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Abstract A surface spherical harmonic expansion of grav-
ity anomalies with respect to a geodetic reference ellipsoid
can be used to model the global gravity field and reveal
its spectral properties. In this paper, a direct and rigorous
transformation between solid spherical harmonic coefficients
of the Earth’s disturbing potential and surface spherical
harmonic coefficients of gravity anomalies in ellipsoidal
approximation with respect to a reference ellipsoid is derived.
This transformation cannot rigorously be achieved by the
Hotine–Jekeli transformation between spherical and ellip-
soidal harmonic coefficients. The method derived here is
used to create a surface spherical harmonic model of grav-
ity anomalies with respect to the GRS80 ellipsoid from the
EGM2008 global gravity model. Internal validation of the
model shows a global RMS precision of <1 nGal. This
is significantly more precise than previous solutions based
on spherical approximation or approximations to order e2

or e3, which are shown to be insufficient for the genera-
tion of surface spherical harmonic coefficients with respect
to a geodetic reference ellipsoid. Numerical results of two
applications of the new method (the computation of ellip-
soidal corrections to gravimetric geoid computation, and area
means of gravity anomalies in ellipsoidal approximation) are
provided.
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1 Introduction

A surface spherical harmonic expansion is an expansion of
any function on a star-shaped surface, i.e., a surface where
each point on the surface is uniquely defined by its geocen-
tric latitude and longitude (e.g., Jekeli 1988; Grafarend and
Engels 1994). A surface spherical harmonic expansion is dis-
tinctly different from a solid spherical harmonic expansion,
which is routinely employed in global gravity models. Most
importantly, it is restricted to the representation of a function
on a two-dimensional surface instead of in three-dimensional
space. Other than in a solid harmonic expansion, the function
to be expanded does not need to be harmonic. In addition,
a surface harmonic expansion does not necessarily need to
utilise spherical polar coordinates, although spherical polar
coordinates are used here. A more detailed explanation of
the differences between solid and surface spherical harmonic
expansions is provided in Jekeli (1988).

A surface spherical harmonic expansion of gravity anom-
alies with respect to the geodetic reference ellipsoid (i.e.
an oblate ellipsoid of revolution) can be used to study the
spectral properties of the global gravity anomaly field. It is
used in various applications. For example, the spectral form
of Stokes’s formula for geoid computation contains a sur-
face spherical harmonic series of gravity anomalies (e.g.,
Heiskanen and Moritz 1967). Therefore, surface harmonic
coefficients of gravity anomalies are used in the study of
Stokesian geoid computation schemes, such as the study of
Stokes kernel modification (e.g., Vaníček and Featherstone
1998; Featherstone et al. 1998; Sjöberg and Featherstone
2004), and the derivation of ellipsoidal corrections to a Stoke-
sian geoid computation (e.g., Heck and Seitz 2003; Claessens
2006). It is shown here that a surface harmonic expansion of
gravity anomalies can also be used to efficiently compute
area means of gravity anomalies from a global gravity model
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(e.g. Hirt and Claessens 2011), which are required in a com-
bined gravimetric geoid solution (e.g., Featherstone et al.
2011; Claessens et al. 2011).

A surface spherical harmonic expansion of gravity anom-
alies can be computed via a spherical harmonic analysis from
a grid of gravity anomalies, which can be created from a
global gravity model through spherical harmonic synthesis.
This synthesis–analysis procedure suffers from discretisation
errors (e.g., Colombo 1981; Albertella et al. 1993). This paper
proposes an alternative procedure based on a direct trans-
formation of spherical harmonic coefficients of the Earth’s
disturbing potential given by a global gravity model, avoiding
discretisation errors. Apart from the applications mentioned
above, it can therefore also be used to estimate the discreti-
sation errors and validate spherical harmonic analysis and
synthesis software.

The transformation between spherical harmonic coeffi-
cients of the disturbing potential and gravity anomalies is
well-known in spherical and constant radius (SCR) approx-
imation (e.g., Heiskanen and Moritz 1967). The transforma-
tion in ellipsoidal approximation was investigated by, e.g.,
Cruz (1986) and Heck and Seitz (2003), but their methods
were not intended for transformation of high-degree coeffi-
cients and are of insufficient precision for coefficients beyond
degree ∼180. The derivation presented here is theoretically
exact in ellipsoidal approximation without the need for any
further approximations. The validity of the method up to high
degree and order (∼2160) is verified numerically, and two
applications are shown.

An alternative to the surface spherical harmonic expan-
sion is an ellipsoidal harmonic expansion. Transformation
between spherical and ellipsoidal harmonic coefficients is
possible (e.g. Buchdahl et al. 1977; Jekeli 1988), and in geo-
desy this procedure is called a Hotine–Jekeli transformation
(Sebera et al. 2012). However, the Hotine–Jekeli transfor-
mation cannot directly be applied to compute a harmonic
expansion of gravity anomalies with respect to an ellipsoid
(see Sect. 5). A rigorous transformation between disturbing
potential and gravity anomalies in the ellipsoidal spectral
domain can be found using a different approach, by apply-
ing a technique described in Claessens and Featherstone
(2008). This is shown in Sects. 2 and 3, and the method is
numerically validated in Sect. 4. An overview of similarities
and differences between the method presented here and the
Hotine–Jekeli transformation is presented in Sect. 5. Some
applications are presented in Sect. 6.

2 Spherical harmonic expansion of gravity
anomalies

We consider here the solid gravity anomaly �g (Vaníček
et al. 2004), which is defined by the fundamental gravimetric
equation

�g = −∂T

∂h
+ 1

γ

∂γ

∂h
T, (1)

where T is the disturbing potential, γ is the magnitude of ref-
erence gravity and both partial derivatives are with respect
to the ellipsoidal normal. This solid gravity anomaly can be
viewed as a 3D functional which can be evaluated at any
height above the ellipsoid (e.g., Barthelmes 2009). Here,
gravity anomalies on the surface of the ellipsoid are used,
i.e., the functionals T , γ and their derivatives are evaluated on
the ellipsoid. The classical definition of the gravity anomaly
utilised in Stokes’s theory (magnitude of gravity on the geoid
minus magnitude of reference gravity at the ellipsoid) follows
from this solid gravity anomaly with negligible approxima-
tion errors (e.g., Moritz 1989; Vaníček et al. 2004).

