
J Geod (2015) 89:685–696
DOI 10.1007/s00190-015-0807-3

ORIGINAL ARTICLE

The impact of common versus separate estimation of orbit
parameters on GRACE gravity field solutions

U. Meyer1 · A. Jäggi1 · G. Beutler1 · H. Bock1

Received: 3 July 2014 / Accepted: 16 March 2015 / Published online: 29 March 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Gravity field parameters are usually determined
from observations of the GRACE satellite mission together
with arc-specific parameters in a generalized orbit determi-
nation process. When separating the estimation of gravity
field parameters from the determination of the satellites’
orbits, correlations between orbit parameters and gravity
field coefficients are ignored and the latter parameters are
biased towards the a priori force model. We are thus con-
fronted with a kind of hidden regularization. To decipher the
underlying mechanisms, the Celestial Mechanics Approach
is complemented by tools tomodify the impact of the pseudo-
stochastic arc-specific parameters on the normal equations
level and to efficiently generate ensembles of solutions.
By introducing a time variable a priori model and solv-
ing for hourly pseudo-stochastic accelerations, a significant
reduction of noisy striping in the monthly solutions can be
achieved. Setting up more frequent pseudo-stochastic para-
meters results in a further reduction of the noise, but also in
a notable damping of the observed geophysical signals. To
quantify the effect of the a priori model on the monthly solu-
tions, the process of fixing the orbit parameters is replaced
by an equivalent introduction of special pseudo-observations,
i.e., by explicit regularization. The contribution of the thereby
introduced a priori information is determined by a contribu-
tion analysis. The presented mechanism is valid universally.
It may be used to separate any subset of parameters by
pseudo-observations of a special design and to quantify the
damage imposed on the solution.
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1 Introduction

Gravity models of the Earth at monthly or even sub-monthly
intervals, which monitor the slowly varying gravity signal
of the cryosphere and of hydrological or other geophysical
origin, are the major result of the Gravity Recovery And Cli-
mate Experiment (GRACE, Tapley et al. 2004). Such models
are provided by the official processing centers, namely the
German Research Centre for Geosciences (GFZ, Dahle et al.
2012) and the Center for Space Research (CSR, Bettadpur
2012). The Jet Propulsion Laboratory (JPL, Watkins and
Yuan 2012) serves as a backup and computes models for
validation. Models of different time spans are also provided
by a number of alternative sources, e.g., the Department for
TheoreticalGeodesy of theUniversity ofBonn (ITG,Kurten-
bach et al. 2009), the Groupe de Recherche de Geodesie
Spatiale (GRGS, Bruinsma et al. 2010), theDelft Institute for
Earth-oriented Space Research (DEOS, Liu et al. 2010), and
the Astronomical Institute of the University of Bern (AIUB,
Meyer et al. 2012).

The estimation of gravity field parameters from obser-
vations of the GRACE satellite mission is a non-linear
parameter estimation process. The classical approach solves
it as a generalized orbit determination problem. Arc-specific
orbit parameters and general model parameters, e.g., the
spherical harmonic coefficients of the gravity field are solved
simultaneously in one parameter estimation process.

The quality of the gravity field models is not necessar-
ily characterized by their spatial resolution, which is limited
by the density of the ground track pattern during the cor-
responding time intervals (Weigelt et al. 2013), but by the
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error and signal content of the spherical harmonic coefficients
(in the spectral domain), or equivalently, the grid values of
geoid heights or quantities derived therefrom (in the spatial
domain).

The attempt can be made to suppress the noise in a post-
processing step by filtering (in the spectral or in the spatial
domain). Numerous papers dedicated to advanced filtering
methods were published since and even prior to the availabil-
ity of GRACE data (e.g., Wahr et al. 1998; Han et al. 2005;
Swenson andWahr 2006;Davis et al. 2008). The critical point
of filtering is, however, howmuch signal is accidentally dam-
aged by the filtering process. More recent publications on the
topic (Kusche 2007; Klees et al. 2008) make use of approxi-
mations of the signal covariance to protect the signal during
the filtering process.

On the other hand, the estimation process can be stabi-
lized and the noise suppressed by regularization, i.e., by the
introduction of a priori knowledge via pseudo-observations
of themodel parameters (Tikhonov andArsenin 1977). The a
priori knowledge is weighted relative to the original observa-
tions and the optimal balance between a priori and observed
signal content may be found, e.g., by variance components
(Koch and Kusche 2002). For the estimation of monthly
gravity models from GRACE data regularization has been
applied, e.g., during phases of orbit resonance resulting in
sparse ground track coverage.1

