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Abstract In the high-precision application of Global Navi-
gationSatellite System (GNSS), integer ambiguity resolution
is the key step to realize precise positioning and attitude deter-
mination. As the necessary part of quality control, integer
aperture (IA) ambiguity resolution provides the theoretical
and practical foundation for ambiguity validation. It ismainly
realized by acceptance testing. Due to the constraint of cor-
relation between ambiguities, it is impossible to realize the
controlling of failure rate according to analytical formula.
Hence, the fixed failure rate approach is implemented by
Monte Carlo sampling. However, due to the characteristics
of Monte Carlo sampling and look-up table, we have to face
the problem of a large amount of time consumption if suffi-
cient GNSS scenarios are included in the creation of look-up
table. This restricts the fixed failure rate approach to be a
post process approach if a look-up table is not available. Fur-
thermore, if not enough GNSS scenarios are considered, the
table may only be valid for a specific scenario or applica-
tion. Besides this, the method of creating look-up table or
look-up function still needs to be designed for each specific
acceptance test. To overcome these problems in determi-
nation of critical values, this contribution will propose an
instantaneous and CONtrollable (iCON) IA ambiguity reso-
lution approach for the first time. The iCON approach has the
following advantages: (a) critical value of acceptance test is
independently determined based on the required failure rate
and GNSS model without resorting to external information
such as look-up table; (b) it can be realized instantaneously
for most of IA estimators which have analytical probability
formulas. The stronger GNSS model, the less time con-
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sumption; (c) it provides a new viewpoint to improve the
research about IA estimation. To verify these conclusions,
multi-frequency andmulti-GNSSsimulation experiments are
implemented. Those results show that IA estimators based
on iCON approach can realize controllable ambiguity res-
olution. Besides this, compared with ratio test IA based on
look-up table, difference test IA and IA least square based on
the iCON approach most of times have higher success rates
and better controllability to failure rates.

Keywords Ambiguity resolution · Integer aperture
estimator · Instantaneous · Controllable failure rate ·
Monte Carlo sampling

1 Introduction

In the high-precisionGNSS applications, IAR is a fundamen-
tal problem. After the integer ambiguities are fixed, users can
take advantage of the precise pseudo-range data in position-
ing andnavigation.ManyGNSSmodels have beendeveloped
for IAR applications. The principle of them can be referred
to Leick (2004) and Misra and Enge (2006).

The procedures of IAR usually consist of four steps. In
the first step, the integer constraint of ambiguities a ∈ Z

n is
disregarded. The float solutions together with their variance–
covariance (vc) matrix are estimated based on least-square

adjustment as
[ â
b̂

]
,
[ Qââ Qâb̂
Qb̂â Qb̂b̂

]
. The quality control to float

solutions Moore et al. (2002) and Teunissen and De Bakker
(2013) is also implemented in this step, which includes the
adaptation of outliers in code observations and cycle slips in
phase observations.

In the second step, the integer constraint of ambiguities is
taken into consideration in the fixing process of float ambi-
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guities. It can be described as a many to one mapping

ǎ = S(â), S : Rn → Zn (1)

Many mapping methods can be used, such as integer round-
ing (IR), integer bootstrapping (IB), and integer least-square
(ILS). ILS is optimal and proved to have the highest success
rate among these methods (Teunissen 1999). However, the
correlations between different ambiguities lead to that the
efficiency of integer mapping is very low. The Least-square
Ambiguity Decorrelation Adjustment (LAMBDA) method,
Teunissen (1993, 1995, 2010) and De Jonge and Tiberius
(1996) is introduced to improve the efficiency and can
effectively solve the ambiguity searching problems. Other
decorrelation methods, such as Xu (2001) and Wang and
Wang (2010), can also be used, and are effective to improve
the efficiency of ambiguity resolution.

The third step is to testwhether thefixed solution should be
accepted, the so-called ambiguity validation. It can be real-
ized by many acceptance tests, including R ratio test (RT)
(Frei and Beutler 1990), F ratio test (FT) (Euler and Schaf-
frin 1991), difference test (DT) (Tiberius 1995),W ratio test
(WT) (Wang et al. 1998), projector test (PT) (Han 1997). The
optimal ambiguity (OA) tests, including constrained maxi-
mum success rate test and minimum mean penalty test, are
introduced in (Teunissen, 2004b, 2005a, 2013). Note that
the motivation of acceptance test is to exclude the suspected
integers, and accept the most possible ones, since we do not
know the true integer ambiguity.

After the ambiguities are accepted, other parameters can
be adjusted based on correlation with the ambiguities

b̌ = b̂ − Qb̂â Q
−1
ââ (â − ǎ) (2)

where Qb̂â is the vc-matrix between ambiguity vector and
other parameters. After these four steps and ambiguities are
correctly fixed, all estimated parameters can benefit from the
high-precision phase data.

Actually, the second and third steps are realized by the IA
estimator. It can be simply regarded as the overall approach of
ILS estimation and validation. If critical value of acceptance
test is set so that all validation results are passed, then IA
estimator is equivalent to ILS estimator. Three judgements
are generated after IA estimation: success, failure, and unde-
cided. The undecided part is formed by the interval or holes
between different aperture pull-in regions (Teunissen 2004a).
Its probability is determined by the choice of a maximum
allowed failure rate. The ranges of failure rate and other prob-
abilities can be referred to Li andWang (2013). The benefit of
IA estimators is that their estimation process and quality can
be totally controlled by adjusting the threshold of acceptance
test. It has been realized by the so-called fixed failure rate
IA estimator (Verhagen and Teunissen 2006), and already

applied into practice (Teunissen and Zhang 2010; Odolin-
ski et al. 2014). Its critical value is determined by Monte
Carlo simulation in advance. A feasible approach to apply
this kind of IA estimator into practice is detailed analyzed
and proposed in Verhagen (2013).

Though IA estimation theory provides the foundations
from principle to practice for ambiguity validation, there are
still several problems to be resolved in the application of
fixed failure rate approach:

• The determination of critical value in fixed failure rate
approach relies on Monte Carlo sampling. Since the
geometry of IA pull-in regions is complicate, it is difficult
to derive analytical formula of IA success rate or fail-
ure rate based on multi-variate integral, especially when
ambiguities are correlated. The precision of Monte Carlo
sampling depends on the number of samples. Though
we can improve the precision with more effective sam-
pling methods, such as sample average approximation,
importance sampling, stratified sampling (Rubinstein and
Kroese 2011), the time cost still cannot satisfy the lowest
requirement in GNSS instantaneous applications;

• The practical way to apply the fixed failure rate approach
is based on look-up table. This table is created based on a
large amount of GNSS samples for certain IA estimator.
The aim of look-up table is to satisfy the requirements
world widely. However, it is impossible to globally col-
lect all the required GNSS scenarios. Until now, only RT
has the public look-up table for certain fixed failure rates
(Verhagen 2013). Besides this, there is no evaluation indi-
cator for quality of the released look-up table. At present,
since the advantages and disadvantages of all acceptance
tests have not been fully studied, there is no need to create
look-up table for all acceptance tests. Furthermore, the
performance comparisons between different tests based
on fixed failure approach still take toomuch time. Amore
efficient approach to study the properties of acceptance
tests is necessary;

• Though properties of other IA estimators are investigated
(Li andWang2014;Verhagen 2005), the gaps between IA
estimation theory and application still have not been com-
pletely bridged. Recently, some researchers (Wang 2015)
start to focus on the properties of DTIA, and the thresh-
old function is proposed. Similarmethod also can be seen
in Brack (2015). This kind of method can be applied to
other IA estimators. Unfortunately, their solutions still
depend on Monte Carlo simulation and fixed failure rate
approach. Since there is no performance evaluation for
fixed failure rate approach, it is difficult to evaluate the
effectiveness of look-up table or fitting function;

• Last but not least, fixed failure rate approach tries to
realize controllable failure rate. Actually, the meaning
of controllability needs further discussion. The require-
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ment of users is to control the threshold or upper bound
of failure rate within certain range. However, since fixed
failure rate approach relies onMonteCarlo simulation, its
critical value is determined by stochastically generated
samples. Then the critical value and its corresponding
failure rate will behave with certain statistical character-
istics.

To tackle these problems, this contributionmainly focuses
on exploiting the following topics:

1. The performance evaluation of fixed failure rate approach
based on Monte Carlo simulation;

2. The probability approximation methods for the resolv-
able IA estimators which have analytical probability
formulas;

3. Relation between the probability evaluations of ILS and
IA estimators;

4. Instantaneous critical value determination method with
controllable failure rate;

Based on research about these topics, we propose the
instantaneous and controllable ambiguity resolution
approach named as iCON. It can be applied to all IA estima-
torswhich have analytical formulas of probability evaluation.
The stronger GNSS model, the better performance.