The spherical harmonic expansion most frequently used
in geodesy is the solid spherical harmonic expansion, which
is routinely employed in global gravity models. Solid spher-
ical harmonic expansions can be used to represent a function
in three-dimensional space, that is harmonic on and outside a
sphere of certain radius, such as the Earth’s disturbing poten-
tial T

T (r, θ, λ) =
∞∑

n=0

(
R

r

)n+1 n∑

m=−n

T
R
nmY nm(θ, λ), (2)

where (r, θ, λ) are spherical polar coordinates, T
R
nm are the

solid spherical harmonic coefficients of degree n and order
m, Ynm are the spherical harmonic functions, and R is the
radius of some reference sphere. The overbars indicate that
the spherical harmonic functions are fully normalised (4π -
normalised). Global gravity models provide coefficients of
the gravitational potential, but these can easily be trans-

formed into the coefficients of the disturbing potential T
R
nm

by subtracting the potential implied by the reference field
(e.g., Smith 1998).

Unlike the Earth’s disturbing potential, gravity anomalies
as defined in Eq. (1) are not harmonic, and thus cannot be
represented by a solid spherical harmonic series. They can,
however, be represented by a set of surface spherical har-
monic coefficients, also called a Laplace surface harmonic
expansion

�g(θ, λ) =
∞∑

n=0

n∑

m=−n

�g
e
nmY nm(θ, λ), (3)

where �g
e
nm are surface spherical harmonic coefficients of

the gravity anomalies. Since an ellipsoid is a star-shaped sur-
face, any function on the ellipsoid can be expanded into a
series of surface spherical harmonic coefficients. The super-
script e in the coefficients in Eq. (3) indicates that this series
is defined with respect to an ellipsoid. Note that these surface
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spherical harmonic coefficients with respect to an ellipsoidal
surface are not, in general, equal to ellipsoidal harmonic
coefficients, because ellipsoidal harmonic coefficients must
utilise ellipsoidal coordinates instead of spherical polar coor-
dinates.

If gravity anomalies are given on the surface of an
ellipsoid, the coefficients �g

e
nm can be computed via an inte-

gration over the unit sphere (e.g., Heiskanen and Moritz 1967,
Eqs. 1–76), which in practice must be discretised (e.g., Hirt

et al. 2011). Here, a direct relation between �g
e
nm and T

R
nm

is sought.

3 Spectral relation between disturbing potential
and gravity anomaly

3.1 Spherical and constant radius approximation

Equation (1) gives the relation between the disturbing poten-
tial T and the gravity anomaly �g in the space domain. This
relation is known to be simpler in the spectral domain in SCR
approximation (e.g., Heiskanen and Moritz 1967, p. 89)

�g
e
nm ≈ n − 1

R
T

R
nm . (4)

The spherical approximation that this relation relies on con-
sists of two steps. Firstly, the normal derivative to the ellip-
soid is approximated by the radial derivative. This approxi-
mation is predominantly of a short-wavelength nature, as it
is roughly proportionate to the north–south vertical deflec-
tion (Claessens 2006). Secondly, the reference gravity γ is
approximated by an isotropic reference gravity γ̃ , which is
simply the gravity induced by a point mass or a homogeneous
sphere with a total mass equal to that of the Earth. This sec-
ond approximation is predominantly of a long-wavelength
nature, as it is roughly proportionate to the height anomaly.
The gravity anomaly in spherical approximation is thus

�̃g = −∂T

∂r
− 2

re
T, (5)

where the tilde over �g indicates that the spherical approx-
imation is applied, and re is the ellipsoidal radius, i.e., the
distance between the centre and the surface of the ellipsoid
(which is dependent on latitude). The error in the gravity
anomaly introduced by the spherical approximation is well-
known to be of the order of the flattening f of the ellipsoid
(≈0.003) (e.g., Heiskanen and Moritz 1967; Rummel 1985).

Inserting the spherical harmonic representations of the dis-
turbing potential [Eq. (2)] and its radial derivative into Eq.
(5) gives an expression for the gravity anomaly in terms of
geopotential coefficients

�̃g = 1

R

∞∑

n=0

n∑

m=−n

(n − 1)

(
R

re

)n+2

T
R
nmY nm . (6)

The simple one-to-one relation between spherical harmonic
coefficients in Eq. (4) only materialises when the ellipsoidal
radius re is approximated by the radius of the reference sphere
R, i.e., when the constant radius approximation is applied.
The constant radius approximation has the largest effect on
coefficients of high degree n, since for high degrees the term
(R/re)

n+2 is significantly different from 1.
Without the constant radius approximation, a simple one-

to-one relation is not possible because re is a function
of latitude. A solution can still be found using a proce-
dure described in Claessens and Featherstone (2008). This
involves expanding the term (R/re)

n+2 into a binomial series

�̃g = 1

R

∞∑

n=0

n∑

m=−n

(n − 1)

∞∑

j=0

αn+1, j sin2 j θT
R
nmY nm, (7)

where

αn+1, j =
(
R

b

)n+2

(−1) j
( n+2

2
j

)
e2 j . (8)

In Eq. (8), e2 is the square of the first numerical eccentricity
of the ellipsoid, and it is assumed that the ellipsoid is an
oblate ellipsoid of revolution. Since for any ellipsoid 0 ≤
e2 sin2 θ < 1, the binomial series will always be alternating
and convergent.

A relation between surface spherical harmonic coeffi-
cients of gravity anomalies and solid spherical harmonic
coefficients of the disturbing potential is only possible if all
terms in Eq. (7), except the spherical harmonic functions
Ynm , are independent of latitude and longitude. However,
co-latitude θ appears in Eq. (7) outside the spherical har-
monic function. This problem can be solved by shifting all
dependence on θ in Eq. (7) into the spherical harmonic func-
tions using a relation among spherical harmonic functions
(Claessens 2005)

sin2 j θYnm =
j∑

i=− j

K
2i,2 j
nm Y n+2i,m, (9)

where spherical harmonic functions of negative degree

should be set equal to zero. The weights K
2i,2 j
nm depend

only on the spherical harmonic degree n, order m and the
summation indices i and j . These weights can be computed
most efficiently through an iterative scheme (Claessens 2005;
Claessens and Featherstone 2008)

K
2i,2 j
nm =

1∑

k=−1

K
2k,2
nm K

2(i−k),2( j−1)

n+2k,m , (10)
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from the initial values given by

K
−2,2
nm = −

√
[(n − 1)2 − m2](n2 − m2)

(2n − 3)(2n − 1)2(2n + 1)

K
0,2
nm = 2(n2 + m2 + n − 1)

(2n − 1)(2n + 3)
(11)

K
2,2
nm = −

√
[(n + 1)2 − m2][(n + 2)2 − m2]

(2n + 1)(2n + 3)2(2n + 5)
.