But there exists another way to suppress noise in the
monthly solutions that has been applied by GFZ in their orig-
inal RL05. The signal to noise ratio of the monthly gravity
fields profits from the separate estimation of orbit and grav-
ity field parameters in combination with the introduction of
a time variable a priori model. It has already been noted by
Zhao et al. (2010) that a separate estimation of the K-band
instrument parameters leads to a reduction of low frequency
noise, compared to a common estimation of instrument para-
meters and gravity field coefficients. Zhao et al. (2010) also
showed in a simulation study that time variable signal in the
gravity field solution is absorbed in case of separate esti-
mation of K-band instrument parameters and gravity field
coefficients. Note that all experiments of Zhao et al. (2010)
were based on static a priori models of the gravity field. In
this study, we do not estimate K-band instrument parame-
ters at all, but focus on the empirical orbit parameters. We
also consider time variable a priori models. We describe the
mechanism of hidden regularization taking place when the
estimation of gravity coefficients is separated from that of
the orbit parameters. We detail the effects on the monthly
fields and quantify the impact of the a priori model on the
solutions.

Meanwhile, a number of high-resolution static gravity
field models with deterministically modeled time variable

1 Release notes for GFZ GRACE level-2 products—version RL04.
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Fig. 1 Monthly geoid variations (in equivalentwater heights) andfitted
trends near the East coast of Greenland

coefficients (trend, once-per-year and twice-per-year vari-
ations) were published [EIGEN-GRGS,2 EIGEN-6S/C,3

AIUB-GRACE03S (see footnote 3)]. For the GFZ-RL05
monthly gravity models (Dahle et al. 2012), EIGEN-6C was
used in the a priori force model. Arc- and instrument-specific
parameters were then determined in a first step and the result-
ing orbits were kept fixed, while in a second step corrections
to the a priori gravity field parameters were estimated. Thus,
correlations between gravity field and arc/instrument spe-
cific parameters were ignored. The signal absorbed by the
accelerometer biases was irrevocably lost for the resulting
monthly gravity models (Meyer et al. 2015). When compar-
ing trend estimates derived from the original GFZ-RL05with
results from other time series (see Fig. 1) one finds significant
differences. We interpret these differences as the result of a
hidden regularization. When this problem became obvious,
GFZ replaced its entire RL05 product suite by the RL05a4

product suite which avoided the problems described before.5

The frequent accelerometer biases set up for GFZ-RL05
may be considered as pseudo-stochastic orbit parameters that
are the key element of the Celestial Mechanics Approach
(CMA, Beutler et al. 2010a, b). The CMA represents a
dynamic approach (e.g., Tapley 1973) that unifies determin-
istic and stochastic elements. It was adapted to reproduce the
processing scheme of GFZ. Experiments were performed to
illustrate themechanismof the hidden regularization process.
The piecewise constant accelerations set up by both, the GFZ
and AIUB, turned out to be of critical importance. If these
arc-specific parameters are determined in a first step using a

2 http://grgs.obs-mip.fr/grace.
3 http://icgem.gfz-potsdam.de/ICGEM/modelstab.html.
4 http://www.csr.utexas.edu/grace/RL05.html.
5 Release notes for GFZ GRACE level-2 products—version RL05.
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given a priori force model and are introduced as fixed in a
consecutive step to determine the parameters of the gravity
model, the resulting gravity field coefficients heavily depend
on the used a priori force model.

This is illustrated strikingly by C20 which is not well
determined from GRACE data (e.g., Meyer et al. 2010).
For the experiment, these a priori values were either taken
fromAIUB-GRACE03S (known to contain aC20-estimate of
reduced quality) or derived from satellite laser ranging (SLR)
analysis (Sośnica 2014). While in a common estimation the
monthly C20-values, independently of their a priori value,
show a “wild” but identical scatter, they closely follow the
a priori model in the case of fixing the orbit parameters (see
Fig. 2). The same is true for the arbitrarily chosen coefficient
C44 (see Fig. 3) which is well determined by GRACE and is
correctly recovered, independently of the a priori model, as
long as orbit and model parameters are estimated together.
As soon as the orbit is fixed, the a priori values are closely
reproduced (even if they were artificially degraded for the
sake of the experiment). In both cases, the signal in contra-
diction to the a priori model is to a large extent absorbed by
the arc-specific parameters as soon as the orbits are fixed and
consequently lost for the gravity field recovery in the second
step. The same happened in original GFZ-RL05, where the
a priori model for C20, derived from SLR, was reproduced
by the monthly estimates, as already noted by Chambers and
Bonin (2012).