Note that the ’instantaneous’ in this contribution means
the time of critical value determination is much less than 1 s.
Most precise GNSS applications do not have strict require-
ment to the observations output with high frequency except
some high dynamic situations.

The whole contribution is organized as follows. Section 2
briefly reviews the statistical inference theory inGNSS ambi-
guity resolution, which paves the theoretical foundation of
IA estimation. Here the IA estimators are divided into resolv-
able and unresolvable classes according to whether they have
analytical probability evaluation formulas. In Sect. 3, fixed
failure rate approach based on Monte Carlo sampling and its
performance are analyzed and investigated. Analytical for-
mulas to evaluate the precision of fixed failure approach are
firstly given and verified. Section 4 gives the approximation
formulas for those resolvable IA estimators. The accuracy of
the approximation formulas are analyzed based on simula-
tion experiment. According to previous analysis in Sect. 5,
the iCON approach is derived by analyzing the relation
between ILS and IA probability evaluations. To verify the
performance of IA estimation based on iCONapproach, three
kinds of comparison experiments are designed: (1) iCON
approach andfixed failure rate approach; (2) different IA esti-
mators based on iCON approach; (3) DTIA or IALS based
on iCON approach, and RTIA based on look-up table. All
these results show that iCON approach is effective in real-

izing better controllable ambiguity resolution than the fixed
failure rate approach in practice.

2 Statistical inference in GNSS ambiguity
resolution

2.1 Integer least-square estimator

In IAR, the integer solution is realized by a many-to-one
mapping with the consideration of its integer constraint,
ǎ = S(â) ∈ Z

n . It means that different float vectors can
be mapped to the same integer vectors. The subset of float
vectors mapped to the same integer is called integer pull-in
region (Teunissen 1998a)

Sz = {x ∈ R
n, z ∈ Z

n|z = S(x)} (3)

Integer pull-in regions are the basic cells to construct integer
estimators. Different integer estimators are classified based
on the construction principle of their pull-in regions, such
as IR, IB and ILS. All of these integer estimators have the
following properties

(1)
⋃

z∈Zn Sz = R
n

(2) Int(Su)
⋂

Int(Sv) = ∅, ∀u, v ∈ Z
n and u �= v

(3) Sz = S0 + z, ∀z ∈ Z
n

Their common expression is given as

ǎ = �
z∈Zn

zsz(â) (4)

with the indicator function sz(x)

sz(x) =
{
1 if x ∈ Sz
0 if x /∈ Sz

If the float ambiguity is fixed to the true ambiguity z, IAR is
‘success’. Otherwise, it will be ‘failure’. Note that the integer
pull-in regions are translational and not overlapped, hence
there is no ‘false alarm’ and ‘failure detected’ judgments.
Among various integer estimators, ILS is optimal and can
maximize the success rate (Teunissen 1999).

According to the normal distribution of float solution â ∼
N (a, Qââ), the probability density function (PDF) of float
solutions is given as fâ(x |a) = Cexp{− 1

2‖x−a‖2Qââ
}, where

C is a normalizing constant and ‖ · ‖2Qââ
= (·)TQ−1

ââ (·). To
evaluate the confidence of the successful IAR, the probability
mass function (PMF) is defined as Teunissen (1998a)

Ps,ILS = P(ǎ = a) =
∫

sa
fâ(x |a)dx (5)
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Besides the success rate, the failure rate of integer estimator
can also be calculated

Pf,ILS =
∑

z∈Zn/{a}
P(ǎ = z) =

∑
z∈Zn/{a}

∫

Sz
fâ(x |a)dx (6)

In Eq. (5), the size of P(ǎ = a) mainly depends on PDF
of float solutions. Due to the multi-variate normal distrib-
ution of float vectors and the correlation between different
elements of these vectors, it is difficult to compute the inte-
gral in Eq. (5). Its value is usually obtained by Monte Carlo
sampling or approximated by upper or lower bounding (Ver-
hagen et al. 2013). Note that the success rate of ambiguity
resolution is positively correlatedwithGNSSmodel strength.
The stronger GNSS model, the higher success rate. It means
once the GNSS model is chosen, its success rate is fixed and
cannot be adjusted by users.

Once the PMF is obtained, the failure rate can be directly
computed in anotherway besides Eq. (6), Pf,ILS = 1−Ps,ILS.

2.2 IA estimator

For strong GNSS models, the success rates of IAR are close
to 1, andwe can omit the trivial influence of possible failures.
However, if the GNSS model cannot satisfy the requirement
of IAR success rate, we need to take measure to exclude the
potential failures in IAR. This is the function of acceptance
testing. The reformed pull-in regions based on acceptance
test are named as integer aperture (IA) pull-in regions (Ver-
hagen 2005). Here, the IA pull-in region is defined as �,
� ⊂ R

n and �z = � ∩ Sz . The properties of IA pull-in
regions are given below

(1)
⋃

z∈Zn �z = �

(2) Int(�u)
⋂

Int(�v) = ∅,∀u, v ∈ Z
n and u �= v

(3) �z = �0 + z,∀z ∈ Z
n

Here � can be chosen as Rn or its subset. Hence, integer
pull-in regions are the limiting case of IA pull-in regions.
The IA estimator is also given below

ǎIA = â +
∑
z∈Zn

(z − â)δz(â) (7)

with δz(â) the indicator function of �z . The standard form
of acceptance test is given in Teunissen (2013)

� = {x ∈ R
n|γ (x) ≤ μ} (8)

withγ (·) the testing function, andμ the critical value.Most of
IA estimators can be transformed into this form. Be different
from integer pull-in regions, the volume of IA pull-in regions
depends on the threshold of acceptance test. Hence, we can

control the success rate and failure rate by adjusting the value
of μ.

The geometry of IA pull-in regions is mainly determined
by acceptance test. Various 2-D geometry reconstruction of
IA estimators can be referred to Verhagen and Teunissen
(2006). Note that all 1-D IA estimators have the same pull-in
intervals when the failure rates are the same.

To evaluate the performance of an IA estimator, we give
four judgements to the outcomes of IA estimators, includ-
ing: success, Ps,IA; failure, Pf,IA; false alarm, Pfa and failure
detection, Pfd. Pfa and Pfd are also named as undecided prob-
abilities. The computation formulas and their relations are
summarized as

Ps,IA =
∫

�a

fâ(x |a)dx

Pf,IA =
∑

z∈Zn/a

∫

�z

fâ(x |a)dx

Pfa = Ps,ILS − Ps,IA

Pfd = 1 − Pf − Ps,ILS

(9)

Pf,IA is a critical quality indicator and can be set by users.
Ps,IA is the critical element to determine Pfa. However, its
computation is not so easy as Ps,ILS, since the scaling brought
by the acceptance test in each direction maybe nonlinear.
Hence,we cannot directly use the boundingmethod as integer
estimator to approximate Ps,IA. The only exception discov-
ered until now is DTIA estimator. Since its IA pull-in region
is linearly scaled based on integer pull-in estimator in each
dimension, the success rate ofDTIA estimator can be directly
approximated based on the corresponding scaling ratio. The
details about DTIA estimator can be referred to Zhang et al.
(2015). Besides the approximation method, Monte Carlo
sampling method can also be used in the computation of
IA success rate. Note that, though Monte Carlo sampling
can be seen as globally optimal, it is time consuming and its
accuracy and precision depend on the number of samples.

2.3 Resolvable IA estimators

Though there are various IA estimators, only parts of them
have the analytical or resolvable probability evaluations
until now. These estimators all have well-organized pull-in
regions. Since their pull-in regions are constructed based on
certain geometry which is easy to be approximated, their
probability evaluations can be derived based on the geome-
try information. Here we list all the resolvable IA estimators
until now, including ellipsoidal IA (EIA) (Teunissen 2003),
DTIA and IA least-square (IALS) estimators. Though IAB
estimator is also resolvable, its success rate is always the
lower bound for that of IALS. Hence, our attention is focused
on IALS. Besides these resolvable IA estimators, other popu-
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lar IA estimators, such as RT,WT, FT, PT andOA estimators,
their pull-in regions do not have obvious characteristics to be
approximated, and need further investigation. However, once
they can be approximated or become resolvable, they are also
available to the approach introduced in Sect. 5.

