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Abstract Satellite altimeter sea surface height observa-
tions include the geocentric displacements caused by the pole
tide, namely the response of the solid Earth and oceans to
polar motion. Most users of these data remove these effects
using a model that was developed more than 20 years ago.
We describe two improvements to the pole tide model for
satellite altimeter measurements. Firstly, we recommend an
approach that improves the model for the response of the
oceans by including the effects of self-gravitation, loading,
and mass conservation. Our recommended approach also
specifically includes the previously ignored displacement of
the solid Earth due to the load of the ocean response, and
includes the effects of geocenter motion. Altogether, this
improvement amplifies the modeled geocentric pole tide by
15%, or up to 2 mm of sea surface height displacement.
We validate this improvement using two decades of satel-
lite altimeter measurements. Secondly, we recommend that
the altimetry pole tide model exclude geocentric sea sur-
face displacements resulting from the long-term drift in polar
motion. The response to this particular component of polar
motion requires a more rigorous approach than is used by
conventional models. We show that erroneously including
the response to this component of polar motion in the pole
tide model impacts interpretation of regional sea level rise
by £0.25 mm/year.
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1 Introduction

Polar motion, or variations in the geocentric location of the
pole of the Earth’s instantaneous rotation axis, introduces a
differential centrifugal force that causes displacements of the
solid Earth and oceans. These displacements are commonly
referred to as the pole tide (Munk and Macdonald 1960),
because they can be treated in much the same way as the
luni-solar tides. The centrifugal potential has similar spatial
form to the diurnal luni-solar tidal potential and is temporally
dominated by periodic variations in polar motion, primarily
at the Chandler wobble and seasonal periods of ~14 and
12 months with amplitudes of approximately 0.05-0.25 and
0.12 arcsec, respectively (e.g., Wahr 1985; Desai 2002). The
pole tide displacements can be determined by applying tidal
Love numbers to the differential centrifugal potential, with
that potential derived from polar motion observations. The
displacements of the solid Earth, the body pole tide, have
amplitudes of up to 10 mm (Wahr 1985), depending on loca-
tion and the time-varying amplitude of the Chandler wobble.
Meanwhile, the displacements of the ocean surface with
respect to the ocean bottom, the ocean pole tide, have simi-
lar amplitude (Desai 2002). In turn, the loading mass of the
ocean pole tide causes displacements of the Earth’s crust, the
load pole tide, that are an order of magnitude smaller. Satellite
radar altimeters observe geocentric sea surface height (SSH)
and therefore contain the sum total of the body, ocean, and
load pole tides with amplitudes of up to 20 mm.

In this paper, we evaluate the errors in the pole tide model
that is currently adopted by most, if not all, users of satellite
altimeter SSH measurements and identify possible improve-
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ments to that model. Of the various geophysical models that
are typically applied as corrections to these measurements,
and made available on the official altimeter geophysical data
records (GDRs), those for the pole tide (Wahr 1985) and the
luni-solar body tide (Cartwright and Taylor 1971; Cartwright
and Edden 1973; Wahr 1981) have not been revised since
the launch of the TOPEX/Poseidon (T/P) mission more than
two decades ago. Hereinafter, we refer to these versions as
the T/P models. A discussion of differences between the T/P
luni-solar body tide model versus that recommended by the
International Earth Rotation Service (Petit and Luzum 2010)
is provided by Ray (2013, appendix). However, errors in the
luni-solar tide models are not relevant to the pole tide due
to the different spectral content in each. Most users of the
satellite altimeter SSH data use these two models exactly as
provided on the respective GDRs. They were selected when
the pre-launch SSH error budget for T/P was 13.7 cm (RMS)
(Fu et al. 1994), and the nominal mission lifetime was 3
years with a possible extension to 6 years. Over two decades
of satellite altimeter SSH data are now continuously avail-
able from the T/P (Fu et al. 1994), Jason-1 (Ménard et al.
2003), and OSTM/Jason-2 (Lambin et al. 2010) missions,
and in-flight performance reflects 1-Hz SSH measurement
accuracies of 3—4 cm (RMS). The duration of this unique
SSH time series is expected to grow with successor mis-
sions already scheduled for launch (e.g., Jason-3) or planned.
Perhaps the most demanding applications of this time series
are for observations of regional and global mean sea level
(GMSL) rise, where 95 % confidence intervals on the latter
are reported to be 0.8 mm/year (e.g., Beckley et al. 2010;
Leuliette and Willis 2011; Masters et al. 2012). A reevalua-
tion of the pole tide model for satellite radar altimeter SSH
measurements and observations thereof is therefore overdue
despite its small amplitude and long periods.