Several sets of monthly models were computed, differ-
ing by the a priori gravity model used, by the empirical
parameterization of the orbits and by the solution strat-
egy applied (common versus separate estimation of orbit
and gravity model). The resulting monthly models are ana-
lyzed spectrally and spatially. Finally, a formalism is derived
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Fig. 2 Impact of the a priori gravity field model on the estimation of
the spherical harmonic coefficientC20 (ill determined byK-band) when
either estimating orbit and gravity parameters together or separating the
gravity field estimation step by first fixing the orbit parameters
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Fig. 3 Impact of the a priori gravity fieldmodel on the estimation of the
spherical harmonic coefficient C44 (well determined by GRACE) when
either estimating orbit and gravity parameters together or separating the
gravity field estimation step by first fixing the orbit parameters

to equivalently replace the indirect regularization, resulting
from the suppression of correlations in the case of sepa-
rate estimation, by the introduction of pseudo-observations,
i.e., by explicit regularization. The influence of the a pri-
ori information on the resulting gravity models can then be
determined via contribution analysis (Sneeuw 2000).

The paper is structured as follows: Sect. 2 provides an
introduction to the CMA and the classical processing scheme
at AIUB. Section 3 explains how the quality of the result-
ing gravity fields is evaluated. In Sect. 4, the formalism of
fixing the orbit parameters is detailed in the framework of
the CMA and its effect on the gravity model parameters is
illustrated with several experiments. In Sect. 5, the estima-
tion process is reformulated as explicit regularization and the
contributions of the real and the pseudo-observations to the
resulting monthly gravity models are determined. In Sect. 6,
finally the relevance of the findings for the practice of gravity
model estimation from low Earth orbiting satellites (LEOs)
is discussed.

2 Orbit and gravity field determination with the
CMA

The CMA is based on a generalized orbit improvement
process starting from an a priori gravity model as the main
part of the force model. In the course of the orbit adjustment,
arc-specific parameters as well as corrections to the a priori
force model are simultaneously estimated by a least-squares
adjustment process. The kinematic satellite positions (includ-
ing covariance information) resulting from a GPS single
point positioning procedure are used as observations (Jäggi
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et al. 2011b). The K-band range-rates (KRR) derived from
the ranges which are observed with micrometer accuracy by
the inter-satellite link between the GRACE satellites (Dunn
et al. 2003) are also used as observations. Both observation
types are combined on the level of daily normal equations
(NEQs).

A key feature of the CMA is the extensive use of
pseudo-stochastic orbit parameters xo, i.e., piecewise con-
stant accelerations at constant time intervals, set up in the
course of the orbit determination to absorb deficiencies of
the a priori force model (Jäggi et al. 2006). As long as the
orbit is in the center of interest, the gravity model parameters
are normally not solved for and their correlations with the
pseudo-stochastic parameters do not play a role. When the
interest is on the spherical harmonic coefficients (SHC) of
the gravity model, care has to be taken not to absorb grav-
ity signal by the pseudo-stochastic parameters. This may be
achieved to a wide extent by limiting the absolute size of
and the variability between these parameters by absolute and
relative constraints. The constraining is realized via pseudo-
observations

xo = 0 (1)

for absolute constraints or

�xo = 0 (2)

for relative constraints. All orbit and force model parame-
ters are set up together in one common parameter estimation
process.

The CMA processing strategy for GRACE is detailed in
Jäggi et al. (2011a). Pseudo-stochastic accelerations in radial,
cross-track and quasi along-track direction are set up at 15-
min time intervals. For numerical reasons, the corresponding
arc-specific parameters of GRACE A and B are transformed
to their mean values and half their differences (Beutler et al.
2010a). The mean values, mainly determined by the GPS
observable, are typically constrained to zero at the level of
3 × 10−9 m/s2. The differences, mainly determined by the
ultra-precise K-band observable, are constrained even tighter
by a factor of 100 (both values were determined empiri-
cally). The arc-specific parameters are of no special interest
and are pre-eliminated (implicitly solved) from the com-
bined GPS+K-band daily NEQs. Unless a back-substitution
process is performed, they are not further available, while
the correlations to the SHC are implicitly kept in the NEQ
system. The resulting reduced daily NEQs are accumulated
to monthly NEQs and inverted to result in monthly estimates
of the Earth’s gravity field.

The choice of the a priori gravity model deserves a few
remarks. In the case of the determination of a static model to
high degree and order, the result is virtually independent of

the a priori model, as long as themodel is solved at least up to
the same degree and order as the a priori model and the range
of linearity is not left. Due to the pseudo-stochastic parame-
ters of the CMA the danger to leave the range of linearity
is rather small and all the static gravity models generated
at AIUB so far (Jäggi et al. 2010, 2011a) were computed
starting from EGM96. As soon as monthly models are deter-
mined, the resolution of the solved for SHC needs to be
limited to a lower degree of, e.g., 60 (due to the reduced
ground track coverage of the globe) while the observations
are still sensitive to a much higher degree. In order not to
bias the solved for SHC, a good a priori model thus has to be
used (at least for the SHC not determined in the estimation
process).

