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Abstract The concept of reliability was introduced into
geodesy by Baarda (A testing procedure for use in geodetic
networks. Publications on Geodesy, vol. 2. Netherlands Geo-
detic Commission, Delft, 1968). It gives a measure for the
ability of a parameter estimation to detect outliers and leads
in case of one outlier to the MDB, the minimal detectable bias
or outlier. The MDB depends on the non-centrality parame-
ter of the χ2-distribution, as the variance factor of the linear
model is assumed to be known, on the size of the outlier test
of an individual observation which is set to 0.001 and on the
power of the test which is generally chosen to be 0.80. Start-
ing from an estimated variance factor, the F-distribution is
applied here. Furthermore, the size of the test of the individ-
ual observation is a function of the number of outliers to keep
the size of the test of all observations constant, say 0.05. The
power of the test is set to 0.80. The MDBs for multiple out-
liers are derived here under these assumptions. The method
is applied to the reconstruction of a bell-shaped surface mea-
sured by a laser scanner. The MDBs are introduced as outliers
for the alternative hypotheses of the outlier tests. A Monte
Carlo method reveals that due to the way of introducing the
outliers, the false null hypotheses cannot be rejected on the
average with a power of 0.80 if the MDBs are not enlarged
by a factor.
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1 Introduction

Baarda (1968) by his pioneering work introduced outlier tests
to geodesy. He assumed the variance factor, i.e. the variance
of unit weight, of the linear model to be known. Thus, the
test statistic of his data snooping follows by the normalized
residual having the normal distribution. Pope (1976) started
from an estimated variance factor and derived as test sta-
tistic the studentized residual with the τ -distribution. Koch
(1983), (1999, p. 302) and Kok (1984) showed that the tests
for multiple outliers can be derived by the mean-shift model,
cf. Baarda (1967, p. 21), Beckman and Cook (1983). Applied
to searching for one outlier, it leads to the data snooping or
the τ -test.

Baarda (1968) also introduced the concept of reliability.
He looked at the alternative hypothesis of his test that the
outlier is not equal to zero in contrast to the null hypothesis
that the outlier equals zero. Different choices for alterna-
tive hypotheses for outlier tests were discussed by Lehmann
(2013).

The non-central χ2-distribution follows for the alternative
hypothesis of Baarda’s test. He determined the non-centrality
parameter by setting the power of the test to a fixed value, gen-
erally 0.80, which means the probability of rejecting a false
null hypothesis is 0.80. In case of one outlier, the expres-
sion for the non-centrality parameter can be solved for the
detectable outlier. Thus, a measure of reliability is obtained.

This measure was called marginally detectable outlier by
Kok (1982) and is now named the minimal detectable bias
(MDB), cf. Teunissen (2000, p. 102). The MDB is a scalar
for one outlier. It is generalized for multiple outliers to a unit
vector with as many components as there are outliers to be
searched for. The vector indicates the positions of the outliers
within the observations, and it is multiplied by a scalar with
the same expression as the MDB for one outlier, cf. Knight
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et al. (2010), Teunissen and de Bakker (2013). The MDB is
defined for all combinations of the observations with respect
to the number of outliers. It depends on the submatrix of
the matrix of reliabilities of the observations, which follows
from the reliabilities of those observations to be assumed as
falsified by outliers.

Bounds for the MDB were computed by solving eigen-
value problems, thus obtaining measures of reliability, cf.
Teunissen (2000, p. 105), Knight et al. (2010). The non-
centrality parameter of the χ2-distribution, on which the
MDB depends, can be expressed by a quadratic form and
therefore by a hyperellipsoid, the axes of which result from
the eigenvalues (Teunissen 1986). The MDB is also a func-
tion of the size of the test, i.e. the level of significance, which
for practical applications is set to 0.001, cf. Staff of the Geo-
detic Computing Center (1982).

Measures of reliability for multiple outliers shall be
derived here. As known, multiple outlier testing is difficult
to successfully apply. Furthermore, if a certain number of
outliers is searched for and all combinations of this num-
ber within the observations are tested, different outliers may
produce identical residuals and therefore identical test statis-
tics (Baselga 2011). This does not cause a problem here as
the magnitudes of the detectable outliers are important, their
distributions among the observations are less of a concern.

