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Abstract Recently, ensemble Kalman filters (EnKF) have
found increasing application for merging hydrological mod-
els with total water storage anomaly (TWSA) fields from
the Gravity Recovery And Climate Experiment (GRACE)
satellitemission. Previous studies have disregarded the effect
of spatially correlated errors of GRACE TWSA products in
their investigations.Here, for the first time,we systematically
assess the impact of the GRACE error correlation structure
on EnKF data assimilation into a hydrological model, i.e. on
estimated compartmental and total water storages and model
parameter values. Our investigations include (1) assimilating
gridded GRACE-derived TWSA into the WaterGAP Global
Hydrology Model and, simultaneously, calibrating its para-
meters; (2) introducing GRACE observations on different
spatial scales; (3) modelling observation errors as either spa-
tially white or correlated in the assimilation procedure, and
(4) replacing the standard EnKF algorithm by the square
root analysis scheme or, alternatively, the singular evolutive
interpolated Kalman filter. Results of a synthetic experiment
designed for the Mississippi River Basin indicate that the
hydrological parameters are sensitive to TWSA assimilation
if spatial resolution of the observation data is sufficiently
high. We find a significant influence of spatial error correla-
tion on the adjusted water states andmodel parameters for all
implemented filter variants, in particular for subbasins with a
large discrepancy between observed and initially simulated
TWSA and for north–south elongated sub-basins. Consid-
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ering these correlated errors, however, does not generally
improve results: while some metrics indicate that it is help-
ful to consider the full GRACE error covariance matrix, it
appears to have an adverse effect on others. We conclude
that considering the characteristics of GRACE error corre-
lation is at least as important as the selection of the spatial
discretisation of TWSA observations, while the choice of
the filter method might rather be based on the computational
simplicity and efficiency.
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1 Introduction

Since March 2002, the Gravity Recovery And Climate
Experiment (GRACE) satellite mission, which consists of
two satellites in tandem formation, has been continuously
monitoring the Earth’s time-variable gravity field. GRACE
time-variable level-2 gravity products can be converted into
total water storage anomalies (TWSA;Wahr et al. 1998; Tap-
ley et al. 2004) with temporal resolution of 1month to even
1day (Kurtenbach et al. 2009) depending on the analysis
technique and spatial resolution of down to a few hundred
kilometres (Schmidt et al. 2008). GRACE level-2 products
have been used in various environmental studies to estimate
water storage changes within the Earth system (see Kusche
et al. 2012; Famiglietti and Rodell 2013;Wouters et al. 2014,
and references therein).

Several recent studies suggested the use of GRACE data
products to improve the simulation skills of hydrological
models (e.g. Zaitchik et al. 2008; Van Dijk et al. 2014;
Eicker et al. 2014). Merging GRACE TWSA and hydrologi-
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calmodels provides a twofold opportunity. From the geodetic
point of view, model-derived TWSA simulations that are
consistent with time-variable mass estimations derived from
GRACE could be very beneficial for applications that require
the reduction of short-term gravity change, e.g. dealias-
ing of GRACE level-2 products (Zenner et al. 2014) and
computation of loading effects in geometrical techniques
(e.g. Collilieux et al. 2011; Fritsche et al. 2012). From the
hydrological point of view, adjusting model-derived water
states toGRACEobservations helps overcoming limited sim-
ulation skills of models caused by uncertainties of input
data (in particular climate forcings), model structure and
model parameters. Therefore, besides the traditional calibra-
tion of hydrological models against discharge measurements
(Gupta et al. 1998), multi-criteria calibration against river
discharge and GRACE TWSA for large river basins was
performed by adjusting sensitive model parameters (Werth
and Güntner 2010). Recently, a number of studies have
suggested assimilation of GRACE TWSA into hydrologi-
cal models (Zaitchik et al. 2008; Su et al. 2010; Forman
et al. 2012; Houborg et al. 2012; Li et al. 2012; Van Dijk
et al. 2014; Eicker et al. 2014; Tangdamrongsub et al.
2015).

Assimilating GRACE TWSA into hydrological and land
surface models is challenging because of (i) the temporal
and spatial resolutionmismatch betweenmodel-derived sim-
ulated water states and GRACE TWSA, (ii) the difficulty
in describing model errors due to forcing, model parame-
ters and model structure (e.g. Reichle and Koster 2003;
Crow and Van Loon 2006; Moradkhani et al. 2006; Liu
et al. 2012), and finally (iii) the difficulty to appropriately
describe errors of GRACE TWSA. In particular, GRACE
level-2 products, represented in terms of potential spheri-
cal harmonics, contain correlated errors, which result from
instrumental noise (K-band ranging system, Pierce et al.
2008), anisotropic spatial sampling of the mission (Schrama
et al. 2007), and temporal aliasing caused by incomplete
reduction of short-term mass variations by models (Flecht-
ner et al. 2010; Forootan et al. 2014). These errors manifest
themselves as “striping” patterns in GRACE-derived TWSA
(Kusche 2007). Although striping is reduced after applying
de-correlation filters (Swenson and Wahr 2006; Klees et al.
2008; Kusche et al. 2009), correlated errors still exist even
after spatial aggregation (Longuevergne et al. 2010; Saku-
mura et al. 2014).

The assumption of uncorrelated Gaussian distributed
errors has been usually made in previous studies for assim-
ilating (sub-)basin-averaged (Zaitchik et al. 2008; Forman
et al. 2012; Houborg et al. 2012; Li et al. 2012) or grid-
ded GRACE TWSA (Van Dijk et al. 2014; Tangdamrongsub
et al. 2015) into hydrological models. Beyond this point,
Forman and Reichle (2013) investigated the effect of spa-
tial aggregation of GRACE TWSA in a data assimilation

framework, assumingwhite noise for simulatedTWSA.They
concluded that TWSA observations should be assimilated at
the smallest spatial scale for which the observation errors
can be considered uncorrelated. For the first time, Eicker
et al. (2014) investigated the potential of assimilating grid-
ded GRACE TWSA (5◦ × 5◦ grids) with their full error
information into the WaterGAP Global Hydrology Model
(WGHM, Döll et al. 2003), exemplarily for the Mississippi
River Basin. Their study used the full covariance matrix
of level-2 products to estimate correlated errors of TWSA.
These were then considered in a calibration and data assim-
ilation (C/DA) framework, which was built based on the
standard ensemble Kalman filter (EnKF) technique (Evensen
1994).

Assimilation of GRACE TWSA into hydrological mod-
els has been usually performed with the ensemble Kalman
filter or smoother (EnKF/S, Evensen 1994; Evensen and Van
Leeuwen 2000) techniques, since these are easy to imple-
ment and well suited for representing model prediction and
update errors. Application of EnKF/S avoids the costly com-
putation of gradients of highly nonlinear model equations
or the generation of adjoint code as it is required in varia-
tional methods (Le Dimet and Talagrand 1986). However,
for practical implementation of EnKF/S, the ensemble size
is inevitably limited due to computational constraints, caus-
ing problems like ensemble inbreeding or artificial model
state correlations (see, e.g. Liu et al. 2012, and references
therein). Our first motivation for considering variants of
the filter algorithm is that the standard EnKF approach
uses an observation ensemble that introduces an additional
source of sampling errors to the algorithm (Evensen 2004).
Whitaker and Hamill (2002) showed that for small ensem-
ble sizes the sampling errors are smaller when using square
root analysis (SQRA, Evensen 2004) methods (Tippett et al.
2003 and references therein). The second motivation is to
reduce computation time in the update step. When apply-
ing the singular evolutive interpolated Kalman (SEIK) filter
(Pham et al. 1998), the analysis is performed in the ensem-
ble space instead of the observation space, unlike for the
EnKF and SQRAmethods. Therefore, especially the assimi-
lation of large numbers of observations (i.e. much larger than
the ensemble size) is usually better handled by the SEIK
filter. In addition, a range of tuning techniques exist that
seek to optimise the generation of ensembles, e.g. apply-
ing variance inflation factors (Hamill and Snyder 2002) to
avoid filter convergence. It is worth mentioning that so far
no single technique has been found that always leads to
superior assimilation results for different models and case
studies.

Building on the approach presented in Eicker et al. (2014),
in this study, the effect of spatially correlated errors in
GRACE TWSA products is investigated while assimilating
synthetic GRACE TWSA into WGHM. Our investigations
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account for a range of design options inherent in the data
analysis: (i) diagonal and full error covariance matrices of
GRACE level-2 products (as in Eicker et al. 2014) are con-
sidered to investigate the effect of spatially correlated errors
on the results of the C/DA approach. (ii) Spatial aggrega-
tion (as studied in Forman and Reichle 2013) is performed
to investigate how correlated GRACE errors affect C/DA
results when introducing observations at different spatial
scales. (iii) SQRA and SEIK techniques are implemented
to understand whether the updated water states and para-
meters react with a different degree of sensitivity to the
assumed observation errors. (iv) Finally, tuning by con-
sidering variance inflation is performed for representing
errors in model structure and avoiding ensemble conver-
gence.

To design the synthetic experiment, WGHM simulations
with two different types of forcing fields and parame-
ter sets were set up, from which one run served as the
“truth” and the other as the perturbed model version. Syn-
thetic TWSA observations were generated by adding spa-
tially correlated GRACE-like TWSA errors to the simulated
truth.

Within the C/DA analysis steps, either the full observa-
tion error covariance matrix or only its diagonal elements,
i.e. the assumption of white noise, were introduced in the
EnKF variants. The influence of the observation error covari-
ance information on the updated water states and calibration
parameters was then assessed by comparing the model out-
puts with the simulated truth. In the following, we will
show that correlated GRACE errors have a significant influ-
ence, regardless of the implemented filter approach, on water
states in the majority of sub-basins and on sensitive cal-
ibration parameters. Those sub-basins that are elongated
in north–south direction, and those with high mismatch
between modelled and observed TWSA were affected the
most.

