep assuming gsr ≈ gs , r = 1, . . . , n.
This assumption allows the inclusion of small-to-regional
networks in our discussion as well.

Table 1 Estimable parameters
formed by the chosen S-basis of
the single-system network
model

Positions/ZTDs �x̃r = �x1r ; r �= 1

Ionospheric delays ι̃sr = ιsr + dr,GF − ds,GF
Receiver clocks dt̃r = dt1r + d1r,IF; r �= 1

Satellite clocks dt̃ s = (dt s + ds,IF) − (dt1 + d1,IF) − gsT�x1

Ambiguities z̃sr, j = zs1r, j − z11r, j ; r �= 1, s �= 1,

Rec. phase biases δ̃r, j = δ1r, j + 1
λ j

(μ j d1r,GF − d1r,IF) + z11r, j ; r �= 1

Sat. phase biases δ̃s, j = δs, j + 1
λ j

(μ j [ds,GF − d1,GF] − [ds,IF − d1,IF]) − δ1, j − zs1, j

Rec. code biases d̃r, j = d1r, j − (d1r,IF + μ j d1r,GF); r �= 1, j > 2

Sat. code biases d̃s, j = [ds, j − (ds,IF + μ j ds,GF)] − [d1, j − (d1,IF + μ j d1,GF)]; j > 2

S-basis parameters �x1, dt1, d1, j , δ1, j , zs1, j , z1r, j , dr �=1, j=1,2, ds, j=1,2

(.),IF = 1
μ2−μ1

{μ2(.),1 − μ1(.),2}; (.),GF = 1
μ2−μ1

{(.),2 − (.),1}
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3 Single-system corrections

3.1 Fivefold functionality of the corrections

Not all of the network parameters, as given in Table 1, are
of interest to the PPP-RTK users. Apart from the orbital cor-
rections, the PPP-RTK users only need to be provided with
the satellite clocks, phase/code biases and (sometimes) the
ionospheric corrections. Here we consider the case where no
ionospheric correction is provided to the user.

Due to the network’s rank-deficiency, the network cannot
provide the actual satellite clocks dts , phase biases δs, j , and

code biases ds, j , but only their estimable variants dt̃ s , δ̃s, j ,

and d̃s, j ( f > 2). These corrections come together, at the
observation level of the user, in the combined form

csφ, j = dt̃ s + λ j δ̃
s
, j

csp, j =
{
dt̃ s j = 1, 2
dt̃ s + d̃s, j j > 2

(4)

Thus csφ, j and c
s
p, j are the combined corrections that need to

be added to the user phase and code data, respectively.
As these corrections are not only composed of the actual

satellite clocks dts , phase biases δs, j , and code biases ds, j ,
it is important for the user to know their composition and to
understand that their interpretation changes,would the choice
of the network’s S-basis change. With the aid of the inter-
pretation given in Table 1, the combined corrections (4) can
be characterized through the following fivefold expressions

[
csφ, j
csp, j

]
= I − II1 − III1 − IV1 − V[1,2] (5)

Each of these five terms has its own insightful functionality
(cf. Table 2). The first term I contains the ‘absolute’ parame-
ters dt s , δs, j and ds, j . Its functionality is considered to be the
most primary one, since it does what it is supposed to do,
namely to remove the satellite clocks, phase and code biases
from the user observation equations.

The second term II1 contains the increment of the geomet-
ric/tropospheric range of the reference network receiver, i.e.
�ρs

1. Its functionality is therefore to establish a positional
link between the user and the reference network receiver

r = 1. That the first receiver is taken as the reference network
is due to the choice of S-basis by the network-component.
Would one lump the geometric/tropospheric range of the sec-
ond network receiver (i.e. �ρs

2) with the satellite clocks, the
interpretation of II1 would then change to

II1 �→ II2 =
[

�ρs
2

�ρs
2

]
, (6)

which then establishes a positional link between the user and
the reference network receiver r = 2. One can also consider
a more general case, when the satellite clocks are lumped
with an average of the geometric/tropospheric ranges over
all the network stations, say�ρs

r̄ = (1/n)
∑n

r=1 �ρs
r . Given

such S-basis, the interpretation of II1 changes to

II1 �→ IIr̄ = 1

n

n∑
r=1

IIr , (7)

making a positional link between the user and the average of
the network receivers, i.e. r̄ .

The third term III1 contains the integer ambiguities of the
reference network receiver r = 1, i.e. zs1, j . Thus it establishes
an ambiguity link between the user and the reference network
receiver r = 1. Similar to the second term, one can change
its dependency on the first receiver to another by changing
the network’s S-basis.

The fourth term IV1 contains the receiver-dependent para-
meters of the reference network receiver r = 1. Its func-
tionality is to make the user receiver-dependent parameters
estimable with respect to those of the reference receiver
r = 1. Similar to the second and third terms II1 and III1,
the interpretation of IV1 can change, for instance, to IV2 or
IVr̄ , would the network’s S-basis change. Moreover, as we
will see in Sect. 4, this receiver-dependent fourth term may
also change in case GNSSs are combined.

The fifth and last term V[1,2] contains the geometry-free
components of the satellite code biases on the first two fre-
quencies ( j = 1, 2), i.e. ds,GF. As it is accompanied by the
coefficients [−μ j , μ j ]T, it gets fully absorbed by the user
ionospheric parameters. Due to its dependency on the net-
work’s S-basis, the interpretation of V[1,2] can change. One
can form ds,GF based on the first and third frequency instead
of the first and second frequency (cf. Table 1). With such

Table 2 The fivefold expression of the single-system PPP-RTK corrections, given the S-basis in Table 1
I II1 III1 IV1 V[1,2]

[
csφ, j
csp, j

]
=

[
dt s + λ j δ

s
, j

dt s + ds, j

]
−

[
�ρs

1
�ρs

1

]
−

[
λ j zs1, j

0

]
−

[
�dt1 + λ j�δ1, j
�dt1 + �d1, j

]
−

[ −μ j
+μ j

]
ds,GF

Absolute term Positional link Ambiguity link Receiver-specific link Ionosphere-specific link

�dt1 = dt1 + d1,IF; �δ1, j = δ1, j + 1
λ j

(μ j d1,GF − d1,IF); �d1, j = d1, j − (μ j d1,GF + d1,IF)
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newly defined geometry-free combinations, the last term
V[1,2] switches toV[1,3], thus resulting in a different estimable
ionospheric parameter for the user.