Estimated variance factors are assumed here, the test sta-
tistics are therefore F-distributed. In addition, the size of the
test is not fixed to 0.001 but depends on the number of obser-
vations out of the following reason. If one outlier is searched
in the observations, all observations have to be tested. To
keep the size of the overall test constant, for instance 0.05,
the size of the test of the individual observation is depend-
ing on the number of measurements. This has been shown
by Pope (1976). Instead of computing the size of the test for
the individual observation, Lehmann (2012) applied Monte
Carlo methods to compute percentage points for maximal
normalized and studentized residuals.

In case of multiple outliers, all combinations of the
observations with respect to the number of outliers have
to be tested. Like the non-centrality parameter of the
χ2-distribution, the non-centrality parameter of the F-
distribution can be represented by a quadratic form. The
eigenvector of the quadratic form which belongs to the small-
est eigenvalue leads to the detectable outliers. The minimum
of these values among all combinations gives the MDBs, the
minimal detectable outliers. Instead of generalizing the MDB
for one outlier, it is derived here for multiple outliers.

The method is applied to data of a laser scanner. A bell-
shaped surface represented by the tensor product of B-splines
is determined by laser scanning. MDBs are computed and
introduced into the alternative hypotheses of the outlier tests.
The powers of the tests are determined by a Monte Carlo
method from 100,000 random variates of the observations.

The paper is organized as follows: Sect. 2 recalls the
method of multiple outlier testing in a mean-shift model.
Section 3 derives the minimal detectable outliers. Section 4
deals with fitting a B-spline surface to the measurements of
a laser scanner. Minimal detectable outliers are computed in
Sect. 5 for the surface fitting and Sect. 6 gives the conclusions.

2 Multiple outlier testing

Let the linear model

Xβ = E( y) = y + e with E(e) = 0

and D( y) = D(e) = σ 2 P−1 (1)

be given, where X denotes the n × u matrix of known coef-
ficients with rank X = u, β denotes the u × 1 vector of
unknown parameters, y the n × 1 vector of observations, e
the n × 1 vector of errors, σ 2 the unknown variance fac-
tor and P the n × n positive definite weight matrix of the
observations. The unknown parameters β are estimated by β̂

with

β̂ = (X ′ P X)−1 X ′ P y, (2)

the vector ê of the residuals follows with

ê = −(I − X(X ′ P X)−1 X ′ P) y, (3)

its covariance matrix D(ê) with

D(ê) = σ 2 Qe = σ 2(P−1 − X(X ′ P X)−1 X ′) (4)

and the quadratic form � of the residuals with

� = y′(P − P X(X ′ P X)−1 X ′ P) y. (5)

The mean-shift model results from augmenting (1) by the
r × 1 vector ε of unknown outliers and the n × r matrix Z
of known coefficients, cf. Koch (1999, p. 208) for a linear
model with a matrix X of coefficients not of full rank,

|X, Z|
∣
∣
∣
∣

β

ε

∣
∣
∣
∣
= E( y) with D( y) = σ 2

ε P−1 (6)

where σ 2
ε denotes the unknown variance factor of the mean-

shift model. Let’s assume that a test for r outliers has to
be derived. The number r can be arbitrarily chosen but
should reflect the number of outliers which is expected in the
observations. The outliers are ordered in a sequence start-
ing with y = (yi ) at the observation yk and are called �yk ,
�yk+1, . . . , �yk+r−1. They are subtracted from the obser-
vations yk, yk+1, . . . , yk+r−1. Thus,

ε = |�yk,�yk+1, . . . ,�yk+r−1|′ and

Z = |ek, ek+1, . . . , ek+r−1| (7)

with

el = |0, . . . , 0, 1, 0, . . . , 0|′ (8)
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where the lth component with l ∈ {k, k + 1, . . . , k + r − 1}
gets the value 1. The estimate ε̂ of ε follows by

ε̂ = SZ′ P Qe P y = −SZ′ Pê (9)

with

S = (Z′ P Qe P Z)−1. (10)

The matrix Qe P is called redundancy matrix, cf. Koch (1999,
p. 305), Guo et al. (2011), because the i th diagonal element
of Qe P gives the contribution of the observation yi to the
redundancy n − u

tr( Qe P) = tr(I − X(X ′ P X)−1 X ′ P) = n − u. (11)