The remaining part of the paper begins with a description
of the hydrological model WGHM and the GRACE TWSA
errors in Sect. 2. The mathematical relationship between
various EnKF variants, including their similarities and dif-
ferences are described in Sect. 3. Our experimental set up
is introduced in Sect. 4, comprising a description of the
study area (Mississippi River Basin) and a summary of the
generation of observation errors and model ensembles. Vari-
ous experiments with varying observation error assumptions
(with and without correlations) in the filter variants, includ-
ing the standard EnKF, SQRA and SEIK, and the effect
of spatial discretisation of observations are discussed in
Sect. 5. The assessments are performed for the individual
water state changes and calibration parameters, as well as of
the model-derived total water storage changes after perform-
ing calibration/data assimilation. In Sect. 6, we conclude the
paper with our main findings.

2 Model and data

2.1 WaterGAP Global Hydrology Model (WGHM)

WGHM simulates daily continental water flows and stor-
ages with a spatial resolution of 0.5◦ × 0.5◦ for the global
land area excluding Antarctica (Döll et al. 2003). Here, we
used the model version WaterGAP 2.2, which is calibrated
againstmean annual river discharge at 1319 gauging stations,
of which 84 are located in the Mississippi Basin (Müller
Schmied et al. 2014). Water storage in ten individual com-
partments (canopy, snow, soil, groundwater, local wetlands,
global wetlands, local lakes, global lakes, global reservoirs,
and rivers) is computed for each grid cell. Local lakes and
wetlands receive only local runoff, while global surfacewater
bodies including rivers receive inflow from the upstream grid
cells, too. The vertical water balance describes the transport
of water through the canopy, snow, and soil compartment,
partitioning precipitation into evapotranspiration and runoff.
Water transport as runoff from the land area is partitioned
into fast surface and subsurface runoff, which flows directly
into the surface water bodies and groundwater recharge. The
latter first flows into the groundwater and subsequently as
groundwater outflow into surface water bodies. In addition,
precipitation over surface water is added to the lake, wetland,
reservoir, and river compartments, while evaporation reduces
the storages. The river compartment is the final storage of the
grid cells. The outflow for each cell and, thus, the inflow of
the lake and wetland or river compartment of the next cell is
directed laterally on the basis of the global Drainage Direc-
tion Map DDM30. Furthermore, the impact of human water
use as simulated byWaterGAP water use submodels is taken
into account in WGHM. Net water use (water abstractions
minus return flows) is abstracted from surface water bodies
(including river) or groundwater (Döll et al. 2012).

The model can be forced by several climate input data
sets. Here, monthly time series of the number of wet days
in month, temperature and cloudiness were used from the
data set CRU TS 3.2 (Climate Research Unit’s Time Series;
Harris et al. 2013), whereas monthly precipitation input
fields were taken from the GPCC (Global Precipitation Cli-
matology Centre data, Version 6) precipitation monitoring
product (Schneider et al. 2014). In WGHM, precipitation
values are equally partitioned to the number of wet days in
a month, while the wet days were distributed using a first-
orderMarkov chain. Daily short- and long-wave radiation are
determined from the cloudiness information. Alternatively,
daily time series of precipitation, temperature, short- and
long-wave radiation from the WFDEI meteorological data
set (WATCH Forcing Data methodology applied to ERA-
Interim data; Weedon et al. 2014) were used in this study.
The impact of using these two different climate input data
sets on water flows and storage as computed by WaterGAP
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2.2 was reported in Müller Schmied et al. (2014). A detailed
decription of WGHM can be found in Döll et al. (2003) and
Müller Schmied et al. (2014).

2.2 GRACE TWSA errors

In this study, we generated synthetic GRACE TWSA values
usingWGHMsimulations (seeSect. 4.3). In order to generate
error samples of TWSA in the C/DA procedure, five meth-
ods might be used, three of them resulting in white noise
and two of them resulting in correlated errors (Fig. 1): the
assumption of white noise can be made by either (1) using
standard deviations based on literature, e.g.Wahr et al. (2006)
(used in Zaitchik et al. 2008; Su et al. 2010; Forman et al.
2012; Forman andReichle 2013), (2) propagating errors from
standard deviations of GRACE level-2 potential coefficients,
or (3) propagating errors from the full covariance matrix of
GRACE level-2 potential coefficients to standard deviations
of TWSA.Alternatively, correlated error samples can be gen-
erated from (4) error propagation of standard deviations of
potential coefficients or from (5) propagation of the full error
covariancematrix of potential coefficients to a full covariance
matrix of TWSA (as in Forootan and Kusche 2012; Eicker
et al. 2014).

In this study, we simulated “true” TWSA using our
hydrological model. GRACE-like TWSA was then gener-
ated by adding correlated noise that was derived from the
full ITG-GRACE2010 (http://www.igg.uni-bonn.de/apmg/
index.php?id=itg-grace2010) error covariance matrix of
potential coefficients (August 2003, up to degree/order 60),

which was propagated to the full error covariance matrix of
TWSA (option 5 in Fig. 1). In the filter update step, then
two assumptions on GRACE TWSA errors were consid-
ered: (i) The full ITG-GRACE2010 error covariance matrix
of TWSA, which has also been used to simulate GRACE-
like TWSA; and (ii) a diagonal error covariance matrix was
assumed that considered only the main diagonal elements
from the full error covariance matrix of TWSA in (i), which
corresponds to Option 3 in Fig. 1. The generated errors
according to (ii), therefore, can be considered as white noise.

3 Methodology

In this study, the C/DA framework based on the standard
EnKF (Evensen 1994) introduced in Eicker et al. (2014) has
been extended by the SQRA (Evensen 2004) and SEIK filters
(Pham et al. 1998). In our test case, the number of GRACE
observations assimilated into WGHM per epoch is smaller
than the ensemble size, which means that SEIK is not nec-
essarily the most efficient choice. Nevertheless, the SEIK is
included in our study, since we may as well analyse larger
river basins or more observations (e.g. river discharge, lake
level, soil moisture or snowwater equivalent) in future work.

The two-step procedure of our C/DA includes (i) the
ensemble prediction step, i.e. the forward integration of the
model for each ensemble member (that is basically inde-
pendent of the applied filter algorithm), and (ii) the update
(or analysis) step that merges model states and observations.
To perform a simultaneous calibration of model parameters,

Fig. 1 TWSA errors
description: (1) using standard
deviations based on literature;
propagating standard deviations
of potential coefficients cnm and
snm to (2) standard deviations or
(4) to correlated errors of
TWSA, and propagating
correlated errors of potential
coefficients to (3) standard
deviations or (5) correlated
errors of TWSA

Data: cnm, snm

Error information

TWSA maps

Error information

Data: TWSA maps

No error information

• Reduce static field
• Filter coefficients
• Convert to TWSA
+ Error propagation

(b) Correlated noise(a) White noise

Assumption

(a) Assume white noise
(b) Consider correlated errors

Use more and more data for error description

(1) (2) (3) (4) (5)
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state vector augmentation is introduced (as in Eicker et al.
2014). Additionally, an inflation factor for tuning the model
ensemble, and the measurement and mapping operators for
mergingmodel states and observations are considered, which
will be described in the following.

3.1 Ensemble prediction

The model forward integration is implemented by evaluating
the non-linear dynamical model equations, denoted by f (.),

xk = f (xk−1, uk, p) + qk−1. (1)

The model states xk of the current time step k depend non-
linearly on the model states xk−1 of the previous time step
(k − 1), time-dependent input forcing fields uk and constant
model parameters p, as well as on unknown model errors
qk−1. In linear approaches, the error covariance matrix of
the model is obtained from error propagation of the previ-
ous model state covariance matrix C(xk−1) to the current
time step, C(xk) = FC(xk−1)FT + Qk−1. Herein, F is
the transition matrix that relates the model states of time
step (k − 1) and k. The model error covariance matrix,
Qk−1 = E(qk−1qT

k−1), in which E(.) denotes the expec-
tation value, should be given.

In ensemble-based data assimilation, the model equations
are evaluated for each of the i = 1, . . . , Ne ensemble mem-
bers (e.g. Evensen 2007):

x(i)−
k = f (x(i)

k−1, u(i)
k , p(i)). (2)

The model states x(i)−
k of the current time step k, referred

to asmodel predictions, are denotedwith the superscript ”−“.
In this work, qk−1 is neglected, i.e. no realisations of the
model errors are generated, due to the difficulty in specifying
the matrix Qk−1 (an alternative strategy to consider these
errors is introduced in Sect. 3.4).