Network’s interpolated ionospheric corrections The PPP-
RTK corrections are sometimes extended by the ionospheric
corrections to speed up user integer ambiguity resolution.
In that case use is made of the network’s interpolated
ionospheric delays (Table 1)

ι̃so = ιso + do,GF − ds,GF (8)

to be provided to the user. The subscript o indicates the
interpolation operator over r = 1, . . . , n. As the combined
corrections (4) are changed to

[
csφ, j
csp, j

]
�→

[
csφ, j
csp, j

]
−

[−μ j

+μ j

]
ι̃so (9)

the first and last terms I and V[1,2] in (5) are, respectively,
changed to

I �→
[
dt s + λ jδ

s
, j + μ j ι

s
o

dt s + ds, j − μ j ι
s
o

]
(10)

and

V[1,2] �→
[−μ j

+μ j

]
do,GF (11)

According to (10) and (11), the functionality of I is extended
by also correcting the user ionospheric delays ιsu using the
interpolated delays ιso. On the other hand, there would then be
no user ionospheric parameter to absorb the bias do,GF of the
last termV[1,2]. This bias, if unknown (and not calibrated, e.g.
through IGS), would then need to be estimated as an extra
parameter at the user side.

3.2 User-component

Replacing the subscript r by the user index u in (1), the
single-receiver user observation equations follow as:

�φs
u, j = �ρs

u + dtu − dt s − μ j ι
s
u + λ j (zsu, j + δu, j − δs, j )

�psu, j = �ρs
u + dtu − dt s + μ j ι

s
u + du, j − ds, j

(12)

The above user system of observation equations is not solv-
able for an integer ambiguity resolved position. Applying the
correction-component (4) can however, link the user parame-
ters to the network’s S-basis. To see this, we re-write the user
model (12) as (cf. 5)

NET. CORR. = + − − − IV −

USER DATA = − + + + IV + u,

I

I

II1

IIu

IIII1

IIIIu

1V

I uV

I V,[1,2]

,u [1,

]

V 2]

+

⇓
ESTIMABLE [1

[1

ESTIMABLE
UNKNOWNS

IIu − II1 IIIu−III1 IVuV − IV1V
u,V [1,2] −
V,[1,2]
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Fig. 2 Schematic construction of the user-estimable parameters that
are formed by the fivefold functionality of the corrections (Table 2),
linked to the network’s S-basis

[
�φs

u, j
�psu, j

]
= −I + IIu + IIIu + IVu + Vu,[1,2] (13)

with

Vu,[1,2] =
[−μ j

+μ j

]
(ιsu + du,GF) (14)

The fivefold representation (13) demonstrates how the
network-derived corrections govern the estimability of the
user parameters. The schematic construction of the user-
estimable parameters is illustrated in Fig. 2. The figure
shows the fivefold decomposition of the network correc-
tions (cf. 5) as well as how the user data can be composed
from the user-versions of these five terms (cf. 13). Recalling
the fivefold functionality of the corrections (5), the satel-
lite clocks and biases are cancelled out by the first term I.
The ‘absolute’ position and ambiguity terms IIu and IIIu are,
respectively, biased by the S-basis dependent terms II1 and
III1, thus leading to the ‘estimable’ position and ambiguity
terms (IIu − II1) and (IIIu − III1), respectively. Likewise, the
receiver-specific term IVu as well as the ionospheric term
Vu,[1,2] are replaced by their estimable counterparts (IVu−IV1)
and (Vu,[1,2] − V,[1,2]). Therefore, after applying the cor-
rections, the user-corrected observation equations take the
following form:

�φs
u, j + csφ, j = �ρ̃s

u + dt̃u − μ j ι̃
s
u + λ j (z̃

s
u, j + δ̃u, j )

�psu, j + csp, j = �ρ̃s
u + dt̃u + μ j ι̃

s
u + d̃u, j (15)

with�ρ̃s
u = gsT�x̃u . These corrected observation equations

are now solvable, but only for the estimable parameters (with
the .̃-symbol). Their interpretation follows from the user ver-
sion of those in Table 1, i.e. with r replaced by u. Note that
the ‘integer-recovered’ user ambiguities have now become
straightforward double-differenced (DD) ambiguities, that is

z̃su, j = z1s1u, j ∈ Z, s �= 1 (16)
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These integer-estimable ambiguities in the user system of
observation equations are thus dependent on zs1, j , the integer
ambiguities of the network reference receiver.We remark that
onemay choose an average of the ambiguities of the network
receivers as the S-basis, i.e. III1 replaced by IIIr̄ (cf. Table 2).
In that case, the ‘integer-recovered’ user ambiguities become
linear functions of the DD ambiguities (Odijk et al. 2015, Eq.
34).

S-dependence of user parameters
The above has shown that theS-basis dependency propagates
from network, through the corrections, onwards to the user.
It is therefore of importance to understand what the conse-
quences of this dependence are. Fortunately, the choice of
S-basis does not affect ones ability to secure the integerness
of the single-receiver estimable user ambiguities. That is, for
every possible choice of S-basis, PPP-RTK corrections can
be formed such that the estimable user ambiguities become
integer. The choice of S-basis has therefore no consequence
for this primary goal of PPP-RTK. Examples of different
such S-bases can be found in the review paper (Teunissen
and Khodabandeh 2015).

The estimable user parameters themselves however, do
depend on the chosen S-basis. A change in S-basis can for
instance modify the interpretation of the positioning/ZTD
increment �x̃u (cf. II1 in 5) and/or of the DD ambiguities
z̃su, j (cf. III1 in 5). Also non-positioning users need to be
aware of the S-basis dependence. This is for instance true
for the presence of the satellite and receiver biases ds,GF and
du,GF in the estimable slant ionospheric parameter ι̃su . But also
users who are interested in analysing or calibrating receiver-
specific biases, like e.g. dt̃u , δ̃u, j and d̃u, j , need to know
that these biases are not ‘absolute’, but relative to those of a
reference station (satellite) or a linear function thereof.

4 Multi-system PPP-RTK

In the previous section, the three components of the single-
system PPP-RTK concept were formulated and discussed. In
this section, we generalize the concept to the multi-systems
� = G, J, . . . , E . As one needs to discriminate between
the satellites of different systems, our earlier satellite index
‘s’ becomes obsolete. Instead, we make use of the satellite
index s� (s� = 1�, . . . ,m�) for the system �. Although each
system can broadcast signals on different frequency bands,
we restrict ourselves in this contribution to those frequency
bands that are in common with these systems. With this in
mind, our earlier frequency index ‘ j’ ( j = 1, . . . , f ) stands
for the j th overlapping frequency of the systems. Note that
this restriction does not affect the generality of our discussion
as one can apply the rank-deficiency removal to the multi-
system models, of different frequencies, along similar lines
as that of the single-system models.