The first time series computed at AIUB applying the strat-
egy outlined above was published as AIUB-RL01 (Meyer
et al. 2012). The release of revised GRACE observation data
and updated background models made a re-processing nec-
essary. The new time series is based on:

– GRACE L1B-RL02 data,
– a priori gravity model AIUB-GRACE03S up to 160◦

including time variations up to 30◦,
– ocean tide model EOT11A (Savcenko and Bosch 2011)

up to 100◦ including admittances (Mayer-Gürr, personal
communication), and

– atmosphere and ocean de-aliasing productsAOD1B-RL05
(Flechtner and Dobslaw 2013) up to 100◦.

Monthly models to full degree and order 90 (labeled
“AIUB-RL02p”) were computed for comparison with GFZ-
RL05. For analyses in this article, different sets of solutions
were set up to a reduced degree and order of 60 [the reduced
models derived analogously to AIUB-RL02p are labeled
“AIUB-RL02p(60)”].

3 Methods for comparison of monthly gravity fields

The signal content and the noise are measures of the qual-
ity of the monthly gravity models. To assess the noise, we
study areas where little time variable signal is expected. We
compute monthly geoid heights at 3◦-grid points all over
the globe and subtract a static mean geoid. Because most of
the signal observed by GRACE is confined to the continents
(hydrology, ice mass change), we cut out the continents. To
further avoid leakage from the continental signal, we signif-
icantly shrink the oceans by 9◦ (three grid points) along all
coasts. Then, we derive monthly standard deviations (STD)
from all remaining ocean grid points, weighted by the cosine
of the latitude. Finally, we estimate and subtract seasonal
variations. Note that the resulting measure for the noise nev-
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Fig. 4 Weighted STD over the oceans of different releases of monthly
gravity field models

ertheless is a pessimistic one, because all other variations of
oceanic origin are treated as noise.

Figure 4 shows the noise levels derived in this manner
from AIUB-RL01 and RL02p, GFZ-RL04 and the original
RL05. The quality gain from GFZ-RL04 to RL05 and from
AIUB-RL01 toRL02p is clearly visible.All shown results are
unfiltered, AIUB-RL02p and GFZ-RL05 were truncated at
60◦ to correspond to GFZ-RL04, for AIUB-RL01 (the origi-
nal maximum order is 45) a special version to full degree and
order 60 was used. Despite the re-processing, the noise level
of the original GFZ-RL05 could not be reached by AIUB-
RL02p. This fact originally motivated the studies presented
in this article.

To assess the signal content in the monthly models, we
select regions where strong variations are expected. One of
our test locations is situated in the center of South Amer-
ica near the Amazon basin (φ = −16.5◦ and Λ = 304.5◦),
the other near the East coast of Greenland (φ = 73.5◦ and
Λ = 322.5◦). To keep things simple, we do not evaluate river
basins or ice sheets but simply calculate the mean around the
chosen location, weighted by a Gaussian bell curve with a
half-width radius of 300km. Because the variations are pre-
dominantly related to the hydrological cycle (in the Amazon)
or the ice mass change (in Greenland), we express them in
equivalent water heights (Wahr et al. 1998).

Finally, one may calculate difference degree variances
between monthly solutions and a static or time variable ref-
erence gravity model. In this way, the consistency between
the models is visualized degree wise. Note that a gain in
consistency is not necessarily also a gain in quality, since
the difference degree variances also include residual grav-
itational variations. Moreover, with the classical degree
variances no statement related to spherical harmonic order is
possible. Nevertheless, they are very helpful to visualize reg-

ularization effects (where artificially the consistency with an
a priori gravity model is enforced via pseudo-observations).

4 Separate estimation of orbit and gravity model
parameters

The observation equations for the parameter estimation prob-
lem including orbit xo and gravity model parameter xg may
be written as follows

[
l
p

]
=

[
Alo Alg

Apo Apg

] [
xo
xg

]
+ ε (3)

with observations l (kinematic orbits, K-band), pseudo-
observations p (constraints) and noise ε. The design matrix
A consists of four sub-matrices containing the partial deriva-
tives of the observations (subscript l) or pseudo-observations
(subscript p) w.r.t. the orbit (subscript o) or gravity model
(subscript g) parameters. The constraining is done according
to Eq. (1). In the original CMA, the gravitymodel parameters
are not constrained and consequently Apg = 0. The set of
orbit parameters xo consists of the initial state of the satellites
(the regular arc-length is 24 h) and the stochastic accelera-
tions. Note that the initial state is not constrained either. The
formalism used throughout Sects. 4 and 5 is nevertheless
valid, if we simply choose the weights of the correspond-
ing pseudo-observations xo = 0 to be zero (this is assumed
without further notice whenever the constraining of orbit
parameters is concerned).