The multiple outlier test is defined by the null hypothesis
H0 that all outliers ε are equal to zero against the alternative
hypothesis H1 that outliers ε̄ are present

H0 : ε = 0 versus H1 : ε = ε̄ �= 0. (12)

This hypothesis is introduced into the linear model (6) as
special case of a general linear hypothesis. It gives the test
statistic T by, cf. Koch (1999, p. 302),

T = R/r

(� − R)/(n − u − r)
(13)

with

R = ε̂
′S−1ε̂ = ê′ P ZSZ′ Pê. (14)

In case the null hypothesis is true, T has the F-distribution

T ∼ F(r, n − u − r). (15)

The null hypothesis is rejected if

T > F1−α;r,n−u−r (16)

where α denotes the size of the test and F1−α;r,n−u−r the
upper α-percentage point of the F-distribution. It is defined
by
∫ F1−α;r,n−u−r

0
F(r, n − u − r)dT = 1 − α (17)

where F(r, n − u − r) now denotes the density function of
the F-distribution. Thus,
∫ ∞

F1−α;r,n−u−r

F(r, n − u − r)dT = α (18)

gives the probability α of the Type I error.
In case the alternative hypothesis is true, T has the non-

central F-distribution

T ∼ F ′(r, n − u − r, λ) (19)

with the non-centrality parameter λ

λ = ε̄′S−1ε̄/σ 2
ε (20)

and

σ 2
ε = (� − R)/(n − u − r). (21)

The probability of the Type II error of the test is computed
by

P(Type II error) =
∫ F1−α;r,n−u−r

0
F ′(r, n − u − r, λ)dT

= 1 − β (22)

where F ′(r, n −u −r, λ) now denotes the density of the non-
central F-distribution. The probability of rejecting a false
null hypothesis is given by the power β of the test. The test
by (13) is a uniformly most powerful invariant (UMPI) test,
cf. Arnold (1981, p. 108), Kargoll (2008, p. 37). It maximizes
the power within the class of unbiased, invariant tests.

If r outliers are searched in n observations, q test statistics
have to be computed by the combination of r th order
(

n

r

)

= q. (23)

Let α be the size of testing the q combinations. The prob-
ability of the type I error of this test then results with (16)
from

P(T1 > F1−α;r,n−u−r ∪ T2 > F1−α;r,n−u−r ∪ . . .

∪ Tq > F1−α;r,n−u−r ) = α. (24)

By applying the Bonferroni inequality, cf. Arnold (1981, p.
195), we get

P(T1 > F1−α;r,n−u−r ) + P(T2 > F1−α;r,n−u−r + . . .

+P(Tq > F1−α;r,n−u−r ) ≥ α (25)

because of the relation which holds for l �= m and l, m ∈
{1, 2, . . . , q}, cf. Koch (2007, p. 7),

P(Tl > F1−α;r,n−u−r ∪ Tm > F1−α;r,n−u−r )

= P(Tl > F1−α;r,n−u−r ) + P(Tm > F1−α;r,n−u−r )

−P(Tl > F1−α;r,n−u−r ∩ Tm > F1−α;r,n−u−r ).

It follows approximately from (25)

P(Ti < F1−α;r,n−u−r ) = 1 − α/q. (26)

Thus, the i th among the q combinations has to be tested with
the size α/q to obtain α as size of the test for all q com-
binations. For such a test, the upper percentage point of the
F-distribution in (17) needs to be replaced by F1−α/q;r,n−u−r

so that instead of (18) the Type I error follows from
∫ ∞

F1−α/q;r,n−u−r

F(r, n − u − r)dT = α/q. (27)

By applying (26), the null hypothesis is accepted more often
than by the inequality (25) as the upper percentage point
is greater than the percentage point which results from the
inequality.
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3 Minimal detectable outliers

The ability of a parameter estimation to detect outliers has
been called reliability by Baarda (1968). He started from the
alternative hypothesis of his outlier test and determined the
non-centrality parameter of the non-central χ2-distribution
by assuming a fixed value for the power of the test, 0.80 is
generally taken. The alternative hypothesis H1 with the non-
central F-distribution is used here. Furthermore, one of the
q combinations is tested with the size α/q so that the upper
percentage point F1−α/q;r,n−u−r in (27) is applied, which
follows from (17) by
∫ F1−α/q;r,n−u−r