These weights have also successfully been applied in the
computation of the topographic potential generated by
masses above a reference ellipsoid (Claessens and Hirt 2013).

Inserting Eq. (9) into Eq. (7) leads after comparison to
Eq. (3) and a rearrangement of the summation indices to a
relation between surface spherical harmonic coefficients of
gravity anomalies and solid spherical harmonic coefficients
of the disturbing potential in spherical approximation

�̃g
e

nm =
∞∑

i=−∞
λ̃
g
nmi T

R
n−2i,m, (12)

where

λ̃
g
nmi = −

∞∑

j=|i |

(n − 1 − 2i)

R
αn−2i+1, j K

2i,2 j
n−2i,m . (13)

Here, again, the tildes indicate the use of the spherical
approximation and the superscript g indicates that the trans-
formation is from disturbing potential to gravity anomaly.
See Claessens (2006) for further details on the derivation
of Eq. (12). This equation is the equivalent of Eq. (4), but
without the constant radius approximation. Though much
more complicated than Eq. (4), it still contains the spherical
approximation. It is, however, possible to derive a similar
relation without the need for the spherical approximation, as
follows.

3.2 Ellipsoidal approximation

The spectral relation between disturbing potential and gravity
anomalies on the ellipsoid was investigated by Cruz (1986),
Heck and Seitz (2003) and others. All of these contribu-
tions rely on an approximation of Eq. (1) to the order of the
first numerical eccentricity of the ellipsoid e2, including an
approximation of the geophysical-geometric parameter m, a
function of the Earth’s angular velocity, by e2/2 based on a
numerical coincidence (Moritz 1989; see Sjöberg 2003 for
a discussion). Here, it is shown that a solution can be found
that avoids these approximations.

The derivation of the spectral relation between disturbing
potential and gravity anomalies in spherical approximation

(without constant radius approximation) presented in Sect.
3.1 relies on shifting the latitude-dependent terms into the
spherical harmonic functions Ynm using a binomial expan-
sion and Eq. (9). This same procedure can also be applied to
the case in ellipsoidal approximation. This amounts to finding
the spectral equivalent of Eq. (1), without further approxima-
tions.

The formula for the gravity anomaly on the right-hand
side of Eq. (1) consists of two terms: one term containing
the normal derivative of the disturbing potential and one
term containing the disturbing potential itself. These two
terms can be treated separately. Claessens and Featherstone
(2008) have derived the relation between solid spherical

harmonic coefficients of the disturbing potential T
R
nm and

surface spherical harmonic coefficients of its derivative with
respect to the ellipsoidal normal dhT

e
nm

dhT
e
nm =

∞∑

i=−∞
λd
nmi T

R
n−2i,m, (14)

where

λd
nmi = − 1

R

∞∑

j=|i |−1

[(n − 2i + 1)βn−2i,mi j + γn−2i,mi j ]

(15)

βnmi j = K
2i,2 j
nm

j∑

k=0

αn+1, j−k(−1)ke2k

×
k∑

l=k−1

(2 − e2)l
(− 1

2
l

)
(16)

γnmi j = e2

⎡

⎣
i+1∑

p=i−1

K
2p,2 j
n+2(i−p),mNn,m,2(i−p)

⎤

⎦

×
j∑

k=0

αn+1, j−k(−1)ke2k(2 − e2)k
(− 1

2
k

)
(17)

and

Nn,m,−2 = (n + 1)K
−2,2
nm

Nn,m,0 = 3

2
K

0,2
nm − 1 (18)

Nn,m,2 = −nK
2,2
nm .

Therefore, to find a relation for the gravity anomaly, only the
second term on the right-hand side of Eq. (1) still needs to
be evaluated. The procedure that will be followed here is the
same as in the derivations above: the term (1/γ ) (∂γ /∂h) is
written as a power series in the squared sine of the geocen-
tric co-latitude θ , after which Eq. (9) is applied to move all
dependence on latitude into the spherical harmonic functions.
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According to Heiskanen and Moritz (1967, Eq. 2–120),
the normal derivative of the reference gravity γ can be
expressed as a function of the meridian radius of curvature
ρ, the prime vertical radius of curvature ν, and the angular
velocity of the Earth’s rotation ω. Division of this formula
by the reference gravity gives

1

γ

∂γ

∂h
= − 1

ρ
− 1

ν
− 2

ω2

γ
. (19)

The terms on the right-hand side of Eq. (19) can all be
expressed as a function of the geocentric latitude. Moreover,
they can all be expressed in such a way that they can be
expanded into converging binomial series. Firstly, the inverse
of ρ can be expressed as

1

ρ
= b

a2 [1 − e2 sin2 θ ] 3
2 [1 − e2(2 − e2) sin2 θ ]− 3

2 . (20)

The two terms between square brackets in Eq. (20) can be
written as a binomial series

1

ρ
= b

a2

⎡

⎣
∞∑

j=0

(−1) j
( 3

2
j

)
e2 j sin2 j θ

⎤

⎦

×
[ ∞∑

k=0

(−1)k
(− 3

2
k

)
e2k(2 − e2)k sin2k θ

]
, (21)

and these two binomial series can be combined using a
Cauchy multiplication (a discrete version of convolution;
e.g., Protter and Morrey 1964)

1

ρ
= b

a2

∞∑

j=0

(−1) j e2 j
j∑

k=0

( 3
2
k

)( − 3
2

j − k

)
(2−e2) j−k sin2 j θ.

(22)

A power series for the inverse of ν can be found in a very
similar way

1

ν
= b

a2

∞∑

j=0

(−1) j e2 j
j∑

k=0

( 1
2
k

)( − 1
2

j − k

)
(2−e2) j−k sin2 j θ.