Given that accurate polar motion observations are avail-
able to define the associated centrifugal potential, then the
body pole tide can be modeled quite accurately as a mostly
elastic response of the solid Earth to that potential (Wahr
1985). Knowledge of the appropriate body Love number that
reflects the response of the Earth is needed (e.g., Petit and
Luzum 2010). Similarly, the load pole tide is also easily mod-
eled as an elastic response of the Earth’s crust to the loading
mass of the ocean pole tide, using load Love numbers or
associated Green’s functions (e.g., Farrell 1972; Guo et al.
2004). Modeling the ocean pole tide may be more complex
due to the inherent dynamics of the ocean basins, and as a
result directly impacts the ability to model the load pole tide.
Ideally, an ocean pole tide model would be determined either
empirically from the satellite altimeter SSH data or through
the application of hydrodynamic equations of motion per-
haps constrained by those data. To the best of our knowledge,
there have been no attempts as yet to model the ocean pole
tide using hydrodynamic equations of motion constrained by
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altimeter data. Using an empirical approach with the first 9
years of T/P SSH measurements, Desai (2002) resolved the
long wavelength global component of the ocean pole tide
but found that observations of the short wavelength ocean
pole tide were likely contaminated by oceanographic vari-
ability. Furthermore, the long wavelength component was
found to be consistent with a so-called self-consistent equi-
librium response (Agnew and Farrell 1978). This response
defines ocean displacements as following the surface of the
forcing potential, and also only requires knowledge of the
centrifugal potential, the body and load Love numbers. At
the other extreme, Carton and Wahr (1986) solved Laplace’s
tidal equations without constraints from altimeter data and
concluded that departures from equilibrium are likely to be
negligible at the Chandler wobble period.

Here, we use a self-consistent equilibrium model for the
ocean pole tide, given that a reliable hydrodynamic model
is currently not available and because there is no strong
evidence of significant departures from equilibrium. The
fundamental argument for self-consistent equilibrium mod-
els of ocean tides is based upon the understanding that
ocean bottom friction increasingly damps currents at periods
longer than a few weeks (Agnew and Farrell 1978). Recent
results from Ray and Erofeeva (2014) provide strong support-
ing evidence through their application of hydrodynamics to
the primary long-period luni-solar tidal components. Their
observation of decreasing deviations from a self-consistent
equilibrium response with increasing period is relevant to the
pole tide, even though the spatial forms of the forcing poten-
tial for the long-period luni-solar and pole tides are different.
The former is represented by a degree 2 zonal spherical har-
monic and the latter a degree 2 order 1 spherical harmonic.
Of particular relevance is their result that predicts departures
from the self-consistent equilibrium response on the order
of less than 1% at the annual period. The pole tide periods
are primarily one year and longer, so a self-consistent equi-
librium model is justified. In the past, significant departures
from equilibrium have been reported for the North and Baltic
Seas (e.g., Haubrich and Munk 1959; Wunsch 1974), but have
since been attributed to meteorological forcing rather than the
pole tide potential (e.g., Ekman and Stigebrandt 1990; Trupin
and Wahr 1990; Tsimplis et al. 1994; Xie and Dickman 1996;
O’Connor et al. 2000).

Our approach individually accounts for the body, ocean,
and load pole tides, with the load pole tide accommodating
geocenter variations that arise from the redistribution of mass
from the ocean pole tide. The T/P model also accounts for
the body pole tide, but ignores the load pole tide and geocen-
ter variations. We recommend the self-consistent equilibrium
approach for the ocean pole tide, updated from Desai (2002)
as described in this paper, to properly account for the effects
of self-gravitation, loading, and conservation of mass, all of
which are ignored in the T/P model. Given that an additional
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10 years of altimeter SSH data are now available since the
study by Desai (2002), we also revisit the global empirical
observations of the pole tide and use them to demonstrate that
accounting for these various effects provides better agree-
ment with the altimeter observations than when they are
ignored. Following similar recommendations by Wahr et al.
(2015) for time variable gravity applications, we also recom-
mend that the pole tide model for altimetry products exclude
the response due to the long-term drift in polar motion. We
similarly do so by computing the altimetry pole tide model
using only the deviations from a linear representation of polar
motion whose rates have been determined from almost 80
years of observations by Argus and Gross (2004). In prac-
tice, this means that we recommend modeling the mean pole
location with a bias and rate, whereas the T/P model uses
only a bias. The T/P model is effectively misrepresenting
the effects of long-term drift in polar motion on observed
geocentric sea surface height, and we evaluate the impact
of this error on observations of regional and GMSL. While
there are multiple sources for the observed long-term drift
in polar motion (see Gross 2007), glacial isostatic adjust-
ment (GIA) is considered to be the most important. Users
interested in the geocentric sea surface displacements asso-
ciated with rotational feedback from GIA might then correct
for these more complex effects using dedicated GIA models
(e.g., A etal. 2012; Tamisiea 2011), which are not addressed
in this paper.