When the failure rates of these resolvable IAestimators are
chosen, then their success rates and other probabilities can be
determined. Hence, here we only reveal the computations of
success rates and failure rates, which are the main indicators
users focus on.

2.3.1 EIA estimator

Be different from other IA estimators, the procedure to com-
pute the EIA estimator is rather straightforward. Its definition
is given as Teunissen (2003)

�z = �0 + z, �0,EIA = S0 ∩ CμET,0 (10)

with S0 the original ILS pull-in region and

CμET,0 = {x ∈ R
n | ‖x‖2Qẑẑ

≤ μ2
ET}

an origin-centered ellipsoidal region of which the size is con-
trolled by the aperture parameter μET. The motivation to
design EIA estimator is due to its simplicity in the computa-
tion of success rate and failure rate.

Based on thefloat solution x and its decorrelated vc-matrix
Qẑẑ , we can complete the validation by verifying the inequal-
ity

‖x − ž1‖2Qẑẑ
≤ μ2

ET (11)

is satisfied, where ž1 is the best or first integer candidate. If
not, the float solution is used. It seems that EIA only concerns
with the best integer candidate. Actually, we can generalize
EIA from RTIA. Since RTIA is given as

‖x − ž1‖2Qẑẑ

‖x − ž2‖2Qẑẑ

≤ μRT (12)

If we add the constraint: μRT‖ẑ − ž2‖2Qẑẑ
= μET, then we

can conclude that EIA is essentially one kind of constrained
RTIA. Its pull-in region can be interpreted as

�μET,0

=
{
x ∈ R

n

∣∣∣∣
‖x‖2Qẑẑ

‖x−ž‖2Qẑẑ

≤ μRT, μRT‖x − ž‖2Qẑẑ
= μET

}

(13)

Note that no matter how to set the value of μET, there is no
overlapping between different EIA pull-in regions. Since the

−1.5 −1 −0.5 0 0.5 1 1.5
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1.5

Fig. 1 2-Dpull-in regions of EIA estimator.Green part success region;
red parts failure regions

maximum boundaries of EIA are constrained by ILS pull-in
region.

Here we give the 2-D geometry reconstruction of EIA
estimatorwithμET = 0.1 in Fig. 1, with the ambiguitymodel

[
0.0865 −0.0364
−0.0364 0.0847

]
(14)

The success rate and failure rate of EIAare explicitly given
as Teunissen (2003)

{
Ps,EIA = P(χ2(n, 0) ≤ μ2

ET)

Pf,EIA = ∑
z∈Zn/{0} P(χ2(n, λz) ≤ μ2

ET)
(15)

with μET ≤ 1
2 min
z∈Zn/{0}

‖z‖Qẑẑ . n is the freedom of Chi-square

distribution, and the non-centrality parameter λz = zTQ−1
ẑ ẑ z.

Thus, failure rate for each integer candidate can also be
derived. Once μET > 1

2 min
z∈Zn/{0}

‖z‖Qẑẑ , Ps,EIA and Pf,EIA

become the upper bounds of EIA.
Hence, it is concluded that PMF of EIA estimator can be

precisely calculated once μET is determined within certain
range.

2.3.2 DTIA estimator

The pull-in region of DT is defined as

�DTIA,0 = {x ∈ R
n | ‖x − u‖2Qẑẑ

− ‖x‖2Qẑẑ
≥ μDT} (16)

with u ∈ Z
n/{0}. The range of μDT based on LAMBDA

method has the easy-to-compute [0, 1
d(1,1) ), in which d(1, 1)
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Fig. 2 2-D pull-in regions of DTIA estimator. Green part success
region; red parts failure regions

is the first element of D in the LDL-decomposition of the
decorrelated matrix Qẑẑ . This is proved in Zhang et al.
(2015).

Its 2-D geometry reconstruction is given in Fig. 2 with
μDT = 1.4723. The ambiguity model matrix is the same as
(14).

There is no analytical formula to directly compute the
probability evaluations of DTIA. However, we can give indi-
rect evaluation by various bounds. The first results for the
lower bound and upper bound of the success rate of DTIA
are derived and proved in Zhang et al. (2015).

⎧⎪⎨
⎪⎩

Ps,DTIA ≥ ∏n
i=1

[
2�

(
|xi |
σzi |I

)
− 1

]

Ps,DTIA ≤ P
(
χ2(n, 0) ≤ 4x̄cn

ADOP2

)

with the σzi |I standard deviation fromLDL-decomposition of
the decorrelated Qẑẑ , and the scaling factor |xi | is computed
by

|xi | =
‖ci‖2Qẑẑ

− μDT

2‖ci‖2Qẑẑ

, i = 1, 2, . . . , n (17)

where 0 < |xi | ≤ 0.5 and ci is the canonical vector of the i-th

coordinate axis. x̄ =
∑n

i=1 |xi |
n , and cn = ( π

2 �( π
2 ))

π
2

π
. Besides

scaling factor, |xi | can also be seen as the intersecting points
between original pull-in region of DT integer aperture boot-
strapping (DTIAB)with the coordinate axes. The success rate
of DTIA can be approximated by that of DTIAB in decorre-
lated space. The definition and properties of DTIAB can be
referred to Zhang et al. (2015).

Actually, the lower bounds based on DTIAB have small
differences with DTIA. It can be used to approximate the
success rate of DTIA for rough evaluation. Due to the similar
algebraic formation between DTIA and ILS, DTIA can be
seen as the linearly scaling ILS estimator.

According to the formula of ILS failure rate in (6), the
failure rate of IA estimator can also be decomposed into the
sum of failure rates for each IA pull-in region. Hence, the
failure rate of DTIA can be approximated by the analytical
formula

Pf,DTIA ≈
∑

z∈Zn/{0}

n∏
i=1

[
�

(
zi + |xi |

σzi |I

)
− �

(
zi − |xi |

σzi |I

)]

(18)

with z = (z1, z2, . . . , zn)T. The proof is given in the Appen-
dix. The accuracy of approximationwill be verified in Sect. 4.

2.3.3 IALS estimator

The IALS estimator can be seen as the scaled version of
ILS estimator (Teunissen 2004a, 2005b). The motivation for
introducing this estimator stems from the known optimality
of the ILS estimator. Its aperture pull-in region is defined as

�z,IALS = βSz,ILS (19)

with

{
βSz,ILS = {x ∈ R

n | 1
β
(x − z) ∈ S0,ILS}

S0,ILS = {x ∈ R
n | ‖x‖2Qẑẑ

≤ ‖x − u‖2Qẑẑ
,∀u ∈ Z

n/{0}}

The aperture parameter is β, 0 ≤ β ≤ 1. When β = 1,
the IALS estimator can be seen as the ILS estimator. The
2-D geometry reconstruction is given in Fig. 3, in which the
aperture parameter is chosen as β = 0.7.

Be different from other IA estimators, the estimation
process and the determination of aperture parameter aremore
complicated, which can be referred to Teunissen (2005b).

Furthermore, since the ILS estimation in IALS actually
is implemented twice. Hence, it is more time consuming for
IALS than other IA estimators in estimation. However, the
optimality inherited from ILS also brings benefits to IALS,
which will be verified later.

Be similar as ILS, there are various ways of probability
evaluation for IALS. Its probability lower bounds and upper
bounds are detailed given in Teunissen (2005b). Here we list
the lower bound and upper bound for the success rate of IALS

⎧⎪⎨
⎪⎩

Ps,IALS ≥ ∏n
i=1

[
2�

(
β

2σzi |I

)
− 1

]

Ps,IALS ≤ P
(
χ2(n, 0) ≤ λ2cn

ADOP2

)
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Fig. 3 2-D pull-in regions of IALS estimator.Green part success pull-
in region; red parts failure pull-in regions

Be similar as DTIA, the failure rate of IALS also has analyt-
ical formula

Pf,IALS ≈
∑

z∈Zn/{0}

n∏
i=1

[
�

(
2zi + β

2σzi |I

)
− �

(
2zi − β

2σzi |I

)]

(20)

with zi the i-th element of integer vector z, whose proof is
also given in the Appendix.

According to Zhang et al. (2015), DTIA is the generalized
IALS with different scaling factors for different directions.
When all directions have the same scaling factor, which
means |x1| = · · · = |xn| = β

2 , DTIA will be transformed
into IALS. Besides this, just as the relation between IB and
ILS, DTIA has similar relation with DTIAB. Due to previ-
ous relation between IALS and DTIA, the performances of
DTIA and IALS have some similarities, which can be seen
later.