The normal equations take the form

[
Noo Nog

Nog
T Ngg

] [
xo
xg

]
=

[
bo
bg

]
, (4)

where the normal matrix N consists of four sub-matrices,
related either to orbit or gravity model parameters or to both
parameter types. The right-hand sides bo and bg contain the
products of the sub-matrices of the design matrix with the
corresponding weighted observations.

In the case of pre-elimination of the arc-specific parame-
ters, as normally done in the CMA approach, the first line
of Eq. (4) is solved for xo and inserted into the second line,
leading to

(Ngg − Nog
TNoo

−1Nog)xg = bg − Nog
T(Noo

−1bo). (5)

The dimension of the resulting NEQs is decreased by the
number of arc-specific parameters xo, while the impact of
these parameters is correctly taken into accountwhen solving
for the gravity field model parameters.

Let us now break with the processing scheme described in
Sect. 2 and fix the orbit parameters to previously determined
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values while estimating corrections to the parameters of the
forcemodel. Thismaybe done easily by explicitly solving for
the arc-specific parameters using the a priori force model and
consequently deleting them from the NEQ system [instead
of the implicit solution described by Eq. (5)]. The subsystem

Noox
′
o = bo (6)

is solved independently from the remaining part of Eq. (4)
and the parameters x ′

o are introduced in the following as
known. Note that in this case the correlations between orbit
and gravitymodel parameters are ignored and that x ′

o strongly
depend on the a priori gravity model. The remaining NEQ
system

Nggx
′
g = bg − Nog

Tx ′
o = bg − Nog

T(Noo
−1bo) (7)

necessarily leads to different solutions x ′
g for the gravity

model parameters than the solution xg of Eq. (5). The right-
hand side of Eq. (7), however, is identical to Eq. (5).

To study the effect of different stochastic orbit parame-
terizations on the solution, one may reduce the sampling
of the piecewise constant accelerations on NEQ level. This
transformation may be performed efficiently by stacking of
consecutive accelerations.

The influence of fixing the orbit on the gravity model
parameters is remarkable. Figure 5 illustrates the results of a
number of experiments in terms of the noisiness of the result-
ing monthly models. All sets of solutions were set up to a
maximum degree and order of 60, the different experiments
and corresponding labels are summarized in Table 1. Starting
from the daily gravity field NEQs [corresponding to the solu-
tion denoted “AIUB-RL02p(60)” in all figures], which still
include the 15-min pseudo-stochastic accelerations, monthly
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Fig. 5 Weighted STD over the oceans of monthly gravity fieldmodels.
In the case of fixed orbit parameters the sampling of the pseudo-
stochastic accelerations is noted in the legend (15min/60min). The
attributes static/timvar. refer to the a priori gravity model used

Table 1 Overview over the different experiments and their labels in
Figs. 5 and 6, the treatment of the orbit parameters (common/separate
estimation), the sampling of the pseudo-stochastic accelerations, the a
priori model used (AIUB-GRACE03S static part only or including time
variations) and the corresponding subplot in Fig. 7

Label Orbits Stoch. acc. a priori
model

Fig. 7

AIUB-RL02p Common 15min Timevar. 1/4

15min timevar. Separate 15min Timevar. 3/4

60min timevar. Separate 60min Timevar. 2/4

60min static Separate 60min Static

AIUB-GRACE03S 4/4

solutions were computed where the orbit parameters were
fixed (denoted “15min timevar.” in Figs. 5, 6). In another
series of monthly solutions, the pseudo-stochastic accelera-
tions were stacked to 60min prior to fixing (denoted “60min
timevar.”). To study the role of the a priori gravity model
in the case of fixed pseudo-stochastic orbit parameters, the
latter experiment was repeated on the basis of the static part
of AIUB-GRACE03S only (denoted “60min static”).

All series of solutions with fixed orbit parameters show a
significant reduction of the noise over the oceans. In Sect. 5,
the process of fixing the orbit parameters is reformulated
as explicit regularization which explains the observed “de-
noising”. But regularization has the side effect of damping
all signals not contained in the a priori knowledge. We there-
fore show in Fig. 6 the corresponding signal strength at
our example location in South America. The effect of fix-
ing the orbit to the static a priori gravity field is clearly
visible. Obviously, part of the signal is absorbed by the
pseudo-stochastic orbit parameters. In contrast, not much
damping can be observed when the time variable part of
AIUB-GRACE03S is introduced a priori and the pseudo-
stochastic parameters are stacked to 60min. In the case of
15-min pseudo-stochastic accelerations, the damping effect
starts to becomemore prominent evenwhen the time variable
a priori model is used.