2 Pole tide contributions to satellite altimetry
observations

In this paper, we only consider the radial component of the
body and load pole tides since the satellite altimeter mea-
surements are not sensitive to the transverse components. We
represent the body, ocean, and load pole tides by ¢g, o, and
{1, respectively. In addition, we define the load pole tide to
be with respect to the center of mass of the total Earth system
(CM), as is appropriate for satellite altimeter SSH measure-
ments (e.g., Desai and Ray 2014). As already mentioned,
the satellite altimeter observations, ¢,, yield the sum total of
these three contributions. All are functions of colatitude 6,
east longitude A, and time .

Ca @, A, 1) =¢B O, A, 1)+ 60O, A, 1)+ (0,2, 8) (1)
¢ (6, %, 1) = HpRe [m* (t) ha Pay (cos e)e“] )
0 (0. A, 1) = HpRe [m* (1) Z (0, V)] 3)
(L (0, h, 1) = HpRe [m™* (1) ZL (6, 1)]

= HpRe |:m* ) D My Zy (O, ,\)} 4)

n=1

Equations (2)—(4) summarize each contribution using the
notation from Desai (2002). The pole tide displacement scal-
ing factor Hp [Desai 2002, equation (12)] arises from the
centrifugal potential and has a value of 138.5 mm/arcsec
when the rotation pole location, m (¢), is given in arcsec-
onds. The angular location of the rotation pole is m (t) =
my (t)+imy (t), with m and m, positive towards the Green-
wich and 90 degree east meridians, respectively. We use
Re[f] and f* to denote the real part and complex conju-
gate of the complex function f, respectively, and define the
normalized degree 2 and order 1 Legendre polynomial by
Py (cos8) = —(15/327)'/?sin260. The ocean pole tide
admittance, Z (6, A), has degree n spherical harmonic com-
ponents Z, (6, 1), and Zg, (0, X) is the associated load pole
tide admittance.

If the ocean pole tide is assumed to have a self-consistent
equilibrium response, the corresponding admittance function
to be used in Egs. (3) and (4) takes the following form (Desai
2002).

Z5(0, 1) = O @6, 1) [le (cos ) e

o0
+ > vaanZy (0,1) + K} )
n=0

This equation is solved iteratively and convergence to within
0.1 % is achieved after four iterations (e.g., Agnew and Far-
rell 1978; Desai 2002; Ray and Erofeeva 2014). The degree
2 radial and potential Love numbers are A, and kj, respec-
tively, and form the combination y» = (1 4k — h»). The
corresponding degree n load Love numbers are A, k;,, and
vy = (1L +kj, — h),). When modeling the pole tide we use
Love numbers from the most recent IERS recommendations
(Petit and Luzum 2010), k» = 0.3077 + i0.0036 and hy =
0.6207, where the imaginary component reflects the anelastic
response of the solid Earth. The constant, K, is included to
force conservation of mass on the self-consistent equilibrium
ocean tide. Using pg and pw to represent the mean densi-
ties of the solid Earth and oceans, 5.518 and 1.035 g/cm3,
respectively, then o, = (3/ (2n + 1)) (pw/pEe) (Munk and
Macdonald 1960). The ocean function, O (8, A), explicitly
accommodates for continental boundaries, and has a value
of 1 over the oceans and 0 over land.

When assuming a self-consistent equilibrium ocean
response the sum total of the body, ocean, and load pole
tides observed by altimeters over the oceans is then as shown
in Eq. (6) [which corrects a printing error in equation (22)
from Desai (2002)].

Ca (0,1, 1) = HpRe [m* (t) Zy (6, 1)]
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Za(0,0) =00, [(1 + ka) Poy (cos 0) e'*

+rn Y (1+k) ez, (9,k)+K] (6)
n=0

This representation shows that the total geocentric pole tide
admittance under the assumption of a self-consistent equi-
librium ocean response is predominantly dependent on kj
relative to hy. The dependence on 4, only arises from the
second order term of Eq. (6) (through y») that accounts for
loading effects. We take advantage of this (in Sect. 4) to use
the altimeter data to estimate k> while holding % fixed to the
IERS recommended value. The T/P model effectively also
adopts an equilibrium approach for the ocean pole tide, but it
ignores the last two terms of Egs. (5) and (6) that account for
self-gravitation, loading, and mass conservation. In effect, it
also ignores the load pole tide, ¢1.. In doing so, the admit-
tance of the T/P pole tide model is only dependent on the
potential Love number for over-ocean measurements, and a
value k, = 0.302 is currently adopted. We note that Eq. (6) is
not valid over land and inland water, where the total pole tide
consists of only the sum total of the body and load pole tides,
with mass conservation effectively eliminating any displace-
ments of inland water relative to the Earth’s crust when the
spatial extent of that body of water is small.

