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Abstract Carrier-phase integer ambiguity resolution (IAR)
is the key to highly precise, fast positioning and attitude deter-
mination with Global Navigation Satellite System (GNSS).
It can be seen as the process of estimating the unknown
cycle ambiguities of the carrier-phase observations as inte-
gers. Once the ambiguities are fixed, carrier phase data will
act as the very precise range data. Integer aperture (IA) ambi-
guity resolution is the combination of acceptance testing and
integer ambiguity resolution, which can realize better quality
control of IAR. Difference test (DT) is one of the most pop-
ular acceptance tests. This contribution will give a detailed
analysis about the following properties of IA ambiguity res-
olution based on DT:

1. The sharpest and loose upper bounds of DT are derived
from the perspective of geometry. These bounds are very
simple and easy to be computed, which give the range
for the critical values of DT.

2. The definition of DT integer aperture bootstrapping
(IAB) estimator is firstly given.The relationships between
DT-IAB and DT-IA are deeply investigated, which also
firstly give a new perspective to review the IAB and IA
least square (IALS) estimators.

3. Based on the properties of the second best integer can-
didates in integer least square and integer bootstrapping
estimators, the definition of DT-IA is given from another
perspective, which is mathematically equivalent to its
original definition.
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4. The analytical expressions of the success rate lower
bound and upper bound of DT-IA estimator are firstly
derived. Then, the quality measure for DT-IA estimator
can be completely calculated as integer estimator without
measurements. Both sharp and loose bounds of DT-IA
success rate are given so that the success rates are easily
evaluated, which also can provide reasonable approxi-
mation for DT-IA estimator.

All these conclusions are verified based on the single and
combination GNSS simulation experiments. The experiment
results indicate the correctness of these conclusions. These
properties demonstrate the special properties of DT-IA esti-
mator, and alsoprovide the research frame to investigate other
IA estimators. They are helpful to realize better use of IA esti-
mators in quality control and precise positioning in future.

Keywords Ambiguity resolution · Integer aperture
estimator · Difference test · Success rate · Probability
bounds

1 Introduction

Integer ambiguity resolution (IAR) is a fundamental prob-
lem to realize rapid and high-precision GNSS positioning
and navigation. One can take advantage of the precise pseudo
range data after the ambiguities are fixed. IAR applies to a
great variety of GNSSmodels and extends to a wide range of
applications, such as surveying, positioning, navigation, and
precision agriculture. The principle of these GNSS appli-
cations can be found in Leick (2004) and Misra and Enge
(2006).
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Considering the common carrier-phase GNSSmodel with
integer ambiguities, its linearized model is formulated as:

E(y) = Aa + Bb; D(y) = Qyy (1)

with E(·) and D(·) the expectation and dispersion operators,
and y them×1 vector ’observed minus computed’ single- or
dual-frequency carrier phase or/and code observations. Qyy

is the m × m covariance matrix of y. a is the n × 1 vector
unknown double-difference ambiguities, and b is the p × 1
vector other unknown parameters. [A, B] are them×(n+ p)
design matrix.

The procedures of IAR usually include four steps. In the
first step, the integer constraint of ambiguities is disregarded
and their float solutions are estimated based on least-square
adjustment. Thefloat solutions and their variance–covariance

matrix are usually given as:

[
â
b̂

]
,

[
Qââ Qâb̂
Qb̂â Qb̂b̂

]
and

â = ( ĀT Q−1
yy Ā)−1 ĀT Q−1

yy y

b̂ = (BT Q−1
yy B)−1BT Q−1

yy (y − Aâ)

where Ā = P⊥
B A, P⊥

B = Im−PB , and PB = B(BT Q−1
yy B)−1

BT Q−1
yy . With the metric of Qyy , PB is the projector that

projects orthogonally onto the range space of B. Quality con-
trol steps, such as detection, identification and adaptation of
outliers, are implemented in this step.

In the second step, the integer constraint of ambiguities
is taken into account and float solution is fixed into integer
solutions. This is realized by a many-to-one mapping as:

ǎ = S(â), S : Rn → Zn (2)

There are many mapping methods, such as integer rounding,
integer bootstrapping (IB), and integer least-square (ILS).
ILS is optimal and has the highest success rate among these
methods Teunissen (1999a). However, due to the influence of
the correlations between different ambiguities, the efficiency
of integer mapping is very low. The Least-square Ambiguity
Decorrelation Adjustment (LAMBDA) method, Teunissen
(1993, 1995, 2010), De Jonge and Tiberius (1996), is intro-
duced to improve the efficiency and effectively solve the
ambiguity searching problems. The LAMBDA method usu-
ally consists of two parts. In the first part, an invertible
transformation Z is constructed that allows one to repara-
metrize the original double-difference ambiguities, so that
the new ambiguities have the required properties. Hence,
the original float ambiguity vector â and its corresponding
covariance matrix Qââ are transformed as:

ž = ZT ǎ

ẑ = ZT â (3)

Qẑẑ = ZT Qââ Z

Then

(â − ǎ)T Q−1
ââ (â − ǎ) = (ẑ − ž)T Q−1

ẑ ẑ (ẑ − ž) (4)

The ambiguity transformation matrix Z is required to be
integral and volume preserving. Here, the Z transforma-
tion is actually performed as a sequence of integer Gaussian
elimination and permutations. The Z matrix in (3) can be
decomposed into the multiplication of a series transforma-
tion matrix

Z = Zn . . . Z2Z1 (5)

The decorrelation times can be adjusted based on certain
additional conditions to achieve better decorrelation results,
as shown inXu (2001) andWang andWang (2010). However,
due to the integer constraint for ambiguities, it is impossi-
ble to realize perfect decorrelation (De Jonge and Tiberius
1996). Note that once the criterion to stop decorrelation is
determined, the transformation matrix Z is unique. Then, the
unique Qẑẑ is obtained when we cannot further decorrelate
Qââ .

To evaluate the effect of decorrelation, the decorrelation
number is defined (Teunissen 1993)

γ =
√
det({diag(Qââ)}−1/2Qââ{diag(Qââ)}−1/2) (6)

with {diag(Qââ)} the diagonal matrix whose diagonal ele-
ments are identical to Qââ . Besides this, condition number
can also be used (Wang 2012).

Once the transformed ambiguities are obtained, searching
process for the integer ambiguities is efficiently performed
in the second part.

The third step needs to determine whether the estimated
integers are accepted. This is completed by various kinds
of acceptance tests, including R-ratio test (RT) (Euler and
Schaffrin 1991), F-ratio test (FT) (Frei and Beutler 1990),W-
ratio test (WT) (Wang et al. 1998),DT (Tiberius andDe Jonge
1995), Projector test (PT) (Han 1997), etc. This step is to
exclude the suspected integers, and accept the most possible
ones. In the last step, after the ambiguities are fixed, other
parameters can be corrected by virtue of their correlation
with the ambiguities

b̌ = b̂ − Qb̂â Q
−1
ââ (â − ǎ) (7)

with Qb̂â the covariance matrix between ambiguity vector
and other unknown parameters. Once the ambiguities are

123



Integer aperture ambiguity resolution... 669

successfully fixed, estimation results will behave the same
as high-precision phase observations.

Actually, the third and fourth steps can be realized within
one estimator, which is the so-called IA estimator. IA esti-
mator can be simply regarded as the overall approach of ILS
estimation and validation. The ILS estimator can also be seen
as the a special class of IAestimatorwithout validation. There
are three cases for the probabilities of IA estimators: success
rate, failure rate, and undecided rate. The undecided rate is
formed by the interval or holes between different aperture
pull-in regions, and its size is determined by the choice of a
maximum allowed fail rate. Actually, failure rate cannot be
chosen randomly. It has theoretical upper bound and lower
bound as analyzed in Li and Wang (2013).