0
F(r, n − u − r)dT = 1 − α/q. (28)

The non-centrality parameter λ in (20) is determined by λ0

with fixing the power β of the test to β = 0.80

λ0 = λ(1 − α/q; r, n − u − r, β = 0.80). (29)

The power β follows from (22) by
∫ F1−α/q;r,n−u−r

0
F ′(r, n − u − r, λ0)dT = 1 − β (30)

so that λ0 is computed as the (1 − β)-percentage point
F ′

1−β;r,n−u−r,λ0
of the non-central F-distribution. The inte-

gral in (28) and the integral in (30) with λ0 being known
are integrated over the identical domain [0, F1−α/q;r,n−u−r ],
therefore

F ′
1−β;r,n−u−r,λ0

= F1−α/q;r,n−u−r . (31)

The cumulative distribution functions of the F-distribution
and of the non-central F-distribution are computed by the
series expansion of the incomplete beta function, cf. Koch
(1999, p. 116). To obtain the percentage points, approximate
values are chosen and then iteratively corrected in nested
intervals (Gaida and Koch 1985), also called binary search
(Schader and Schmid 1986).

We now look at the q combinations with respect to the r
outliers. Let ε̄ j with j ∈ {k, k + 1, . . . , k + r − 1} be one
r × 1 vector of outliers. The non-centrality parameter λ0 can
then be expressed with (10), (12) and (20) by the quadratic
form

λ0 = ε̄′
j Z′ P Qe P Zε̄ j/σ

2
ε . (32)

It shall be minimized subject to the condition ε̄′
j ε̄ j = 1, cf.

Golub and van Loan (1984, p. 267),

ε̄′
j Z′ P Qe P Zε̄ j/σ

2
ε → min for ε̄′

j ε̄ j = 1. (33)

Let the eigenvector ε̄ jm belonging to the smallest eigenvalue
of the symmetric matrix Z′ P Qe P Z give the minimum

ε̄′
jm Z′ P Qe P Zε̄ jm/σ 2

ε = min for ε̄′
jm ε̄ jm = 1. (34)

The smallest value of ε̄′
jm Z′ P Qe P Zε̄ jm is then determined

among all q combinations. To find it, we get by the factor f
since the quadratic form (34) has to be equal to λ0 from (32)

λ0 = f ε̄′
jm Z′ P Qe P Z f ε̄ jm/σ 2

ε . (35)

Solving for f , we obtain the expression which has to be
minimized

f =
√

λ0σ 2
ε

ε̄′
jm Z′ P Qe P Zε̄ jm

. (36)

Let the minimum be attained with ε̄lm , we then find
the MDBs, the minimal detectable biases or the minimal
detectable outliers by, cf. Knight et al. (2010), Teunissen and
de Bakker (2013),

M DB = f ε̄lm =
√

λ0σ 2
ε

ε̄′
lm Z′ P Qe P Zε̄lm

ε̄lm

for ε̄′
lm ε̄lm = 1. (37)

They give a measure for the reliability of the parameter esti-
mation.

The matrix P Qe P is therefore called the reliability matrix
R of the observations

R = P Qe P = (ri j ), (38)

although Proszynski (2010) denotes the redundancy matrix
Qe P in (11) as reliability matrix. The r × r submatrix
Z′ P Qe P Z in (37) is found with Z from (7) by

Z′ P Qe P Z =
∣
∣
∣
∣
∣
∣

rkk rk,k+1 . . . rk,k+r−1

. . . . . . . . .
rk+r−1,k rk+r−1,k+1 . . . rk+r−1,k+r−1

∣
∣
∣
∣
∣
∣

.(39)

The MDB for r = 1 follows from (37) with

M DB =
√

λ0σ 2
ε

rmm
. (40)

where rmm denotes the minimal diagonal element of the relia-
bility matrix P Qe P . The non-centrality parameter λ0 for the
non-central χ2-distribution with α = 0.001 and 1−β = 0.20
is obtained from, cf. Baarda (1968), Koch (1983),

λ0 = 4.132 = 17.05. (41)

If in addition to the MDBs, maximal detectable outliers shall
be computed, the eigenvector belonging to the largest eigen-
value is then used to find the maximum of (36) among the
q combinations. The maximal detectable outliers have not
been determined here.