3 Fixed failure rate approach based on Monte
Carlo sampling and performance evaluation

According to the theory of IA estimation, the quality of ambi-
guity resolution is controllable. As previous analysis, critical
values of acceptance tests are the elements to control the
probability evaluations of IA estimation. However, based on
the formula of Pf,IA, it is difficult to find the analytical rela-
tion between critical value and failure rate for most of IA
estimators, such as RT, OA. To solve this problem, IA ambi-
guity resolution based on Monte Carlo sampling method is

proposed in Teunissen (1998a) and Verhagen and Teunissen
(2006). Their procedures can be summarized into the follow-
ing steps:

1. Set fixed failure rate Pf , and other initial parameters;
2. Generate N float ambiguities with normal distribution:

âi ∼ N (0, Qââ), i = 1, . . . , N ;
3. Implement ambiguity resolution and acceptance test

μi = γ (âi ) for each sample;
4. Count the number of failed points for which:μi ≤ μ and

ǎi �= 0;
5. Based on rooting findingmethod to determine the critical

value μ so that Pf,IA(μ) − Pf = 0.

According to the principle of Monte Carlo sampling, the
precision of sampling result depends on the number of sim-
ulation samples, N . If these stochastic samples are drawn
independently from the normal distribution N (0, Qââ), we
can interpret the IA ambiguity resolution results as a bino-
mial distribution process. It means the decision parts only
include failure and the other part. If the number of failure
rate, Nf,I A, is known, then the probability of failure rate can
be written as

PNf,I A = N !
(N − Nf,I A)!Nf,I A! P

Nf,I A
f,ILS (1 − Pf,ILS)

N−Nf,I A

(21)

Onceμ is determined based on fixed failure rate approach
or other approaches, the IA ambiguity resolution failure rate
and its dispersion can be derived as the following formulas:

E
(
Nf,IA
N

)
= Pf,IA

D
(
Nf,IA
N

)
= (1−Pf,IA)Pf,IA

N = σ 2
f,IA

(22)

with Nf,IA the number of failure samples in IA ambiguity
resolution. Here σ 2

f,IA can be used to describe the precision
of failure rate in IA ambiguity resolution. Notice that the pre-
cision of fixed failure approach is independent of the model
strength.

Based on the above mean and variance, the Chebyshev
inequality can be used to obtain an upper bound on the prob-
ability that Nf,IA

N differs more than any τ > 0 from Pf,IA. It
can be written as

P

(∣∣∣∣
Nf,IA

N
− Pf,IA

∣∣∣∣ ≥ τ

)
≤ (1 − Pf,IA)Pf,IA

Nf,IAτ 2
(23)

It is obvious that the number of samples is critical to guaran-
tee the precision and its confidence interval of the computed
failure rate.

To explicitly present the relation between simulation sam-
ples, critical value and failure rate, simulation experiment is

123



1096 J. Zhang et al.

0 1 2 3 4 5 6 7
x 106

0.0195

0.02

0.0205

0.021

0.0215

0.022

Simulation times

Fa
ilu

re
 p

ro
ba

bi
lit

y

Fig. 4 Relation between simulation samples and failure rate with fixed
critical value

implemented for ambiguity model matrix

Q =
⎡
⎣

0.0865 −0.0357 0.0421
−0.0357 0.0847 −0.0258
0.0421 −0.0258 0.0797

⎤
⎦ (24)

When the critical value is fixed, the relation between simula-
tion samples and failure rate is presented in Fig. 4. Here the
DT critical value is randomly chosen as μDT = 5.

It is obvious that in Fig. 4, as the increase of samples, the
values of failure rate gradually become stable, which means
the precision of failure rate is improved as the increase of
number of simulation samples. This is consistent with the
second formula in (22).

Note that in Fig. 4, the critical value of DT is chosen
regardless of the quality control. Now we will analyze the
performance of IA estimator based on the critical value deter-
mined by fixed failure rate approach.

In the procedures of fixed failure rate approach, the critical
value is determined based on the stochastically generated N
samples. Just as the formula shown in (23), the confidence
level we can give to the determined critical value is also
inversely proportional to the number of simulation samples.
In other words, it means that the determined critical value is
a local result, and we may obtain different values in different
trials of Monte Carlo simulation. Besides this, if we imple-
ment N times IA ambiguity resolution based on the obtained
critical value, the failure rate may not be the fixed failure rate
Pf . The range and precision of failure rate are determined by
Eq. (22).

To verify previous analysis, we use the ambiguity model
matrix (24) to verify the performance of fixed failure rate
approach. The simulation procedures are designed as fol-
lows:

Table 1 Relation between Monte Carlo simulation trials and precision

K Pf,IA σf,IA

1 0.0013 –

100 0.0009 1.4822 × 10−4

1000 0.0011 1.4700 × 10−4

10000 0.0010 1.4359 × 10−4

K , the Monte Carlo simulation trials; Pf,IA, the expectation of failure
rate for all trials, σf,IA, standard deviation

1. Based on fixed failure rate approach, the critical value of
DT for fixed failure rate Pf = 0.001 is determined;

2. Use this critical value to implement K trials of Monte
Carlo simulation, inwhich each simulation includes N =
50,000 samples for IA ambiguity resolution;

3. Compute the value of Pf,IA and σ f,IA, and compare them
with Pf .

The simulation results are summarized inTable 1, inwhich
the theoretical precision of fixed failure rate Pf,0 is

σPf = (1 − Pf)Pf
N

= 1.4135 × 10−4 (25)

Notice that as the increase of Monte Carlo trials,

lim
K→∞Pf,IA = Pf

lim
K→∞σf,IA = σPf

(26)

According to central limit theorem (Breiman 1992), when
K → ∞, Nf,IA

N will behave as a random variable with normal
distribution, N (Pf , σ 2

Pf
). Hence, in practice, if we only use

the critical value in IA estimation just once, the IA failure
rate actually behaves as randomvalue but not the fixed failure
rate.

Now we can conclude that the fixed failure rate approach
is actually one kind of statistical control to the failure rate
of IA ambiguity resolution. It is impossible to make the
failure rate of IA ambiguity resolution always smaller than
the required failure rate. That is the reason why the look-
up table of RTIA chooses the conservative value to ensure
its feasibility. Besides this, the controllability (precision) of
fixed failure rate approach has no relation with the ambigu-
ity model strength. In another words, the model information
does not take much effect in this method.

As a summary, the controllability expressed by the fixed
failure rate approach is essentially the control of their statis-
tics. The confidence level of its controllability within certain
range can be given by analytical formula. To improve the
confidence level of look-up table or threshold function, the
artificial measure has to be taken, which can be seen in Ver-
hagen (2013) and Wang (2015). To delete the influence of
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artificial measure, the ambiguity model information is nec-
essary to be used. Though Wang (2015) indirectly includes
the ambiguity model information, that method is not general
and cannot be expanded to other IA estimators.

4 Analysis to the success rate approximation
of IA estimator

In the forgoing sections, probability evaluations of resolv-
able IA estimators are given. These probability evaluations
provide important reference for the performance of IA ambi-
guity resolution. Besides this, probability evaluation is also
the direct indicator which correlates with critical value of
acceptance test. The controlling of failure rate has to rely
on the adjustment of critical value. Hence, it is necessary to
study how to approximate numerical values of probability
evaluations of IA estimators.

Actually, there already existmany literatures exploring the
probability evaluations of ILS ambiguity resolution. Accord-
ing to Feng and Wang (2011) and Verhagen et al. (2013),
lower bounds based on IB provide quite sharp bounds for
ambiguity resolution. Hence, it is natural to approximate
probability evaluations of IA ambiguity resolution with their
analytical bounds. Here we choose the lower bound as the
approximation method. According to Teunissen (1998b) and
Feng and Wang (2011)

Ps,IB =
n∏

i=1

[
2�

(
1

2σzi |I

)
− 1

]
(27)

In decorrelated space, ILSwill behave similarly as IB.Hence,
we can use the success rate of IB to approximate ILS, which
means

Ps,ILS ≥
n∏

i=1

[
2�

(
1

2σzi |I

)
− 1

]
(28)

Of course, there exist differences between the approximated
ILS probability evaluations and actual values. They are
caused by the influence of correlationwhich cannot be totally
eliminated due to integer constraint of ambiguity.

Besides the success rate, the failure rate of ILS for each
pull-in region is approximated by

Pf,ILS(k) ≈
n∏

i=1

[
�

(
zi (k) + 0.5

σzi |I

)
− �

(
zi (k) − 0.5

σzi |I

)]

(29)

with z(k) = (z1(k), . . . , zi (k), . . . , zn(k))T and z(k) �= 0.
z(k), k ≥ 1, is the k-th failure integer candidate. The proof
of (29) is given in the Appendix.