3.2 Filter update

3.2.1 Ensemble Kalman filter

In the EnKF, the error statistics of the model prediction are
represented by the ensemble mean xk = 1

Ne

∑Ne
i=1 x(i)−

k and
the empirical error covariance matrix (e.g. Ripley 2006)

Ce(x−
k ) = 1

Ne − 1
�X−

k (�X−
k )T (3)

determined from the ensemble spread. Here, thematrix�X−
k

stores the ensemble perturbations �x(i)−
k = x(i)−

k − xk
in its columns. We define �X−

k = X−
k W with X−

k =
(x(1)−

k , . . . , x(Ne)−
k ) and the idempotent (Ne×Ne)-projection

matrix W with elements equal to 1 − N−1
e on its diagonal

and−N−1
e as off-diagonal entries. IntroducingW in themen-

tioned way, with rank (Ne − 1), results in the formulation of
the model covariance matrix as

Ce(x−
k ) = 1

Ne − 1
X−
k W(X−

k )T . (4)

In the update (or analysis) step of the standard EnKF
(Evensen 1994), each model prediction sample x(i)−

k is

informed by a perturbed version yk +δy(i)
k of the observation

data. By introducing the perturbations δy(i)
k the observation

vector is treated as a random variable in a way to keep the
update error covariancematrixwithin the ensemble unbiased.
Burgers et al. (1998) showed that,when neglecting the pertur-
bations, the variance of the updated ensemble is too low. The
ensemble of EnKF updated states X+

k = (x(1)+
k , . . . , x(Ne)+

k )

is denoted with superscript “+” and obtained from

X+
k = X−

k + Kk((Yk + �Yk) − AX−
k ), (5)

with

Kk = Ce(x−
k )AT (ACe(x−

k )AT + �yy)
−1. (6)

Herein, Yk contains the observation vector yk in each
of its columns, while �Yk stores the realisations of the
observation perturbations δy(i)

k . The difference between the
measured (and perturbed) and the predicted observations
((Yk+�Yk)−AX−

k ) is weighted and used to correct the pre-
dicted model ensemble X−

k . In Eq. (6), A is the design matrix
that relates model states to observations. The gain matrix
Kk weights the empirical ensemble covariance matrix of the
model prediction Ce(x−

k ) and the observation error covari-
ance matrix �yy = E(δykδyTk ). From Eq. (6) it becomes
obvious that the EnKF uses the same update equation as the
Kalman filter (KF; Kalman 1960) but the ensemble repre-
sentation Ce(x−

k ) of the analytical positive definite model
prediction covariance matrix �x−x− .

The update error covariance matrix Ce(x+
k ) is given by

Ce(x+
k ) = (I − KkA)Ce(x−

k ), (7)

in which I denotes the identity matrix.

3.2.2 Square root analysis scheme for EnKF

The SQRA update (Evensen 2004, 2007) consists of two
parts: (1) the update of the ensemblemean, and (2) the update
of the ensemble perturbations. In contrast to the EnKF, the
SQRA does not perform the update for each sample individ-
ually [Eq. (5)] but separately for the ensemble mean of the
model predictions (e.g. Tippett et al. 2003)
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x+
k = x−

k + Kk(yk − Ax−
k ) (8)

and for the perturbations. Here, only the observation vector

yk is used for correcting the predicted ensemble mean x−
k .

Yet, since an ensemble of updated model states X+
k is

needed for the next model forward integration, updating the
model ensemble perturbations is required. In this paper, the
simple and straightforward version of the SQRA introduced
by Evensen (2004) was implemented. As we will show in
the following derivation, generating perturbations [the �Yk

in Eq. (5)] of the observations (as in the standard EnKF) is
not required, mitigating another source of sampling errors
(see also Whitaker and Hamill 2002).

Similarly as in Eq. (3), we now introduce the ensemble
version of the error covariance matrix of the model update

as Ce(x+
k ) = �X+

k (�X+
k )T

Ne−1 . Then, the ensemble versions of

Ce(x−
k ) [defined in Eq. (3)] andCe(x+

k ) are inserted in Eq. (7)
to compute �X+

k depending on the ensemble perturbations
of the predictions

�X+
k (�X+

k )T

= �X−
k (I − (�X−

k )T AT (A�X−
k (�X−

k )T AT

+ (Ne − 1)�yy)
−1A�X−

k )(�X−
k )T . (9)

Eigenvalue decomposition is applied to (A�X−
k (�X−

k )T

AT + �yy)
−1 = Z�−1ZT , and Eq. (9) is then reorganised

to

�X+
k (�X+

k )T

=�X−
k (I−(�− 1

2 ZT A�X−
k )T

︸ ︷︷ ︸
DT

(�− 1
2 ZT A�X−

k︸ ︷︷ ︸
D

))(�X−
k )T .

(10)

The singular value decomposition of D = U�VT is
inserted into Eq. (10)

�X+
k (�X+

k )T = �X−
k (I − (U�VT )T (U�VT ))(�X−

k )T

= �X−
k V(I − �T�)VT (�X−

k )T (11)

Using the square root of the diagonal matrix (I − �T�),
Eq. (11) becomes

�X+
k (�X+

k )T =(�X−
k V

√
I−�T�)(�X−

k V
√

I−�T�)T .

(12)

Equation (12) represents a symmetric expression that can
be used to generate normally distributed perturbation vec-
tors with zero mean and covariance matrix Ce(x+

k ). Finally,
the updated ensemble perturbations are added to the updated
ensemble mean

X+
k = X+

k + �X−
k V

√
I − �T�

︸ ︷︷ ︸
�X+

k

�T (13)

In Eq. (13), �T represents a random orthonormal matrix,
which contains the right-hand side eigenvectors of a matrix
that holds uniformly distributed random numbers. By multi-
plying�X+

k with�T , realisations of ensemble perturbations
are generated from the update error covariance matrix
Ce(x+

k ) by Monte Carlo sampling (e.g. Kusche 2003). A
detailed derivation of the algorithm and a comparison to the
standard EnKF can be found in Evensen (2004, 2007).

3.2.3 Singular evolutive interpolated Kalman filter

In the SEIK filter (Pham et al. 1998), the ensemble repre-
sentation of the model prediction error covariance matrix is
given in form of

Ce
SEIK(x−

k ) = Le
kGeLeT

k , (14)

where the matrix Le
k = X−

k T is of dimension m × (Ne − 1),
m is the number of entries in the model prediction vectors
x(i)−
k , and Ne is the ensemble size. Here, T is a full rank
matrix with zero column sums, which consists of the first
(Ne − 1) columns of the matrix W in Eq. (4): W = [T|t]
with t representing the last column of W. Ge = 1

Ne
(TT T)−1

is normalised by the ensemble size Ne. Using Eq. (14), the
model prediction errors are represented in the space that is
spanned by the columns of Le

k .
As for the EnKF, the formulation of the SEIK filter update

can be derived from the KF equations. Here, however,we
replace the model prediction error covariance matrix in Eq.
(6) by the ensemble representation defined in Eq. (14)

K = Le
kGeLeT

k AT (ALe
kGeLeT

k AT + �yy)
−1. (15)

By applying the matrix identity QW(Z + VQW)−1 =
(Q−1 + WZ

−1V)−1WZ−1 (Koch 1997, p. 37, Eq. (134.7))
for invertible matrices Q and Z and arbitrary matrices V and
W to Eq. (15), the formulation of the gain matrix becomes

Kk = Le
k [(Ge)−1 + LeT

k AT�−1
yy ALe

k]−1

︸ ︷︷ ︸
Ne×Ne

LeT
k AT�−1

yy . (16)

This is the SEIK ensemble formulation implemented in our
study. Here, the observation error covariance matrix �yy

is transformed to the ensemble space by applying ALe
k to

�−1
yy . It becomes obvious that the size of the matrix to be

inverted depends on the model ensemble size Ne. The update
is performed in the ensemble space, and if the number of
observations is much larger than the ensemble size, the appli-
cation of SEIK is efficient. We would like to stress that the
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formulation of the Kalman gain matrix based on the EnKF
ensemble representation Ce(x−

k ) in Eq. (3) and on the SEIK
ensemble representation Ce

SEIK(x−
k ) in Eq. (14) of the model

prediction error covariance matrix is only identical during
the first update (identical model configuration and initial
state estimate and covariance matrix implied). However, the
EnKF and SEIK updated model state vectors differ from
each other, since the EnKF relies on an observation ensem-
ble but the SEIK considers an update of the ensemble mean
of the model prediction vector similar to the SQRA method.
Therefore, the sequence of updates will numerically differ in
both approaches. However, in the limit Ne → ∞ , assuming
ergodicity, the two ensemble representations fall back to the
conventional Kalman filter and thus would lead to identical
data assimilation results. By defining

Uk = ((Ge)−1 + (ALe
k)

T�−1
yy ALe

k)
−1 (17)

and ak = Uk(ALe
k)

T�−1
yy (yk−Ax−

k ), and inserting these and
Eq. (16) into Eq. (8), the formulation of the model update is
finally converted to the common notation of the SEIK filter

x+
k = x−

k + Le
kak . (18)

Basically, one projects the errors of the updated states onto
the space spanned by the columns of Le

k , which results in the
formulation of the model update covariance matrix Ce(x+

k )

as

Ce(x+
k ) = Le

kUkLeT
k . (19)

A detailed derivation of Eq. (19) can be found in Pham et al.
(1998).

Finally, the update of the ensemble perturbations is
performed. To this end, the minimum second-order exact
sampling is used (Pham et al. 1998, Appendix, pp. 17–21).
Ensemble perturbations are generated from the eigenvalue-
decomposed error covariance matrix of the filter update. The
ensemble mean and the ensemble covariance matrix need to
match exactly the updated ensemblemeanx+

k and the updated
error covariance matrix C(x+

k )

1

Ne

Ne∑

i=1

x(i)
k = xk ≡ x+

k , (20)

L0CT
0 �T

0 �0C0LT
0 = S0 ≡ C(x+

k ). (21)

This is realised by determining a low (Ne − 1)-rank
approximation of the covariance matrix, using the lead-
ing eigenvalues and eigenvectors (or dominant orthogonal
modes) of the ensemble update error covariance matrix
Ce(x+

k ) , whose eigenvectors and eigenvalues are stored inL0

and U0 = CT
0 C0, respectively. In Eq. (21), �0 is an ortho-

normal matrix. Its columns are orthogonal to a vector that
contains only ones. This matrix can, for example, be deter-
mined by Householder transformation (Hoteit et al. 2002,
Appendix, pp. 125–126). The update ensemble X+

k is deter-
mined by adding the generated perturbations to the updated

ensemble mean, which is stored in each column of X+
k :

X+
k = X+

k + √
NeL0CT

0 �T
0 . (22)

A comparison of the standard EnKF and SEIK filter can
also be found e.g. in Nerger (2003).