Table 3 Current frequencies shared by GPS, QZSS, Galileo, BeiDou
and IRNSS

System Frequency-band

GPS L1 L2 L5

QZSS L1 L2 L5 LEX

Galileo E1 E5a E5b E6

BeiDou B2

IRNSS L5

Freq. (MHz) 1575.42 1227.60 1176.45 1207.14 1278.75

Overlapping frequencies have been sorted into columns

Table 3gives anoverviewof the current frequencies shared
by the navigation satellite systems. The two systemsGPS and
QZSS, for instance, have the three frequencies L1, L2 and
L5 in common, while with the Galileo system, they share the
two overlapping frequencies L1 and L5 (E5a).

4.1 System-specific receiver biases

When one combines systems one has to be aware of system-
specific receiver biases. That is, in the multi-system case the
receiver bias delays are experienced in a way that is dif-
ferent from system to system (see e.g. Hegarty et al. 2004;
Montenbruck et al. 2011; Sleewagen et al. 2012; Odijk and
Teunissen 2013a). Under this assumption, the observation
equations of the receiver r , tracking the system �, follow as

�φ
s�
r, j = �ρ

s�
r + dtr − dt s� − μ j ι

s�
r + λ j [zs�r, j + δ�

r, j − δ
s�
, j ]

�ps�r, j = �ρ
s�
r + dtr − dt s� + μ j ι

s�
r + d�

r, j − ds�, j
(17)

with �ρ
s�
r = gs�T�xr .

Compare the above equations with (1). The role of the
receiver biases δr, j and dr, j is now taken by the system-
specific parameters δ�

r, j and d�
r, j . Note also that the data in

(17) are registered in the ‘time-system’ of G, i.e. only one
receiver clock dtr is taken for all the systems. This is allowed
as the difference between the time-systems ofG and � �= G is
fully absorbed by the satellite clocks dt s� (s� = 1�, . . . ,m�).

Since the full-rank model (2) holds for any single system,
one can make the observations equations for a multi-system
full-rank in a similarway. The corresponding full-rankmodel
reads

�φ
s�
r, j = �ρ̃s�

r + dt̃�r − dt̃ s� − μ j ι̃
s�
r + λ j [z̃s�r, j + δ̃�

r, j − δ̃
s�
, j ]

�ps�r, j = �ρ̃s�
r + dt̃�r − dt̃ s� + μ j ι̃

s�
r + d̃�

r, j − d̃s�, j (18)

for r = 1, . . . , n.
Compare the full-rank model (18) with its single-system ver-
sion (2). The interpretation of the estimable parameters of
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Table 4 Single-epoch,
multi-system network model’s
redundancy, together with the
number of observations and
number of estimable parameters:
f is number of overlapping
frequencies; n is number of
network stations; M is number
of satellites; S is number of
systems; ν is dimension of
position/ZTD vector

No. of observations Total

#�φ
s�
r, j = f nM , #�ps�r, j = f nM 2 f nM

No. of estimable parameters Total

#ι̃s�r = nM , #dt̃ s� = M , #{δ̃s�, j , d̃s�, j } = 2( f − 1)M 2 f M + (n − 1)M

#dt̃�r = S(n − 1), #{δ̃�

r, j , d̃
�

r, j } = 2S( f − 1)(n − 1) S(2 f − 1)(n − 1)

#�x̃r = (n − 1)ν #z̃s�r = f (M − S)(n − 1) [ν + f (M − S)](n − 1)

Redundancy (n − 1){( f − 1)(M − S) − ν}

this multi-system network model is given in Table 5. It also
shows the additional S-basis parameters that are chosen for
each extra �-system.

Due to the ‘system-dependency’ of the receiver biases δ�
r, j

and d�
r, j , each system has its own estimable receiver clocks

dt̃�r , receiver phase biases δ̃�

r, j and receiver code biases d̃�

r, j
(r = 2, . . . , n). Thus we see that the 2 f n extra parameters
δ�
r, j and d�

r, j result in (2 f − 1)(n − 1) extra estimable para-
meters per additional system. The difference in these number
of parameters, i.e. 2 f n− (2 f −1)(n−1), is taken up by the
extra S-basis, namely by δ�

1, j , d
�
1, j and d�

r �=1,GF (see Table
5).

Thus note, although the systems are assumed to have
only one common clock dtr per receiver, the full-rank multi-
system model (18) results in estimable clocks dt̃�r that are
system specific. The between-system differences of these
clocks are however, functions of the code biases d�

r, j , which
are more stable than the receiver clocks over time. In Sect. 5,
we will therefore reformulate (18) to study the role played
by these functions.

Another consequence of the ’system-dependency’ of the
receiver biases is that, similar to the single-system case, the
single-differenced ambiguities of the pivot satellites s� = 1�,
i.e. z1�1r, j , are taken as the S-basis to form the system-specific
DD ambiguities

z̃s�r, j = zs�1r, j − z1�1r, j ∈ Z, s� �= 1�. (19)

This thus implies that one pivot satellite must be taken for
each system.

Table 4 gives an overview of the multi-system network
redundancy. It showshoweach extra systemcontributes to the
overall redundancy. For instance, with two systems (S = 2),
each having the same number of satellites (M = 2m), the
increase in redundancy of adding a second system is (n −
1)( f − 1)(m − 1).

4.2 Multi-system corrections applied

Similar to the single-system case, one can form the multi-
system combined corrections (cf. 4)

cs�φ, j = dt̃ s� + λ j δ̃
s�
, j

cs�p, j =
{
dt̃ s� j = 1, 2
dt̃ s� + d̃s�, j j > 2

(20)

Since the system-dependent receiver biases δ�
1, j and d

�
1, j are

lumped with the estimable satellite clocks dt̃ s� and biases
δ̃
s�
, j /d̃

s�
, j , the fourth term IV1 in the fivefold expression (5) is

replaced by (cf. Table 2)

IV1 �→ IV�
1 =

[
�dt1 + λ j�δ�

1, j

�dt1 + �d�
1, j

]
(21)

As the functionality of IV�
1 is to make the user receiver-

dependent parameters estimable with respect to those of the
reference receiver r = 1, the estimable receiver clock of
the user, i.e. dt̃�u , becomes system-specific as well. The user
observation equations follow from (18) by replacing the sub-
script r with u,

�φ
s�
u, j = �ρ̃s�

u +dt̃�u−dt̃ s� − μ j ι̃
s�
u + λ j [z̃s�u, j + δ̃�

u, j − δ̃
s�
, j ]

�ps�u, j = �ρ̃s�
u + dt̃�u − dt̃ s� + μ j ι̃

s�
u + d̃�

u, j − d̃s�, j (22)

Applying the combined corrections (20)–(22) gives the user-
corrected observation equations