The ILS failure rate is

Pf,ILS ≤
∞∑
k=1

Pf,ILS(k) (30)

As to IA estimators, they are based on ILS estimation. Some
probability evaluations are directly derived from ILS. Hence,
we also can use those lower bounds to approximate the prob-
ability evaluations of IA estimators. In the following part, we
directly give the approximation formula of previous solvable
IA estimators, and analyze the accuracy of approximation
based on simulation experiments.

Be different fromother IA estimators, the probability eval-
uation of EIA can be accurately given within certain range.
As to DTIA and IALS, success rates and failure rates can be
approximated by their lower bounds in decorrelated space,
which are explicitly given in Sect. 3. Note that success rates
and failure rates of IA estimators are independent of true
integer ambiguity. In otherwords, the critical value and ambi-
guity model matrix determine the probability evaluation of
ambiguity resolution.

To evaluate the accuracy of these approximation formu-
las, this sectionwill give a comprehensive experimental study
to these approximations. The simulation setting is presented
in Table 2. Multi-frequency, multi-GNSS environments are
constructed. In this simulation, we will use two methods to
calculate success rates: Monte Carlo sampling and approxi-
mation formulas. The former one can be used as reference if
the number of simulation samples is large enough. The latter
one will be compared with the former one to evaluate the
accuracy of approximation.

Hereweonly give the simulation resultswithin 1day.Only
when Ps,ILS > 0.8, IA ambiguity resolution is implemented.
50,000 samples are generated in Monte Carlo sampling. The
success rates of three IA estimator are computed based on
two methods. Critical value of IA estimators are determined
by fixed failure rate approach with Pf = 0.001.

Table 2 Simulation settings for GNSS models

Items Settings

System GPS, BeiDou, and
Galileo and their
combinations

Time July 13–15, 2014

Frequencies L1, L2, L5, E1(L1),
E5a, E5b, B1, B2, B3

Locations Changsha, China

Sampling interval 300s

Troposphere ZTD estimated

STD of ionosphere delay 0.02m

STD of undifferenced observations Code: 20cm phase: 2mm

STD standard deviation
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Fig. 5 Comparison of EIA success rates between two methods and
their difference. Blue line Monte Carlo integration; red line approxi-
mated formula; black line approximation errors

The success rates of EIA and the approximation errors
for success rates are demonstrated in Fig. 5. It is obvi-
ous that two methods obtain almost the same success rates
for each epoch. This is because the success rate formula
of EIA is obtained by accurate integration within a hyper-
ellipsoidal. The trivial success rate approximation errors are
due to numerical errors. Note that the setting of Pf ensures
that μET ≤ 1

2 min
c∈Zn/{0}

‖c‖Qẑẑ with c = ž2 − ž1 based on the

generated GNSS models.
Then the results of DTIA is given in Fig. 6. Comparing

with EIA, though red line cannot so accurately approximate
blue line, their approximation error is acceptable, and the
maximum approximation error is smaller than 0.05.

Results of IALS is presented in Fig. 7. Notice that the
overall success rates are almost the same as those of DTIA,
which conforms to the relation between IALS and DTIA.
Their approximation formulas of success rates will be equiv-
alent under certain numerical conditions. However, as to the
approximation errors, we still can see that IALS has smaller
approximation errors than those of DTIA. The maximum
approximation error is smaller than that of DTIA. This shows
that the approximation formula of IALS ismore accurate than
that of DTIA.

In Table 3, the expectations of approximation errors are
listed. Obviously, EIA has the smallest approximation error.
IALS is better than DTIA.

Note that here we only talk about the approximation of
success rates. Of course, there must exist approximation
errors in failure rates. The critical problem is how to con-
strain the approximation errors of failure rates within certain
range. In next section, we will propose an efficient approach
in detail.

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

EpochsS
uc

ce
ss

 ra
te

s 
co

m
pa

ris
on

0 50 100 150 200 250
0

0.02

0.04

0.06

0.08

0.1

Epochs

A
pp

ro
xi

m
at

io
n 

er
ro

rs

Fig. 6 Comparison of DTIA success rates between two methods and
their difference. Blue line Monte Carlo integration; red line approxi-
mated formula; black line approximation errors
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Fig. 7 Comparison of IALS success rates between two methods and
their difference. Blue line Monte Carlo integration; red line approxi-
mated formula; black line approximation errors

Table 3 Expectation of approximation errors for three IA estimators,
δPs,IA = P ′

s,IA − Ps,IA

E(δPs,EIA) E(δPs,DTIA) E(δPs,IALS)

E(δPs,IA) 1.56 × 10−4 6.1 × 10−3 5.8 × 10−3

P ′
s,IA is computed by Monte Carlo sampling, and Ps,IA is based on

approximation formula

As a summary, EIA can accurately compute its success
rate with the fixed failure rate. However, its IA estimation
is most conservative. This is understandable, since it can be
interpreted as a RTIA with extra constraint. Its theoretical
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performance is worse than RTIA. IALS and DTIA basically
have the same success rates. The trivial difference lies on that
IALS has smaller approximation errors.

5 Instantaneous and controllable IA ambiguity
resolution

5.1 Relation between failure rates of IA and ILS
estimators

According to IA estimation theory, integer estimator is the
limiting case of IA estimator. This is the reason why ILS
success rate and failure rate are the extreme values of IA
estimator. Besides this, the ILS and IA probability evalua-
tions can also be connected by their probability ratio factor.

In this part, wewill take DTIA and ILS estimator as exam-
ple to reveal the relation between failure rates of IA and ILS
for each pull-in region. Those derived results can be general-
ized to other IA estimators which have analytical probability
evaluation formulas.

To obtain the so-called probability ratio factor for each
pull-in region, the failure rates ofDTIAand ILSare computed
based on the initial setting μ. We define the probability ratio
factor as

r(k, μ) = Pf,DTIA(k, μ)

Pf,ILS(k)

≈
n∏

i=1

�

(
zi (k)+|xi |

σzi |I

)
− �

(
zi (k)−|xi |

σzi |I

)

�

(
zi (k)+0.5

σzi |I

)
− �

(
zi (k)−0.5

σzi |I

) (31)

with r(k, μ) the ratio factor. Further derivation can be imple-
mented to Eq. (31) based on the mean value theorem of
integral

�

(
zi (k) + |xi |

σzi |I

)
− �

(
zi (k) − |xi |

σzi |I

)

=
∫ zi (k)+|xi |

zi (k)−|xi |
1√

2πσzi |I
exp

(
− x2

2σ 2
zi |I

)
dx

= 2|xi | f (ξx (k)) (32)

and

�

(
zi (k) + 0.5

σzi |I

)
− �

(
zi (k) − 0.5

σzi |I

)

=
∫ zi (k)+0.5

zi (k)−0.5

1√
2πσzi |I

exp

(
− x2

2σ 2
zi |I

)
dx

= f (ξ(k)) (33)

In Eqs. (32) and (33), f (·) is the PDF of normal distribution
and

ξx (k) ∈ (zi (k) − |xi |, zi (k) + |xi |) = Ux

ξ(k) ∈ (zi (k) − 0.5, zi (k) + 0.5) = U (34)

with Ux ⊂ U . Besides this, r(k, μ), ξx (k) and ξ(k) have the
following properties:

Property 1 There exists the threshold σ, σ > 0, if

U ⊂ (−∞,−σ)
⋃

(σ,+∞)

then f (ξx (k)) ≤ f (ξ(k)), in which ξx (k) ≤ ξ(k) in
(−∞,−σ), and ξx (k) ≥ ξ(k) in (σ,+∞).

Property 2 The probability ratio factor between DTIA and
ILS estimator can be seen as an approximated decreasing
function, though it is not monotonous. Its limiting value con-
verges to zero

lim
k→∞r(k, μ) = lim

k→∞
Pf,DTIA(k, μ)

Pf,ILS(k)
= 0 (35)

Proofs of two properties are given in the Appendix.

To demonstrate the relation between ILS failure rate and
DTIA failure rate, Fig. 8 gives the numerical values of
original ILS failure rate, sorted ILS failure rate and its cor-
responding failure rate for integer candidates from 2 to 150.