The performance of ILS can be evaluated by success
rate and failure rate. Due to rather complicated geometry
of integer pull-in region, it is difficult to derive its ana-
lytical probability formula. However, its upper and lower
bounds can easily be obtained by other estimators. Further-
more, the LAMBDAmethodmentioned previously canmake
the bounding sharper. The explicit formulas for bounding
are given in Feng and Wang (2011) and Teunissen (1998b,
1999b). Unfortunately, the corresponding probability evalu-
ations for IA estimators are lack of research, especially those
popular ones, such as RT and DT. The critical problem lies
on how to connect the scaling ratio with the GNSSmodel and
the computation of IA success rate. Though some results are
given in Verhagen (2005), they are not applicable in practice.

Monte Carlo simulation is another way to obtain the
probability evaluations of IA estimators. However, they are
time-consuming and cannot be implemented in practice. The
solution to tackle these problems is realized by creating the
look-up table based on fixed failure rate. This table is created
based on various GNSS scenarios in one or many locations.
When the critical value based on certain failure rate is cho-
sen, IA estimator can realize the control of failure rate within
certain range. The shortcoming is that other probability eval-
uations of IA estimator are still unknown. Theoretically, if
we know how to evaluate these probabilities, it is possible to
realize the controlling of success rate and failure rate based
on their analytical formulas. Without the direct probability
evaluations of IA estimators, we have to resort to the time-
consuming Monte Carlo simulation. This contribution will
firstly focus on the problem how to evaluate the probability
DT-IA estimators with the analytical formulas. It will pave
theway for the probability evaluations of other IA estimators.

Why do we choose DT-IA estimator? According to the
principle of IAR and IA theory, most IA estimators can be
seen as nonlinearly scaling to ILS estimators. However, these
nonlinear scalings have no common rules. Different ways
of nonlinear scaling lead to that it is difficult to summarize
a global approach. Fortunately, DT-IA estimator is based
on linear scaling. This advantage simplifies the process of

derivation and avoids the approximation errors in nonlinear
problem.

This contribution is organized as follows. In Sect. 2, we
briefly review the concepts in IAR and its probability eval-
uations. To clearly discriminate the difference between the
second best integer candidate of integer estimator and that
of ambiguity resolution, the remarks to the second best inte-
ger candidates are given in detail. After analyzing the pull-in
regions of DT, the bounds of DT, which means the testing
results, are derived from the perspective of geometry in Sect.
3. Though similar sharp bound can also be found in Li and
Wang (2014), here we give a further simpler and easier way
to deduce and calculate it. We can obtain this upper bound
without extra computation in IAR. This result can provide the
range of critical values for DT. Section 4 reveals the explicit
way of bounding DT-IA success rate and other probability
evaluations. The definition of DT-IAB estimator is given, and
its relationships with DT-IA are studied. This part also gives
us a new perspective to review IAB and IALS estimators.
By the way, other properties of DT-IAB and DT-IA are also
proved. Then, both upper bounds and lower bounds of DT-IA
estimator are investigated. Finally, all these bounding meth-
ods for DT and DT-IA estimators are verified based on single
and multi-GNSS simulation experiments.

2 Integer estimation and probability evaluations

2.1 ILS pull-in regions and probability evaluations

In the second step of ambiguity resolution, integer solution
is mathematically obtained by a many-to-one mapping. It
means that a subset of float solutions, denoted as Sz , Sz ⊂ Rn ,
has the biggest probability to obtain one integer solution. To
be convenient, we define Sz as the integer pull-in region of z

Sz = {x ∈ R
n, z ∈ Z

n|z = S(x)} (8)

Integer pull-in regions are translational invariant over the
integers and cover the whole R

n space without gaps and
overlap (Teunissen 1998a). Based on the definition of inte-
ger pull-in region, we can make two judgments: success and
fail. As shown in Figs. 1 and 2, the wholeR2 spaces are con-
structed by success and fail pull-in regions. Note that when
one float sample falls into Sz , it only means that it is closer
to z than other integers, hence it is more possible to be fixed
to z.

Here, we take the ILS for example. Its pull-in region in
decorrelated space follows that (Verhagen 2005)

Sz,ILS =
⋂

c∈Zn/{0}

{
x ∈ R

n, z ∈ Z
n ||cT Q−1

ẑ ẑ (x − z)| ≤ 1

2
‖c‖2Qẑẑ

}

(9)
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Fig. 1 PDF and 2-Dimensional (2-D) pull-in regions of ILSfloat ambi-
guity. Green success region; red fail regions

Fig. 2 Corresponding probability mass and ILS pull-in regions.Green
success probability; red fail probabilities

with Qẑẑ the variance matrix of x . According to Eq. (9),
the ILS pull-in regions are constructed as intersecting half-
spaces, which are bounded by the planes orthogonal to c, and
passing through 1

2 (c+2z). When z is chosen as the origin or
zero vector, the passing points of these planes are 1

2c. When
c choose the canonical vectors, 1

2c will lie on the coordinate
axes. In other words, the absolute value of passing points
between the planes of origin pull-in region and coordinate
axis is 1

2 . This is an useful property, which will be used in
Sect. 4.

The distribution of ambiguity float solution conforms the
multivariate integer normal distribution â � N (a, Qââ). The
probability density function (PDF) of â is given as:

fâ(x |a) = 1√
det(2πQââ)

exp

{
−1

2
‖x − a‖2Qââ

}
(10)

with the weighted squared norm ‖ · ‖2Qââ
= (·)T Q−1

ââ (·).

When ambiguity is fixed, the integer ambiguity ǎwill have
the so-called probability mass function (PMF). PMF of ǎ is
derived from the PDF of â. Hence, when â ∈ Sz , the PMF of
ǎ follows as:

P(ǎ = z) = P(â ∈ Sz) =
∫
Sz

fâ(x |z)dx (11)

If the correct integer ambiguity is a and â is correctly fixed,
the successful probability is given as:

P(ǎ = a) =
∫
Sa

fâ(x |a)dx (12)

Otherwise, it will be wrongly fixed with the probability

P(ǎ �= a) = 1 −
∫
Sa

fâ(x |a)dx (13)

The PDF and PMF of ambiguity are also demonstrated in
Figs. 1 and 2. The success and fail probabilities in different
pull-in regions are presented by the size of pillars. The 2-
dimensional (2-D) ambiguity model matrix is chosen as:

Qââ =
[

0.0865 −0.0364
−0.0364 0.0847

]
.

2.2 Bounds of ILS estimator

Success rate is an importantmeasure, since it candirectly give
the quality measure of IAR without actual measurements. In
Teunissen (1999a), it is proved that

P(ǎILS = a) ≥ P(ǎ = a) (14)

for any admissible integer estimator. Though ILS estimator
is optimal, its success rate is very complicated to compute
and can only be obtained by approximation or bounding. The
two most popular bounds for ILS success rate are based on
IB and ambiguity dilution of precision (ADOP) (Verhagen
et al. 2013). Properties of ADOP can be referred to Teunissen
and Odijk (1997).

IB success rate is usually regarded as that of ILS lower
bound, and its evaluation formula is easy to be given

Ps,IB = P(ǎIB = a) =
n∏

i=1

(
2�(

1

2σai |I
) − 1

)
(15)

with σai |I the conditional standard deviation from Qââ based
on LDLdecomposition. The IB success rate is not Z transfor-
mation invariant. It is close to optimal when the decorrelated
ambiguity ẑ is applied

P(žIB = z) ≥ P(ǎIB = a) (16)
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in which ẑ = ZT â and Qẑẑ = ZT Qââ Z . Besides the lower
bound, an upper bound is also useful. In Teunissen (2000), it
proves that this upper bound can be given as:

Ps,IB ≤
(
2�

(
1

2ADOP

)
− 1

)n
(17)

where ADOP is defined as:

ADOP = √det(Qââ)
1
n (18)

with units of cycles. This upper bound is Z transformation
invariant. Note that the upper bound in Eq. (17) is not that of
ILS success rate, though most of times this upper bound is
larger than the computed ILS success rate.