�φ
s�
u, j + cs�φ, j = �ρ̃

s�
u + dt̃�u − μ j ι̃

s�
u + λ j [z̃s�u, j + δ̃�

u, j ]
�ps�u, j + cs�p, j = �ρ̃

s�
u + dt̃�u + μ j ι̃

s�
u + d̃�

u, j

(23)

As with the multi-system network model (18), the user must
also take one pivot satellite per system to form the DD
ambiguities z̃s�u, j . Likewise, the user must estimate differ-

ent receiver clocks dt̃�u and receiver biases δ̃�

u, j /d̃
�

u, j for each
system.
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Table 5 Estimable parameters
formed by the chosen S-basis of
the multi-system network model

Positions/ZTDs �x̃r = �x1r ; r �= 1

Ionospheric delays ι̃
s�
r = ι

s�
r + d�

r,GF − ds�,GF
Receiver clocks dt̃�r = dt1r + d�

1r,IF; r �= 1

Satellite clocks dt̃ s� = (dt s� + ds�,IF) − (dt1 + d�

1,IF) − gs�T�x1

Ambiguities z̃s�r, j = zs�1r, j − z1�1r, j ; r �= 1, s� �= 1�

Rec. phase biases δ̃�

r, j = δ�

1r, j + 1
λ j

(μ j d�

1r,GF − d�

1r,IF) + z1�1r, j ; r �= 1

Sat. phase biases δ̃
s�
, j = δ

s�
, j + 1

λ j
(μ j [ds�,GF − d�

1,GF] − [ds�,IF − d�

1,IF]) − δ�

1, j − zs�1, j

Rec. code biases d̃�

r, j = d�

1r, j − (d�

1r,IF + μ j d�

1r,GF); r �= 1, j > 2

Sat. code biases d̃s�, j = [ds�, j − (ds�,IF + μ j d
s�
,GF)] − [d�

1, j − (d�

1,IF + μ j d�

1,GF)]; j > 2

Former S-basis �x1, dt1, d1, j , δ1, j , zsG1, j , z1Gr, j , dsG, j=1,2, dr �=1, j=1,2

Additional S-basis d�

1, j , δ�

1, j , zs�1, j , z1�r, j , ds�, j=1,2, d�

r �=1,GF; � �= G

(.),IF = 1
μ2−μ1

{μ2(.),1 − μ1(.),2}; (.),GF = 1
μ2−μ1

{(.),2 − (.),1}

5 Role of the inter-system biases

5.1 Inter-system biases and their estimable functions

So far, the concept of single-system PPP-RTK was shown to
carry over quite naturally to that of multi-system PPP-RTK.
While the number of satellites increases from

single-system: s ∈ {1, . . . ,m} (24)

to

multi-system:
E⋃

�=G

{s� ∈ {1�, . . . ,m�}} , (25)

the network and user have to estimate extra system-specific
estimable receiver parameters, namely

network:

#dt̃�r = (n−1), #δ̃�

r, j = f (n − 1), #d̃�

r, j = ( f −2)(n − 1)

user:

#dt̃�u = 1, #δ̃�

u, j = f, #d̃�

u, j = ( f − 2) (26)

per additional system � �= G. The presence of these
extra unknowns results from the ‘system-dependency’ of the
receiver biases δ�

r, j and d
�
r, j . Instead of parametrizing the sys-

tem of equations in system-specific parameters, onemay also
choose for a parametrization in which one system is chosen
as reference, say system G. In that case the system-specific
nature of the parameters is taken relative to the reference
system and one would be working with the differences

δG�

r, j := δ�
r, j − δr, j

dG�

r, j := d�
r, j − dr, j

(27)

Table 6 Estimable ISBs of the network model (29)

Phase ISBs δ̃G�
r, j = δG�

1r, j + μ j
λ j
dG�

1r,GF + z1G1�1r, j ; r �= 1

IF code ISBs d̃G�
r,IF = dG�

1r,IF; r �= 1

Code ISBs d̃G�
r, j = dG�

1r, j − (μ j dG�

1r,GF + dG�

1r,IF); r �= 1, j > 2

where δr, j := δG
r, j and dr, j := dG

r, j . The parameters δG�

r, j and
dG�

r, j are referred to as the phase and code inter-system biases
(ISBs), respectively (Hegarty et al. 2004). They capture the
difference between the receiver biases of the two systems G
and � �= G. They are therefore, by definition, absent in the
observation equations of the first system � = G.

Using the above definitions, together with the interpreta-
tions given in Tables 1 and 5, the estimable parameters dt̃�r ,
δ̃�

r, j and d̃�

r, j (r = 2, . . . , n) can be linked to their counter-
parts of the system G through

dt̃�r = dt̃r + d̃G�
r,IF

δ̃�

r, j = δ̃r, j + δ̃G�
r, j − 1

λ j
d̃G�
r,IF

d̃�

r, j = d̃r, j + d̃G�
r, j , j > 2

(28)

in which d̃G�
r,IF, δ̃G�

r, j and d̃G�
r, j are estimable functions of the

ISBs δG�

r, j and d
G�

r, j . Their interpretations are given in Table 6.

As the three estimable parameters dt̃�r , δ̃
�

r, j and d̃
�

r, j stand in

a one-to-one relation with the three estimable ISBs d̃G�
r,IF, δ̃

G�
r, j

and d̃G�
r, j , the relation (28) can be used to reparametrize the

observation equations (18) and (23) in terms of the estimable
ISBs.

ISB-unknown models Substitution of (28) into (18) gives the
ISB-parametrized multi-system full-rank network model,
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Table 7 Increase in the network
model’s redundancy by
switching from the
ISB-unknown model (former) to
the ISB-known model (new)

Former vs. new parameters #Redudancy per system � �= G

Former New Amb. float Amb. fixed

#δ̃G�
r, j : f (n − 1) #z1G1�1r, j : f (n − 1) 0 f (n − 1)

#d̃G�
r,IF : (n − 1) 0 (n − 1) (n − 1)

#d̃G�
r, j : ( f − 2)(n − 1) 0 ( f − 2)(n − 1) ( f − 2)(n − 1)

Total: (2 f − 1)(n − 1) f (n − 1) ( f − 1)(n − 1) (2 f − 1)(n − 1)

The number of the former estimable parameters that need to be replaced by the new estimable parameters is
also given. Increase in the user model’s redundancy follows by setting n = 2