In Fig. 8, it is obvious that Pf,ILS(k) is not monotonous.
The sorting operation is to obtain a better approximation
value with finite integer candidates. Though the correspond-
ing DTIA failure rate is not monotonous, its influence can be
neglected due to the trivial fluctuation of magnitude.
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Fig. 8 ILS and DTIA failure rate for each integer candidate. The crit-
ical value of DTIA is chosen as 6
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To approximate ILS failure rate with finite integer candi-
dates, we implement the following procedures:

1. Choose a large number of failure rates for ILS pull-in
region, such as M ;

2. Sort these failure rates into descending order;
3. Choose the threshold, Pμ (0< Pμ � Pf). If Pf,ILS(m) >

Pμ and Pf,ILS(m + 1) < Pμ , the failure rate will be
decomposed into two parts

⎧
⎪⎪⎨
⎪⎪⎩

Pf,ILS ≈
m∑

k=1
Pf,ILS(k), 1 < m ≤ M

P0,ILS =
M∑

k=m+1
Pf,ILS(k)

with P0,ILS the remaining part of ILS failure rate approx-
imation and 0 < P0,ILS � Pf .

Note that Pμ should be very small, so that the approxima-
tion error in Pf,ILS is as small as possible. In step 1, the reason
why we choose M is to limit the range of integer candidates,
so that the approximation is possible. Based on many trials,
the M is chosen as 300 in this contribution to balance preci-
sion and time cost. While, the m in step 3 is to decrease the
time consumption in the following nonlinear optimization,
which will be introduced later.

There exists the relation in ILS probability evaluations

Ps,ILS + Pf,ILS + P0,ILS = 1 (36)

It is explicitly demonstrated in Fig. 9.
If the initial critical valueμ0 is given, failure rate of DTIA

can be approximated by
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Fig. 9 The composition of ILS probability for 2-D ambiguity model.
Green region Ps,ILS + Pf,ILS; red region P0,ILS

Pf,DTIA(μ0) ≈
m∑

k=1

Pf,DTIA(k, μ0) (37)

Besides the approximated part in (37), the remaining part of
failure rate is written as

P0,DTIA(μ0) =
M∑

k=m+1

r(k, μ0)Pf,ILS(k) (38)

To be convenient, we choose r(m) = max{r(i)}, i = m +
1, . . . , M . Then

P0,DTIA(μ0) ≈ r(m, μ0)P0,ILS (39)

Eventually, if we want to compute the critical value so that
the failure rate of DTIA is fixed to Pf , the nonlinear equation
must be solved

Pf,DTIA(μ) + r(m, μ)P0,ILS = Pf (40)

It can be changed into a nonliear optimization problem
and solved by the trust-region-dogleg method (Nocedal and
Wright 1999). In MATLAB, the function ’fsolve’ can be
used.

The numerical optimization is time consuming. The big-
ger m, the more accurate μ and more time consumption.
Hence,m should be chosen based on the balance of time cost
and accuracy, and Pμ is to control this balance.

Summarizing previous derivations,wewill have a new fast
and controllable method to determine critical value, which
we name as iCON approach. Previously, we take DTIA as
example. Actually, the iCON approach can be applied to any
IA estimators with analytical PMF formula.

5.2 iCON approach

The overall procedures of iCON approach are listed below:

1. Set initial parameters Pf , μ0, Pμ and other parameters.
Calculate thePMF forM integer candidates and sort them
into descending order. Choose m so that

Pf,ILS(m) > Pμ Pf,ILS(m + 1) < Pμ (41)

Then P0,ILS = ∑M
k=m+1 Pf,ILS(k);

2. Compute the failure rates for Pf,IA(i, μ0) and i =
1, . . . , M . Besides this, the values of probability ratio
factors are computed based on the initial settings

r( j, μ0) = Pf,IA( j, μ0)

Pf,I LS( j)
j = m + 1, . . . , M

Choose r(m, μ0) = max{r( j, μ0)};
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3. Construct the nonlinear equation and implement numer-
ical optimization to

m∑
i=1

Pf,IA(i, μ) + r(m, μ)P0,ILS = Pf (42)

with 0 < r(m, μ) < 1.

Note that those initial parameters have influence to the
performance of iCON approach:

• Pμ, which determines the value of m. The smaller Pμ,
the bigger m and the less approximation error in Pf,ILS;

• μ0, which influences the time cost in numerical optimiza-
tion. The better choice of μ0 will decrease the iterative
times in nonlinear optimization of step 3.

Here we give two remarks about the application of iCON
approach. First, a simplifiedversion of iCONapproach canbe
used under certain numerical condition. Previously, we men-
tioned that to decrease the approximation error of Pf,ILS,
we have to choose a rather small Pμ. For instance, if the
failure rate is Pf = 0.001, according to the variation of
order of magnitude in Fig. 8, Pμ is better to be smaller than
10−8. This is because

∑∞
k=m+1 Pf,ILS(k) may lead to large

P0,ILS. Then the determined μ with (42) will not be so accu-
rate, which directly influences the controllability of failure
rate.

If Pμ is trivial, such as less than 10−10, then P0,ILS is also
very trial. Since r(m, μ) < 1, r(m, μ)P0,ILS canbeneglected
in numerical optimization. Then the iCON approach can be
simplified into two steps:

1. Set initial parameters Pf , μ0, Pμ and other parameters.
Sort the calculated PMF of M integer candidates into
descending order. Choose m so that

Pf,ILS(m) > Pμ Pf,ILS(m + 1) < Pμ (43)

2. Construct the nonlinear equation and implement numer-
ical optimization to

m∑
i=1

Pf,IA(i, μ) = Pf (44)

Note that this simplified approach would be better used when
GNSS model is strong.

Second, it is noted that Pf should be chosen based on
model strength. If model is weak, it is meaningless to have
high requirement to reliability. The users should takemeasure
to strengthen the GNSS model, such as using the constraint
of baseline information. For strong GNSS model, Pf should

not be too small, which would reject many correct integer
candidates and lead to high false alarm.

6 Experiments verification

6.1 The performance of iCON approach

In Sect. 5, the iCON approach was introduced and ana-
lyzed. This section will verify those conclusions based on
multi-frequency and multi-GNSS simulation experiments.
The simulation settings are the same as Table 2. The fail-
ure rates in Monte Carlo and iCON approach are chosen
as Pf = 0.001. The number of simulation samples in Monte
Carlo is 50,000 and all IAR are implemented epoch by epoch.
The flow diagram of simulation experiment is presented in
Fig. 10. Note that we only implement IAR to the GNSSmod-
els whose ILS success rates are larger than 0.8. The GNSS
models which have low ILS success rates are difficult to real-
ize the ambiguity fixing.

To evaluate the performance of iCON approach, we
will first take the DTIA estimator as example. The com-
parison of time consumption between Monte Carlo and
iCON approaches are presented in Fig. 11. The simulation
ephemeris is chosen from July 12 to July 17, 2014, including
all the systems and their combinations 6934 samples.

As presented in Fig. 11, the time consumptions of Monte
Carlo sampling are much longer than that of iCON approach.

Fig. 10 The flow diagram of the simulation experiment. Pf,iCON,
TiCON, Pf,MC and TMC denote the failure rates and time consumptions
of iCON and Monte Carlo approach, respectively
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Fig. 12 The controlled failure rates based on Monte Carlo sampling
approach. Red dots failure rates based on Monte Carlo; black lines
Pf ± 3σf,DTIA bounds

All the time consumptions of iCON approach are much less
than 1 s, which means we can realize the instantaneous IA
ambiguity resolution based on iCON. Notice that there are
several similar curves obviously overlapping each other for
Monte Carlo approach. This is because the time consump-
tions of Monte Carlo sampling have the positive correlation
with the dimension of GNSS model. The more number of
satellites, the more time will be taken to implement IAR.
Double or triple system combinations will obviously have
more time consumptions. Besides this, all GNSS ephemeris
will repeat several times in 6days. Hence, we can see similar
periodical phenomenon for the time consumptions of Monte
Carlo. Of course, they will also appear in those of iCON
approach.
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Fig. 13 The controlled failure rates based on iCON approach. Blue
dots failure rates based on iCON; black line 2Pf bound

Besides the time consumptions, the controlled failure
rates based on both approaches are demonstrated in Figs.
12 and 13. According to both figures, we can see that the
controlled failure rates of both approaches have different
scattering range. Here we give the detailed statistics of exper-
iment results for both approaches based on DTIA estimator.
According to Table 4, we give more characteristics of both
approaches. They are summarized as:

1. As analyzed in Sect. 4, fixed failure rate approach based
on Monte Carlo sampling is essentially the approach
of stochastic control. Based on formula (22), the stan-
dard deviation of controlled failure rate σf,DTIA =
1.42 × 10−4, which is close to the theoretical preci-
sion in (25). The expectation of controlled failure rates is
E(Pf,DTIA) ≈ Pf with |E(Pf,DTIA)− Pf | < 10−5. These
results indicate that the controlled failure rates based on
Monte Carlo sampling will obey the normal distribution
N (Pf , σPf,DTIA) when the number of epochs is infinite.
In Fig. 12, the Pf ± 3σf,DTIA bounds are plotted, which
means the controlled failure rates have 99.7%probability
falling into this region.