Figure 7 gives a visual impression of the de-noising effect
of fixing the orbit parameters. It shows the equivalent water
heights for an example month (March 2008), chosen because
of the generally low noise of GRACE monthly models in
the mid of the mission period and the absence of data arti-
facts (gaps, outliers, etc.) which may influence the solution.
The figure on top shows our standard solution “AIUB-
RL02p(60)”. Below, the corresponding solutions with fixed
pseudo-stochastic accelerations at 60- and 15-min intervals
(bothwith time variations included in the a priori gravity field
model) are provided. Finally, the deterministic a priori time
variations of AIUB-GRACE03S are shown for comparison.
To quantify the de-noising effect, the weighted STD over the
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Fig. 6 Time variable signal in monthly gravity field models in central
South America

oceans is given below the first three figures. To illustrate the
damping of signal the maximum difference to the a priori
model over the continents is provided as well. It is obvious
that with even denser stochastic parameterizations than 15-
min accelerations the signal will be perfectly reduced to the
time variations included in the a priori model.

By fixing the orbit parameters, the subsequently estimated
gravitymodel parameters are less noisy, but the signal content
maybe significantly dampeneddependingon the chosenorbit
parameterization. The relevant factors governing the process
of de-noising and signal damping are

– the rate of solved for pseudo-stochastic orbit parameters
and

– the quality of the a priori model.

They have to be chosen carefully when aiming at separat-
ing the gravity field estimation from the orbit determination
process.

5 Regularization and contribution analysis

The implicit regularization, obviously taking place when
orbit and gravity model determination is separated, does not
allow quantifying the influence of the a priori information on
the determined SHC. A quantification is possible, however,
by adopting a contribution analysis (Sneeuw 2000) for all
types of explicit observations and pseudo-observations. We
therefore reformulate the process of fixing the orbit parame-
ters by introduction of pseudo-observations and demonstrate
that it is equivalent to an explicit regularization.

AIUB−RL02p(60), 15 min stoch. acc., common estimation

STD = 3.2 cm ; max = 17.0 cm

60 min stoch. acc., orbit fixed

STD = 2.5 cm ; max = 15.8 cm

15 min stoch. acc., orbit fixed

STD = 1.9 cm ; max = 12.8 cm

background model AIUB−GRACE03S

STD = 1.2 cm

water [m]
−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

Fig. 7 Equivalent water heights of a monthly solution with 15-min
pseudo-stochastic accelerations (top); stoch. acc. stacked to 60min and
fixed (second row); 15min stoch. acc. fixed (third row); a priori model
(bottom). All figureswereGauss-filteredwith 300kmhalf-width radius.
The numeric values give theweighted STDover the oceans and themax.
difference to the a priori model over land for the first three plots
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In the classic CMA approach, the pseudo-stochastic orbit
parameters are constrained via pseudo-observations of the
orbit parameters

p = Apoxo + ε, (8)

where p = 0 and Apo for absolute constraining reads as

Apo = I (9)

with identity matrix I ; weight matrix Poo in this case is a
diagonal matrix with elements

Poo = σ 2
0 /σ 2

p, (10)

whereσ0 is themean error a priori andσp is the imposed stan-
dard deviation of the pseudo-observations that represents the
level of constraining. The resulting contribution to the nor-
mal equation matrix consists only of diagonal terms σ 2

0 /σ 2
p .

It is superimposed to the normal equation matrix related to
the orbit parameters

N∗
oo = Noo + Poo. (11)

In the case of separate estimation of orbit and gravity model
parameters, we require that the gravity field coefficients can
be determined independently of the orbit parameters that
have been solved beforehand, i.e.,

Nogxg = 0. (12)

We set up a new condition equation

Apgxg = 0, (13)

where Apg is defined according to Eq. (12) by

Apg = Nog. (14)

Equation (13) is nothing else but a set of more general
pseudo-observations that constrain the gravity field parame-
ters xg . The number of these new pseudo-observations equals
the number of orbit parameters xo. In analogy to Eq. (8), they
are equal to 0 and only alter Ngg on the left-hand side of Eq.
(4):

N∗
gg = Ngg + Nog

TPooNog. (15)

If we define the weight matrix Poo of the new pseudo-
observations as

Poo = Noo
−1 (16)

and subsequently pre-eliminate the orbit parameters accord-
ing to Eq. (5):

(N∗
gg − Nog

TNoo
−1Nog)xg

′ = bg − Nog
T(Noo

−1bo), (17)

the constraint from Eq. (15) on N∗
gg balances the correc-

tive term −Nog
TNoo

−1Nog to the left-hand side of Eq. (17)
caused by the pre-elimination. The resulting equation

Nggxg
′ = bg − Nog

T(Noo
−1bo) (18)

is identical to Eq. (7). The right-hand sides of Eqs. (5) and
(18) look similar, but they differ by the important fact, that
in the latter case [and in Eq. (7)] the corrective term to bg
solely depends on a priori information. The newly introduced
pseudo-observations do not truly de-correlate orbit xo and
model parameters xg . The solutions xg and xg ′ will differ.