Since ILS estimator is optimal, its success rate is

Ps,ILS = P(žILS = z)

≥ P
(
žIB = z

)

=
n∏

i=1

(
2�(

1

2σzi |I
) − 1

)
(19)

The conditional standard deviation σzi |I is derived from Qẑẑ

and LDL decomposition, with I = {1, ..., (i − 1)}. Another
useful bound for ILS success rate is the ADOP based upper
bound. It is given as:

Ps,ILS ≤ P

(
χ2(n, 0) ≤ cn

ADOP2

)
(20)

with cn = ( n2�( n2 ))
2
n

π
. This bound is firstly introduced in Has-

sibi and Boyd (1998), and proved in Teunissen (2000).
To verify the performances of bounds for ILS estimator,

simulation experiment is implemented based on the setting
in Table 1. The computation of actual ILS success rate is by
means of Monte Carlo simulation (Teunissen 1998a). The
functional model is geometry-based model. Original mea-
surements include phase and code, and double-difference
measurements are used. The number of samples is chosen
to guarantee that the influence of sample number is smaller
than the order of 10−3. The IAR is implemented epoch by
epoch.

Figure 3 shows the comparison between actual success
rate, IB lower bound, IB upper bound and ILS upper bound
based on ADOP. According to Fig. 3, it is obvious that IB
lower bound is a good and sharp bound for the ILS success
rate. This conforms to the property of ILS and IB. Since
when the ambiguity covariance matrix is fully decorrelated,
both ILS and IB will have the same performance as integer
rounding (Verhagen 2005). Hence, we can directly use the
IB lower bounds based on Z transformation to approximate
the ILS success rate

Table 1 Simulation settings for GNSS models

Items Settings

System GPS, BeiDou,
Galileo and
their
combinations

Time July 11–13, 2014

Frequencies L1, E1(L1) and B1

Locations Changsha, China

Sampling interval 300 s

Troposphere delay ZTD estimated

Standard deviation of
ionospheric delay

0.01m

Standard deviation of
undifferenced
observations

Code: 20 cm Phase: 2 mm

0 0.2 0.4 0.6 0.8 1
0

0.1
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1

Fig. 3 ILS computed success rates and their lower or upper bounds:
lower bound based on IB (green); ADOP-based upper bound for IB
(blue); ILS upper bound based on ADOP (red); the computed ILS suc-
cess rates (black)

Ps,ILS ≈ P(žIB = z) (21)

For Fig. 3, we give the following remarks:

1. The lower bound based on IB is a better approximation
to the ILS success rate. The approximation error comes
from the decorrelation step. The better ambiguities are
decorrelated, the smaller approximation error will be;

2. The IB upper bound based on ADOP most of times can
give the upper bound reference for ILS. However, notice
that these upper bounds sometimes are smaller than the
ILS computed values. This means that this upper bound
is always an upper bound of IB, but not always that of
ILS estimator;
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3. The ILS upper bound based on ADOP provides the upper
constraint for ILS computed values. Since it is deduced
for ILS estimator, their values are always larger than the
computed ILS success rates;

4. The horizontal points are generated based on the com-
plete constellation of BeiDou. Since BeiDou has 5
GEO-stationary satellites, the ADOP-based upper bound
directly reflects this influence of BeiDou and its com-
bined systems.

Of course, there are other boundingways for ILS success rate.
More details about their analysis can be referred to Teunissen
(2000), Verhagen (2005).

2.3 Remarks to the second best integer candidate

Here, we discuss the topic of the second best integer candi-
date. The second best integer candidates can be seen as those
adjacent integer candidates of the best candidate. They have
the second closest distance (with the metric of Qââ) to float
solution, and have the highest possibility to be fixed except
the best candidate.

As we know that LAMBDA method is based on the ILS
principle, and always has the same estimation result as ILS.
Hence, they also have the same second integer candidate.
However, be different from the ILS principle, there are two
kinds of secondbest integer candidates inLAMBDAmethod:
original second best integer candidates and decorrelated sec-
ond best integer candidates. Because the acceptance testing
is always implemented in the decorrelation space, here we
only talk about the properties of decorrelated second best
integer candidates.

In Fig. 4, both the original and decorrelated ILS pull-in
regions are demonstrated. The 2-D ambiguity model matrix

is chosen as

[
0.0640 −0.0350

−0.0350 0.0200

]
. Note that after decorre-

lation, the negative correlation between two ambiguities is
changed into trivial positive correlation.

Fig. 4 The comparison of two kinds of ILS pull-in regions. Left panel
original ILS pull-in region; right panel decorrelated ILS pull-in regions.
Green success pull-in region; red fail pull-in region

According to the comparison in Fig. 4, though two ambi-
guities cannot be totally decorrelated, the decorrelated pull-in
regions have better geometry formation than those of origi-
nal. Here, we only focus on the decorrelated part due to its
better properties in algebraic and geometry.

As reviewed previously, after decorrelation, ILS will
behave similarly as IB. Hence, we can analyze the prop-
erties of decorrelated ILS based on IB. However, due to the
existence of trivial correlation, decorrelated ILS still has few
differences from IB.

Obviously, as demonstrated in Verhagen (2005), the sec-
ond best integer candidates of IB are the canonical vectors
on each axis. Similarly, the decorrelated second best integer
candidates of ILS also have these properties, which can be
summarized as:

min(ž2 − ž1)
T (ž2 − ž1) = 1 (22)

with ž2 the second best integer candidate, and ž1 the best
integer candidate.

The reason why ‘min’ is added in (22) is due to the exis-
tence of correlation in the decorrelated ambiguity model
matrix. According to the 2-D decorrelated ILS in Fig. 4, its
second best integer candidates include not only those canon-
ical vectors, but also (1, 1) and (−1,−1). Notice that this
decorrelatedmodel matrix is positive correlated. If themodel
matrix is negative correlated, the other two second best inte-
ger candidates are (−1, 1) and (1,−1).

Hence, we can summarize the relation between the best
and second best integer candidates for their corresponding
element in decorrelated space

(ži2 − ži1)
T (ži2 − ži1) ≤ 1 i = 1, 2, . . . , n (23)

where zi1 and zi2 are the i th elements of the best and second
best integer candidate, respectively. Note that this property
depends on the decorrelation process, which means perfectly
decorrelated or trivial existence of correlation. This is under-
standable. Since if (ži2 − ži1)

T (ži2 − ži1) > 1 for certain i ,
we always can find a closer second best integer vector to z1
based on IB or decorrelated ILS.

To demonstrate the relation between ILS pull-in region
and its second best integer candidates, the 2-D geometry
reconstruction for the ambiguity model of Fig. 1 is given
in Fig. 5. Notice that the best integer pull-in region can be
divided into six parts based on their corresponding second
best integer candidate. Since two ambiguities of this model
matrix are negative correlated, this pull-in region has two
different second integer candidates from that of Fig. 4. We
can interpret this relation for ILS pull-in region as:

S0,ILS =
⋃

c∈Zn/{0}
S0,ILS(c)
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Fig. 5 ILS origin pull-in region and their corresponding second best
integer candidates. Blue (0, 1); black (0, −1); magenta (1, 0); red (−1,
0); yellow (1, −1); cyan (−1, 1). Red stars the second best integers to
be fixed

with c the second best integer candidates and S0,ILS(c) the
pull-in region part whose second best integer candidate is c.