We have made a few modifications to the self-consistent
equilibrium ocean pole tide model from Desai (2002). Load
Love numbers from Guo et al. (2004) are used instead of those
from Farrell (1972). Those from the former are derived from
the more realistic Preliminary Reference Earth Model, while
the latter are from the older Gutenberg—Bullen-A model.
Whereas Desai (2002) used the DTM2000.1 terrain map of
J. Saleh and N. Pavlis (personal communication) to derive
an ocean function, ours is derived from the 2-min resolution
TPXO8 ocean tide model (update to Egbert and Erofeeva
2002). We also improve upon the spatial resolution of the
self-consistent equilibrium model, from 0.5 to 0.1 degrees
in latitude and longitude, making it more suitable for appli-
cation to the altimeter measurements. The 2-min resolution
ocean function is averaged to the 0.1-degree resolution of the
ocean pole tide model. Unlike Desai (2002), a Green’s func-
tion approach to solving Eq. (5), following Agnew and Farrell
(1978), is used instead of a spherical harmonic approach.
With the Green’s function approach the second term in Eq.
(5) is replaced as follows:

o
> vaenZy 0.3
n=0

2 T
= pwa’ / / Z5(0',1) G(y)sin0'do’dr’  (Ta)
0 0
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G (W)= 2= D nPa(cos ). (7b)

n=0

The Green’s function, G (), is computed using unnormal-
ized Legendre polynomials, P, (cos ¥), that are functions of
the angular separation, ¥, between the locations of the load-
ing mass at (9’ A ) and the response at (0, A). The mean radius
and mass of the Earth are represented by a and M, respec-
tively. Altogether, this means that iteration for a solution of
the self-consistent equilibrium ocean pole tide in Eq. (5) is
effectively using a spherical harmonic summation to degree
1800, instead of 360. We have verified the expected result that
the Green’s function and spherical harmonic approaches to
solving Eq. (5) give very similar results when using the max-
imum spherical harmonic degree associated with the model’s
spatial resolution. Of these various changes, the impact on
the self-consistent equilibrium ocean tide is typically <0.1
mm/arcsec at latitudes north of —62°S. The most signifi-
cant differences are due to the modified ocean function and
therefore occur at coastal boundaries, especially near Antarc-
tica where they reach 0.5 mm/arcsec. These modifications
amplify the primary degree 2 order 1 spherical harmonic
long wavelength component of the self-consistent equilib-
rium ocean pole tide by 0.4 %, changing the coefficient as;
defined by equation (19) of Desai (2002) from 0.8439 to
0.8469. This change provides some measure of the error due
to uncertainties in the load Love numbers and ocean function.

Here, we determine the load pole tide in a different ref-
erence frame compared to Desai (2002), computing it with
respect to the CM, instead of the center of mass of the solid
Earth (CE). This choice is based upon results from Desai
and Ray (2014) who provide evidence to support that satel-
lite altimeter SSH measurements of tidal effects are with
respect to the CM. This modification is easily applied by
using an effective degree-1 radial load Love number for
the CM frame, namely 7| — 1 = —1.286 in Eq. (4) (e.g.,
Blewitt 2003), where /) is the CE-based value that is typ-
ically published (e.g., Farrell 1972; Guo et al. 2004). The
self-consistent equilibrium ocean pole tide [Eq. (5)] is inde-
pendent of the choice of reference frame since it effectively
represents ocean displacements with respect to the solid Earth
crust. Here, we also use the Green’s function approach for
computing the load pole tide, instead of a spherical harmonic
approach. Referencing the load pole tide to the CM effec-
tively accounts for the contribution of the ocean pole tide to
geocenter motion. We note that the maximum radial load pole
tide displacement with respect to the CM (or CE) amounts to
6.4 (4.7) mm/arcsec, and occurs in the south Pacific Ocean.
Meanwhile, the maximum of the transverse, namely the east
and north, components of the load pole tide are 2.0 (0.6)
mm/arcsec. Equation (8) (values have units of mm/arcsec)
represents the effect of the self-consistent equilibrium ocean
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Fig. 1 Amplitude of differences between this paper’s and the T/P
model for the sum total of the body, ocean, and radial load pole tides in
units of mm/arcsecond. Differences are shown over the ocean only and

pole tide on variations of the CM relative to the center of
figure of the solid Earth surface (CF), using Egs. (5) and (7)
from Desai and Ray (2014).