(23)

The term 2ω2/γ in Eq. (19) can also be expressed as a
power series. For this purpose, the Somigliana–Pizzetti for-
mula for reference gravity (Heiskanen and Moritz 1967, p.
70) first needs to be expressed in spherical polar coordinates
(Claessens 2006)

γ = γb(1 − e2 sin2 θ)−
1
2 [1 − e2(2 − e2) sin2 θ ]− 1

2

×(1 − e2
γ sin2 θ), (24)

where

e2
γ = 1 − γa

γb
(1 − e2)

3
2 , (25)

and γa and γb are the magnitude of reference gravity at the
equator and at the poles, respectively. The constant e2

γ � 1,
since γa ≈ γb and e2 � 1. The inverse of the reference
gravity can therefore be written as the product of three fast-
converging binomial series

1

γ
= 1

γb

[ ∞∑

i=0

(−1)i
( 1

2
i

)
e2i sin2i θ

] ⎡

⎣
∞∑

j=0

(−1) j
( 1

2
j

)

× e2 j (2 − e2) j sin2 j θ

⎤

⎦
[ ∞∑

k=0

e2k
γ sin2k θ

]
. (26)

The three binomial series can be combined using a Cauchy
multiplication. Combining the first two series and subse-
quently combining it with the third, results in a single power
series expression

1

γ
= 1

γb

∞∑

j=0

j∑

k=0

(−1)ke2ke2( j−k)
γ

k∑

i=0

( 1
2
i

)( 1
2

k − i

)

× (2 − e2)k−i sin2 j θ. (27)

Finally, adding the power series in Eqs. (22), (23) and
(27) together and combining it with the power series of
(R/re)

(n+1) gives

(
R

re

)n+1 1

γ

∂γ

∂h
= −

∞∑

j=0

j∑

k=0

αn, j−k

k∑

l=0

⎛

⎝ b

a2 (−1)k

×(2 − e2)k−l e2k

[( 3
2
l

)( − 3
2

k − l

)

+
( 1

2
l

)( − 1
2

k − l

)]
+2

ω2

γb
(−1)l e2l e2(k−l)

γ

×
l∑

p=0

( 1
2
p

)( 1
2

l − p

)
(2 − e2)l−p

⎞

⎠ sin2 j θ.

(28)

This series can be used to obtain an expression for the second
term of the fundamental equation of physical geodesy [Eq.
(1)] in terms of the solid spherical harmonic coefficients of
the disturbing potential. All dependence on latitude can be
centred inside the spherical harmonic functions by applica-
tion of Eq. (9)

1

γ

∂γ

∂h
T =

∞∑

n=0

n∑

m=0

T
R
nm

∞∑

j=0

j∑

i=− j

εnmi j Y n+2i,m, (29)
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where

εnmi j = −K
2i,2 j
nm

j∑

k=0

αn, j−k

k∑

l=0

⎛

⎝ b

a2 (−1)k(2 − e2)k−l

× e2k

[( 3
2
l

)( − 3
2

k − l

)
+

( 1
2
l

)( − 1
2

k − l

)]
+2

ω2

γb
(−1)l

× e2l e2(k−l)
γ

l∑

p=0

( 1
2
p

)( 1
2

l − p

)
(2 − e2)l−p

⎞

⎠ . (30)

Equations (14) and (29) can be summed to obtain a formula
for the gravity anomaly on the ellipsoid in terms of the solid

spherical harmonic coefficients T
R
nm , which after a rearrange-

ment of summation order becomes

�g =
∞∑

n=0

n∑

m=0

∞∑

j=0

j+1∑

i=− j−1

(
εn−2i,m,i, j + n − 2i + 1

R

× βn−2i,m,i, j + 1

R
γn−2i,m,i, j

)
T

R
n−2i,mY nm . (31)

This expression can, due to the orthogonality of the spheri-
cal harmonic functions on the sphere, be directly compared
to surface spherical harmonic coefficients of gravity anom-
alies on the ellipsoid [Eq. (3)]. After a final rearrangement
of summation order this gives

�g
e
nm =

∞∑

i=−∞
λ
g
nmi T

R
n−2i,m, (32)

where the weights λ
g
nmi can be computed from another infi-

nite summation

λ
g
nmi =

∞∑

j=|i |−1

(
εn−2i,m,i, j + n − 2i + 1

R

× βn−2i,m,i, j + 1

R
γn−2i,m,i, j

)
. (33)

Equation (32) gives the spectral relationship between gravity
anomalies and disturbing potential in ellipsoidal approxima-
tion. Though not as elegant as the simple one-to-one relation
in SCR approximation, it is much more accurate. The simple
one-to-one relation is nowadays no longer accurate enough
for most practical applications (e.g., Barthelmes 2009). The
accuracy of the ellipsoidal approximation derived here is
tested numerically in the next section.

4 A surface spherical harmonic model of gravity
anomalies

Using the coefficient transformation described in Sect. 3.2,
a surface spherical harmonic expansion of gravity anomalies

with respect to the GRS80 ellipsoid (Moritz 2000) is com-
puted from EGM2008 (Pavlis et al. 2012). For this purpose,
the tide-free solid spherical harmonic coefficients of the grav-
itational potential provided by EGM2008 (up to maximum
degree 2190) were transformed into unscaled solid spherical

harmonic coefficients of the disturbing potential T
R
nm (e.g.,

Smith 1998), so that an expansion of the form of Eq. (2) is
achieved. The zero- and first-degree coefficients were kept at
zero. The reference gravity field employed in this transfor-
mation is the GRS80 reference gravity field.

4.1 Convergence

It is important for an accurate transformation that the infi-
nite summations in Eqs. (32) and (33) converge and are not
truncated too early. Theoretically, the convergence rate of the
series in Eq. (33) is slowest for high degrees, and dominated
by the binomial expansion of (R/re)

n+2 [Eq. (7)], which
converges slowest of all expansions. Since this expansion is
alternating, an upper limit for the truncation error ε can be
found using the d’Alembert ratio test (e.g., Stewart 1995)

ε <
(n + 1) j e2 j

2 j j ! . (34)

It follows from this that for n = 2160 an acceptable trun-
cation error of e2 is achieved when 23 terms are taken into
account. This is confirmed by numerical results shown in
Figs. 1, 2 and 3. Only examples with m = 0 are shown in
these figures. The convergence rate of the series in Eq. (33)
(Fig. 1) is similar for all values of m, while the convergence
rate of the series in Eq. (32) (Fig. 3) is highest for larger val-
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Fig. 1 Cumulative values of λ
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nmi for various degrees n with m = 0

and i = 0 in summation over j . Note: to optimally show the alternating
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was used for negative λ
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one graph by condensing all values −1e − 08 < λ
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nmi < 1e − 08 at

zero
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Fig. 3 Values ofλg
nmi for various degreesn withm = 0; the circleswith

horizontal lines indicate the weights in SCR approximation ((n−1)/R)

ues of m. Hence, overall convergence is slowest for m = 0,
making this a worst-case study.

Figure 1 shows the convergence of the series in Eq. (33)
for various degrees n. As expected, it can be seen that the
series is alternating, and that the oscillations become more
volatile for higher degrees. The three constituents εn−2i,m,i, j ,
(n − 2i + 1)βn−2i,m,i, j/R and γn−2i,m,i, j/R that make up
λnmi (�g, T ) are shown in Fig. 2 for n = 2160, m = 0 and
i = 0. The term containing βn−2i,m,i, j is the dominant term.
To compute λ

g
n00 with sufficient precision for all degrees up

to n = 2160, at least 25 terms need to be taken into account
in the summation over j [Eq. (33)].