3 IA ambiguity resolution based on DT

3.1 Aperture pull-in region based on DT

Though integer estimation can fix the ambiguities, it cannot
realize quality control to the ambiguity resolution. This is
the reason why IA estimation is proposed. IA estimation is
realized by implementing the acceptance testing in the third
step. This overall formation of acceptance test is defined in
Teunissen (2013) as:

� = {x ∈ R
n|γ (x) ≤ μ} (24)

where γ (·) is the acceptance testing function, x lies in the
decorrelated space, andμ its critical value.� is named as the
set of aperture pull-in regions. The success aperture pull-in
region within the success ILS pull-in region is

�z = {x ∈ R
n, z ∈ Z

n|S(x) = z, γ (x) ≤ μ} (25)

and �z ∈ �.
Now we give the definition of IA (Teunissen 2004):

Definition 1 Let � ⊂ R
n and �z = � ∩ Sz . Then, the

estimator

ǎIA =
{
z if â ∈ �z

â if â /∈ �z
(26)

is an IA estimator only if its aperture pull-in regions satisfy
the following requirements

(1)
⋃
z∈Zn

�z = �

(2) Int(�u)
⋂

Int(�v) = ∅, u �= v

(3) �z = z + �0, z ∈ Z
n

Thus, the aperture pull-in regions�z have nooverlapping and
are subsets of Rn . As previously reviewed, there are various
kinds of acceptance tests. Here, we choose to talk about the
ambiguity solution based onDT. It is defined as the difference
between two quadratic forms, ‖x − ž2‖2Qẑẑ

and ‖x − ž1‖2Qẑẑ

‖x − ž2‖2Qẑẑ
− ‖x − ž1‖2Qẑẑ

≥ μDT (27)

where ẑ is the float solution, ž1 and ž2 are the best and second
best integer candidates, and μDT the critical value of DT.
Inequality (27) can be transformed into (25) bymultiplying a
negative constant to both sides.When ž1 = 0 andu = ž2−ž1,
the origin-centered aperture pull-in region based on DT can
be determined as:

�0,DTIA = {x ∈ R
n|S(x)=0, ‖x−u‖2Qẑẑ

−‖x‖2Qẑẑ
≥μDT}

=
{
x ∈R

n|S(x) = 0,
uT Q−1

ẑ ẑ x

‖u‖Qẑẑ

≤
‖u‖2Qẑẑ

−μDT

2‖u‖Qẑẑ

}

(28)

with u ∈ Z
n\{0}. This shows that �0,DTIA are formed

by intersecting half-spaces that are constrained by hyper-
planes orthogonal to u and passing through the points
1
2

(
1 − μDT

‖u‖2Qẑẑ

)
u. The 2-D demonstration of DT aperture

pull-in regions is presented in Fig. 6. Based on the properties
of aperture pull-in regions, four different judgments to DT-
IA estimator can be made, which are indicated by different
colors.

3.2 Bounds of DT

Based on the DT in (27), its bounds can be derived in various
GNSS models. For simplification, in decorrelated space, we
use R2 denoting ‖x − ž2‖2Qẑẑ

, and R1 for ‖x − ž1‖2Qẑẑ

R2−R1 = (x− ž2)
T Q−1

ẑ ẑ (x− ž2) − (x − ž1)
T Q−1

ẑ ẑ (x− ž1)

= 2xT Q−1
ẑ ẑ (ž1 − ž2) + žT2 Q

−1
ẑ ẑ ž

T
2 − žT1 Q

−1
ẑ ẑ ž

T
1

= [2x − (ž1 + ž2)]T Q−1
ẑ ẑ (ž1 − ž2) (29)
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Fig. 6 The 2-D DT-IA pull-in regions. Four colors denote different
judgments. Green success; red fail; blue failure detected; pink false
alarm

Based on previous discussion about ž2, though Qẑẑ is not
totally decorrelated (De Jonge and Tiberius 1996), it does not
influence the properties of the second best or adjacent integer
candidate. Hence, the difference between each element for
ž1 and its second best candidate ž2 is

|ži2 − ži1| ≤ 1 i = 1, 2, · · · , n (30)

Then, the range of the difference between ž1 and ž2 is

1 ≤ (ž2 − ž1)
T (ž2 − ž1) ≤ n (31)

According to (29), DT can be seen as the projection of 2x −
(ž1 + ž2) on ž1 − ž2 with the metric of Qẑẑ . Since ẑ must
be chosen within the pull-in region, the upper bound of DT
will appear when 2x − (ž1 + ž2) and ž1 − ž2 have the same
direction, which means x = ž1. Hence

R2 − R1 = [2x − (ž1 + ž2)]T Q−1
ẑ ẑ (ž1 − ž2)

≤ (ž1 − ž2)
T Q−1

ẑ ẑ (ž1 − ž2)

= (ž2 − ž1)
T Q−1

ẑ ẑ (ž2 − ž1) (32)

When the equality is built, we have the sharpest upper bound.
Here we denote c = ž2 − ž1. Based on the property of the
second best integer candidate and the best one in (23) for
each axis, we have cTj c j = 1, and c j is the canonical vector
at the j-th axis. Then, the sharpest bound of DT is given as:

R2 − R1 ≤ min{cT Q−1
ẑ ẑ c}

= cTj Q
−1
ẑ ẑ c j , j = 1, 2, · · · , n (33)

According to LDL decomposition

Qẑẑ = LT DL Q−1
ẑ ẑ = L−1D−1(L−1)T (34)

where L is a lower triangular matrix. It is already known that

diag{L} = [1 . . . 1
]T
. Based on the choice of c in (33)

cTj L
−1 = [ l j,1 . . . l j, j−1 1 0 . . . 0

]
(35)

Then, we can derive that

min{cT Q−1
ẑ ẑ c} = cTj L

−1D−1(L−1)T c j

= l2j,1
d1,1

+ l2j,2
d2,2

+ · · · + 1

d j, j
(36)

with d j, j the j th element of diagonal matrix D. The j
depends on the method of ordering and parametrization in
the decorrelation step. Obviously, the sharpest upper bound
is obtained when j = 1.

Formula (36) is the general result for ambiguity resolu-
tion in decorrelated space. As to the LAMBDA method, for
the actual integer minimization we strive for largely decorre-
lated ambiguities and, furthermore, to have the most precise
ambiguity at position n. The purpose is striving for De Jonge
and Tiberius (1996).

dn,n ≤ · · · ≤ d1,1 (37)

Of course, (37) is just an objective, and this monotonously
decreasing from n to 1 may not be realized in practice. No
matter what the correct integer vector is, after decorrelation
in LAMBDA method, we can find that the relation between
the best and second best integer candidates as (22):

min(ž2 − ž1)
T (ž2 − ž1) = 1 (38)

The minimum choice for ž2 − ž1 satisfying both the require-

ments in (38) and in (36) is
[±1 0 ... 0

]T
. Of course, other

ž2− ž1 satisfying (38) also can derive an upper bound of DT;
however, it is not the sharpest one.

Eventually, combining (36) and (38), we obtain the IA
pull-in region based on DT and its simple but the sharpest
bound based on LAMBDA method

�0,DTIA=
{
x ∈ R

n|S(x)=0,μDT ≤ R2(x)−R1(x)≤ 1

d1,1

}

(39)
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This is an interesting result, since we can directly obtain this
upper bound after decorrelation without extra computation
and measurement.

Theupper boundofDTcan also be seen as the upper bound
of the critical value for DT. The obtained critical value based
on fixed-failure rate or other approaches should be smaller
than the upper bound in Li and Wang (2014). Furthermore,
based on the bounds of covariance matrix, we give the loose
upper bound of DT based on (33) after decorrelation. Note
that we also can obtain the upper bound without decorrela-
tion; however, it is rather loose.