Fef = Re[m* ) ((0.69 +i0.59)2,

+(0.52 +i1.40) &, + (0.46 + i0.74) ez)] 8)

The effect of the ocean pole tide on geocenter variations is
expected to be no larger than 0.5 mm in any component. It
is also worth noting that the pole tide geocenter variations
have slightly larger amplitude than the maximum of the CE-
referenced transverse load pole tide, effectively resulting in
geocenter variations being the primary loading signal in the
CM-referenced transverse load pole tide.

The effects neglected in the T/P total pole tide model, as
shown in Fig. 1, have long wavelength structure, primarily
following a degree 2 order 1 spherical harmonic. In practice,
the T/P and our model essentially have identical body pole
tide components. Therefore, Fig. 1 effectively represents the
difference between the sum total of our self-consistent equi-
librium ocean and load pole tides with the T/P ocean pole
tide. The over-ocean root-mean-square (RMS) and maximum
amplitude of these differences are 3 and 5 mm/arcsec, respec-
tively. For comparison, the body, self-consistent equilibrium
ocean, and load pole tide components have maximum ampli-
tudes of approximately 33, 48, and 6 mm/arcsec, respectively.
The ocean and load pole tides act in opposite directions,
so that the maximum amplitude of the sum total of the
self-consistent equilibrium ocean and load pole tides is 42
mm/arcsec. Meanwhile, the effective T/P ocean pole tide

180

270 360

are computed using Hp |7a 6, 1) — (1 4+ kp) P2y (cos0) e”‘!. Global
differences have RMS and maximum of 3.0 and 5.2 mm/arcsec, respec-
tively

has maximum amplitude of 36 mm/arcsec, and therefore has
errors of approximately 15 %.

3 Mean pole location

The pole tide [e.g., Egs. (2)—(4)] is typically computed using
a rotation pole, m (¢), that has a ‘mean pole’ removed from
reported pole locations.

m(t) = (PX (1) — PX (1)) —i (PY (1) — PY (1)) )

The reported pole location, PX(¢) and PY(t), is convention-
ally positive towards the Greenwich and 90 degree west
meridians, and the ‘mean pole’ is denoted by PX(¢) and
PY(t). Here, we follow the approach of Wahr et al. (2015)
for the definition of the mean pole. They recommend that the
pole tide should include the Earth’s response (solid Earth and
oceans) to all components of polar motion, but that the com-
ponent due to the long-term drift be treated distinctly from
other polar motion variations. They explain that the use of
constant Love numbers in Eqs. (2)—(4) is not applicable to the
long-term drift in polar motion, and even then should strictly
adopt frequency-dependent values. So we follow their recom-
mendation to adopt long-term observations of polar motion
drift for the mean pole, implicitly also assuming that GIA
is the largest source of that drift. Then, we also leave it to
dedicated GIA models that include the effects of rotational
feedback to model the associated displacements (e.g., A et al.
2012; Tamisiea 2011), referred to by Wahr et al. (2015) as the
‘GIA pole tide’. The notable distinction is that the GIA pole
tide represents displacements associated with polar motion
caused by past changes in Earth surface loading, while the
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Fig. 2 Power spectral density (PSD) of location of rotation pole,
m (t), computed from IERS EOPCO04 polar motion time series span-
ning 1980.0-2015.0 shows primary signals at Chandler wobble [+0.843
cycles/year (cpy)], annual (1 cpy), semi-annual (£2 cpy), and decadal
(~=£0.0323 cpy) frequencies. PSD after removing linear mean pole [Eq.
(10)] from EOPCO04 time series is shown in black, and after also remov-
ing estimated annual and semi-annual signals is shown in blue

remainder represents those due to current changes. As they
note, computation of the GIA pole tide is significantly more
involved than allowed by Eqs. (2)—(4) and therefore best left
to dedicated models. Since prograde Chandler wobble and
annual polar motion dominates remaining polar motion, as
shown in Fig. 2, we adopt Love numbers that apply to these
nearby frequencies, as mentioned earlier from the IERS rec-
ommendations (Petit and Luzum 2010). Values of pole tide
Love numbers at the other frequencies of observed polar
motion are likely to be within 5% of the Chandler wob-
ble value, based upon consideration of frequency-dependent
Love numbers for long-period luni-solar tides (e.g., Petit and
Luzum 2010). Furthermore, these other periodic variations
have significantly smaller amplitudes.