�φ
s�
r, j = �ρ̃

s�
r + dt̃r − dt̃ s� − μ j ι̃

s�
r + λ j [z̃s�r, j

+ δ̃r, j − δ̃
s�
, j + δ̃G�

r, j ]
�ps�r, j = �ρ̃

s�
r + dt̃r − dt̃ s� + μ j ι̃

s�
r + d̃r, j − d̃s�, j

+ d̃G�
r,IF + d̃G�

r, j

(29)

for r = 1, . . . , n. Likewise, substitution of (28) into (23)
(with r replaced by u) gives the ISB-parametrized, multi-
system full-rank user-corrected model as
�φ

s�
u, j + cs�φ, j = �ρ̃

s�
u + dt̃u − μ j ι̃

s�
u

+λ j [z̃s�u, j + δ̃u, j + δ̃G�
u, j ]

�ps�u, j + cs�p, j = �ρ̃
s�
u + dt̃u

+μ j ι̃
s�
u + d̃u, j + d̃G�

u,IF + d̃G�
u, j

(30)

The multi-system models (29) and (30) are just reparame-
trized versions of the models (18) and (23), respectively.
There is therefore no preference per se between the two, as
they give the same outcomes once a rigorous least-squares
adjustment is applied. The ISB-parametrization of (29) and
(30) may however, be more appealing as it explicitly links
the unknown estimable ISBs to the observations. The multi-
system models (29) and (30) are therefore referred to as the
ISB-unknown models.

5.2 Strengthening the network and user models

5.2.1 ISB-known models

The network and user models (29) and (30) strengthen if the
ISBs can be assumed absent, i.e. if the receiver bias delays
of all systems are experienced in the same way:

dG�

r, j = 0 and δG�

r, j = 0 (31)

Substitution into the expressions of d̃G�
r,IF, δ̃G�

r, j and d̃G�
r, j in

Table 6 gives then

d̃G�
r,IF = 0, d̃G�

r, j = 0, δ̃G�
r, j = z1G1�1r, j ∈ Z (32)

This shows that the zero ISBs (31) result in zero estimable
code ISBs, d̃G�

r,IF and d̃G�
r, j , and in a transition from the

originally real-valued estimable phase ISBs δ̃G�
r, j to the

integer-valued ambiguities z1G1�1r, j .
Table 7 shows how the network redundancy increases by

assuming the ISBs known. The ( f − 1) times (n − 1) num-
ber of code ISBs d̃G�

r,IF and d̃G�
r, j (per system � �= G) are now

corrected, thus decreasing the number of the estimable para-
meters. Although the change in the phase ISBs δ̃G�

r, j does
not increase the redundancy in the network ambiguity float
mode, it does recover the integerness of the ambiguities
z1G1�1r, j . Hence, after successful integer ambiguity resolution,
the redundancy increases by f (n − 1) per system � �= G. To
obtain the increase in redundancy for the user, one has to set
n = 2 in Table 7.

Only one pivot satellite for all the systems That the estimable
phase ISBs δ̃G�

r, j turn into the integers z
1G1�
1r, j has an important

implication for the estimable DD ambiguities z̃s�r, j . To see

this, consider the interpretation of z̃s�r, j + δ̃G�
r, j , using (19) and

(32), through the following steps

z̃s�r, j + δ̃G�
r, j = z1�s�1r, j + z1G1�1r, j

= (zs�1r, j − z1�1r, j ) + (z1�1r, j − z1G1r, j )

= z1Gs�1r, j ∈ Z, s� �= 1G

(33)

This last expression of (33) reveals that only one pivot satel-
lite, i.e. the first satellite of the first system G, is required to
form the estimable DD ambiguities z1Gs�1r, j .

With the equality (33), substitution of (32) into (29) gives
the ISB-known network model

�φ
s�
r, j = �ρ̃

s�
r +dt̃r − dt̃ s� − μ j ι̃

s�
r + λ j [z1Gs�1r, j + δ̃r, j − δ̃

s�
, j ]

�ps�r, j = �ρ̃
s�
r + dt̃r − dt̃ s� + μ j ι̃

s�
r + d̃r, j − d̃s�, j

(34)

for r = 1, . . . , n. Likewise, the ISB-known version of the
user-corrected observation equations (30) follows as

�φ
s�
u, j + cs�φ, j = �ρ̃s�

u + dt̃u − μ j ι̃
s�
u + λ j [z1Gs�1u, j + δ̃u, j ]

�ps�u, j + cs�p, j = �ρ̃s�
u + dt̃u + μ j ι̃

s�
u + d̃u, j (35)
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5.2.2 ISB-corrected models

In the previous subsection we discussed the consequences of
having zero ISBs. The assumption of zero ISBs is a plausi-
ble assumption when one works with the same receivers (i.e.
make, type, firmware). It is, however, not a testable assump-
tion that can be inferred from the GNSS data itself. After all,
aswas shown in the previous sections, the ISBparameters δG�

r, j
and dG�

r, j cannot be determined in their ‘absolute’ forms, but

only in their estimable forms δ̃G�
r, j , d̃

G�
r,IF and d̃

G�
r, j . Hence, only

the vanishing of these estimable ISBs, or functions thereof,
can be tested.

Such functions are present in DD zero- and short-baseline
setups, when one differs the observations ofmultiple systems
with respect to a pivot satellite of one of the systems. Here
the term ‘short’ means that the DD ionospheric delays are
assumed absent in the model. Let us now, under this assump-
tion, take the first satellite of the first system ‘G’ as the pivot
(i.e. 1G ) and form the DD observation equations from (17).
They read (ι1Gs�1r = 0)

�φ
1Gs�
1r, j = �φ

s�
1r, j − �φ

1G
1r, j = �ρ

1Gs�
1r + λ j [z1Gs�1r, j + δG�

1r, j ]
�p1Gs�1r, j = �ps�1r, j − �p1G1r, j = �ρ

1Gs�
1r + dG�

1r, j

(36)

with�ρ
1Gs�
1r = g1Gs�T�x1r . The aboveDDobservation equa-

tions are solvable for the so-called code differential ISBs
(DISBs) dG�

1r, j and an integer-shifted version of the phase
DISBs δG�

1r, j (Odijk and Teunissen 2013b).
Recent contributions have studied the size and the tempo-

ral stability of the stated DISBs, see e.g. Odijk and Teunissen
(2013a, b); Melgard et al. (2013); Nadarajah et al. (2014);
Paziewski and Wielgosz (2015). While they found that the
DISBs are absent in the baseline setup with same type
receivers (make, type, firmware),

same type receivers : δG�

1r, j = 0, dG�

1r, j = 0, (37)

they found non-zero, but time-stable, DISBs in the baseline
setup with receivers of different types. Although some short-
term periodic variations of the phase DISBs of the Galileo
IOV-1 and IOV-2 satellites were observed (Odijk and Teu-
nissen 2013b; Paziewski et al. 2015), we remark that these
variations should not be attributed to theDISBs, but to a cross
talk in their clock monitoring and control unit (Montenbruck
et al. 2015). That the DISBs are very time-stable brings the
question to the fore as to whether our earlier estimable ISBs
δ̃G�
r, j , d̃

G�
r,IF and d̃G�

r, j can be linked to these DISBs. Would that
be the case, one can, similar to the ISB-known scenario,
strengthen the ISB-unknown model (29) by providing the
a priori ISB corrections that are obtained by a zero-/short
baseline setup.