The convergence of the series in Eq. (32) is shown in Fig.
3. The values of λ

g
nmi decrease for indices i further away from

0, proving that the series converge fairly rapidly. However,
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Fig. 4 Power spectrum of surface spherical harmonic series of gravity
anomalies with various maximum summation indices, where −imin =
imax = jmax equals the max index indicated

simply using the value for i = 0 only is clearly insufficient,
especially for higher degrees, as the values for |i | = 1, 2, . . .

are also significant. In SCR approximation, there is a one-
to-one relation between spherical harmonic coefficients of
disturbing potential and gravity anomaly [Eq. (4)], which
comes down to having a value for i = 0 only. The value for
λ
g
n00 in SCR approximation is (n−1)/R [Eq. (4)], and Fig. 3

shows that this is a clear underestimation, especially for high
degrees.

To test the effect of series truncation on the solution, the
infinite summations were truncated at various values of i
and j . The spherical harmonic power spectra of the gravity
anomaly solutions are plotted in Fig. 4 for various maximum
truncation indices, which were set equal for i and j , thus
−imin = imax = jmax. As expected, the number of terms in
the summation must be increased to perform the coefficient
transformation with high precision up to ever higher degree
and order. The effect of truncation at too low a value on
the power spectrum is dramatic, which is due to the volatile
oscillations in the summation over j (cf. Fig. 1). Maximum
truncation indices of at least −imin = imax = jmax = 25
are required to obtain a realistic spectrum up to degree and
order 2160. The spectra for summations up to 25 and 30 are
indistinguishable in Fig. 4.

4.2 Computation and validation

The disturbing potential coefficients derived from EGM-
2008 were transformed into gravity anomaly coefficients
using Eq. (32). The infinite summation in Eq. (32) was trun-
cated from imin = −30 to imax = 30, and in Eq. (33) to

jmax = 30. All coefficients T
R
nm of negative degree or of

degrees beyond the maximum of 2190 were set to zero. This
resulted in a surface spherical harmonic expansion of grav-
ity anomalies up to degree and order 2250. Note that the
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coefficients beyond degree ∼2130 are not complete, since
coefficients beyond degree 2190 are needed to compute them
correctly, and additionally, EGM2008 coefficients are incom-
plete beyond degree 2159. Yet all surface spherical harmonic
coefficients to degree and order 2250 are retained to pre-
serve the band-limited content of the expansion. Note also
that this expansion contains zero- and first-degree terms that
are non-zero. A discussion on the zero- and first-degree sur-
face spherical harmonic coefficients of gravity anomalies is
provided in Heck and Seitz (2003).

The surface spherical harmonic expansion of gravity
anomalies is validated by a global spherical harmonic synthe-
sis. Point values of gravity anomalies on the GRS80 ellipsoid
are computed from the computed gravity anomaly expansion
on a global 10′×10′ grid. These are compared to point values
of linearly approximated gravity anomalies computed from
EGM2008 using the harmonic synth software provided by
the EGM2008 development team (Holmes and Pavlis 2006).
In harmonic synth, the so-called linearly approximated grav-
ity anomalies are computed according to Eq. (1), or more
specifically according to Eq. (6.33) in Claessens (2006). The
gravity anomalies were computed directly from EGM2008
coefficients, i.e. the spherical harmonic coefficients of the
gravitational potential as provided by EGM2008 were used

as input in harmonic synth. Therefore, the validation includes
the transformation from EGM2008 coefficients to unscaled
solid spherical harmonic coefficients of the disturbing poten-
tial, as well as the subsequent transformation to surface
spherical harmonic coefficients of the gravity anomalies.

The differences between both grids are shown in Fig. 5
and Table 1. It can be seen that with imax = 30, the agree-
ment between both grids of gravity anomalies is worst near
the equator, but <1µGal everywhere on Earth and the global
RMS of differences is just 0.08µGal. The pattern of poorer
precision near the equator vanishes completely when imax is
increased to 40 (imin = −40, jmax = 40) and only numer-
ical rounding errors remain in the statistics (Table 1). This
proves the very high precision of the coefficient transforma-
tion derived in Sect. 3.2 to degree and order 2190, sufficient
for any practical application.

Table 1 also shows the global statistics for gravity anom-
alies obtained using Eq. (51) in Heck and Seitz (2003).
The formula provided by Heck and Seitz (2003) is essen-
tially an approximation of the rigorous formulas derived
in Sect. 3 [Eq. (32)]. Heck and Seitz (2003) use this for-
mula as an intermediate result in the derivation of ellipsoidal
corrections to Stokes’s formula, and acknowledge that the
approximation is poor in the computation of high degree sur-

Fig. 5 Differences between
gravity anomalies computed
from surface harmonic
expansion of gravity anomalies
and from EGM2008 (imax = 30
used; units in mGal; Robinson
projection)
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Table 1 Global statistics of the comparison of gravity anomalies from
a surface spherical harmonic expansion in SCR approximation, in Heck
and Seitz (2003) approximation (‘HS’), and in ellipsoidal approxima-

tion with imax = 30 [‘ell(i = 30)’] and imax = 40 [‘ell(i = 40)’]
against gravity anomalies directly synthesised from EGM2008 (units
in mGal)

SCR HS ell(i = 30) ell(i = 40)

Minimum −192.26 −183.16 −5.11 × 10−4 −1.53 × 10−5

Maximum 319.67 245.18 6.10 × 10−4 1.53 × 10−5

Mean 0.0459 0.0525 2.53 × 10−8 0.00

RMS 10.99 6.09 8.31 × 10−6 2.86 × 10−8
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Fig. 6 Power spectra of surface spherical harmonic series of gravity
anomalies in SCR approximation, in Heck and Seitz (2003) approxima-
tion, and in ellipsoidal approximation (black line), and of the differences
between the series

face spherical harmonic coefficients of gravity anomalies.
This is confirmed and quantified by the results in Table 1.
The main reasons for the poor performance in this compari-
son is that the Heck and Seitz (2003) formula only takes into
account terms of i = −1, 0, 1, which as shown by Figs. 1,
2 and 3 is insufficient for high degrees. Since gravity anom-
alies possess high power in the high degrees, the statistics
are poor as a result. However, the Heck and Seitz (2003)
formula does provide a great improvement upon the SCR
approximation for low degree coefficients, as can be seen in
Fig. 6.