The bias for the mean pole only affects the mean sea sur-
face applied to the altimetry observations. We determine this
bias from the EOPC04 reported pole location time series
from the IERS, spanning 1980-2014. Based upon the spec-
trumin Fig. 2, we simultaneously fit for this bias, and periodic
variations at the Chandler wobble, annual, semi-annual, and
31-year periods. We constrain polar motion drift to be the
same values used by Wahr et al. (2015), which are taken
from Argus and Gross (2004) for the mean lithosphere frame.
The Chandler wobble terms are allowed to vary quadratically
and are updated every 7 years. These Chandler wobble terms
are also constrained to represent only prograde motion. As a
normal mode of the Earth, its amplitude is dependent on the
ongoing excitation processes and therefore varies with time
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(e.g., Gross 2000; Chao and Chung 2012). Our approach
facilitates the generation of a residual pole location time
series, m (t), that retains the original power spectral den-
sity of the Chandler and decadal wobble after removing the
estimated bias, drift and seasonal variations, as also shown
in Fig. 2. This residual time series is used in Sect. 4 for
observations of the pole tide from altimeter measurements.
Our resulting model for the mean pole, in arcseconds, is
as follows, with # measured as years since January 1, 2000
00:00:00.

PX (1) = 0.05097 + 0.00062 x ¢
PY (1) = 0.33449 + 0.00348 x 1.

(10a)
(10b)

Figure 3 illustrates the decadal polar motion variations using
a 6-year moving average of the EOPCO04 series followed by
a 433-day moving average. We presume that they reflect a
combination of the so-called 31-year Markowitz wobble (see
Poma 2000 for overview), and the response to recent signif-
icant redistribution of mass. The primary Chandler wobble
and seasonal variations are mostly eliminated in this moving
average since there are approximately five Chandler wobble
cycles in 6 years. The estimated 31-year periodic variation
has an amplitude of 0.02 arcsec, an order of magnitude
smaller than the Chandler wobble. More recent deviations
from our mean pole are approaching 0.05 arcsec. By exclud-
ing these variations from our representation of the mean pole,
we are implicitly allowing for associated total pole tide dis-
placements in altimetry observations of <4 mm. The use of
a constant mean pole in the T/P model does so too, while the
IERS mean pole does not. Wahr et al. (2015) estimate the
error introduced by applying the Chandler wobble value of
k> to these recent deviations from the mean pole to be <20 %.
Their estimate can also be applied here, since the total pole
tide observed by altimetry is primarily dependent on k5.

Figure 3 also highlights another deficiency in the T/P pole
tide model. By using a constant mean pole with a constant
Love number it is implicitly mismodeling the displacements
due to long-term drifting polar motion, which are primarily
induced by GIA. This error can be corrected by subtracting
the expression in Eq. (11) from over-ocean altimeter SSHs
that have already been corrected with the T/P pole tide model
(i.e., the model that uses a constant mean pole), repeating that
t is measured as years since January 1, 2000 00:00:00. The
difference in the bias component of the mean pole is ignored
since it only affects the constant component of mean sea
level.

A&y (0, A, 1) = 69.7t sin 20
% (0.00062 cos A — 0.00348 sin ) (mm).
(11)
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Fig. 3 Models for mean pole location, PX (left panel) and PY (right
panel), spanning 1980 to 2015. The T/P model represents what is cur-
rently used to represent the mean pole for the pole tide model on the
altimetry products, PX = 0.042 arcsec and PY = 0.293 arcsec. The
TIERS2010 model is from the current IERS recommendation (Petit and
Luzum 2010) and represented by a cubic polynomial until 2010 fol-

20 T T

lowed by a linear model thereafter. The model used in this paper is as
shown in Eq. (10). The moving average is determined from a moving
6-year followed by a moving 433-day average of the EOPC04 reported
pole time series, and therefore excludes the first and last 1312 days of
the time series
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Fig. 4 Map of the misrepresentation of regional sea level rise observa-
tions from satellite altimetry due to inclusion of long-term polar motion
driftin the T/P pole tide model. The map reflects Eq. (11), and represents

This error will manifest, as shown in Fig. 4, into regional
sea level rise estimates that are based upon altimeter SSH
measurements corrected with the T/P pole tide model. We
caution that Eq. (11) and Fig. 4 only represent the error in
the T/P model due to the use of a constant mean pole instead
of a drifting mean pole (Eq. 10). They do not reflect the error
due to ignoring self-gravitation, loading, and conservation
of mass, which has the more complex spatial form shown in
Fig. 1. In this way, we explicitly distinguish the two error
sources in the T/P pole tide model. Dedicated GIA models
that include the effects of rotational feedback are best used
to model the so-called ‘GIA pole tide’ since they correctly
account for the associated viscoelastic response of the Earth

the drift component of differences in the total pole tide displacement
when using the T/P model with and without inclusion of the long-term
drift in polar motion in the definition of the mean pole

(Wahr et al. 2015). While the effects on regional sea level
rise are in the range of +0.25 mm/year, the global average of
0.01 mm/year (latitude-weighted average within T/P-Jason
sampling latitudes of +£66 degrees, and over oceans only) is
well below reported uncertainties of GMSL, due to its degree
2 order 1 spherical harmonic distribution.