3.3 Parameter estimation

In hydrological modeling it is common to calibrate basin-
wide empirical model parameters that are usually assumed to
be temporally constant. Some of these parameters describe
physio-geographic characteristics, e.g. average lake depth,
while other parameters appear as conceptual such as the
groundwater outflowcoefficient inWGHM(Döll et al. 2003).
In data assimilation, the model ensemble prediction vector is
augmented by model parameters for a simultaneous calibra-
tion in the EnKF analysis step. Therefore, in our approach,
the prediction vector x−

k is composed of two parts

x−
k =

(
v−
k

w−
k

)

, (23)

in which v−
k contains the model state values and w−

k com-
prises the model calibration parameters. The latter cannot
be observed, and they are, therefore, updated via the cross-
correlations of model states and parameters. In contrast to
model calibration as common in hydrology, the parameters
are updated as soon as observations become available and,
therefore, their values change over time. Schumacher et al.
(2015), for instance, showed how GRACE observations con-
tribute in calibrating WGHM parameters. This is effective
whenever large correlations exist between model states and
parameters.

3.4 Tuning techniques: inflation

Estimation of the emprical model covariance matrix Ce(x−
k )

might be too optimistic when neglecting errors in the model
structure [qk−1 in Eq. (1)]. In the absence of reliable infor-
mation about these errors, alternative strategies to enlarge
the ensemble spread have been developed: Hamill and Sny-
der (2002) introduced the so-called inflation factor. Here, the
ensemble perturbations are multiplied by a constant inflation
factor mc
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X
′−
k = mc(X

−
k − X−

k ) + X−
k , (24)

prior to the introduction of the predicted model states into
the standard EnKF or SQRA. As a result, X

′−
k appears as

the predicted ensemble with increased perturbations. The
factor helps avoiding fast ensemble convergence due to
the reduction of the variances with each filter update, i.e.
it preserves the ensemble spread. In the SEIK filter, the
inverse matrix G−1 in Eq. (17) is replaced by 1

mc
G−1,

where 1
mc

is denoted as forgetting factor in Pham et al.
(1998).

3.5 Measurement and mapping operator

To merge WGHM outputs with GRACE TWSA, the design
matrix is split according to A = BH, which includes a verti-
cal aggregationoperatorH and ahorizontalmappingoperator
B (Fig. 2). The vertical sum of all modelled storage compart-
ments is determined for each grid cell by incorporating H.
Due to the coarser spatial resolution of GRACE data, TWSA
are spatially averaged through B. Thus, the design matrix
A in Eqs. (5–7) (EnKF), Eq. (8) (SQRA), and Eqs. (16–18)

(SEIK) is replaced by the product of the measurement H and
the mapping operator B (see also Eicker et al. 2014).

4 Twin experiment set-up

A synthetic experiment was designed to study the impact of
GRACEerror correlations on theC/DA resultswhenmerging
water state outputs and parameters of WGHM with GRACE
TWSA. Our twin experiment started with the definition of
“true” hydrological water states. These serve as the basis to
assess the C/DA results. In addition, GRACE-like errors, to
be added toTWSAobservations,were generated as described
in Sect. 4.3. An imperfect representation of the truth was
realised by replacing the forcing, parameters and initial water
states in themodel simulation. Errors of themodel simulation
were represented by an ensemble of Ne randomly perturbed
precipitation and temperature input fields, calibration para-
meters and initial water states. Open loop (OL) simulations
were performed without integrating GRACE TWSA obser-
vations and compared to model simulation after the C/DA
process. An overview of the twin experiment set-up is given
in Fig. 3. The details of the procedure are described in this
section.

Fig. 2 Operators that allow for
combination of the
model-derived storage
compartments and GRACE
TWSA. a Observations of a
vertical sum: the measurement
operator H adds the vertical
layers, i.e. the compartmental
water storage values, together to
compute TWSA.
b Horizontally aggregated
measurements: mapping
operator B determines spatial
averages (e.g. TWSA)

1
2

3
4

5

0

5

10

15

20

1
2

3
4

5

0

5

10

15

20

0 5 10
0

2

4

6

8

10

0 5 10
0

2

4

6

8

10
X

(a)

(b)

H

B

123



Impact of GRACE error correlation on data assimilation in hydrology 545

True States Perturbed States

Forcing: WFDEI
Parameters: ensemble means
in 12/2005 (Eicker et al., 2014)
Initial states: predefined true states
(9 years model initialization:
1995-2003)

Ne samples of
- Forcing: CRU TS 3.2, GPCC
- Parameters: standard
(Müller Schmied et al., 2014)

- Initial states: 7 years model
initialization (1995-2001),
2 years spin-up with forcing and
parameter ensembles (2002-2003)

OL C/DA

WGHM WGHMWGHM

Ne x

WGHMWGHM

Ne x

01/2004-
12/2006

Current
month

01/2004-
12/2006

EnKF / SEIK /
SQRA Update

Ensemble of TWS,
individual compartments

Ensemble of TWS,
individual compartments

„True“ estimates of TWS,
individual compartments

Error estimation
from ensemble

Remove
temporal mean

Add correlated
GRACE-like errors

Add temporal
mean of OL

Synthetic TWS
observations

Spatial averages to
(i)  4 subbasins
(ii) 11 subbasins
(iii) 16 grid cells

Error estimation
of observations
(w) White noise

(c) Correlated noise

Comparison

Fig. 3 Twin experiment set-up: definition of true and perturbed model
states (first row). Model prediction in open loop (OL) mode (second
column), i.e. without integrating GRACE data, and in calibration and
data assimilation (C/DA) mode (third column). Generation of synthetic

GRACE-like observations (last row).OLand all C/DAvariants are com-
pared to the true states. The performance of C/DA variants is analysed
compared to the OL performance, and compared to each other

4.1 Study area

The Mississippi River Basin is located in the eastern part
of the United States of America. It covers large parts of the
High Plains aquifer (HPA), where groundwater is abstracted
for irrigation purposes resulting in groundwater depletion
(e.g. Rodell et al. 2007; Strassberg et al. 2009; Döll et al.
2012, 2014). In order to study the impact of different spatial
discretisation of TWSA observations from GRACE on the
C/DA results, the entire basin of the size of 2.9 × 106 km2

was divided into (i) four sub-basins (similar to Zaitchik et al.
2008), (ii) 11 sub-basins and (iii) sixteen 5 ◦× 5◦ grid cells
(similar to Eicker et al. 2014), with areas varying between
50,000 and 1.17 × 106 km2 (for details see Fig. 4; Table 1).

4.2 Synthetic true and perturbed model states

For defining “true” hydrological states, WGHM was driven
by daily time series from the WFDEI meteorological data

set (Fig. 3). The applied model parameters were calibrated
values derived from the first C/DA of the Mississippi Basin
by Eicker et al. (2014), i.e. the ensemble means in December
2005. Since model parameters and climate input data are the
major sources of uncertainties in hydrological modelling, the
perturbedmodel, intowhichwewill assimilateGRACEdata,
used the monthly time series from CRU TS 3.2 and GPCC as
climate forcing fields and the model parameters reported in
Döll et al. (2003),Kaspar (2004) andHunger andDöll (2008).
Both model versions were initialised over a period of nine
years (1995–2003). The annual amplitudes of the perturbed
model water storage in snow, soil, river and groundwater
were larger than the true water storages as can be seen in
Fig. 5 for our three-year study period (2004–2006).

4.3 Synthetic TWSA observations

The generation of synthetic GRACE-like TWSA observa-
tions involved three steps: (1) 0.5 ◦× 0.5◦ gridded monthly
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Fig. 4 Sub-basins within the
Mississippi River Basin. The
four sub-basin definition is
chosen similar to Zaitchik et al.
(2008) and is shown with
different colors. Eleven
sub-basins are shown with the
thick grey polygons and
numbered for identification in
the results section (Sect. 5). The
grid definition is chosen similar
to Eicker et al. (2014) and is
shown using the thin black lines.
Names and areas of the basins
can be found in Table 1. The
orange dots indicate the extent
of the High Plains aquifer
(HPA)

-115 -110 -105 -100 -95 -90 -85 -80 -75
30

32

34

36

38

40

42

44

46

48

50

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

5

11

9 2

3

8
1

7

6
10

4

Table 1 Subbasins defined
within the Mississippi River
Basin. Area, standard deviation
of TWSA observations (Std),
and signal-to-noise-ratio (SNR,
i.e. ratio of annual amplitude
and error standard deviation) are
reported for each subbasin of
Fig. 4. Standard deviations are
estimated after full error
propagation of GRACE level-2
products while considering the
square root of the main diagonal
elements of the full error
covariance matrix of August
2003. Numbers and colours for
identification are given
according to Fig. 4