Figure 6 shows the degree variance spectra of the sur-
face spherical harmonic expansion of gravity anomalies with
respect to the GRS80 ellipsoid in (1) SCR approximation,
(2) Heck and Seitz (2003) approximation, and (3) ellipsoidal
approximation (rigorous solution). For the SCR approxima-
tion, the reference radius R in the factor (n − 1)/R was set
equal to the mean Earth radius (6,371,005 m). Note that the
coefficients T R

nm were not rescaled, so the reference radius
R in the term (R/r)n+1 in Eq. (2) was left at the EGM2008
value of 6,378,136.3 m.

It can be seen that the SCR approximation underesti-
mates the power in the spectrum by up to almost one order
of magnitude for the highest degrees. This is because the
SCR approximation essentially represents the spectrum on
the ellipsoid’s bounding sphere, where the gravity signal is
strongly attenuated (away from the equator). This is con-
sistent with the result shown in Fig. 3 which suggests that
the SCR factor of (n − 1)/R is too small. It should thus
never be assumed that the spectrum in SCR approxima-
tion is representative of the spectrum on the ellipsoid or the
Earth’s topography, particularly not for high spherical har-
monic degrees.

Figure 7 shows that the SCR approximation has simi-
lar power to the rigorous ellipsoidal approximation when
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Fig. 7 Comparison of power spectra of surface spherical harmonic
series of gravity anomalies in SCR approximation with varying refer-
ence radii to power spectrum of rigorous ellipsoidal solution

the spectrum is evaluated on a sphere with a radius of
∼6,375,000 m. The differences between degree variances
in SCR and ellipsoidal approximation are generally small-
est with R ≈ 6,375,000. They reach a maximum at degree
∼150 and taper off very slowly. The Heck and Seitz (2003)
approximation is much more accurate for low degree coeffi-
cients, but also underestimates the power in the high degrees
(Fig. 6).

5 Comparison to Hotine–Jekeli transformation

The transformation presented here [Eq. (32)] has some
similarities with the well-known transformation between
spherical harmonic coefficients and ellipsoidal harmonic
coefficients, known in geodesy as the Hotine–Jekeli trans-
formation (Jekeli 1988; Sebera et al. 2012). Both transfor-
mations present a relation between spherical and ellipsoidal
spectra, and in both the relation is given as a weighted
summation over coefficients of equal order but a range
of degrees. The main difference is that the Hotine–Jekeli
transformation uses ellipsoidal harmonics (using ellipsoidal
coordinates), whereas the transformation presented here uses
surface spherical harmonics on the ellipsoid (using spherical
coordinates).

The Hotine–Jekeli transformation as described in Jekeli
(1988) is a transformation between harmonic coefficients of
one and the same quantity. Gleason (1988) shows how the
method can be applied for the transformation of spherical
harmonic coefficients of the disturbing potential or gravita-
tional potential to ellipsoidal harmonic coefficients of gravity
anomalies and vice versa. The forward transformation (i.e.
from disturbing or gravitational potential to gravity anom-
alies) is performed using Eqs. (2.4) and (2.8) in Gleason
(1988) which in the current notation read
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gRnm = n − 1

R
T

R
nm (35)

and

ge
nm = Sn|m|

(
b

E

) w∑

i=0

λnmi g
R
n−2i,m, (36)

where Rge
nm are the real ellipsoidal harmonic coefficients of

the harmonic quantity r�̃g, Snm( b
E ) is Jekeli’s renormalised

Legendre function of the second kind, λnmi are weights that
are computed recursively (Gleason 1988, Eq. 1.18), and

w = int

(
n − m

2

)
. (37)

Equation (35) follows from the definition of gravity anom-
alies in spherical approximation [Eq. (5)]. This means that the
harmonic coefficients of gravity anomalies computed using
the Hotine–Jekeli transformation as per Gleason (1988) [Eqs.
(35–37)] are harmonic coefficients of gravity anomalies in
spherical approximation (which should not be confused with
the fact that they are ellipsoidal harmonic coefficients). The
transformation can therefore be compared to that derived
in Sect. 3.1 [Eq. (12)]. However, the Hotine–Jekeli trans-
formation cannot directly be applied to provide harmonic
coefficients of gravity anomalies in ellipsoidal approxi-
mation [Eq. (1)], so it is not directly comparable to the
transformation derived in Sect. 3.2 [Eq. (32)]. In other words,
while the transformation presented here [Eq. (32)] yields
an ellipsoidal spectrum of gravity anomalies in ellipsoidal
approximation, it is not obvious how the same could be
achieved with the Hotine–Jekeli transformation.

The differences between harmonic coefficients of grav-
ity anomalies in spherical and in ellipsoidal approximation
are significant, especially in the higher degrees. The Hotine–
Jekeli transformation is regularly applied for the reverse of
the case discussed here, i.e., computing spherical harmonic
coefficients of the disturbing or gravitational potential from
gravity anomalies (e.g. Lemoine et al. 1998; Holmes and
Pavlis 2007; Pavlis et al. 2012). In that case, ellipsoidal cor-
rections to order e2 are usually applied to gravity anomalies in
the space domain to accommodate for these differences (e.g.,
Rapp and Pavlis 1990). In the transformation presented here
[Eq. (32)], ellipsoidal corrections in the space domain are
not required. It provides a one-step, rigorous transformation
between surface spherical harmonic coefficients of gravity
anomalies in ellipsoidal approximation and solid spherical
harmonic coefficients of the disturbing potential, fully in the
spectral domain.

Apart from the above, one obvious difference between the
transformation presented here and the Hotine–Jekeli trans-
formation is the selection of coordinates. In the Hotine–Jekeli
transformation, two types of coordinates are used: geocen-
tric spherical polar coordinates (using geocentric co-latitude)

for the sphere and ellipsoidal coordinates (using reduced
co-latitude) for the ellipsoid. In our method, only geocen-
tric spherical polar coordinates are used, i.e. data on both
the sphere and the ellipsoid is parametrised by geocentric
co-latitude and longitude. A minor advantage of the use of
only geocentric coordinates is that all global gravity models
are currently provided in solid spherical harmonic coeffi-
cients which use geocentric coordinates and transformation
to another coordinate system is not required. Gruber and
Abrykosov (2014) further describe the inconvenience of the
need to use reduced co-latitude in the Hotine–Jekeli trans-
formation and provide a method to use the Hotine–Jekeli
transformation when data on the ellipsoid are provided in
terms of geocentric or geodetic latitude.