2. iCONapproach can realize the instantaneous and control-
lable IA ambiguity resolution. Note that the expectation
of Pf,DTIA is smaller than 0.001. This is because the
failure rate of DTIA is approximated by the formula of
DTIAB, which is the lower bound for that of DTIA. To
make DTIA approximate to DTIAB, its critical value has
to be chosen a little conservative so that success rates
are reduced to lower bound. Hence, the expectation of its
actual failure rate will be less than Pf .

3. The interval of failure rates for iCON approach is shorter
than that of Monte Carlo. Though there exist points pass
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Table 4 Statistics of simulation
experiment for both approaches

Items Time consumption mean (s) E(Pf,IA) Pf,IA interval

MC 17.0165 1.000 × 10−3 (0.2 × 10−3, 2.2 × 10−3)

iCON 0.3114 0.749 × 10−3 (0.08 × 10−3, 1.4 × 10−3)

MC, Monte Carlo sampling; Pf,IA, the failure rates of IA estimation
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Fig. 14 Relation between DTIA success rates and time consumptions
for iCON approach

the fixed failure rate Pf , the maximum is smaller than
1.5Pf . However, that of Monte Carlo is larger than 2Pf .
It shows that the model information used by iCON is
helpful to lower the range of controlled failure rate.

As a summary, it is obvious that iCON approach has better
controllability than Monte Carlo sampling.

To give clearer demonstration for the time consumptions
of iCON approach, various GNSS models within 1day are
generated, including single and multiple frequencies, sin-
gle and GNSS combinations. The relations between time
consumptions and success rates of DTIA estimators are pre-
sented in Fig. 14.

Obviously, the maximum time consumptions of iCON
approach is gradually decreasing as the increase of DTIA
success rate. This proves that the stronger GNSS model, the
less time consumption of iCONapproach.As analyzed previ-
ously, if the GNSSmodel is rather strong, less pull-in regions
is included in the iCON approach, then its time consumption
will decrease in nonlinear optimization. Note that more effi-
cient nonlinear optimizationmethod can further save the time
consumption, which will be exploited in future.

6.2 Performance of resolvable IA estimators based on
iCON approach

Previously, the performance of iCON approach is compared
with the fixed failure rate approach based on Monte Carlo
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Fig. 15 IA success rates of three resolvable IA estimators based on
iCON approach. Green line EIA; blue line IALS; red line DTIA

sampling by DTIA estimator. Actually, iCON approach can
be applied into other resolvable IA estimators, such as EIA
and IALS listed before. Though iCON is proved to be instan-
taneous and can effectively control failure rate, it is not clear
that which IA estimator will have better performance based
on iCON. In this part, we will apply iCON into three IA esti-
mators and compare their performances. It is noted that here
the ’better performance’ means higher IA success rate for the
same setting of Pf .

The experiment settings are the same as those of Table 2,
and the flow diagram is similar. More than 500 epochs of
’GPS+BeiDou’ systems are generated within 2days. The
controlled failure rates for three IA estimators are presented
in Fig. 16, and their corresponding success rates are shown
in Fig. 15. The statistics for both figures are summarized in
Table 5. Specifically, here we only compare the mean of IA
success rates and failure rates. The former one reflects the
performance of IA estimator, and the latter one indicates the
controllability of failure rate.

Based on Figs. 15 and 16 and their statistics, we give the
following remarks:

1. iCON can be applied into IA estimators which have ana-
lytical formulas of probability evaluations;

2. The failure rates of IA estimators are all controlledwithin
small range based on iCON. However, EIA has the short-
est range of controlled failure rates. Besides this, we also
can see that EIA always has the smallest success rates.
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Fig. 16 Failure rates of three resolvable IA estimators based on iCON
approach. Green line EIA; blue line IALS; red line DTIA; black line
2Pf bound

Table 5 Statistics of three resolvable IA estimators

E(Ps,IA) E(Pf,IA)

EIA 0.1417 3.791 × 10−4

IALS 0.8728 7.795 × 10−4

DTIA 0.8775 7.172 × 10−4

E(Ps,IA), the expectation of success rates; E(Pf,IA), expectation of
failure rates

This is caused by the small Pf . If Pf is chosen large or
GNSSmodel is strong enough so that its aperture regions
are constrained by ILS region, then EIAwill behave sim-
ilarly as ILS estimators.

3. DTIA has almost the same performance as IALS. Their
controlled failure rates and success rates are almost
overlapped each other. Note that there still exist small
differences, and the mean for the success rates of DTIA
is a little larger than that of IALS. This is due to that
DTIA is the generalized IALS and can be seen as the
approximated optimal IA estimator when GNSS model
is strong. Note that IALS has better controllability of
failure rate than that of DTIA. This is benefitted from
the optimality of ILS estimation and less approximation
errors. However, since the implementation procedure of
IALS is rather complicate, it is not so applicable as DTIA
in practice.

According to previous analysis, we can conclude that
DTIA is more suitable to be used in practice, especially in
the multi-GNSS, multi-frequency GNSS applications.
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Fig. 17 IA success rates of DTIA, IALS and RTIA. Green line RTIA;
blue line IALS; red line DTIA

6.3 Comparison between iCON approach and fixed
failure rate approach with look-up table

Until now, we have verified the performance of resolvable IA
estimators based on iCONapproach.However, we still do not
know the performance difference between the instantaneous
IA estimator based on iCON approach and RTIA estimator
based on look-up table. In this section, we will compare the
performance of DTIA and IALS based on iCON approach
and RTIA based on look-up table. Here the look-up table of
RTIA is released inVerhagen (2013). The simulation settings
and experiment flow diagram are not changed.

In this simulation experiment, the dual-frequency, ’GPS
+Galileo+BeiDou’ combination system is chosen.More than
500 epochs are chosen within 2days. Results are demon-
strated in Figs. 17 and 18. The statistics for them are listed
in Table 6. According to the simulation results, we can give
the following remarks:

• DTIA and IALS based on iCON approach basically have
similar performance as RTIA based on look-up table. All
estimators can realize fast and controllable IAR;

• Specifically, we can see that DTIA and IALS have little
higher success rates than that of RTIA most of times in
Fig. 17 and Table 6. That is the reason why the expecta-
tions of success rates for DTIA and IALS are higher than
that of RTIA;

• Comparing with RTIA, the controlled failure rates of
DTIA and IALS are not so conservative. Their expec-
tation values are closer to Pf . It means DTIA and IALS
have better controllability to the approximation errors
based on iCON approach than that of RTIA, even if RTIA
has the a priori information of look-up table;
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Fig. 18 IA failure rates of DTIA, IALS and RTIA. Green line RTIA;
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Table 6 Statistics of three resolvable IA estimators

E(Ps,IA) E(Pf,IA)

RTIA 0.9413 6.873 × 10−4

IALS 0.9470 8.054 × 10−4

DTIA 0.9480 7.607 × 10−4

E(Ps,IA) and E(Pf,IA), the expectation of success rates and failure rates

• We can see that the failure rates of RTIA based on look-
up table are not fluctuating around Pf . This is because the
critical values in look-up table already choose the conser-
vative ones, which will artificially change the statistics of
fixed failure rate results.

As a summary, DTIA and IALS based on iCON approach
can realize better instantaneous and controllable ambiguity
resolution than the RTIA based on look-up table. Note that
more detailed performance comparison and application for
DTIA and RTIA can be referred to Li et al. (2015). Further-
more, as analyzed previously, the look-up table has to be
created based on numerous simulation, whose precision is
limited by the corresponding setting in simulation. Hence, it
cannot be quickly applied into practice for other IA estima-
tors.While, based on iCON approach, the users only need the
information of ambiguity model matrix and set the required
failure rate upper bound requirement. It is very convenient
and feasible to other IA estimator with analytical probability
evaluations.

Furthermore, since iCON approach is suitable to all IA
estimators with analytical PMF formulas, this gives a new
viewpoint to study other IA estimators. Some IA estimators
can be connected by their PMF relations. Besides this, how to
decrease the approximation errors in probability evaluations
also need further research.