4 B-spline surface

A B-spline surface in three-dimensional space is a function
of two parameters which are called ξ1 and ξ2. It is obtained
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by the tensor product of the two B-spline basis functions
Ni1q1(ξ1) and Ni2q2(ξ2) of degrees q1 and q2 with, cf. Piegl
and Tiller (1997, p. 34),

s(ξ1, ξ2) =
I1−1
∑

i1=0

I2−1
∑

i2=0

Ni1q1(ξ1)Ni2q2(ξ2) pi1i2
(42)

and

s(ξ1, ξ2) =
∣
∣
∣
∣
∣
∣

x(ξ1)

y(ξ1, ξ2)

z(ξ2)

∣
∣
∣
∣
∣
∣

(43)

where the 3 × 1 vector s(ξ1, ξ2) denotes points with the
rectangular coordinates x, y and z. The coordinates y with
respect to a x, z plane represent the B-spline surface. The
three coordinates are measured by a laser scanner and the
coordinates y are fitted to the B-spline surface. The points

pi1i2
= |xi1 , yi1i2 , zi2 |′ with

i1 ∈ {0, . . . , I1 − 1}, i2 ∈ {0, . . . , I2 − 1} (44)

are the unknown control points, which the B-spline surface
approximately follows.

The B-spline basis functions Ni1q1(ξ1) and Ni2q2(ξ2) are
computed by a recursion formula due to Cox (1972) and
de Boor (1972) for the interval ξ1 ∈ [ξ1 j , ξ1 j+1) where
ξ1 j denotes a knot. The B-spline basis functions Ni1q1(ξ1)

form polynomial segments for the intervals [ξ1 j , ξ1 j+1). If
ξ1 lies outside [ξ1 j , ξ1 j+1), then Ni1q1(ξ1) = 0. The seg-
ments are therefore locally controlled. The same holds true
for Ni2q2(ξ2). Thus, the B-spline surface is built up by patches
of bivariate polynomials, which are locally determined.

The numbers r1 and r2 of polynomial segments in the x
and z directions follow from the numbers t1 + 1 and t2 + 1
of knots by, cf. Koch (2011),

r1 = t1 − 2q1, r2 = t2 − 2q2 (45)

and the numbers I1 and I2 of control points in x and z direc-
tions by

I1 = t1 − q1, I2 = t2 − q2. (46)

Let the rectangular coordinates x , y and z be measured
for n p = e1 × e2 points s(ξ1a1, ξ2a2), where ξ1a1 with a1 ∈
{1, . . . , e1} and ξ2a2 with a2 ∈ {1, . . . , e2}denote the location
parameters which shall be given. Equation (42) then leads to
a linear relation between the unknown control points pi1i2

and the measured points s(ξ1a1, ξ2a2), therefore to the linear
model (1). The observation equations for estimating pi1i2

are
obtained by

I1−1
∑

i1=0

I2−1
∑

i2=0

Ni1q1(ξ1a1)Ni2q2(ξ2a2) pi1i2

= s(ξ1a1, ξ2a2) + e(ξ1a1, ξ2a2) with

D( y) = P = σ 2diag(1/σ 2
1 , . . . , 1/σ 2

n p
) and

a1 ∈ {1, . . . , e1}, a2 ∈ {1, . . . , e2} (47)

where e(ξ1a1, ξ2a2) denotes the vector of errors of the coordi-
nates s(ξ1a1, ξ2a2), which are assumed as being independent.
The n p × 1 vector y contains as components the yi coor-
dinates of the points s(ξ1a1, ξ2a2), and the nq × n p matrix
P gives the weights by means of the variances σ 2

i for the
coordinates yi . The standard deviations given in (58) for the
coordinates x and z are much smaller than the ones for y so
that they are assumed as fixed. We obtain e1e2 linear equa-
tions from (47) for determining I1 I2 unknown control points.