According to Rayleigh-Ritz theorem (Golub and Loan
1996), we have

1

λmax
≤ cT Q−1

ẑ ẑ c

cT c
≤ 1

λmin
(40)

where λmin and λmax are the minimum and maximum eigen-
values of Qẑẑ . When we choose the minimum of cT Q−1

ẑ ẑ c
based on the condition in Eq. (33), then the loose upper bound
based on covariance matrix can be deduced

R2 − R1 ≤ min(cT Q−1
ẑ ẑ c)

≤ min(cT c)

λmin
= 1

λmin
(41)

Eventually, the IA pull-in region based on DT and its loose
bound is

�0,DTIA

=
{
x ∈ R

n|S(x)=0, μDT ≤ R2(x)−R1(x) ≤ 1

λmin

}

(42)

As to the lower bound of DT, it is the so-called critical
value and not trivial to choose for various GNSS models
in practice. Since incorrect integer estimation may impose
severe impact to baseline solution, it is desirable to realize
the control of failure rate. Therefore, the fixed failure rate
acceptance testing is introduced (Verhagen and Teunissen
2006).μDT is better to be chosen based on this approach. DT
has good performance in various GNSS models, especially
when GNSS model is strong. There exists direct mathemat-
ical relation between DT and optimal test (Verhagen 2005),
and DT can be seen as optimal test when model is strong
enough.

To verify the previous bounds for DT, we implement the
following simulation experiments. Based on the setting in
Table 1, choose one epoch of GPS at one location in China,
28◦N, 113◦E, and implement 10,000 simulation times for
this epoch. The DT values, its sharp and loose upper bounds
are demonstrated in Fig. 7. Then, collect one day samples
at the same location, with time interval 300 s. The same
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Fig. 7 DT’s loose bound and sharp bound for the same GNSS model
with 10,000 simulation times
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Fig. 8 DT’s loose bound and sharp bound for the GNSS models in 1
day with 300 s interval

three items are presented in Fig. 8. Figure 7 is presented
to verify the effectiveness of the upper bounds for different
samples from the same GNSS model. Since these samples
have the same GNSS model Qââ , their upper bounds keep
constant. Figure 8 is to verify their effectiveness for different
GNSSmodels. Hence, we can see different upper bounds for
different epochs. In both figures, red lines are sharp upper
bounds of DT, and black lines are loose upper bounds. Blue
line denoted as ’DT’ means the testing values computed by
R2 − R1 as in (29) based on each stochastically generated
sample from GNSS models. Obviously, the red line imposes
sharp constraints to the maximum value of DT, and the black
line gives loose constraints.
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4 Probability evaluations of DT-IA estimator

4.1 DT-IAB and DT-IA estimators

One problem to be resolved for IA estimator is probability
evaluation. Before we tackle this problem, we will study the
properties of DT-IAB and DT-IA estimator.

The nonlinear scaling from ILS estimator to IA estima-
tor results in that it is unlikely to find a global approach
to the probability evaluations of all IA estimators. Hence,
DT-IA estimator is chosen and studied here due to its linear
scaling property and potential applications in future GNSS
IAR. Since IA theory assumes that users pay more attention
to failure rate, success rate is not so critical. However, the
analytical relation between critical value, GNSS model and
IA estimator success rate is very useful. It can help users
give more accurate evaluation to the estimation results. Once
critical value is determined by fixed-failure rate approach or
other ways, users can directly obtain the quality of IA esti-
mator without specific measurements. Here, we will give the
approximation of the success rate of DT-IA estimator, which
can provide reference for other IA estimators. According to
previous discussion and simulation results about ILS estima-
tor, the lower bound success rate based on IB can be chosen
as a good approximation to the computed ILS success rate.
Hence, it is natural to approximate IA success rate in this
way.

Here, we firstly give the definition of IB based on DT,
which we name as DT-IAB. In Teuniseen (2005), the IAB
estimator is firstly given as the scaled version of integer pull-
in region. Note that the IAB estimator chooses the scaling
ratio as the acceptance testing. Similarly, DT-IAB uses these
scaling ratios to complete the testing. The definition of DT-
IAB is given below.

Definition 2 (The DT-IAB estimator)
The pull-in region of DT-IAB estimator is defined as

�z,DTIAB =
n⋂

i=1

{
x ∈ R

n | |cTi L−1(x − z)|
T (ci )

≤ 1

2

}
(43)

It can also be interpreted as the combination of different parts
which have different second best integer candidates. It means

�z,DTIAB =
⋃

ci∈Zn/{0}
T (ci )Sz,IB(ci + z) i = 1, 2, . . . , n

(44)

with

⎧⎨
⎩

T (ci )Sz,I B(ci + z) = {x ∈ R
n | x−z

T (ci )
∈ S0,I B(ci )}

S0,I B =⋃ci∈Zn/{0} S0,I B(ci )
S0,I B =⋂n

i=1{x ∈ R
n | |cTi L−1x | ≤ 1

2 }
(45)

where T (ci ), 0 < T (ci ) ≤ 1, is the scaling ratio based on the
canonical vector ci at the i th axis. L is the unique lower trian-
gular matrix of the decomposition Qẑẑ = LT DL . S0,IB(ci )
and Sz,IB(ci + z) are parts of the IB pull-in region whose
second best integer candidates are ci and ci + z, respectively.

Note that in (44) and (45), S0,IB(ci ) and Sz,IB(ci + z)
are just intermediate symbols to be better interpreted, and
have no explicit expressions. All their properties can only be
derived from S0,IB or Sz,IB. Besides this, it is emphasized
here that the linear scaling by T (ci ) to Sz,IB(ci + z) can
only be interpreted as single direction scaling or compression
from the second best integer candidate to the best integer
candidate.

Those similar statements will be omitted for the following
analysis to DTIA estimator.

The analytical expression to computeT (ci )will be derived
later. The difference between DT-IAB and IAB lies on the
determination method of scaling ratios. These scaling ratios
in all directions of IAB are the same, which may be different
for DT-IAB. However, when T (c1) = T (c2) = · · · = T (cn),
DT-IABwill be the same as IAB. Hence, we can say that DT-
IAB is the generalized IAB.

Based on the definition of DT-IAB, its success rate is
deduced in the corollary below:

Corollary 1 (DT-IAB success rate)
Let the float solution be distributed as â ∼ N (a, Qââ). The
success rate of DT-IAB estimator is directly given as:

P(ǎDTIAB = a) =
n∏

i=1

(
2�

(
|xi |
σâi |I

)
− 1

)
(46)

with |xi | the intersecting points between DT-IAB origin pull-
in region and the i−th coordinate axis. Each axis has only
one |xi |.

Proof see the Appendix.
Here, we give the details to compute |xi |, which are com-

puted based on Eq. (28) after the decorrelation process. Note
that, here, the computation of the intersecting points between
ILS or IA pull-in regions and coordinate axes only considers
the situation without the presence of bias in ambiguities, just
as analyzed in Teunissen (2001). |xi | under biased situation
will have different properties, which will be studied in the
future.

To compute |xi |, we need to know μDT, which can be
determined based on fixed failure-rate approach or other
methods. It is emphasized here that the function of decor-
relation is to make DT-IA approach to DT-IAB, so that using
DT-IAB to approximate DT-IA is feasible. Note that differ-
ent Z transformation or Qẑẑ leads to different values of |xi |.
However, its computation formula will not change.
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In (28), x is chosen as [0, . . . , xi , . . . 0]T and xi > 0,
which means that x is the intersecting point at the i th axis.
The second best integer candidate of xi is u = ci and u is not
zero vector. ci is the canonical vector at the i th axis, or the
second best integer candidate of the IB origin pull-in region.
When the equality is built in (28) and xi > 0, we have

xi =
‖ci‖2Qẑẑ

− μDT

2‖ci‖2Qẑẑ

(47)

and ‖ci‖2Qẑẑ
− μDT > 0. If xi < 0, then

−xi =
‖ci‖2Qẑẑ

− μDT

2‖ci‖2Qẑẑ

(48)

Hence,

|xi | =
‖ci‖2Qẑẑ

− μDT

2‖ci‖2Qẑẑ

(49)

Note that |xi | only denotes the intersecting points between
origin pull-in region and coordinate axes. Intersecting points
from other pull-in regions can be obtained by integer trans-
lation along the coordinate axes. ��

Now, we can deduce the relationship between DT-IA and
IALS estimator.