Fortunately, the answer to the above question is affirma-
tive.With the information presented in Table 6, the estimable
ISBs δ̃G�

r, j , d̃
G�
r,IF and d̃G�

r, j can be expressed in terms of the
DISBs δG�

1r, j and dG�

1r, j as

δ̃G�
r, j − z1G1�1r, j = δG�

1r, j + μ j

λ j μ12
[dG�

1r,2−dG�

1r,1]

d̃G�
r,IF = 1

μ12
[μ2 d

G�

1r,1−μ1 d
G�

1r,2]

d̃G�
r, j = dG�

1r, j −
μ j

μ12
[dG�

1r,2−dG�

1r,1]

− 1

μ12
[μ2 d

G�

1r,1−μ1 d
G�

1r,2]; j > 2

(38)

with μ12 = μ2 − μ1. Thus the DISBs provide us with the
phase ISBs δ̃G�

r, j lumped with the unknown, but integer, ambi-

guities z1G1�1r, j . By applying the above a priori corrections to
(29), the ISB-corrected version of the networkmodel follows
as:

�φ
s�
r, j −λ j [δ̃G�

r, j − z1G1�1r, j ]
= �ρ̃s�

r +dt̃r −dt̃ s� −μ j ι̃
s�
r + λ j [z1Gs�1r, j +δ̃r, j −δ̃

s�
, j ],

�ps�r, j − d̃G�
r,IF −d̃G�

r, j

= �ρ̃s�
r +dt̃r −dt̃ s� +μ j ι̃

s�
r +d̃r, j −d̃s�, j (39)

for r = 1, . . . , n.
Compare the ISB-corrected model (39) with its ISB-known
counterpart (34). Both are identical in structure. By a priori
providing the ISB corrections, one can therefore realize a
model of the same structure as the one made by the zero ISB
assumptions δG�

r, j = 0 and dG�

r, j = 0.

Example (Estimable ISBs linked to the DISBs) To gain fur-
ther insights into the role played by the DISBs in correcting
the estimable ISBs, two GPS/Galileo data-sets of two inde-
pendent baselines (of mixed receivers) have been analysed:
(1) a zero-baseline and (2) a medium baseline (∼110 km).
The reference and rover receivers of the two baselines are,
respectively, of the same types. The zero-baseline is aimed to
the determine the DISBs δG�

1r, j and d
G�

1r, j (cf. 36), whereas the
medium baseline is aimed to determine the estimable ISBs
δ̃G�
r, j , d̃

G�
r,IF and d̃G�

r, j (cf. 29). The overlapping frequencies are
L1/E1 and L5/E5a (cf. Table 3).

In the top-panel of Fig. 3, both the single-epoch (black
dots) and the multi-epoch (blue lines) solutions of the DISBs
of the zero-baseline are shown. The term ‘single-epoch’
refers to the case where the DISBs are treated unlinked in
time, while the term ‘multi-epoch’ refers to the case where
the DISBs are assumed constant in time.

Given the multi-epoch DISB solutions, we make use of
the first expression of (38) and compute the expected ISBs.
On the other hand, the multi-epoch ISB solutions δ̃G�

r, j are
obtained by the medium baseline. In order to investigate how
well the a priori ISBs (evaluated by the zero-baseline) can
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Fig. 3 DISB and ISB solutions of two GPS/Galileo data-sets of two
independent baselines: (1) a zero-baseline and (2) a medium baseline
(∼110km). Top (the first two rows) the single-epoch (black dots) and
themulti-epoch (blue lines) solutions of the DISBs of the zero-baseline.
Bottom (the third row) the difference between the multi-epoch solutions

of the estimable phase ISBs of the medium baseline and the expected
ISBs evaluated by the zero-baseline DISBs through (38) (green lines).
After convergence, the difference is shown to completely lie within the
99% confidence interval (red dashed lines), corroborating the correct-
ing role of the DISBs

correct the medium baseline ISBs, we compute their dif-
ference (green lines) together with the corresponding 99%
confidence intervals (red dashed lines), see the bottom-panel
of Fig. 3. After convergence, the difference is shown to com-
pletely lie within the confidence interval, corroborating the
correcting role of the DISBs.

6 Network-derived ISB look-up table

In this section,we showhowPPP-RTKusers can benefit from
network-derived ISBs. Next to the provision of the PPP-RTK
corrections, a network-derived ISB look-up table is provided
that allows users to select and apply the appropriate ISBs.

6.1 User ISB-corrected model

Recall that non-zero user estimable ISBs pop up, when the
types of the network reference receiver r = 1 and user
receiver are different. The user-estimable ISBs read

δ̃G�
u, j = δG�

1u, j + μ j

λ j
dG�

1u,GF + z1Gs�1u, j

d̃G�
u,IF = dG�

1u,IF

d̃G�
u, j = dG�

1u, j − (μ j d
G�

1u,GF + dG�

1u,IF), j > 2 (40)

Thus if the type of the user receiver u would be the same
as that of the reference network receiver r = 1, the ISB
parameters (40) can be excluded from the user model (30),
since δG�

1u, j = 0 and dG�

1u, j = 0.
In practice however, the choice of the network S-basis is

not necessarily known to the user. Even if it would be known
to the user, the types of the user and reference receivers might
be different. Does it mean that the idea of the network ISB-
corrected model cannot be applied to the user? Fortunately
not.

To enable the users to apply the appropriate ISB correc-
tions, the idea is to construct an ISB look-up table, consisting
of the network-derived ISB solutions δ̃G�

r, j , d̃
G�
r,IF and d̃

G�
r, j ( j >

2) for r = 1, . . . , n. As the ISBs δG�

r, j , d
G�

r, j may be considered
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 Correction-
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pcφc ,

= 1r

= 2r

= 3r r
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,j1d̃,,j1δ̃ IF,1d̃,

,jd̃,,jδ̃ IF,d̃,q q q

,jd̃,,jδ̃ IF,d̃,n n n

q=

System:
System:

Fig. 4 Three components of multi-system PPP-RTK supported by the
ISB look-up table (in red). Given a network of mixed-receiver types,
the user ‘u’ has the possibility of finding the network-derived ISBs of
the network receiver of the same type, say r = q (in green)

stable in time, the look-up table will bemade up of accurately
calibrated estimable ISBs having a low refreshment rate.