In terms of the rate of series convergence, the Hotine–
Jekeli transformation and our method are similar. Both
methods require a weighted summation over coefficients of
equal order. A difference is the range of degrees required.
Upon comparison of Eq. (36) with Eq. (32), it can be seen
that the Hotine–Jekeli transformation only requires spherical
harmonic coefficients of lower degree, while our transforma-
tion requires coefficients of both lower and higher degree.
It can also be seen that the Hotine–Jekeli transformation
is a finite series, whereas our transformation is an infinite
series. However, in practice both series are not applied in full
but truncated, and both series converge at a similar rate. In
addition, if the function on the sphere is band-limited, both
methods lead to an ellipsoidal spectrum with infinite band-
width, but with coefficients that decrease rapidly beyond the
maximum degree of the function on the sphere.

The calculation of Jekeli’s renormalised Legendre func-
tion of the second kind involves an infinite series that is to be
truncated when sufficient precision is obtained (Jekeli 1988,
Eq. 33). Sebera et al. (2012) provide formulas that acceler-
ate the convergence of the renormalised Legendre function
of the second kind. This infinite series can be compared to
the infinite series in our calculation of λ

g
nmi [Eq. (33)]. The

number of terms that needs to be taken into account is of
the same order in both methods, and computation time is not
restrictive for practical application of either method.

6 Applications

Several applications of a surface harmonic expansion of grav-
ity anomalies are mentioned in the introduction. Two of these
are presented in more detail here.

6.1 Computation of ellipsoidal corrections to Stokes’s
formula

Many authors have derived corrections to the spherical
approximation in Stokes’s formula for geoid determination
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Fig. 8 Ellipsoidal corrections
to height anomalies from
Stokes’s formula (units in m;
Robinson projection)
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(e.g., Fei and Sideris 2000; Heck and Seitz 2003; Sjöberg
2003). It has long been recognised that such ellipsoidal
corrections are predominantly of a long-wavelength nature
(Lelgemann 1970; Rapp 1981). Huang et al. (2003) show that
the contribution of spherical harmonic coefficients beyond
degree 20 only contributes 10 % of the total ellipsoidal
corrections. It is therefore very efficient to model ellip-
soidal corrections using a spherical harmonic expansion,
and compute ellipsoidal corrections from a global gravity
model.

Heck and Seitz (2003) and Sjöberg (2003) have derived
specific approximate formulas to compute a surface har-
monic expansion of ellipsoidal corrections. However, com-
puting ellipsoidal corrections in an exact manner is very
straightforward when a surface harmonic expansion of grav-
ity anomalies is available. This follows from the spectral form
of Stokes’s formula.

Stokes’s formula only holds for a spherical reference sur-
face, but is typically applied to gravity anomalies on or close
to the reference ellipsoid. Applying Stokes’s formula over
gravity anomalies on the ellipsoid therefore gives height
anomalies (quasi-geoid heights) that are in error, ζ̃ . While
Stokes’s formula is usually evaluated in the space domain
using numerical integration (e.g. Hirt and Claessens 2011;
Hirt et al. 2011), it can also be expressed in spectral form (cf.
Heiskanen and Moritz 1967, p. 97)

ζ̃ = 1

γ

∞∑

n=2

n∑

m=−n

Rs

n − 1
�g

e
nmY nm, (38)

where Rs is the Stokesian reference radius. The height anom-
aly without spherical approximation, ζ , can be computed
from a global gravity model [Eq. (2)] and Bruns’s equation

ζ = 1

γ

∞∑

n=2

n∑

m=−n

(
R

re

)n+1

T
R
nmY nm, (39)

assuming that all appropriate ellipsoidal corrections were
applied in the creation of the global gravity model. Ellip-
soidal corrections to the unmodified Stokes kernel, δζ , can
simply be found from the difference between Eqs. (38) and
(39)

δζ = ζ − ζ̃ . (40)

Ellipsoidal corrections to Stokes’s formula computed in this
manner are shown in Fig. 8. Here, the EGM2008 global grav-
ity model and the GRS80 reference ellipsoid were used, and
the Stokesian reference radius was set equal to the semi-
major axis of the GRS80 ellipsoid. The surface spherical
harmonic coefficients of gravity anomalies were computed
via the transformation derived in Sect. 3, where the infi-
nite summation over i was restricted from imin = −30 to
imax = 30.

Figure 9 shows the differences between these ellipsoidal
corrections and those computed using Eq. (59) in Heck and
Seitz (2003). The RMS of the differences is 4.2 mm, com-
mensurate with Heck and Seitz’s (2003) statement that their
formula is a solution to order e3. The spatial pattern of the
differences is similar to the pattern of the ellipsoidal correc-
tions themselves, and they are primarily of a long-wavelength
nature. Short-wavelength differences are also visible away
from the equator, where the ellipsoidal radius is furthest apart
from the Stokesian reference radius selected here (the semi-
major axis of the reference ellipsoid). This selection of the
Stokesian reference radius was made, because the Heck and
Seitz (2003) formula only applies to this choice. The method
presented here, on the other hand, is not only more accurate
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Fig. 9 Differences between
ellipsoidal corrections computed
using Eqs. (38–40) and
ellipsoidal corrections computed
using Eq. (59) in Heck and Seitz
(2003) (units in m; Robinson
projection)
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but also more general, as it can easily use any Stokesian ref-
erence radius. Claessens (2006) has shown that it is best to
choose the Stokesian reference radius equal to the ellipsoidal
radius of the computation point.

The method for computation of ellipsoidal corrections can
be extended to the commonly applied combined geoid deter-
mination where a global gravity model is used to model the
long wavelengths of the geoid. It can also be extended to
be used with modified Stokes kernels, but this is outside the
scope of this paper.

6.2 Computation of ellipsoidal area means of gravity
anomalies

Area means of gravity anomalies computed from global
gravity models are routinely used in gravimetric geoid com-
putation. In SCR approximation, area means of gravity
anomalies can directly be computed from a global gravity
model using recurrence relations for integrals of associated
Legendre functions (Paul 1978). However, gravity anomalies
in SCR approximation are of insufficient precision to be used
in modern geoid determination (Hipkin 2004).

It is fairly straightforward to compute point values of
gravity anomalies from a global gravity model in ellipsoidal
approximation (Hipkin 2004; Claessens 2006), but the com-
putation of area means of gravity anomalies in ellipsoidal
approximation from a global gravity model is more com-
plicated. This is because in ellipsoidal approximation there
is no one-to-one relation between solid spherical harmonic
coefficients of the disturbing potential and surface spherical
harmonic coefficients of gravity anomalies, which compli-
cates the application of the recurrence relations of Paul
(1978). For this reason, the harmonic synth software for

spherical harmonic synthesis can compute area means of
gravity anomalies in SCR approximation, but not in ellip-
soidal approximation.