If we rearrange Eq. (28)

�0,DTIA =
⋂

c∈Zn/{0}

{
x ∈ R

n|
‖c‖2Qẑẑ

cT Q−1
ẑ ẑ x

‖c‖2Qẑẑ
− μDT

≤
‖c‖2Qẑẑ

2

}

(50)

with c the second best integer candidate. We can see that

�0,DTIA =
⋂

c∈Zn/{0}

{
x ∈ R

n| 1

T (c)

cT Q−1
ẑ ẑ x

‖c‖Qẑẑ

≤ ‖c‖Qẑẑ

2

}

(51)

with

T (c) =
‖c‖2Qẑẑ

− μDT

‖c‖2Qẑẑ

(52)

with 0 < T (c) ≤ 1 and the definition of S0,ILS given in (9).
S0,ILS(c) is to denote one part of ILS pull-in region whose
second best integer candidate is c.

The properties of T (c) are summarized below:

1. The second best integer candidates c are determined once
Qẑẑ is given. Then, T (c) will be determined if μDT is
chosen.

2. After decorrelation, ILS can be approximated by IB, and
their second best integer candidates can be seen as the
same, which means that the set of c is equal to the set of
ci .

3. T (c) are not influenced by the sign of c, which means
T (c) = T (−c). They do not change the properties of
Sz,ILS or Sz,IB after linear scaling.

Hence, after decorrelation, we can say c will be the same
as ci , and Sz,ILS ≈ Sz,IB. Here, we still can find that the
decorrelation step is necessary to realize the approximation
from DT-IAB to DT-IA. Sz,ILS(c + z) is one part of the ILS
pull-in region with the second best integer candidate c + z.
Note that the second best integer candidates of Sz,ILS and
�0,DTIA are different due to the integer translation.

From another point of view, �z,DTIA can also be seen as
the combination of different parts. It is decomposed into

�z,DTIA =
⋃

c∈Zn/{0}
�z,DTIA(c + z)

�z,DTIA(c + z) = T (c)Sz,ILS(c + z)

(53)

where�z,DTIA(c+ z) is one part of DTIA pull-in region with
the second best integer candidate c + z.

As a summarization, we can give another definition of DT-
IA estimator, which is mathematically equivalent to (28).

Definition 3 (The DT-IA estimator)
The pull-in region of DT-IA estimator is defined as:

�z,DTIA=
⋂

c∈Zn/{0}

{
x ∈ R

n |
‖c‖2Qẑẑ

cT Q−1
ẑ ẑ (x − z)

(‖c‖2Qẑẑ
−μDT)‖c‖Qẑẑ

≤ ‖c‖Qẑẑ

2

}

(54)

It can also be interpreted as the combination of different scal-
ing parts, Sz,ILS(c+z) , whose second best integer candidates
are c + z. It means

�z,DTIA =
⋃

c∈Zn/{0}
T (c)Sz,ILS(c + z) (55)

with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T (c)Sz,ILS(c + z) =
{
x ∈ R

n | x−z
T (c) ∈ S0,ILS(c)

}
S0,ILS =⋃c∈Zn/{0} S0,ILS(c)

S0,ILS =⋂c∈Zn/{0}
{
x ∈ R

n | cT Q−1
ẑ ẑ x

‖c‖Qẑẑ
≤ ‖c‖Qẑẑ

2

}

with T (c) computed in (52).
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Fig. 9 2-D reconstruction of DT-IA origin pull-in region with μDT =
5, and their corresponding second best integer candidates denoted with
different colors. Blue (0,1); black (0, −1); magenta (1, 0); red (−1, 0);
yellow (1, −1); cyan (−1, 1). Red stars the second best integers to be
fixed

Obviously, DT-IA is connected with IALS by different
scaling ratios for the different second best integer candidates.
Scaling ratios T (c) depend on the choice of c, Qẑẑ and μDT.
When scaling ratios in all directions T (c) are equal, DT-IA
will behave the same as IALS. Hence, DT-IA can be seen as
the generalized IALS estimator.

Note that the difference between T (ci ) in (44) and T (c)
in (54) is that DT-IA has more second best integer candidates
c than ci of DT-IAB. Of course, the decorrelation step can
decrease this kind of difference. Hence, when DT-IA and
DT-IAB are fully decorrelated, the set of c is the same as
that of ci , and both estimators will be equal. This property
is consistent with the relation between IB and ILS. Note that
even if DT-IA is not perfectly decorrelated, we still can use
DT-IAB to approximate DT-IA. Of course, this will lead to
approximation errors.

To analyze the properties of DT-IA estimator in detail, the
2-D reconstruction of DT-IA pull-in region and their corre-
sponding second best integer candidates are presented in Fig.
9. Its ambiguity model matrix is the same as that of Fig. 1.

According toFig. 9,�0,DTIA is very similar to the ILSpull-
in region S0,ILS. However, the intersecting points between
ILS pull-in regions and coordinate axes are different from
those ofDT-IAestimator. ILSpull-in regions havefixed inter-
secting points, 1

2ci and ci ∈ Z
2/{0}, whereas those of DT

aperture pull-in regions depend on ‖ci‖2Qẑẑ
and μDT. When

Qẑẑ is given, its second best integer candidates of origin

pull-in region are determined, then these scaling ratios are
determined values based on fixed μDT.

Furthermore, it is noted that the sizes of the ILS and IB
pull-in regions are the same and invariant for different Qẑẑ .
Unfortunately, the volumes of aperture pull-in regions for
DT-IA and DT-IAB do not keep this property. Here, we give
the size of DT-IAB below. Since DT-IA and DT-IAB have
few differences when Qẑẑ is decorrelated, we will analyze
the property of their size based on DT-IAB.

Corollary 2 (Size of DT-IAB pull-in region)
The size of DT-IAB estimator is variant and depends on the
chosen Qẑẑ . It can be calculated based on the analytical
expression below

VDT I AB =
n∏

i=1

2|xi | =
n∏

i=1

|1 − μDT

‖ci‖2Qẑẑ

| (56)

There exists maximum for VDT I AB based on the condition

‖c1‖2Qẑẑ
= · · · = ‖ci‖2Qẑẑ

= · · · = ‖cn‖2Qẑẑ
(57)

with ci the second best integer candidate of the originDT-IAB
pull-in region at the i th axis.

Proof We briefly give the proof of this corollary.

n∏
i=1

|1− μDT

‖ci‖2Qẑẑ

| ≤

(
|1 − μDT

‖c1‖2Qẑẑ

| + · · · + |1 − μDT

‖cn‖2Qẑẑ

|
)n

n

(58)

The equality is built when condition (57) is satisfied.
Note that here each axis only chooses one ci in computa-

tion of the DT-IAB size, since ci at the same axis have equal
T (ci ).

Since ci is always fixed for each coordinate axis, the con-
dition (57) is totally determined by Qẑẑ . In Teunissen (1995),
it analyzes that the decorrelation will make the spectrum of
conditional variance become flat. In other words, it will make
the condition (57) easier to be achieved. Hence, we can say
that the decorrelation will enlarge the size of DT-IAB pull-in
region. This will also lead to the result in (60).

Note that the size of DT-IAB pull-in region is always
smaller than the size of integer pull-in region

0 <

n∏
i=1

2|xi | ≤ 1 (59)

When μDT = 0, DT-IAB estimator will degenerate into IB
estimator and VDTIAB = 1.