While for the separation of orbit andmodel parameters it is
in principle not necessary to introduce both types of pseudo-
observations (for orbit or model parameters) simultaneously,
it turns out, that for practical reasons (for the sake of invert-
ibility of Noo) this may be necessary. Note that the level of
constraining in the case of orbit parameters may be adapted
(by adapting σp), while for orbit fixing the weight matrix
Poo of the pseudo-observations for gravity model parame-
ters is fixed. This reflects the fact that one cannot fix the orbit
parameters just slightly.

The contribution of an observation type to the estimated
unknown parameters is measured by the so-called contribu-
tion numbers (Sneeuw 2000), which assume values between
0 (no contribution) and 1 (the parameter is solely determined
by the observation type under question). The contribution
numbers for observation type j are the diagonal elements of
the resolution matrix R j :

R j = N−1N j . (19)

In our case, j is replaced either by observations l [e.g.,
kinematic orbits (subscript GPS) and/or KRR] or by pseudo-
observations p (related to orbit and/or force model para-
meters). The normal matrix N consists of the sum of the
observation type-specific contributions N j :

N =
∑
j

N j (20)

If the individual N j are scaled relative to each other, then the
scaling factors have to be applied in both Eqs. (19) and (20).

Let us first compute the relative contribution of the kine-
matic orbits versus KRR observations in a standard monthly
solution (with 15-min pseudo-stochastic accelerations). We
are solely interested in the contribution of observations to
the gravity parameters xg . But because it is not possible to
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Fig. 8 Coefficient wise contribution of the kinematic orbits to SHC of
a combined GPS/KRR monthly solution, left part of the triangle the
SIN, right the COS coefficients

pre-eliminate the orbit parameters from NKRR due to singu-
larities (KRR is only sensitive to the differences in the orbit
parameters of GRACE A and B, see Sect. 2), we have to
keep the orbit parameters in the NEQ system and explic-
itly solve for them after combination with NGPS (sensitive
to the orbit parameters). Kinematic orbits are usually down-
weighted relative toKRR in the standard CMA solutions by a
factor of 10−10 (determined empirically), the combinedNEQ
system thus is computed by N = 1 × 10−10 NGPS + NKRR.
We again select March 2008 as an example (the observations
do not enter the contribution analysis, but the orbit geometry
is taken into account).

Figure 8 shows thewell-known pattern of sensitivity of the
GPS observable (i.e., the kinematic orbits) for sectorial SHC
(see Beutler et al. 2010b) and for orders related to orbit res-
onance (15, 31, 46). Consequently, the contribution of KRR
(Fig. 9) to these coefficients is reduced. The sensitivity of the
kinematic orbits for resonant orders is only visible, as long
as we heavily constrain the pseudo-stochastic accelerations.
If we loosen the constraints, the orbits will be essentially
decomposed into 15-min short-arcs (without loosing conti-
nuity in orbital position and velocity) and the relation to orbit
resonance is lost (not shown).

Let us now fix the orbit by the introduction of pseudo-
observations [Eq. (13)]. We are facing several practical
problems: First, the part of the normal matrix related to
orbit parameters Noo is singular. This problem is home-
made, because the pseudo-stochastic accelerations are set up
at constant time intervals regardless of data gaps.We cure the
problem by the introduction of very loose constraints on the
orbit parameters (to a level of±3×10−6 m/s2). At this point,
wemeet the second problem. Asmentioned above in the case
of fixing the orbits the orbit parameters dependmainly on the
a priori force model. This is also true, if we realize the orbit
fixing via pseudo-observations. As opposed to the approach
in the classical CMAwe therefore have to constrain the orbit
parameters not to zero, but to the a priori values estimated
in the first a priori orbit determination based on the a priori
force model.
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Fig. 9 Contribution of KRR to a combined GPS/KRR monthly solu-
tion (pseudo-stochastic accelerations constrained to ±3 × 10−9 m/s2)
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Fig. 10 Contribution of a priori model to a regularized monthly solu-
tion (pseudo-stochastic orbit parameters set up at 15-min intervals and
fixed)

The last hurdle is encountered when adding the contri-
bution of the pseudo-observations to Ngg according to Eq.
(15). The resulting normal matrix is singular by construction,
because the frequencies of the pseudo-stochastic accelera-
tions in Nog

TNoo
−1Nog overlap the spectrum of the SHC

in Ngg (the pseudo-stochastic accelerations cannot be sep-
arated from the corresponding SHC). The same problem is
met in the case of daily pre-elimination of the orbit parame-
ters, but is aggravated here, because we have to handle the
parameters of the entire month at once. Again, constraining
the pseudo-stochastic accelerations helps and again the level
of ±3 × 10−6 m/s2 turned out to be sufficient for a stable
solution.