The user can then search the table for a network receiver
of the same type (i.e. receiver r = q) and pick up the cor-
responding ISBs δ̃G�

q, j , d̃
G�
r,IF and d̃G�

q, j (see Fig. 4). Since the
DISBs of both the receivers, u and q, are the same with
respect to r = 1, i.e.

δG�

1u, j = δG�

1q, j , dG�

1u, j = dG�

1q, j , (41)

an application of the ISB identities (38) gives

δ̃G�
u, j − z1G1�1u, j = δ̃G�

q, j − z1G1�1q, j

d̃G�
u,IF = d̃G�

q,IF, d̃G�
u, j = d̃G�

q, j

(42)

Thus, similar to the network ISB-corrected model (39), the
user ISB-corrected model follows by applying the above cor-
rections to (30),

�φ
s�
u, j + cs�φ, j −λ j [δ̃G�

q, j − z1G1�1q, j ]
= �ρ̃

s�
u +dt̃u− μ j ι̃

s�
u + λ j [z1Gs�1u, j +δ̃u, j ],

�ps�u, j + cs�p, j − d̃G�
q,IF −d̃G�

q, j

= �ρ̃
s�
u +dt̃u+μ j ι̃

s�
u +d̃u, j

(43)

Compare the above model (43) with (30). The ( f − 1)
number of code ISBs d̃G�

u,IF and d̃G�
u, j are corrected. Thus the

model is strengthened as the model’s redundancy increases
by ( f − 1) per system � �= G. Note also that the f number
of integer ambiguities z1G1�1u, j are now recovered. Thus after
integer ambiguity resolution, the redundancy even increases
further by f per system � �= G.

One can also compare the user ISB-corrected model (43)
with its single-system counterpart (15). Both are identical

in structure. Thus the ISB-corrected model (43) acts as if a
single-system setup is considered, with a difference, that the
number of visible satellites can then be much larger than that
of the single-system setup.

6.2 Cluster-based ISB-unknown network model

In constructing the aforementioned look-up table, one has to
recognize the following two issues:

1. With respect to the ISB-unknown model (29), one has to
include the extra unknowns δ̃G�

r, j , d̃
G�
r,IF and d̃

G�
r, j for all the

network receivers r �= 1, thus considerably weakening
the strength of the network model as compared to the
ISB-known model (34).

2. In case the number of network receivers is large, a large
amount of ISB-data need to be stored in the stated look-up
table.

For instance, for a network of size n = 100 tracking dual-
frequency data, the number of the estimable ISBs becomes
(Table 7)

(2 f − 1)(n − 1)
f =2= 297 per additional system.

Fortunately, the above issues can be properly handled by
considering the fact that the network receivers are confined to
a limited number of types. In our earlier formulation, we con-
sider the estimable ISB parameters δ̃G�

r, j , d̃
G�
r,IF and d̃G�

r, j to be
different from receiver to receiver.We now consider themore
practical scenario where the network of mixed-receiver types
is partitioned into h clusters symbolized by� (� = 	, . . . , �).
Each cluster� contains receivers of the same type (see Fig. 5).
Our earlier receiver index ‘r ’ (r = 1, . . . , n) becomes there-
fore obsolete. It is replaced by r� (r� = 1� . . . , n�). For each
cluster �, the ISB-unknown model (29) takes the following
form then

→

→

→→

Fig. 5 Illustration of a network of mixed-receiver types that is parti-
tioned into h clusters symbolized by � (� = 	, . . . , �). Each cluster �
contains receivers of the same type
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�φ
s�
r�, j = �ρ̃

s�
r�

+ dt̃r� − dt̃ s� − μ j ι̃
s�
r� + λ j [z̃s�r�, j + δ̃r�, j − δ̃

s�
, j + δ̃G�

r�, j ]
�ps�r�, j = �ρ̃

s�
r�

+ dt̃r� − dt̃ s� + μ j ι̃
s�
r� + d̃r�, j − d̃s�, j + d̃G�

r�,IF + d̃G�
r�, j

(44)

Recall that theDISBs are absent in the cluster �, i.e. δG�

1�r�, j =
0, dG�

1�r�, j = 0. Using the ISB identities (38), we therefore
have

δ̃G�
1�r�, j −z1G1�1�r�, j =0, d̃G�

1�r�,IF = 0

d̃G�
1�r�, j =0, j > 2

(45)

The equations presented above can now be imposed on (44)
as constraints, thus strengthening the ISB-unknown network
model. To do this, wemake use of the following parametriza-
tion

δ̃G�
r�, j = [δ̃G�

1�, j + z1G1�1�r�, j ] + [δ̃G�
1�r�, j − z1G1�1�r�, j ]

d̃G�
r�,IF = d̃G�

1�,IF + d̃G�
1�r�,IF

d̃G�
r�, j = d̃G�

1�, j + d̃G�
1�r�, j , j > 2

(46)

Substitution of the above equations into (44), together with
(45), gives the cluster-based ISB-unknown network model

�φ
s�
r�, j = �ρ̃

s�
r�

+dt̃r� − dt̃ s� − μ j ι̃
s�
r� + λ j [�z̃s�r�, j + δ̃r�, j − δ̃

s�
, j + δ̃G�

1�, j ]
�ps�r�, j = �ρ̃

s�
r�

+dt̃r� − dt̃ s� + μ j ι̃
s�
r� + d̃r�, j − d̃s�, j + d̃G�

1�,IF + d̃G�
1�, j

(47)

with the estimable DD ambiguities

�z̃s�r�, j = z̃s�r�, j + z1G1�1�r�, j , r� �= 1� (48)

Compare (47) with (44). The f times n� number of phase
ISBs δ̃G�

r�, j are replaced by the f number of non-integer para-

meters δ̃G�
1�, j and the f times (n� − 1) number of integer

parameters�z̃s�r�, j . In the network ambiguity float mode, this
replacement does therefore not increase the redundancy. In
the network ambiguity fixed mode however, the redundancy
increases by f (n� − 1) per system � �= G.

Next to the phase ISBs, the ( f − 1) times n� number of
code ISBs d̃G�

r�,IF and d̃G�
r�, j are, respectively, replaced by the

( f − 1) number of parameters d̃G�
1�,IF and d̃

G�
1�, j . This replace-

ment does therefore further increase the model redundancy
by ( f − 1)(n� − 1) per system � �= G.