Since DT-IA andDT-IAB have similar performances after
decorrelation, most of times we can use the size of DT-IAB
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to approximate that of DT-IA after ambiguity decorrela-
tion. Similar to DT-IAB, once Qẑẑ , and μDT are determined,
the intersecting points between coordinate axes and pull-in
regions are determined, and its size is also fixed. ��

4.2 Probability bounds of DT-IA estimator

Based on Z transformation, we can deduce a higher DT-IAB
success rate (Teunissen 2000)

P(žDTIAB = z) =
n∏

i=1

(
2�

(
|xi |
σzi |I

)
− 1

)

≥
n∏

i=1

(
2�

(
|xi |
σai |I

)
− 1

)

= P(ǎDTIAB = a) (60)

When GNSS model is strong enough, acceptance testing is
not necessary, and μDT will be set as 0. When μDT = 0,
we can obtain the ILS success rate approximation as Eq.
(15). Under this situation, DT-IA estimator can be directly
regarded as ILS estimator.

Like the upper bound of IB based on ADOP, DT-IAB
also has its ADOP based upper bound. It is derived based on
the following idea. The pull-in region of DT-IAB is a cube
constructed by different side lengths. Note that the volume of
this cube depends on the size of critical value. This volume
reaches itsmaximumwhen all side lengths are all equal to the
geometrical average of the reciprocal sequential conditional
standard deviation. It means

|x1|
σâ1|2,··· ,n

= · · · = |xn|
σân

(61)

Actually, this condition is impossible to be obtained in
practice. It imposes extremely strict requirements to GNSS
model.

Similarly, we have

P

(
n⋂

i=1

(
|âi |I − ai |

σâi |I
≤ |xi |

σâi |I

))

≤ P

⎛
⎜⎝

n⋂
i=1

⎛
⎜⎝ |âi |I − ai |

σâi |I
≤
√√√√ n∏

i=1

|xi |
σâi |I

1
n
⎞
⎟⎠
⎞
⎟⎠

=
n∏

i=1

(
2�(

β

ADOP
) − 1

)
(62)

with β =
√∏n

i=1 |xi |
1
n
.

Be different from the invariant upper bound of IB (Teunis-
sen 1998b), this upper bound in Eq. (62) is not invariant and

is influenced by the decorrelation process to Qââ . However,
when the termination criterion of decorrelation process is
determined, then the Z matrix will be unique and eventually
|xi | and β also will be unique.

Then, we obtain that

P(ǎDTIAB = a) ≤
n∏

i=1

(
2�

(
β

ADOP

)
− 1

)
(63)

Since ADOP is Z transformation invariant, we also can
deduce similar result as (62)

P(žDTIAB = z) ≤
n∏

i=1

(
2�

(
β

ADOP

)
− 1

)
(64)

Combining (60) and (64), we have

n∏
i=1

(
2�

(
|xi |
σâi |I

)
− 1

)
≤ P(žDTIAB = z) ≤

n∏
i=1

(
2�

(
β

ADOP

)
− 1

)

(65)

Due to the similarity between DT-IAB and DT-IA under the
weak correlation situation, most of times we can use formula
(65) to bound DT-IA estimator. However, due to the optimal-
ity of ILS estimator (Teunissen 1999a), we still can deduce
similar lower bound for DT-IA estimator.

Corollary 3 (Lower bound of DT-IA estimator)
Based on the definition of DT-IAB estimator, and the PDF of
â ∈ �a,DTIA is given in (10), we have the inequality between
DT-IA and DT-IAB estimators

P(žDTIA = z) ≥ P(ǎDTIAB = a) (66)

Proof See the Appendix.
Note that P(žDTIA = z) �= P(ǎDTIA = a) since the size

of DT-IA is variant in Z transformation.
Hence, forDT-IAestimator, P(žDTIAB = z) canbe chosen

as its sharp lower bound. Its upper bound based on ADOP
can also be derived. We directly give it in Corollary 4. ��

Corollary 4 (Upper bound of DT-IA estimator)
For the determined admissible ambiguity parametrization,
the success rate of DT-IA estimator can be bounded from
above as:

P(žDTIA = z) ≤ P

(
χ2(n, 0) ≤ 4x̄2cn

ADOP2

)
(67)

with x̄2 =
(∑n

i=1 |xi |
n

)2
.
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Proof See the Appendix.
Of course, no matter which upper bound to choose, the

following upper bound always exists:

P(žDTIA = z) ≤ Ps,ILS (68)

Eventually, we obtain the bounds of DT-IA estimator

P(žDTIAB = z) ≤ P(žDTIA = z)

≤ P

(
χ2(n, 0) ≤ 4x̄2cn

ADOP2

)
(69)

After μDT is obtained by fixed-failure rate approach, other
probability evaluations of IA estimator can be derived.
Assume that the fixed-failure rate is set as Pf , and the false
alarm rate and the failure detection rate are denoted as Pf a

and Pf d respectively, then we have

Pf a = Ps,ILS − P(žDTIA = z)

Pf d = 1 − Pf − Ps,ILS
(70)

The probability evaluations for all judgments in DTIA esti-
mator are obtained once P(žDTIA = z) and Ps,ILS are known.

��

4.3 Simulation verification

To verify these conclusions, the simulation experiments are
also implemented based on the settings in Table 1. Here,
critical values of DT are determined based on fixed failure
rate approach and Pf = 0.001. For Fig. 10, we give the
following remarks:

1. The lower bound based on DT-IAB success rate can
realize good approximation to the DT-IA computed suc-
cess rate. It is noted that incomplete decorrelation to
the ambiguity variance matrix leads to the deviation of
approximation;

2. TheADOP-based upper bound for DT-IAB also provides
the upper constraint of the DT-IA. Be different from the
ADOPbased upper bound for ILS, all these upper bounds
are always larger than the DT-IAB based lower bounds.
This is the result for the geometric average of scaling
ratios |xi | and ADOP;

3. The ADOP-based upper bound for DT-IA provides the
loose upper constraint for DT-IA estimator, which is also
the upper bound of previous bounds.

Based on the approximated DT-IA success rates by DT-IAB
lower bound, the false alarm rates are approximated and com-
pared with the computed false alarm rates. The comparison
results in the Fig. 11 show that the false alarm rate can realize
good approximation to the actual computed values. Similarly,
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1

Fig. 10 The success rates of DT-IA estimator and their corresponding
lower bounds, upper bounds based on IB andDT-IA upper bounds based
on ADOP. Black computed IA success rates; green lower bounds based
on IB; red upper bounds based on IB; blue DT-IA upper bounds based
on ADOP
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Fig. 11 False alarm rates and its approximation of DT-IA estimator.
Black computed IA false alarm rates; green IA false alarm rates approx-
imation

approximation errors mainly come from the DT-IA success
rate approximation errors, which are mainly brought by the
decorrelation step.

As a summary, these simulation experiments verified the
effectiveness of the conclusions for DT-IA estimators.

5 Conclusions

Quality control is of great importance in GNSS ambigu-
ity resolution, especially in the reliable GNSS application.
Acceptance testing is one of the most important quality
control measures. There are various acceptance tests and dif-
ferent IA estimators have distinctive properties (Verhagen
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2005). This contribution is mainly focused on DT-IA esti-
mator and studied the overall properties of DT-IA ambiguity
resolution based on the theory of IA ambiguity resolution.

First, after reviewing the principle of integer estimation,
this contribution paid attention to the second best integer can-
didates in integer estimation and analyzed their properties in
decorrelated space. The second best integer candidates have
close relation with the geometry formation of pull-in region.

Then, the properties and bounds of DT were studied from
the algebraic perspective. Its sharp bound and loose upper
bound were derived and verified based on simulation exper-
iments. These bounds were simple and easy to be computed,
which can provide direct reference for DT-IA ambiguity res-
olution. The sharp upper bound of DT gave a clear range for
the choice of critical values.

Based on the probability evaluation theory in ILS esti-
mator, the probability evaluations of DT-IA estimators were
further exploited. The DT-IA success rate can realize quick
approximation based on the IB lower bound like ILS esti-
mator. This is more efficient and time saving than the
conventional Monte Carlo method. The other quality items,
such as false alarm and failure detection rates, are easy to be
derived. During the investigation process, the definition of
DT-IAB was firstly given, and the relationships between DT-
IA and DT-IAB estimators were deeply investigated. They
can be seen as the generalized IAB and IALS estimators,
and both estimators can be approximated after decorrelation.
Based on the studies of the second best integer candidates in
ILS, a new definition of DT-IA was given based on the linear
scaling perspective, which was equivalent to its original def-
inition. This perspective gives us a new perspective to study
other IA estimators.