7 Conclusion

Instantaneous and precise quality control is an important
topic in IAR. In this contribution, we firstly reviewed the
development of IAR and then analyzed the unresolved prob-
lems in the IA estimation theory, especially its difficulties
in the instantaneous applications. Though fixed failure rate
approach combined with the look-up table can provide the
initial solution, the longtime consumptions in creating the
look-up table made it difficult to be widely applied. Besides
this, fixed failure rate approach was essentially one kind of
statistical control to the failure rate. This may bring unex-
pected trouble in quality control.

To tackle these problems, in this contribution,weproposed
an original approach to realize instantaneous and precise
quality control for IA ambiguity resolution. The so-called
iCON approach is instantaneous and controllable without
resorting to external information. The only requirement is
that the IA estimator should have simple and analytical prob-
ability evaluation formulas. Besides this, the stronger GNSS
models, the shorter time consumptions iCON will take. Fur-
thermore, this approach has better controllability than fixed
failure rate approach.

To verify these conclusions, multi-frequency and multi-
GNSS simulation experiments were implemented to test
the performance of iCON approach by different compar-
isons. Experiment results verified the advantages of iCON
approach. Specifically, DTIA and IALS based on iCON had
almost the same performance in controllability of failure
rates, since DTIA can be seen as the generalized IALS. Both
estimators slightly outperformed RTIA with look-up table
based on the same controlled failure rates. However, due to
the complicate process in IALS ambiguity resolution, DTIA
based on iCON approach would be a better choice for the
instantaneous and controllable IAR.

In the future, the connection between IA estimators and
more efficient nonlinear optimization method will be the
main research topics, which are helpful to better solve the
ambiguity validation problem.
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Appendix

Proof of (29), (18) and (20)

In Teuniseen (2001), the general formula to calculate the
PMF of IB estimator is given. Here, we give the specific and
simple results in decorrelated space.
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The original integer bootstrapped PMF is given below

PIB(ǎ = ǎ1)

=
n∏

i=1

[
�

(
1 − 2lTi (ǎ − ǎ1)

2σâi |I

)
+ �

(
1 + 2lTi (ǎ − ǎ1)

2σâi |I

)
− 1

]

(45)

with ǎ1 ∈ Z
n the best integer candidate and ǎ ∈ N (a, Qââ)

the fixed solution.
As we know, Qââ = LDLT. After decorrelation,

Qẑẑ = ZTQââ Z = ZTLDLTZ = D

with Z the decorrelated transformation matrix. We can say
that Qẑẑ = ITDI with I the identity matrix.

In decorrelated space, (45) can be written as

PIB(ž = ž1) = ∏n
i=1

[
�

(
1−2zi
2σẑi |I

)
+ �

(
1+2zi
2σẑi |I

)
− 1

]

(46)

with zi = ž − ž1. As we know that

�

(
1 − 2zi
2σẑi |I

)
= 1 − �

(
zi − 0.5

σẑi |I

)
(47)

Apply (47) into (45). For the k-th integer candidate z(k) =
žk − ž1 and z(k) = [z1(k), . . . , zn(k)]T, we have

PIB(ž = žk) =
n∏

i=1

[
�

(
zi (k) + 0.5

σẑi |I

)
− �

(
zi (k) − 0.5

σẑi |I

)]

(48)

Obviously, for the best integer candidate, we have the same
lower bound as (27). In decorrelated space, PILS(ž = žk)
can be approximated by (46). Hence, (29) is proved when
z(k) �= 0.

Similarly, before we derive formula (18), the PMF of
DTIAB is firstly derived. Based on similar derivation steps
in Teuniseen (2001), the formula below can be built in decor-
related space

PDTIAB(ž = žk)

=
n∏

i=1

[
�

(
zi (k) + |xi |

σẑi |I

)
− �

(
zi (k) − |xi |

σẑi |I

)]
(49)

with |xi | the intersecting points between DTIAB pull-in
region and coordinate axes. When ž = ž1, z(k) = 0. Then

Ps,DTIAB =
n∏

i=1

[
�

(
|xi |
σzi |I

)
− �

(
−|xi |
σzi |I

)]
(50)

For z(k) �= 0, we will have the PMF of DTIAB for each
candidate

Pf,DTIAB(k) =
n∏

i=1

[
�

(
zi (k) + |xi |

σzi |I

)
− �

(
zi (k) − |xi |

σzi |I

)]

In decorrelated space, DTIAB almost has the same pull-in
region as DTIA (Zhang et al. 2015). Hence,

Pf,DTIA(k) ≈ Pf,DTIAB(k) (51)

Then, based on (51)

Pf,DTIA =
∞∑
i=1

Pf,DTIA(k)

≈
∑

z∈Zn/{0}

n∏
i=1

[
�

(
zi (k) + |xi |

σzi |I

)

−�

(
zi (k) − |xi |

σzi |I

)]
(52)

Formula (18) is proved.
Similarly, the PMF of IALS can be derived

Pf,IALS =
∞∑
i=1

Pf,IALS(k)

≈ ∑
z∈Zn/{0}

∏n
i=1

[
�

(
2zi+β
2σzi |I

)
− �

(
2zi−β
2σzi |I

)] (53)

Equation (20) is proved. ��

Proof for the properties of probability ratio factor

Property 1 is proved based on the following procedures. As
to the PDF of normal distribution, x ∈ N (0, σ 2),

f (x) = 1√
2πσ

exp

(
− x2

2σ 2

)

Since f (x) is an even function and symmetry around y-axis,
we will mainly talk about the property in (0,+∞) and then
the other half can be derived similarly. Its first-order deriva-
tive

∂ f

∂x
= − x√

2πσ 3
exp

(
− x2

2σ 2

)
< 0

The second-derivative is

∂ f 2

∂2x
= − 1√

2πσ 3
exp

(
− x2

2σ 2

)
+ x2√

2πσ 5
exp

(
− x2

2σ 2

)
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When x ∈ U ⊂ (σ,∞), f (x) is a monotonously decreasing
and convex function. Based on the Jensity inequality (Chan-
dler 1987), we have

∫

U
f (x)dx = f (ξ(k)) ≥ f (x0) (54)

with x0 = zi (k) − ai . Similarly, we also have f (ξx (k)) ≥
f (x0). It is obvious that ξ(k) ≤ x0 and ξx (k) ≤ x0.
If ξx (k) < ξ(k), then f (ξx (k)) > f (ξ(k)). When |xi | →

0

lim|xi |→0
f (ξx (k)) = f (x0) > f (ξ(k)) (55)

This contradicts the conclusionwith the inequality (54). Then
we know that

ξx (k) ≥ ξ(k) and f (ξx (k)) ≤ f (ξ(k))

Since f (x) is an even function, when U ⊂ (−∞,−σ),
f (x) is a monotonously increasing and convex function.
Based on the proof by contradiction, we can derive that
ξx (k) ≤ ξ(k) and

f (ξx (k)) ≤ f (ξ(k))

Hence, we can summarize that when

U ⊂ (−∞,−σ) ∪ (σ,∞)

we have f (ξx (k)) ≤ f (ξ(k)). Furthermore ξx (k) ≤ ξ(k) in
(−∞,−σ), and ξx (k) ≥ ξ(k) in (σ,∞).

The proof of property 2 is briefly given below. If ξx =
x0 + δx , ξ = x0 + δ and x0 = zi (k)−ai , whenU ⊂ (σ,∞),
we have δx ≥ δ based on property 1. Then

f (ξx (k))

f (ξ(k))
= exp

(
2(δ − δx )(zi (k) − ai ) + δ2x − δ2

2σ 2

)
(56)

When zi (k) → ∞, 2(δ − δx )(zi (k) − ai ) → −∞ and ,
hence

lim
zi (k)→∞

f (ξx (k))

f (ξ(k))
= 0

Since 0 < |xi | ≤ 1, 2|xi | ≤ 1, then

lim
zi (k)→∞2|xi | f (ξx (k))

f (ξ(k))
= 0 (57)

If zi (k) → ∞, the integer candidate based on zi (k) will
rank as k → ∞-th candidate. Eventually, the limiting case

of probability ratio factor in Eq. (31) is

lim
k→∞

Pf,DTIA(k, μ)

Pf,ILS(k)
≈ lim

k→∞

n∏
i=1

2|xi | f (ξx (k))
f (ξ(k))

= 0

Similarly, when U ⊂ (−∞, σ ), we still can derive that

lim
k→∞

Pf,DTIA(k, μ)

Pf,ILS(k)
= 0

��
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