4 Pole tide observations
Our approach for observing the geocentric pole tide closely

follows that from Desai (2002) who used 9 years of T/P SSH
measurements. We use more than twice the duration with
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Fig. 5 Map of geocentric (body + ocean + load) pole tide admittance estimated from 22 years of T/P, Jason-1, and Jason-2/OSTM SSH measure-
ments. Left and right panels are real and imaginary components of admittance

22 years of continuous measurements, spanning December
21, 1992 to November 8, 2014, from the T/P, Jason-1, and
Jason-2/OSTM missions. For this study, the NASA MEa-
SURES multi-mission altimeter SSH climate data record is
used (Beckley et al. 2013, 2014). While most of the SSH
components are taken from the respective mission GDRs,
some are from improvements that have been made since the
original release of the GDRs. Most importantly, the altimeter
measurements are from the T/P version B Merged GDRs, the
Jason-1 version C GDRs, and the Jason-2/OSTM version D
GDRs, while the satellite orbit positions are from a consistent
reanalysis across all three missions in the 2008 International
Terrestrial Reference Frame. The altimeter range measure-
ments are corrected for range delays from the wet and dry
troposphere, the ionosphere, and the sea state bias. Geophys-
ical corrections for the mean sea surface, luni-solar body,
ocean, and load tides are applied, as is the response of the
oceans due to atmospheric pressure.

The SSH data are partitioned into 3 by 3 degree lati-
tude and longitude bins. In each bin we use the 22 years
of SSH data to simultaneously estimate bias, drift, annual,
semi-annual variations along with a pole tide admittance
response due to residual polar motion (m| and m3). The
residual polar motion time series is exactly as represented
by the blue-lined PSD in Fig. 2 with annual and semi-annual
variations removed so that it primarily contains Chandler
wobble and decadal variations. Seasonal oceanographic vari-
ations in SSH are inseparable from those due to the pole tide,
while we assume there are no other signals in the ocean with
the Chandler wobble period. Estimates for the geocentric
pole tide admittance in Fig. 5 show that resolving the short
wavelength component of the pole tide continues to be chal-
lenging even with 22 years of observations. Regions with low
signal-to-noise ratio (SNR) (~<—13dB), as shown in Fig. 6,
continue to contaminate pole tide observations from altime-
try. Typically, these are in the equatorial regions where the
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Fig. 6 Map of signal-to-noise ratio (SNR) of the geocentric pole tide
highlights regions where resolving the short wavelength structure is
challenging. The predicted signal is computed using the sum total of
the body, ocean, and load pole tide components, using a self-consistent
equilibrium model of the ocean pole tide. The background noise is
determined from the RMS of the post-fit SSH residuals after removing
bias, drift, annual, semi-annual, and pole tide variations in 3 by 3 degree
bins

pole tide signal is especially weak and in areas with strong
ocean currents.

Nevertheless, the long wavelength component of the pole
tide, and especially regions with high SNR, continue to be
distinctly detectible and dominated by the expected degree 2
order 1 spherical harmonic distribution. As in Desai (2002),
we form a time series of the degree 2 order 1 spherical
harmonic components of SSH but with the 22 years of obser-
vations. These spherical harmonic coefficients, A»;. and By,
are generated once every exact repeat cycle of the satel-
lite orbit (9.9156 days), using cycle averages of the residual
SSH in the 3 by 3 degree latitude and longitude bins after
removing the bias, drift, annual, and semi-annual variations
estimated as described above. The available spatial sampling
from these three missions limits the latitude region to within
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Fig. 7 Estimate of real part of potential Love number, k7, from time
series of degree 2 order 1 spherical harmonic components of observed
SSH with increasing duration of observations. Two different estimates
are provided; the first uses our recommended self-consistent equilib-
rium (SCEQ) response, and the second assumes the T/P response. The

466 degrees. Here, the coefficients are derived using a simi-
lar procedure to that described in Kang et al. (2014, equation
11a), where ¢ (6;, 1) is the average residual SSH in each
bin with colatitude 6; and longitude 2 ;.

S X £(6i. 2 )P (cos ;) cos . sin 6;d6;d

A21= N N o 5
> ZJZI(P21(c059i)cosAj) sin 6;d6;dA
(12a)
B Zf\;l Z;-V:l £(6;, )»j)FZl(COS 6;) sin A ; sin 6;d6;dA ;
21 =

ZIN=1 Z?’zl(Fm(cos 6;) sin A ;)? sin 6;d6;dA
(12b)

The time series of these two spherical harmonic coefficients
continue to be dominated by Chandler wobble variations
through the entire 22 years similar to as shown in Fig. 4
from Desai (2002), and therefore are not explicitly shown
here. They once again provide an opportunity to determine
the pole tide potential Love number, k», by comparing A
and By from the observed and predicted equilibrium pole
tide from Eq. (6).