The derived results forDT-IA success rates and false alarm
rates were verified in the simulation experiments including
single and GNSS combination models. Results showed that
DT-IA success rate can realize good approximation based on
DT-IAB success rate. The approximation of the false alarm
rate gave similar performance to that of the success rate. The
research frame for DT-IA estimator can provide reference for
the investigation of other IA estimators.
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Appendix

Proof of Corollary 1 (DT-IAB success rate)
To deduce the success rate of DT-IAB, the success rate of
IAB is given below (Teuniseen 2005)

P(ǎIAB = a) =
n∏

i=1

(
2�

(
γ

2σai |I

)
− 1

)
(71)

with γ the scaling ratio of IAB estimator.
We will derive similar formula for DT-IAB from 1-D to

n-D.
In the scalar case, the probability of DT-IAB is given as:

P(ǎDTIAB = a) = P(|â − a| ≤ |x |) (72)

with x the intersecting point between 1-dimensional pull-in
interval (region) and coordinate axis.

Then, its success rate of ambiguity resolution becomes

P(ǎDTIAB = a) = 2�

( |x |
σ

)
− 1 (73)

with �(|x |) = ∫ |x |
−∞

1√
2π

exp
(
− z2

2

)
dz. Actually, in the

scalar case, the DT-IAB is the same as the scalar case of
integer rounding. All IA estimators have the same properties
in the scalar case when fixed failure rates are the same.

In the n-D (vectorial) case, the bootstrapping probability
of correct IA estimation is given as:

P(ǎDTIAB = a) = P

(
n⋂

i=1

(|âi |I − ai | ≤ |xi |
))

(74)

with |xi | the i th intersection point between IA pull-in region
and coordinate axis.

Based on the chain rule of conditional probabilities

P(ǎDTIAB = a)

=
n∏

i=1

P([âi |I ] = ai |[â1] = a1, · · · , [âi−1|I−1] = ai−1)

(75)

Hence, according to the normal distribution of float ambigu-
ity, the success rate of DT-IAB estimator reads as:

P(ǎDTIAB = a) =
n∏

i=1

(
2�

(
|xi |
σâi |I

)
− 1

)
(76)

End of proof. ��
Proof of Corollary 3 (Lower bound of DT-IA estimator)
To prove this corollary, we firstly summarize the relationship
between DT-IA and ILS estimator in (51)

�z,DTIA =
⋃

c∈Zn/{0}
T (c)Sz,ILS(c + z) (77)
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T (c) is the scaling ratio of Sz,ILS(c + z) and computed by
(52).

If we apply the decorrelation step to (77), DT-IA can be
approximated by DT-IAB. Then, the second best integer can-
didates c can be seen the same as ci ,and their corresponding
pull-in region

Sz,ILS ≈ Sz,IB (78)

Then, the decomposition of �z,DTIA in (77) can be approxi-
mated by �z,DTIAB in (44). That is

�z,DTIA ≈ �z,DTIAB (79)

after decorrelation.
According to the definition in Teunissen (1999a) and the

linear scaling in (77), x in ILS pull-in region also has an
elliptically contoured distribution fz(x) and

fz(x) = (2π)−
n
2

√
det(Q−1

ẑ ẑ )exp

(
−

‖x − z‖2Qẑẑ

2

)

The ILS pull-in regions for all members of elliptically
contoured distributions are formulated as:

Sz,ILS = {x ∈ R
n, u ∈ Z

n| fz(x) ≥ fu(x)} (80)

Since �z,DTIA ⊂ Sz,ILS, the pull-in region of �z,DTIA also
can be given as:

�z,DTIA =
{
y ∈ R

n, u ∈ Z
n| fz(y) ≥ fu(y),

uT Q−1
ẑ ẑ (y − z)

‖u‖Qẑẑ

≤
‖u‖2Qẑẑ

− μDT

2‖u‖Qẑẑ

}
(81)

It follows that

fz(y) ≥
∑
u∈Zn

wu(y) fu(y),∀y ∈ �z,DTIA (82)

with the indicator function

wu(y) =
{
1 y ∈ �u,DTIAB

0 otherwise

When taking the integral of Eq. (82) over �z,DTIA, we know

∫
�z,DTIA

fz(y)dy ≥
∑
u∈Zn

∫
�z,DTIA

⋂
�u,DTIAB

fu(y)dy (83)

Change the variable in the left side of Eq. (83) based on the
replacements: fu(y) → fu(x + u − z) = fz(x), �z,DTIA →
�2z−u,DTIA and �u,DTIAB → �z,DTIAB. Thus

∫
�z,DTIA

fz(y)dy ≥
∑
u∈Zn

∫
�2z−u,DTIA∩�z,DTIAB

fz(x)dx

=
∫

�z,DTIAB

fz(x)dx (84)

since after decorrelation
( ⋃
u∈Zn

�2z−u,DTIA

)⋂
�z,DTIAB

≈
( ⋃
u∈Zn

�2z−u,DTIAB

)⋂
�z,DTIAB

= �z,DTIAB (85)

Hence, we have

P(žDTIA = z) ≥ P(žDTIAB = z) (86)

Previously we know that

P(žDTIAB = z) ≥ P(ǎDTIAB = a) (87)

Eventually, we have

P(žDTIA = z) ≥ P(ǎDTIAB = a) (88)

End of proof. ��
Proof of Corollary 4 (Upper bound of DT-IA estimator)
Let ρ =

√
cn/ADOP2 denote the radius of n−D Euclidean

ball. The volume of this ball is

Vn = ρn

cn/2
n

=
√
cn/ADOP2

n

cn/2
n

with

cn = ( n2�( n2 ))
n
2

π

The ILS upper bound based on ADOP can be interpreted
as:

Ps,ILS ≤ P(χ2(n, 0) ≤ ρ2) (89)

When the ILS pull-in regions are scaled down to the IA pull-
in regions, the radius of Euclidean ball is also scaled down
to certain value. Since the scalings are different in different
directions, the Euclidean ball actually is transformed into
hyper-ellipsoid. To be convenient, we choose to compute the
upper bound of DT-IA after decorrelation step. At that time,
we can use DT-IAB to approximate DT-IA. Then, the scal-
ing directions will be limited to those of axes. Based on the
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previous derivations about the scaling ratios of DT-IAB esti-
mators, these scaled radii or axes can be given as:

∼
ρi = 2|xi |ρ i = 1, 2, ..., n (90)

Thismeans that the Euclidean ball becomes hyper-ellipsoidal

after scaling. The mean of
∼
ρ in all directions is denoted as:

ρ̄ =
∑n

i=1
∼
ρi

n
= 2

∑n
i=1 |xi |ρ
n

= 2 ¯|x |ρ (91)

with ¯|x | =
∑n

i=1 |xi |
n . There exists the following relation for

the volume of Euclidian ball

n∏
i=1

∼
ρi

c1/2n

≤
(∑n

i=1
∼
ρi

n

)n

/cn/2
n

≤ ρ̄n

cn/2
n

(92)

The equality can be built when all scaling ratios of radius are
equal. The upper bound based on ADOP of DT-IA is given
as:

P(χ2(n, 0) ≤ ρ̄2) = P(χ2(n, 0) ≤ 4x̄2ρ2)

= P

(
χ2(n, 0) ≤ 4x̄2cn

ADOP2

)
(93)

Then, we have

P(žDTIA = z) ≤ P

(
χ2(n, 0) ≤ 4x̄2cn

ADOP2

)
(94)

End of proof. ��
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