For a network of size n = 100 tracking dual-frequency
data, but then clustered by h = 8 receiver types, the number

of the estimable ISBs reduces from 297 to

(2 f − 1)(h − 1)
f=2= 21 per additional system

Therefore, with the cluster-based ISB-unknown model (47),
the network-derived look-up table reduces the ISB-data from

δ̃G�
r�, j , d̃G�

r�,IF, d̃G�
r�, j , for the receiversr� �= 1	 (49)

to

δ̃G�
1�, j , d̃G�

1�,IF, d̃G�
1�, j , for the receivers1� �= 1	, (50)

The user ‘u’ would just need to search the table for the
receiver types � (� = 	, . . . , �) to which his receiver
belongs.

7 Summary and concluding remarks

In this contribution we developed the ISB-affected full-rank,
undifferenced, multi-frequency model for multi-GNSS PPP-
RTK. It was shown how the estimability of network para-
meters, PPP-RTK corrections, and user parameters, changes
when ISBs are present. This is important as both network
providers and users need to be aware of the potential changes
their parameter estimability may undergo. For instance, with
the same PPP-RTK user platform, a user switching from one
provider to another may still experience significant changes
in the interpretation of his/her parameters.

We discriminated in this work between the following three
components of multi-system PPP-RTK:

1. Network-component
2. Correction-component
3. User-component

To get a proper understanding of how each of these com-
ponents can become affected by ISBs, we first treated their
ISB-free, single-system counterparts.
Single-system network, correction, and user

1. Network estimability By an application of S-system the-
ory, we presented the full-rank geometry-based network
model of observation equations. The interpretation of
the resulting estimable parameters is given in Table 1. It
shows how they depend on the original ’absolute’ para-
meters and how they change when different choices of
S-bases are made.

2. Correction-component has a fivefold functionality By
means of the estimable satellite clocks dt̃ s , satellite phase
biases, δ̃s, j , and satellite code biases, d̃s, j ( j > 2), we
were able to identify the estimability of the combined
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PPP-RTK corrections for phase and code, csφ, j and csp, j .
It was shown that their functionality is not confined to
only removing the satellite clocks and phase/code biases
from the user observation equations. Next to this primary
functionality, the phase and code corrections also estab-
lish an additional four links between network and user.
They are the (1) positional, (2) ambiguity, (3) receiver-
specific, and (4) ionosphere-specific links (cf. Table 2).
Furthermore, all of them depend on the network’s chosen
S-basis.

3. Estimability of user parameters is not unique Just like
the PPP-RTK corrections are dependent on the network’s
chosen S-basis, so are the parameters of the user. Hence,
the estimability of the user parameters is driven by the
estimability of the PPP-RTK corrections, which on its
turn is driven by the choice of the network’s S-basis.
Would the network’s S-basis change, the interpretation
of the estimable user parameters would change accord-
ingly (cf. Fig. 2). For instance, if the choice of the network
reference receiver changes from r = 1 to r = 2, the struc-
ture of receiver-specific corrections (in Table 2) changes
from IV1 to IV2. The user receiver clocks and biases
become then estimable with respect to those of r = 2
and not r = 1. Users need to be aware of such S-basis
dependency when interpreting and analysing the results
of their own parameter estimation.

Based on the single-system analysis, we extended the analy-
sis to multi-systems, thereby introducing the inter-system
biases (ISBs) in the combined system of observation equa-
tions.

When someor all of the ISBs are unknown, additional rank
deficiencies occur with their corresponding impact on the
interpretations that has to be given to the parameter solutions
of network, corrections and user.
Multi-system network, correction, and user

1. ISBs affect all three PPP-RTK components In case
of multi-GNSS, additional ISB parameters may enter
the system of observation equations. As their inclusion
introduces additional rank-deficiencies, the parameter
estimability of such multi-GNSS system will differ from
that of a single-system. This difference in parameter
estimability is not confined to the network, but gets
propagated to the user via the user-provided PPP-RTK
corrections.

2. Network estimability In our analysis of the network
estimability, we considered three different scenarios:
ISBs known, ISBs unknown and ISBs-corrected. Each
scenario has different consequences for the parameter
estimability:

(a) ISB-known: this is the simplest case and it occurs
when all receiver biases can be assumed to experience
the same delays for all systems, in which case the
ISBs are all zero. The multi-system full-rank system
of equations can then be viewed as that of a single-
system (cf. 34) with likewise parameter estimability.

(b) ISB-unknown: this is the more complex case as
the inclusion of the unknown ISBs changes the
rank-deficiencies of the model. It was shown which
additionalS-basis parameters are needed (cf. Table 5)
and how this enabled the construction of the full-rank
ISB-unknown model (cf. 29). The resulting interpre-
tation of the estimable ISBs is summarized in Table 6.

(c) ISB-corrected: this is the case for which the so-called
differential ISBs (DISPs) are assumed known (e.g.
through calibration). By expressing the estimable
ISBs in terms of the known DISPs, the system of
equations can be given the same structure and redun-
dancy as that of the ISB-known case (compare 34
with 39). Hence, the whole combined network sys-
tem of equations can then again be treated as if it was
coming from a single-system.

The user has the same number of integer-estimable ambi-
guities, whether the PPP-RTK corrections come from the
ISB-unknown or from the ISB-corrected network. This num-
ber is however, less than when the corrections would come
from the ISB-known model. To be able to compensate for
this loss in model strength at the user side, we introduced
a novel approach of providing users with the required addi-
tional information.
Multi-system network with ISB look-up table

1. The network-derived ISB look-up table Due to the
system-dependency of the ISBs, the user observation
equations will now have fewer integer parameters, since
the ‘non-integer’ phase ISBs δ̃G�

u, j (cf. 30) take the role
of the ‘integer’ estimable ambiguities of the first satel-
lite of each system � �= G, i.e. z1G1�1r, j . To compensate for
this reduction, we proposed the creation of an ISB look-
up table containing all the network estimable ISBs (cf.
Fig. 4). The user can then search the table for a network
receiver of the same type and select the corresponding
ISBs, thus effectively realizing his own ISB-corrected
user model. By applying such correction, the user thus
brings back the integers z1G1�1r, j , thereby maximizing his
number of integer-estimable ambiguities.

2. The cluster-basedmodel and ditto ISB look-up tableAs it
follows from experience that ISBs may only occur when
use is made of receivers of different types, the large num-
ber of unknown estimable ISBs in the n station network
model (29) could be reduced significantly by partitioning
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the network receivers into h clusters based on their types
(cf. Fig. 5). As a result the cluster-based full-rank model
(47) was obtained, having a significantly fewer number
of estimable ISBs since the network receivers are usually
limited to only a few different types (i.e. h ≤ n). As a
consequence, the size of the ISB look-up table reduces
accordingly, thus making the information transfer to the
user also easier.
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