Estimates for k, from the time series of Ay and By
are shown in Fig. 7, where the predicted response fixes
hy, = 0.6207 (Petit and Luzum 2010) and the load Love
numbers to those from Guo et al. (2004). Desai (2002)
demonstrated that these estimates of k, have small (0.15 %)
sensitivity to these fixed Love numbers. Most importantly, the
final estimate from the 22-year time series when assuming
a self-consistent equilibrium response, k = 0.298 + 0.027
agrees very well with the value from the IERS recommen-

(b) Backward
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left panel a adds observations in the forward sense, sequentially from
1992 to 2014, while the right panel b adds observations in the backward
sense from 2014 to 1992. Comparison of a and b indicates that most of
the information arises from the earlier observations when the Chandler
wobble amplitude was largest

dations (Petit and Luzum 2010) and other authors (see Table
1 from Desai 2002) of 0.308. When assuming the T/P pole
tide model the final estimate, kp = 0.347 £0.029, is system-
atically larger by 16 %, as expected. This provides evidence
that the altimetry measurements are capable of resolving the
long wavelength effects of self-gravitation, loading, and mass
conservation that are ignored in the T/P pole tide model. Fig-
ure 7 also suggests that the most recent (last ~3-5years)
altimeter SSH observations of the pole tide have not added
significant value to observations of the pole tide. Estimates
of k» approach the expect value of ~0.3, and formal errors
approach their final value, more rapidly when adding data
sequentially from 1992 onward, rather than when adding data
backward from 2014. This is explained by the fact that over
the span of our data window of 1992-2014 the Chandler
wobble amplitude was in the range of 0.15-0.25 arcsec from
1992-1996, 0.1-0.15 arcsec from 1997-2011, and 0.05 arc-
sec thereafter.

5 Conclusion

Satellite altimeter SSH data yield observations of the total
pole tide displacement relative to the CM, and most users
apply a model to remove these effects. However, the model
that has been provided on the GDRs for the altimeter mis-
sions, and therefore applied by most users, was originally
developed over two decades ago prior to the launch of the T/P
mission. The actual measurement performance and duration
of the altimeter SSH time series has exceeded expectations
from that time, providing an opportunity to detect errors in,
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and consequently develop improvements to, that model. We
have identified two categories of errors in the T/P pole tide
model, and have recommended approaches to mitigate those
errors.

The first category applies to the pole tide displacements
that are associated with periodic and decadal variations in
polar motion. For these, we recommend upgrading to a self-
consistent equilibrium model for the displacement of the
ocean surface relative to the Earth’s crust and explicitly mod-
eling the load pole tide with respect to the CM. Doing so
amplifies the sum total of these two contributions by 15%
as compared to the T/P model. We show that at least the pri-
mary long wavelength component of this effect is detectible
from the last two decades of altimetry data, resulting with
an observed value of the potential Love number, k7, that
is consistent with independent estimates. In contrast, the
observed value is 15 % larger when assuming the T/P model,
essentially compensating for the neglected effects of self-
gravitation, loading, and mass conservation. Despite being
detectible, these errors in the T/P model amount to at most
1.5 mm in SSH in the early years of the altimeter data series
(1992-1996) when the Chandler wobble amplitude was near
its maximum of 0.25 arcsec. In recent years, the error is
up to 0.3 mm when the Chandler wobble amplitude is 0.05
arcsec.

The second category applies to the pole tide displacements
that are associated with the long-term drift in polar motion.
As described by Wahr et al. (2015), conventional pole tide
models cannot be applied to the associated drifting compo-
nent of the centrifugal potential because the use of constant
Love numbers is no longer applicable. There are multiple
sources for the long-term drift in polar motion, as described
by Gross (2007), but the most important is considered to be
GIA. As such, models of GIA that include the effects of rota-
tional feedback provide a potential approach for modeling
this component of the pole tide. It then becomes necessary to
explicitly exclude this component from conventional (con-
stant Love number) pole tide models, including both the
T/P and our recommended models. We follow the recom-
mendation from Wahr et al. (2015) to accomplish this by
also recommending that pole tide displacements for altime-
try be computed from residual polar motion with respect to
a drifting mean pole, with the rate determined from almost
80 years of observations (Argus and Gross 2004). This error
in the T/P model manifests as +0.25 mm/year in observed
regional sea level rise with a degree 2 order 1 spherical har-
monic distribution, and has negligible impact on estimates
of GMSL rise. We caution that this approach creates an
inherent link, or potential for discrepancies, with GIA mod-
els, in that GIA models may not explain the drift in polar
motion that is adopted in our recommended model for the
mean pole. We note also that GMSL rise observations from
altimetry are often reported after applying a correction for

@ Springer

the change in volume of the ocean basins resulting from
GIA.
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