Basin Area (106 km2) Std (mm) SNR

4 subbasins

1—Missouri (blue) 1.17 9 2.4

2—Ohio Tennesse/Metropolis (green) 0.53 14 2.0

3—Red Arkansas/Lower Mississippi (purple) 0.57 9 3.6

4—Upper Mississippi (red) 0.66 17 1.2

11 subbasins

1—Arkansas Little Rock 0.41 12 1.2

2—Kansas River Desoto 0.16 18 0.8

3—Mississippi Grafton 0.45 18 1.2

4—Mississippi Vicksburg 0.16 24 3.1

5—Missouri Culbertson 0.24 16 1.4

6—Missouri Hermann 0.16 25 0.6

7—Missouri Sioux City 0.37 17 1.3

8—Ohio Metropolis 0.53 14 2.0

9—Platte River Louisville 0.22 14 1.8

10—Thebel 0.05 27 1.3

11—Missouri Yellowstone 0.18 22 1.1

5 ◦× 5◦ grid (16 observations) 0.11–0.23 22–25 0.5–2.2

means of TWS outputs of the true model were reduced by
their temporal mean over the C/DA period from 2004 to
2006. These values were then spatially averaged to 4 and 11
sub-basin means, and sixteen 5 ◦× 5◦ grid cells, where the
boundaries were taken from Fig. 4. (2) Spatially correlated
errors of TWSA were generated by error propagation of the
full ITG-GRACE2010 error covariancematrix (see Sect. 2.2)
in August 2003. In this study, we assumed a time-constant
observation error covariance matrix. The generated corre-
lated errors were added to the TWSA time series derived
in step 1 (Fig. 6). In the EnKF update, either the analyti-
cal TWSA error covariance matrix was used or a diagonal
error covariance matrix considering the main diagonal ele-

ments from the analytical TWSA error covariancematrix. (3)
For merging TWSA from the perturbed model states (from
Sect. 4.2) and the synthetic observations (derived in step 1
and 2), they need to have the same temporal mean. There-
fore, the temporal means of the OL simulations (described in
Sect. 4.4.1) were added to the synthetic TWSA. As a result,
corresponding to the number of sub-basins, the observation
vector yk in Eqs. (5), (8) and (18) included four, 11 or 16 sub-
basin/grid cell averaged TWSA values. Standard deviations
of the generated observations (Fig. 7 shows 11 sub-basin
means, black dots) and the signal-to-noise ratios (SNR) are
reported in Table 1. In Fig. 6 the correlations ρ between the
GRACE TWSA errors are shown for (a) four, (b) 11 or (c) 16
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Fig. 5 Monthly time series of simulated true and perturbed total water storage (TWS) and individual water storages, averaged over the whole
Mississippi Basin, in millimeter of equivalent water heights (ewh)
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Fig. 6 Correlations between the GRACETWSA errors after aggregat-
ing to a four and b 11 sub-basins, as well as c 16 grid cells. Numbers
for identification are given according to Table 1 and Fig. 4. Here, the

full error covariance matrix of the potential coefficients from the ITG-
GRACE2010 solution of Bonn University in August 2003 was used for
error propagation and generating correlated TWSA errors

observations. In case (a)modest correlations between TWSA
errors in almost all sub-basins exist, reaching −0.5 between
errors in sub-basin 1 and 4. When using 11 observations
|ρ| > 0.25 in half of the cases. The highest correlation of

almost 0.9 appears between the errors in sub-basin 4 and 10.
In case (c) positive correlations >0.5 exist between errors of
TWSA in sub-basins that are located in north–south direc-
tion to each other, i.e. in grid cells located in one column of
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Fig. 7 Monthly TWSA time series of the ensemble mean of open loop (OL) simulations, true model and GRACE-like observations, spatially
averaged over the 11 sub-basins of the Mississippi Basin

the grid in Fig. 4 (e.g. grid cells 10, 11 and 12). Errors of
TWSA between grid cells located in neighbouring columns
of the grid in Fig. 4 are mostly negatively correlated (up to
−0.4) or have small positive correlations (<0.25). The sub-
basin/grid cell size influences the number of grid cells with
error correlations, as well as the magnitude of correlations,
which increases with increasing spatial resolution.

4.4 EnKF design

4.4.1 Ensemble of model states

An ensemble size of 30 samples was defined as a trade-off
between computational costs, storage capacity and repre-
sentative error statistics, and in accordance with previous
GRACE data assimilation studies in hydrology [from five
ensemble members in Van Dijk et al. (2014) to 25 in Su
et al. (2010) and 30 in Eicker et al. (2014)]. To generate the
initial model ensemble, 20 calibration parameters were sam-
pled using the Latin-Hypercube method (Iman 2008), with
a priori probability density functions as listed in Table 2.
To account for uncertainties in climate forcing, precipita-

tion and temperature fields were perturbed using random
Monte Carlo sampling from triangular probability density
functions. An additive error model was assumed for temper-
ature, centered at 0 ◦C with the maximum limits of ±2 ◦C,
and a multiplicative error model was introduced for precipi-
tation, centred at 1.0 with the maximum limits of 0.7 and 1.3.
In fact we found that using an ensemble of perturbed precip-
itation grids did not result in a multiplicative (area-average)
bias in monthly fields. This justifies that this spatial precipi-
tation error model may be considered as independent of the
error model implicitly realised through perturbing the area-
average WGHM precipitation multiplier defined in Table 2
(otherwise, our ensemble-based representation of the area-
average precipitation uncertainty would be misspecified too
low). For generating an ensemble of initial water states, the
model initialisation phase was shortened to seven years and a
spin-up phase of two years (2002–2003) was performed with
the parameter and climate input ensembles. Thewater storage
outputs for canopy, snow, soil, local and global wetland, local
and global lake, reservoir, river and groundwater were intro-
duced as inital values at the beginning of the C/DA phase.
It is worth mentioning that for implementing the SEIK filter
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Table 2 WGHM parameters
that are calibrated within the
ensemble filter variants with
identification number (IN), true
value according to Eicker et al.
(2014), as well as value that is
used in WaterGAP version 2.2
(mode) and limits (Döll et al.
2003; Kaspar 2004; Hunger and
Döll 2008) used for ensemble
generation. To generate
ensembles of the parameters,
either triangular or uniform
distributions were assumed,
indicated by � and ◦ in the first
column, respectively. Units of
parameters are given in the
second column

IN Calibration parameter True Mode Limits

1� Root depth multiplier 0.68 1 [0.5 2.0]

2� River roughness coefficient multiplier 0.49 1 [0.5 2.0]

3� Surface water outflow coefficient (day−1) 0.09 0.01 [0.001 0.1]

4� Net radiation multiplier 0.52 1 [0.5 2.0]

5� Priestley–Taylor coefficient (humid) 1.03 1.26 [0.885 1.65]

6� Priestley–Taylor coefficient (arid) 2.06 1.74 [1.365 2.115]

7� Max. daily potential evapotranspiration 7.31 15 [7.25 22.5]

(mm/day)

8� Max. canopy water height per leaf area 0.81 0.3 [0.1 1.4]

(mm)

9� Specific leaf area multiplier 0.69 1 [0.5 2.0]

10� Snow freeze temperature (◦C) −0.51 0 [−1.0 3.0]

11� Snow melt temperature (◦C) −0.30 0 [−3.75 3.75]

12� Degree day factor multiplier 1.88 1 [0.5 2.0]

13� Temperature gradient (◦C/m) 0.01 0.006 [0.004 0.01]

14� Groundwater factor multiplier 0.47 1 [0.5 2.0]

15� Max. groundwater recharge multiplier 1.04 1 [0.5 2.0]

16◦ Critical precipitation for groundwater 20.05 10 [2.5 20.0]

Recharge (mm/day)

17� Groundwater outflow coefficient (day−1) 0.007 0.006 [0.006 0.018]

18� Net abstraction surfacewater multiplier 0.49 1 [0.5 2.0]

19� Net abstraction groundwater multplier 0.99 1 [0.5 2.0]

20� Precipitation multplier 0.80 1 [0.8 1.2]

the minimum second-order exact sampling is widely used to
generate intial water states. However, to focus on the effect
of spatially correlated observation error information on the
C/DA results, here the initial states were kept identical for
all implemented filter variants.

OL simulations, i.e. model runs without introducing
TWSA observations, were performed for 2004 to 2006 for
each of the initial model ensemble members. The ensemble
mean of the OL is shown in Fig. 7 (grey curves), and this
was used for comparison with the C/DA simulations, where
syntheticGRACE-like TWSAobservationswere assimilated
(black dots). The OL simulations resulted in large annual
amplitudes of TWS in sub-basin 3, 4, 8 and 10, which espe-
cially in sub-basin 8 overestimated the “observed” annual
amplitude. Sub-basins located in the HPA (1, 2, and 9) exhib-
ited negative trends in TWS, caused by the negative trend in
groundwater storage. The amplitude of annual TWS changes
was found similar to the observations for these sub-basins,
as well as for the sub-basins 5, 6, 7 and 11. However, in sub-
basin 6, the OL TWS changes overestimate the true TWS
changes.

The model prediction vector [see Eq. (2)] in this study is
composed of the model outputs of monthly means of water
states in the ten individualwater compartments for each of the

1262 grid cells in the Mississippi Basin and the 20 WGHM
calibration parameters

x(i)−
k =

⎛

⎜
⎜
⎜
⎝

storage compartments in cell 1(i)

...

storage compartments in cell 1262(i)

WGHM calibration parameters(i)

⎞

⎟
⎟
⎟
⎠

. (25)

This resulted in 1262 × 10 + 20 entries of x(i)−
k , with 10

being the number of the storage compartments, for each of
the i = 1, . . . , 30 = Ne model ensemble members that were
merged with the synthetic TWSA observations.

4.4.2 EnKF variants

For our investigations, a range of design options were
defined: (i) diagonal or full GRACEobservation error covari-
ance matrices, (ii) spatial aggregation of the observations to
four, 11 or 16 sub-basin/grid cell averages and (iii) EnKF,
SQRA or SEIK as filter algorithm. Additionally, an infla-
tion factor of 10% was used for representing errors in model
structure to mitigate ensemble convergence. This factor was
chosen as small as possible as to avoid a strong influence on
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Table 3 Calibration and data assimilation (C/DA) variants used in this
study. For each case, 30 samples and an inflation factor of 10% were
used

Filter method Discretisation Variant name

White noise Correlated noise

EnKF 4 subbasins 4 w 4 c

EnKF 11 subbasins 11 w 11 c

EnKF 16 grid cells 16 w 16 c

SQRA 11 subbasins Sq w Sq c

SEIK 11 subbasins Se w Se c

the model ensemble, and large enough to ensure that a con-
tribution of the GRACE observations to the model update
is guaranteed over the entire study period. For each of the
EnKF variants the full error covariance matrix of the model
was considered.Anoverviewof the variants used in this study
is given in Table 3.