Figure 10 shows the contribution of the a priori informa-
tion, entering the system via the pseudo-observations of xg .
Obviously, the coefficients related to low frequencies, i.e.,
the low harmonic SHC and the sectorial ones, which are also
sensed at low frequencies by near polar orbiting satellites,
are affected most. For these coefficients, the contribution of
the a priori model is about 50%. Repeating the experiment
with fewer pseudo-stochastic accelerations (at 60 instead of
15-min intervals) the contribution of the a priori model (see
Fig. 11) is reduced to fewer coefficients (related to even lower
frequencies).

To verify the validity of our regularization approach, we
compute the actual solutions (not necessary for the contri-
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Fig. 11 Contribution of a priori model to a regularized monthly solu-
tion (pseudo-stochastic orbit parameters set up at 60-min intervals and
fixed)
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Fig. 12 Difference degree variances of monthly gravity field models
(March 2008) relative to AIUB-GRACE03S (including time variable
terms up to 30◦)

bution analysis). We show the results in terms of difference
degree variances w.r.t. AIUB-GRACE03S, evaluated at the
epoch of our example month, and compare them to the
results achieved with separate estimation of orbit and gravity
model. Figure 12 shows the degree variances of the stan-
dard solution as well as of the two solutions with fixed orbit
parameters and time variable a priori model (with 15- or 60-
min pseudo-stochastic accelerations). For both solutionswith
fixed orbits, the gain in consistency is clearly visible through-
out all degrees. The degree variances do not tell whether this
gain is due to a noise reduction or a signal damping.

Replacing the step of fixing the orbit parameters by the
explicit regularization of the gravity model parameters (as
detailed above), we end up with very similar results. The
small differences may be explained by the extra regulariza-
tion of the pseudo-stochastic accelerations we had to apply
to invert the NEQs.

Actually, in the differences between a monthly gravity
field obtainedwith fixed orbit parameters versus one obtained
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Fig. 13 Differences per SHCbetween standard solution and fixed orbit
solution (March 2008), pseudo-stochastic parameters set up at 15-min
intervals (color scale logarithmic)

by a common solution, many more SHC are affected than
predicted by our contribution analysis (Fig. 13). Most of the
observed differences in Fig. 13 may be attributed to observa-
tion noise that is not taken into account by the contribution
analysis. The coefficients beyond order 45 are effectively
dominated by noise (Meyer et al. 2012). The differences in
the low degree and sectorial SHC predicted by Fig. 10 are
also visible in Fig. 13, so in this point the predictions of our
contribution analysis are verified.

The vertical stripes, prominent near resonant orders 15,
31 and 46, can be observed whenever comparing gravity
models computed with different processing strategies. Seo
et al. (2008) explain them by aliasing of non-tidal geophysi-
cal model errors. But in fact the linear dependence between
coefficients of different degree at near resonant orders pre-
dicted by first-order perturbation theory (e.g., Gooding and
King-Hele 1989) and the signal absorption on the same fre-
quencies by the stochastic orbit parameters that is discussed
in Meyer et al. (2015) for the case of circular orbits could
also play a role.

6 Discussion

Having detailed the effect of fixing the arc-specific para-
meters during the gravity estimation step, either explicitly
ignoring the correlations with the gravity model parameters
(Sect. 4), or indirectly via the introduction of pseudo-
observations (Sect. 5), we still have to answer the question,
whether this regularization is justified.

The noise reduction certainly is welcome, the damping of
signal content certainly is not. The situation is aggravated,
because, as revealed by the contribution analysis, signals are
dampened in particular at low frequencies, where according
to the sensitivity analyses (e.g., Wahr et al. 1998) most time
variable signal has to be expected.

The regularization effect on the gravity parameters when
fixing the orbit parameters is hidden and difficult to assess.As
shown in Sect. 5, it can be replaced by an explicit regulariza-
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tion by the introduction of pseudo-observations of a special
design, but even in this case the regularization cannot be con-
trolled, because the weighting of the pseudo-observations is
given and may not be chosen freely.

The contribution analysis applied in Sect. 5 is a pre-
mission analysis tool showing the sensitivity of the SHC to
certain observation types. It does not take into account the
observation noise or aliasing by model errors. Moreover, our
analysis is based on the assumption that Ngg is not impaired
by the effect of orbit resonance. The validity of this assump-
tion is not guaranteed and more coefficients than predicted
may be affected by the hidden regularization.

In any case, the consequences of a regularization, hidden
or not, for the estimated monthly models are obvious. Any
gravity signal not contained in the a priori model is damp-
ened. Singular events like an exceptional flood or drought are
not reproduced by the monthly estimates to their full extent.
An accelerating ice mass loss in Greenland may become
invisible. As long as the gravity field is in the center of inter-
est,we therefore strongly advise against a separate estimation
of dynamic orbits and force model parameters.
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