While it is complicated to compute area means of grav-
ity anomalies directly from a global gravity model, it is
straightforward to compute these area means from a surface
spherical harmonic expansion of gravity anomalies, because
in this case the recurrence relations of Paul (1978) can be
used. Thus, the rigorous computation of area means of grav-
ity anomalies in ellipsoidal approximation can be performed
using a two-step procedure: first the spherical harmonic coef-
ficient transformation described in Sect. 3.2, followed by
synthesis of area means. This is here denoted by the surface
harmonic method.

To validate this procedure numerically, area means of
gravity anomalies are computed over 1′ ×1′ cells in a 2o ×2o

test area (a mountainous part of New Zealand’s South Island;
Fig. 10, left). These are compared to area means obtained
using two other methods, here denoted the fine-grid method
and the three-grid method (Hirt and Claessens 2011). In the
fine-grid method, point values of gravity anomalies in ellip-
soidal approximation are synthesised on a very dense 3′′×3′′
grid, after which the blockmean of these values is computed
for each 1′ × 1′ cell. In the three-grid method, area means
of gravity anomalies in SCR approximation are synthesised
first, after which an ellipsoidal correction is added. This ellip-
soidal correction is the difference between point values of
gravity anomalies in ellipsoidal and in SCR approximation,
evaluated in the centre of each cell. Both the fine-grid and
three-grid methods are approximations. The precision of the
fine-grid method can be increased by creating a denser grid,
at the expense of additional computation time. The fine-grid
method is significantly slower than the other two methods,
and therefore not suited to large computation areas.
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Fig. 10 Area means of gravity anomalies computed using the surface
harmonic method in a test area on New Zealand’s South Island (left), dif-
ferences between the surface harmonic method and the fine-grid method

(centre), and differences between the surface harmonic method and the
three-grid method (right) (units all in mGal; Mercator projection)

Of the three methods, the surface harmonic method and
the fine-grid method show the closest agreement. This can
be seen from the centre and right figures in Fig. 10. The
centre figure shows that the differences between the surface
harmonics method and the fine-grid method are less than
3 µGal anywhere in the test area. The three-grid method
appears to be the least precise of the three, but the level of
agreement between all three methods shows that all are of
sufficient precision for practical application at current. The
surface harmonic method is theoretically the most rigorous,
and also the most efficient and easiest to implement if a sur-
face spherical harmonic expansion of gravity anomalies is
readily available.

7 Conclusions

A surface spherical harmonic expansion of gravity anomalies
with respect to a reference ellipsoid can be computed directly
from a solid spherical harmonic expansion of the disturbing
potential (or a global gravity model) through a coefficient
transformation. Since in ellipsoidal approximation there is no
one-to-one relation between the coefficients of both expan-
sions, the coefficient transformation utilises a summation
over coefficients of equal order m but different degree n. The
transformation has been validated by comparison of synthe-
sised grids of gravity anomalies from both expansions, which
agree with a global RMS precision of well below 1 nGal.
The spectra of gravity anomalies under different levels of
approximation show that approximations to order e2 or e3 are
insufficient for the generation of surface spherical harmonic
coefficients with respect to an ellipsoid. The Hotine–Jekeli

transformation between solid spherical and ellipsoidal har-
monic coefficients (Jekeli 1988) using the scheme of Gleason
(1988) is also incapable of producing an ellipsoidal spectrum
of gravity anomalies in ellipsoidal approximation, because it
relies on a spherical approximation of gravity anomalies in
the spectral domain. Our new transformation overcomes this
limitation of the Hotine–Jekeli transformation. Among other
applications, a surface spherical harmonic expansion of grav-
ity anomalies in ellipsoidal approximation can efficiently and
successfully be used to compute ellipsoidal corrections to
gravimetric geoid computation and to compute area means
of gravity anomalies.
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Vaníček P, Tenzer R, Sjöberg LE, Martinec Z, Featherstone WE (2004)
New views of the spherical Bouguer gravity anomaly. Geophys J
Int 159:460–472. doi:10.1111/j.1365-246X.2004.02435.x

123

http://dx.doi.org/10.1007/s00190-007-0200-y
http://dx.doi.org/10.1007/s00190-007-0200-y
http://dx.doi.org/10.1179/003962610X12747001420780
http://dx.doi.org/10.1179/003962610X12747001420780
http://dx.doi.org/10.1002/2013JB010457
http://dx.doi.org/10.1007/s001900050157
http://dx.doi.org/10.1007/s001900050157
http://dx.doi.org/10.1007/s00190-010-0422-2
http://dx.doi.org/10.1007/s00190-010-0422-2
http://dx.doi.org/10.1007/s001900050280
http://dx.doi.org/10.1007/s001900050280
http://dx.doi.org/10.1007/s001900000131
http://dx.doi.org/10.1007/s11200-013-0578-3
http://dx.doi.org/10.1007/s00190-002-0309-y
http://dx.doi.org/10.1007/s00190-004-0389-y
http://dx.doi.org/10.1007/s11200-010-0070-2
http://dx.doi.org/10.1007/s00190-011-0451-5
http://earth-info.nga.mil/GandG/wgs84/gravitymod/new_egm/new_egm.html
http://earth-info.nga.mil/GandG/wgs84/gravitymod/new_egm/new_egm.html
http://dx.doi.org/10.1007/s001900-003-0317-6
http://dx.doi.org/10.1029/2011JB008916
http://dx.doi.org/10.1007/s00190-012-0549-4
http://dx.doi.org/10.1007/s00190-012-0549-4
http://dx.doi.org/10.1007/s00190-003-0321-x
http://dx.doi.org/10.1007/s00190-003-0321-x
http://dx.doi.org/10.1007/s00190-003-0367-9
http://dx.doi.org/10.1007/s00190-003-0367-9
http://dx.doi.org/10.1111/j.1365-246X.2004.02435.x

	A surface spherical harmonic expansion of gravity  anomalies on the ellipsoid
	Abstract
	1 Introduction
	2 Spherical harmonic expansion of gravity anomalies
	3 Spectral relation between disturbing potential and gravity anomaly
	3.1 Spherical and constant radius approximation
	3.2 Ellipsoidal approximation

	4 A surface spherical harmonic model of gravity anomalies
	4.1 Convergence
	4.2 Computation and validation

	5 Comparison to Hotine--Jekeli transformation
	6 Applications
	6.1 Computation of ellipsoidal corrections to Stokes's formula
	6.2 Computation of ellipsoidal area means of gravity anomalies

	7 Conclusions
	Acknowledgments
	References