4.5 Validation of results

To validate our results, we determined the ensemble mean
estimates ofmonthlywater storage values for each0.5◦×0.5◦
grid cell and aggregated them to 11 sub-basin means (see
Figs. 4, 7). Water storage changes in local and global lake,
local and global wetland, as well as global reservoir were
accumulated and defined as surface water storage changes.
River storage was evaluated separately. Several metrics were
determined for assessing TWSAand anomalies ofwater stor-
age in snow, soil, surface water, river and groundwater of
the OL model run, and the C/DA variants for each of the
sub-basins in comparison to the simulated truth (Fig. 5):
(1) root mean square error (RMSE); (2) correlation between
residual curves after subtracting a linear trend, as well as
annual and semi-annual cycles; (3) ratio of the annual ampli-
tudes reduced by 1 (i.e. zero represents equal amplitudes);
(4) introduced or removed water mass (sum of filter update
increments over the C/DA period); and (5) absolute value
of water mass change in the model (sum of absolute values
of filter update increments over the C/DA period). The met-
rics (1)–(3) show the agreement of the C/DA results with the
truth, while metrics (4) and (5) describe the degree of vio-
lation of mass conservation due to assimilated TWSA. The
first three months were defined as run-in period of the filter
and, therefore, the metrics were determined with respect to
the period from April 2004 to December 2006.

5 Results and discussion

This section starts with quantifying the impact of implement-
ing only the diagonal (white noise) or the full observation

error covariance matrix (correlated errors) in the filter update
step on the C/DA results using the standard EnKF approach;
in other words, we investigate whether the GRACE spatial
error correlations may be neglected. This is then compared
with the results after application of the SQRA and the SEIK
algorithms. The section is concluded with a discussion of the
calibrated parameters.

5.1 Does the observation error model influence
the C/DA results?

First, the results for sub-basin 8 (the largest of the 11 sub-
basins, see Fig. 4) are presented, for which the modelled
(OL) annual amplitude of TWSA overestimates the true
one. Correlations between GRACE TWSA errors of up to
−0.5 exist when assimilating four sub-basin-averaged obser-
vations, almost 0.9 in case of 11 sub-basin averages, and
exceeds 0.9 in case of gridded observations (Fig. 6). The five
metrics (RMSE, correlation between residual curves, ratio
of amplitudes, mass change and absolute mass change) are
shown in the columns in Fig. 8 with respect to the synthetic
truth. Metrics associated with TWSA are shown along the
top row, while the following rows correspond to the individ-
ual water compartment changes (snow, soil, surface water,
river and groundwater). Each individual subplot contains the
results fromOL (shown in grey) andC/DA indicating the dis-
cretisation level of assimilated TWSA observations. White
bars correspond to white observation noise introduced in
the EnKF update step (additionally indicated by “w”), while
black bars indicate results from considering correlated obser-
vation errors (indicated by “c”). For clarity, we repeat here
that the synthetic GRACE observations have been simulated
by adding correlated noise in all cases. All assimilated vari-
ants outperform OL regarding the ratio of amplitude for all
compartments. Regarding RMSE and correlation, this is not
the case for the surface water and groundwater compartment.
In addition, correlation in soil is not generally higher thanOL.
While integrating GRACE data into the model guarantees
an improved simulation of TWSA, this is not true for indi-
vidual compartments. Insufficiently resolved or numerically
introduced correlations between the individual storages, as
reflected in the error covariance matrix of the model (that
is rank deficient and shows large condition numbers), might
result in a deterioration of individualwater compartment esti-
mates.

We focus on the first three columns on the top row in Fig. 8
and on just the assimilation of TWSA observations aggre-
gated to 16 grid cells, while considering correlated errors
(the right-most bars labelled with 16 c). The introduction of
TWSA into WGHM considerably reduced the RMSE (from
about 62 to 20 mm) and the ratio of amplitudes (from 3.5 to
1.5). It also improved the correlation of the residuals (from
0.6 to 0.9). These improvements were also achieved for the
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Fig. 8 Metrics for area mean of sub-basin 8 (see Fig. 4) for open loop
run (OL) and calibration and data assimilation variants (names can be
found in Table 3). Please note that the ratio of amplitudes is reduced by

one, so that zero represents equal amplitudes. Some bars are truncated
to fit the shown range. For these, the metric value is displayed at the top
(or bottom) of the bar

individual water compartments snow, soil, surface water and
river. For groundwater storage, only correlation and the ratio
of amplitudes were improved. The biggest part of the added
water mass affected the storage of soil and groundwater, as
well as the snow storage during winter, which resulted in
higher values for the mass changes (right columns in Fig. 8).
Altogether, TWSA water mass was reduced resulting in a
smaller annual amplitude that fitted considerably better to
the annual amplitude of the synthetic TWSA observations
(see Fig. 7).

When considering the sameTWSAobservations but intro-
ducing a diagonal observation error covariance matrix to the
EnKF (case 16 w in Fig. 8), the RMSE of TWSA was even
improved to 15 mm, mostly due to the smaller RMSE in
soil and groundwater changes (13 and 10 mm, respectively).
However, the correlation of soil and groundwater changes
decreased compared to the OL and was found 0.3 lower
compared to case 16 c. Note that in contrast to RMSE, the
computation of correlations was based on the residual curves

after subtracting the linear trend, annual and semi-annual
cycles. Water mass was added to the model over the com-
plete C/DA phase (mass change of TWSA on top row in
Fig. 8).

These results indicate that the chosen observation error
model had a considerable impact on the C/DA results for
TWSA and several individual water storages. Some metrics
indicate that it is helpful to consider the full GRACE error
covariance matrix (e.g. RMSE of surface water and river and
correlation of soil and groundwater), while it has an adverse
impact on others (e.g. RMSE of TWSA, soil and groundwa-
ter and correlation of TWSA). In summary, this experiment
does not allow to unambiguously decidewhether considering
observation error correlations improves the C/DA results or
not. We note that, in case of the white noise assumption, the
GRACE data have a higher weight and, therefore, the model
update should be pulled closer towards GRACE TWSA than
with the correlated noise model; yet this does not always
mean that our metrics improve.
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5.2 Do the correlated GRACE errors affect C/DA when
assimilating observations of different spatial scales?

To be consistent with the previous section, again, we per-
formed the analyses for sub-basin 8. When introducing
synthetic TWSA thatwere aggregated to 11 sub-basinmeans,
case 11 w and 16 w yielded similar values for RMSE, cor-
relation of residual curves and the ratio of annual amplitude
for TWSA and the individual water compartments (first to
third column in Fig. 8). The same holds for case 11 c and
16 c. Only the correlation of soil changes was considerably
reduced to 0.1 in case 11 c. These results indicate that the
change of the spatial discretisation from 16 grid cells to 11
sub-basins has a smaller impact on C/DA results compared
to the switch from a diagonal (white noise) to a full obser-
vation error covariance matrix (correlated errors) in the filter
update step (compare e.g. 11 w and c in Fig. 8).

When assimilating synthetic TWSA aggregated to four
sub-basins (see Fig. 4) the effect of changing the diagonal
to a full observation error covariance matrix in the EnKF
on RMSE, correlation and the ratio of amplitudes is less
than the effect of changing the spatial discretisation of the
introduced TWSA (case 4 w and c in first to third column
in Fig. 8). For both cases 4 w and c the RMSE is reduced
for TWSA and all individual compartments (except ground-
water) compared to the open loop simulation. However, the
residual correlation for soil is negative, while the correlation
for TWSA and the individual compartments (again except
groundwater) increases. It seems that interannual changes of
the soil storage are rather harmed for the EnKF variants 4w
and 4c by introducing monthly means of GRACE TWSA,
while the annual cycle is captured quite well (reflected in the
RMSE and ratio of amplitudes). The amount of water that is
introduced to the model in case 4 w and c depends clearly
on the choice of the observation error model (fifth column
in Fig. 8): the amount of absolute mass change in case 4 c is
about 100 mm higher for the soil storage but about 100 mm
smaller for the groundwater compartment.

These comparisons indicated that the observation error
model affected C/DA on the three selected spatial scales. The
effect of changing the observation error model was found to
be large, when assimilating TWSA with a fine spatial dis-
cretisation, for which the correlations at least for several
observation errors appeared high. In this case the impact was
seen at least as big as the impact of the chosen spatial dis-
cretisation of observations on the C/DA results (compare e.g.
RMSE for soil in case 16 w and c, where the error model
changed, and in case 11 c and 16 c, where the discretisation
changed, in Fig. 8). One might conclude that in cases of high
observation error correlations, the choice of the observation
error model has at least the same importance as the choice
of the spatial discretisation of observations. In summary, we
cannot provide a final answer whether, and under what cir-

cumstances, implementing observation error correlation in
data assimilation—i.e. applying a model of spatial error cor-
relation in the analysis step—will lead to improved results
in a general sense. For GRACE assimilation, the problem is
further intricate since the spatial scales of error correlation
(several 100 km along-track) are similar to the scales of phys-
ical correlation of land surface and groundwater variables.
From an estimation-theoretical point of view, accounting
for correlated errors is considered helpful since it aims at
decreasing the variance of the estimator. This is, on repeat-
ing the same assimilation experiment with many realisations
of data errors, the estimate will be closer to reality in the
mean. On the other hand, it is easy to show that disregarding
observation correlations does not cause the estimate to be
biased. Moreover, disregarding correlations in data assim-
ilation means that the data get a higher weight compared
to model forecasts. As a result, any evaluation metrics that
(implicitly) assumes the data as true will appear favourable
in this case. It is thus difficult to directly compare experi-
ments with and without (or with partly) implementing error
correlations. Moreover, for the original GRACE data, unlike
for many remote sensing observations, it is not possible to
define a “natural” grid resolution. It thus is tempting to simply
work with the grid resolution applied in hydrological mod-
elling and rely to error correlations, but this may easily lead
to numerical stability problems in the gain matrix. In fact,
an ensemble of limited size results in a model error covari-
ance matrix that is rank-defect. Therefore, a non-singular
error covariance matrix of the observations is required to
enable a numerically stable solution of the ensemble Kalman
filter update equation. As a result, not (or only partly) imple-
menting error correlations may lead to a stabilising effect.
In summary, we believe that assessing the effect of error
correlations must be studied on a case-base, through sim-
ulations as realistic as possible. We are aware, of course,
that this may limit the general applicability of our results
somewhat.

5.3 Are the findings transferable to other regions?

We analysed the results of case 11 w and c of Sect. 5.2 for
the different regionswithin theMississippi Basin. Here, three
representative sub-basins were chosen based on their loca-
tion, shape and area, as well as observation error correlation,
annual amplitude and signal-to-noise ratio (SNR) of obser-
vations: (i) the smallest of the 11 sub-basins (sub-basin 10)
with large annual amplitude, (ii) one sub-basin located in the
HPA (sub-basin 9) with east–west expansion and an overall
good agreement between modelled and observed TWSA and
(iii) the sub-basin with the lowest SNR (sub-basin 6) and
north–south spatial expansion. These sub-basins also repre-
sent fairly good, average and poor performances of the C/DA
results.High correlations to sub-basins in the north and south,
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i.e. located in one column of the grid in Fig. 4, for each of
the presented sub-basins were found (Fig. 6). In addition, we
present the metrics averaged for the entireMississippi Basin.
The results are shown in Fig. 9. Here, each individual sub-
plot contains the results for the Mississippi Basin as a whole,
as well as sub-basin 8, 9, 6 and 10, ordered by decreasing
areas. The OL results are shown by grey horizontal lines,
while the white and black bars refer to the assumed white
noise and correlated observation errors in the EnKF, respec-
tively.

Regarding TWSA (top row in Fig. 9), sub-basin 6 and 8
showed noticeable differences in RMSE when considering
white noise or correlated errors (9 and 12 mm, respectively)
and sub-basin 6 in the ratio of amplitudes (0.6 and 1, respec-
tively). However, less differences of metrics for TWSAwere
visible for sub-basin 9 and 10, as well as for the average over
the entire Mississippi Basin. In case of the assumption of
white observation noise in the EnKF water was subtracted
from the model (up to −90 mm in case 10 w), while water

was introduced to the model (up to 30 mm in case 6 c) when
assessing correlated errors.

Only a small volume of water was introduced into the sub-
basin 9 (fifth column in Fig. 9: absolute water mass change
less than 100 mm), which was less than 50% of the absolute
water mass change in sub-basin 6, and only about 25% of
sub-basin 8. Therefore, the effect of C/DA itself appeared
smaller in sub-basin 9 compared to the other sub-basins and
the sensitivity to the observation error model in the EnKF
was rather small.

Sub-basins 6 and 10 appeared quite sensitive to the chosen
observation error model in the EnKF for the soil compart-
ment, which was found in all metrics and for which the white
noise showed better agreementswith the simulated truth (first
and second column in Fig. 9: 6 mmRMSE instead of 11 mm,
correlation of 0.7–0.9 instead of 0.2–0.5 in case of correlated
errors). However, the amplitude of snow and groundwater
was clearly improved when considering correlated errors in
the EnKF update (third column in Fig. 9: ratio of amplitudes
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Fig. 9 Metrics for area mean of the entire Mississippi Basin (Mw and
Mc), as well as sub-basin 8, 9, 6 and 10 (see Fig. 4), sorted by decreasing
area, for open loop run (grey horizontal lines) and calibration and data
assimilation variants. Please note that the ratio of amplitudes is reduced

by one, so that zero represents equal amplitudes. Some of the RMSE
values of the open loop run exceed the shown range. These values are
displayed at the grey horizontal lines
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of snow for case 10 c is 2 instead of 3, and ratio of amplitudes
of groundwater is 1 instead of 2). Also, the average for the
entire Mississippi Basin showed differences in the metrics
for the soil compartment (for which the white noise showed
again better agreements with the simulated truth). The met-
rics of the other individual water compartments appeared less
sensitive.

In summary, sub-basins for which the EnKF update incre-
ments were high (due to high discrepancy between modelled
and observed TWSA and small standard deviation of the
observation), and sub-basins that are elongated in north–
south direction were predominantly affected by the chosen
observation error model in the EnKF.

5.4 Do the filter algorithms show a different sensitivity
with respect to correlated GRACE errors?

The experiment of Sect. 5.1 was repeated here, this time for
11 sub-basin observations and considering the SQRA and
SEIK methods. The results for TWSA for the sub-basin 8
are shown in Fig. 10, where the plots for SQRA (labelled
by Sq) and SEIK (labelled by Se) are compared with those
of the standard EnKF. Grey bars show the results of OL,
while the others are assigned to the specified observation
error model in the filter variant, i.e. assumption of white
noise (white bars) or consideration of correlated errors (black
bars).

Results of C/DA were found to be significantly improved
after application of both SQRA and SEIK when compared to
the OL simulation. The RMSEwas reduced up to 11mm, the
ratio of amplitude up to 1.0 and the correlations of the residual
curves increased up to 0.9 in case of the SEIK filter, when
considering correlated errors (case Se c). The water mass
that was introduced into the model was similar for all cases
(about 350 mm in absolute terms, except Sq w), while the
net introduced water mass differed more strongly depending
on which observation error covariance matrix was applied
in the update, compared to the effect of the filter variants
(see Fig. 10, fourth and fifth columns). The application of
the SQRA and SEIK algorithms had only a small influence

on the RMSE with respect to the standard EnKF when con-
sidering white noise in the update step (less than 2 mm).
In case of SQRA the correlation was even degraded by 0.1,
while the consideration of correlated errors in the SEIK fil-
ter update improved RMSE by 6 mm and the correlation
by 0.1.

The EnKF showed the biggest differences between the
assumption of white noise or the consideration of corre-
lated errors in the filter, especially in terms of RMSE (5 mm
less in case of white noise) and correlation (0.1 larger in
case of white noise). This might be due to the fact that the
EnKF relies on an ensemble of observation perturbations.
The results for TWSA for both cases (w and c) were quite
similar when applying SQRA and SEIK, whereas the indi-
vidual water compartments were affected by the correlated
errors, especially that of the soil compartment (not shown
here).

The investigations indicate that correlated GRACE errors
affected the results of all filter variants. In our test case
the SEIK filter, which provides the best numerical effi-
ciency among the analysed algorithms, was found to perform
slightly better than the standard EnKF and SQRA methods,
especially in terms of RMSE.

5.5 Does the choice of the filter variant affect linear
trend estimation?

We examined linear trend estimations from the EnKF vari-
ants and compared them to the linear trend of OL simulation,
the synthetic GRACE observations and the synthetic truth.
We analysed the trends in TWSA averaged over the 11 sub-
basins (Table 4), as well as trends in total and individual
storages averaged over the entireMississippi Basin (Table 5).
Clearly, a linear trend estimated over 3 years has to be con-
sidered with caution, especially in real data analysis, since it
cannot be considered as a long-term trend. However, in our
synthetic experiment, linear trend estimation addresses the
question as to how far data assimilation may alter the trends
that are present in either the open loop simulation or in the
GRACE data. When comparing the trend estimations from
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Fig. 10 Metrics of TWSA for area mean of sub-basins 8 (see Fig. 4)
for open loop run (OL, grey bars) and calibration and data assimilation
variants when applying the standard EnKF (11 w and c), the SQRA (Sq
w and c) or the SEIK approach (Sew and c). Designations of the variants

can also be found in Table 3. Please note that the ratio of amplitudes
is reduced by one so that zero represents equal amplitudes. The RMSE
value of the OL run exceeds the shown range. The value is displayed at
the top of the bar
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Table 4 Linear trend estimation
in mm/year for TWSA in the 11
sub-basins S of the Mississippi
Basin for open loop (OL) model
simulation, the synthetic truth
(T), synthetic GRACE
observations (y) and the
ensemble filter variants. Names
of sub-basins can be found in
Table 1 and names of the
ensemble filter variants in
Table 3

S OL T y 4 w 4 c 11 w 11 c 16 w 16 c Sq w Sq c Se w Se c

1 −49 −34 −33 −28 −35 −38 −34 −33 −34 −38 −34 −36 −35

2 −46 −29 −30 −28 −28 −31 −32 −23 −32 −26 −31 −29 −33

3 −17 −7 −5 −2 −7 −8 −3 −9 −11 −9 −8 −9 −5

4 −85 −54 −51 −70 −55 −54 −50 −66 −46 −58 −51 −56 −54

5 5 9 11 11 11 13 12 13 15 16 15 14 15

6 −36 −17 −21 −9 −7 −16 −10 −14 −22 −18 −16 −17 −16

7 −13 6 5 −10 −3 1 −1 3 0 0 2 2 0

8 −55 −18 −21 −19 −17 −20 −25 −20 −26 −18 −21 −21 −24

9 −21 −10 −9 −10 −9 −9 −11 −5 −9 −9 −9 −10 −11

10 −31 −13 −6 −10 −5 −7 −9 −10 −24 −10 −10 −9 −10

11 −1 0 −3 8 0 3 0 0 −1 4 4 2 2

Table 5 Linear trend estimation in mm/year for total and individual
water storage changes averaged over the entire Mississippi Basin for
open loop (OL) model simulation, the synthetic truth (T), synthetic

GRACE observations (y) and the ensemble filter variants. Names of the
ensemble filter variants can be found in Table 3

Storage OL T y 4 w 4 c 11 w 11 c 16 w 16 c Sq w Sq c Se w Se c

TWSA −32 −11 −14 −14 −14 −15 −15 −14 −16 −15 −14 −15 −15

Snow −7 −3 − −5 −5 −6 −5 −5 −6 −6 −5 −6 −6

Soil −7 −3 − 7 8 −2 1 −1 4 −9 −10 −6 −8

Surface water 0 0 − 0 −1 0 0 0 0 0 0 0 0

River −3 0 − −6 −1 −2 −2 −2 −2 −5 −2 −2 −3

Groundwater −12 −4 − −10 −14 −5 −10 −6 −10 3 1 −3 −2

the EnKF variants with the OL simulation, differences of 15
mm/year on average up to 40 mm/year exist (in sub-basins
4 and 8). A comparison of the estimated trends from EnKF
variants with GRACE observations showed differences of
5 mm/year on average up to 20 mm/year (in sub-basins 4
and 10), while a good agreement was achieved in sub-basins
8 and 9. Hence, the linear trends of the EnKF variants are
mostly closer to the trend estimated from GRACE compared
to the linear trends of the OL simulation. Furthermore, a
comparison with the synthetic truth shows that in nine of
the 11 sub-basins the estimated trend from all ensemble fil-
ter variants are closer to the truth than the trend of the OL.
Only in sub-basins 5 and 11 the OL simulation represents
the true trend better than most of the ensemble filter variants.
Both sub-basins are located in the north-west of the Missis-
sippi Basin and show rather small trends compared to the
other sub-basins. We averaged the TWSA from the EnKF
variants over the entire Mississippi Basin and estimated the
linear trend. Differences of about 20 mm/year were found
in comparison to the trend from OL. In contrast, the trends
agreed quite well with the trend from the synthetic observa-
tions and the synthetic truth, i.e. the differences were smaller
than 5 mm/year. Therefore, we conclude that GRACE C/DA
affects the estimation of linear trends positively in our par-

ticular experiments. Additionally, we determined the linear
trends for compartmental water storages averaged over the
entire Mississippi Basin. The individual compartments show
differences of 5 mm/year on average up to 20 mm/year
in the soil and groundwater storages compared to the OL
simulation. A comparison to the synthetic truth shows that
surface water is not affected by GRACE data assimilation,
which results from the fact that OL and synthetic truth do
not show any trend. Also, only a small influence on the lin-
ear trend in snow and river is visible for all filter variants,
which seems to be justified, since both storages experience
only small negative trends (or no trend in case of the syn-
thetic truth of the river storage). In contrast, linear trends in
soil water and groundwater are clearly affected by GRACE
assimilation. In case of the filter variants 11 w and c, as
well as Se w and c, introduction of GRACE TWSA pulls the
trends (mostly) closer to the true trend. For the other vari-
ants, GRACE assimilation might also have the effect that the
sign of trend changes, e.g. in case 4 w and c for soil, and
in case Sq w and c for groundwater. The trends in soil and
groundwater seem to compensate each other. Therefore, we
assume that the vertical disaggregation between soil water
and groundwater might be more difficult compared to the
other individual compartments.
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Table 6 Metric A: the percentage of parameters that are sensitive to the assimilation of TWSA. Metric B: the percentage of sensitive parameters
that were also found in Schumacher et al. (2015). Names of the EnKF variants can be found in Table 3

Metric 4 w 4 c 11 w 11 c 16 w 16 c Sq w Sq c Se w Se c

A 0 0 15 35 30 55 35 40 20 40

B – – 0 60 60 80 40 60 60 100

5.6 Does the choice of the observation error model affect
parameter calibration?

First, we identified those parameters that were sensitive to
TWSA assimilation. Parameters whose standard deviation
(i.e. ensemble spread) σwas reduced to less than 25% of
their initial value after 18 months (50 % of update steps)
were defined as sensitive. Results are reported in Table 6
(Metric A). First, we analysed the results when applying
the standard EnKF (cases 4, 11 and 16). When using a
coarse observation discretisation (case 4 w and c), TWSA
assimilation did not affect the parameter estimation. With
increasingly finer discretisation of TWSA observations, the
influence of assimilation was increased, i.e. the number of
sensitive parameters increased from 15 % (in case 11 w) to
55 % (in case 16 c). We believe this is likely due to the fact
that water states were constrained more when using more
detailed observation information in space. Therefore, para-
meters were constrained more via their cross-correlations to
the water states. The number of sensitive parameters was
found to be higher in the cases with correlated TWSA errors
(cases indicated by c) compared to the cases when assuming
white noise for TWSA (cases indicated by w).

The application of the SQRAand SEIKfilter increased the
number of sensitive parameters up to 40 % (case Sq c and
Se c). Here as well, the number of sensitive parameters was
found to be larger in case of assuming correlated observation
errors (see Metric A in last four columns in Table 6).

Additionally, those parameters that were found as sensi-
tive to TWSA assimilation in this studywere compared to the
five sensitive parameters thatwere found in Schumacher et al.
(2015), in which Spearman’s rank correlation coefficient was
used (Table 6, Metric B, and Table 7). Our results indicated
that 40–100% of the sensitive parameters in Schumacher
et al. (2015) were also found as sensitive in the simulations
performed here. The root depth multiplier (parameter 1) was
found to be sensitive in all filter variants (except 16 w, see
Table 7), but was not identified as sensitive in Schumacher
et al. (2015).

We cannot claim that parameter values are individually
improved (closer to “true” values) after C/DA since different
parameter combinations may result in a similar optimal sim-
ulation of water storages. In summary, our results indicated
that with increasingly finer discretisation of observations,

Table 7 Parameters that are sensitive to TWSA assimilation, and sen-
sitive parameters found in Schumacher et al. (2015) for comparison.
Names of ensemble filter variants can be found in Table 3. Parameter
names according to identification numbers (IN) are given in Table 2

Filter variant Sensitive parameters (IN)

4(w) –

4(c) –

11(w) 1, 3, 8

11(c) 1, 2, 3, 4, 6, 17, 20

16(w) 3, 6, 11, 17, 19, 20

16(c) 1, 2, 3, 4, 5, 6, 10, 15, 19, 20

SQ(w) 1, 4, 8, 16, 17, 18, 20

SQ(c) 1, 2, 3, 4, 13, 15, 17, 20

SE(w) 1, 4, 11, 20

SE(c) 1, 2, 4, 11, 12, 17, 19, 20

Schumacher et al. (2015) 2, 4, 11, 19, 20

or when implementing error correlations in the filter, the
number of parameters that can be calibrated by GRACE
increases.

6 Conclusions

We discuss a flexible calibration and data assimilation
(C/DA) framework that allows for the integration of grid-
ded and basin averaged GRACE TWSA observations into
WGHM while simultaneously estimating calibration para-
meters. We extended the framework based on the standard
EnKF while considering computationally efficient variants
such as the SQRA and SEIK algorithms. In addition, an infla-
tion factor was introduced to account for model errors. After
implementing the modifications, a synthetic twin experiment
was conducted to investigate the effect of GRACE TWSA
error correlations on the C/DA results. In addition to the true
and open loop (OL) simulations, a total of ten C/DA vari-
ants were implemented including the options of (i) diagonal
or full GRACE observation error covariance matrices in the
filter update step, (ii) spatial aggregation of the observations
to four, 11 or 16 sub-basin/grid cell averages and (iii) EnKF,
SQRA or SEIK as filter algorithm. We summarise our main
findings as follows:
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1. Consideration of GRACE error correlation affects anom-
alies of total and compartmental water storages deter-
mined by C/DA that is based on TWSA observations.
The impact increases with increasing error correlations
and thus higher spatial resolution of TWSA observa-
tions. It is particularly high in basins that are elongated in
north–south direction and in basins in which TWSA sim-
ulated without C/DA is very different from the observed
TWSA.

2. Considering these correlated observation errors does not
generally improve the results. Some metrics indicate that
it is helpful to consider the full GRACE error covariance
matrix, while it appears to have an adverse influence on
others.

3. The C/DA results of the EnKF algorithm are more sensi-
tive to the chosen observation errormodel than the results
of the SQRA and SEIK algorithms.

4. C/DA leads to adjustment of themodel parameters only in
case of sufficient spatial resolution of theTWSAobserva-
tions. The number of sensitive parameters increases with
increasing spatial resolution of the TWSA observations
and if GRACE error correlation is taken into account.

Based on these findings, we conclude that the observation
error model is at least as important as the choice of discreti-
sation of observations. We recommend to consider GRACE
error correlations, since they characterise the error structure
of GRACE products; even so there appears no general rule
as to whether applying spatial error correlations in the data
assimilation update step will lead to improved results. We
found also promising resultswhen applying alternativemeth-
ods. We could show that by considering, e.g. the SEIK filter
and correlated GRACE errors in the update step, the RMSE
and correlation coefficients of TWSA were improved by 6
mm and 0.1, respectively, with respect to the EnKF (see case
11 c and Se c in Fig. 10). This is likely caused by avoid-
ing sampling errors, since no observation ensemble has to
be generated, and applying the minimum second-order exact
sampling for generating updated ensemble perturbations in
the filter update. Therefore, we will investigate the effect of
alternative methods on C/DA results in more detail in our
future work.

This studywas built on a synthetic experiment that enabled
us to validate the OL and C/DA results with predefined true
hydrological states. In parallel activities, our framework was
transferred to real GRACE data application (Eicker et al.
2014). In the future, an extensive validation with various
independent data sets (e.g. river discharge, groundwater,
lake level, soil water equivalent) will be carried out. In
addition, extending the application of the proposed C/DA
framework to other river basins with other climatic and
anthropogenic characteristics will be considered in future
studies.
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