The observation equations (47) are expressed by a matrix
notation which in turn is represented by the Kronecker prod-
uct, cf. Koch (1999, p. 41),

(N(ξ2) ⊗ N(ξ1))vecD = vecS + vecE (48)

where the e1 × I1 matrix N(ξ1) of B-spline basis functions
is obtained by

N(ξ1) =
∣
∣
∣
∣
∣
∣

N0q1(ξ11) . . . NI1−1,q1(ξ11)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
N0q1(ξ1e1) . . . NI1−1,q1(ξ1e1)

∣
∣
∣
∣
∣
∣

(49)

and accordingly the e2 × I2 matrix N(ξ2). The I1 × I2 matrix
D of unknown control points is defined by

D =
∣
∣
∣
∣
∣
∣

p00 . . . p0,I2−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
pI1−1,0 . . . pi1 − 1, I2 − 1

∣
∣
∣
∣
∣
∣

(50)

and with

s(ξ1a1, ξ2a2) = sa1a2 (51)

the e1 × e2 matrix S of given points by

S =
∣
∣
∣
∣
∣
∣

s11 . . . s1e2

. . . . . . . . . . . . . .
se11 . . . se1e2

∣
∣
∣
∣
∣
∣

(52)

The e1 ×e2 matrix E of errors is obtained with replacing s by
e in (51) and (52). The matrix D and S contains as elements
3 × 1 vectors, the three coordinates of the points.

The simultaneous least squares estimate vec D̂ of vecD
for the unknown control points results with (48) by

vec D̂ = [(N(ξ2) ⊗ N(ξ1))
′ P(N(ξ2) ⊗ N(ξ1))]−1

(N(ξ2) ⊗ N (ξ1))
′ PvecS. (53)

The vector vecÊ of residuals follows from (48) by

vecÊ = (N(ξ2) ⊗ N(ξ1))vec D̂ − vecS. (54)
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Let the n p×1 vector ê collect the residuals for the coordinates
yi from vecÊ. The estimate σ̂ 2 of the variance factor σ 2 in
(1) then follows by

σ̂ 2 = ê′ ê/(e1e2 − I1 I2). (55)

The lofting method (Koch 2009) estimates the unknown con-
trol points more efficiently than (53). However, it cannot be
applied because of the weight matrix P .

5 Numerical example

The rectangular coordinates xi and zi with i ∈ {1, . . . , n p} of
a grid of 26 rows and 28 columns with n p = 26 × 28 = 728
points together with the coordinates yi , which represent a
bell-shaped surface, were measured by the laser scanner HDS
3000, see Fig. 1. The blue colors of the points indicate high
intensities of the reflected laser beams. The coordinates refer
to the local coordinate system of the instrument with the x-
axis lying horizontally, the y-axis coinciding with the center
of the lines of sight and the z axis pointing to the zenith. The
scans start at the lower left corner of the grid from negative
to positive z values with increasing x values and end at the
upper right corner. The distances between the points on the
surface are about 1 cm, the shortest y coordinate is 501 cm.

To determine the standard deviations of the observed coor-
dinates, the points of the grid were measured in addition with
nw = 15 repetitions. With the mean x̄i of the repeatedly mea-
sured coordinates xi j for i ∈ {1, . . . , n p}, j ∈ {1, . . . , nw}
from

Fig. 1 Points representing the bell-shaped surface from coordinates x ,
y, z measured by the laser scanner. One minimal detectable outlier lies
at point 355, two at points 356 and 406, three at 34, 355 and 406

x̄i = 1

nw

nw∑

j=1

xi j , (56)

we compute the variance σ 2
xi

of xi by

σ 2
xi

= 1

nw − 1

nw∑

j=1

(xi j − x̄i )
2 (57)

and accordingly σ 2
yi

and σ 2
zi

as well as the standard deviations
σxi , σyi , σzi by taking the square roots. The mean values σ̄xi ,
σ̄yi and σ̄zi of the nw standard deviations are obtained with

σ̄xi = 0.016 cm, σ̄yi = 0.097 cm, σ̄zi = 0.003 cm. (58)

As mentioned in Sect. 4, the B-spline surface (42) is fit-
ted by a least squares adjustment to the y coordinates. The
more knots are introduced, which means the more polyno-
mial segments and the more unknown control points because
of (45) and (46), the better the fit. The number of knots is
chosen such that the variances for the coordinates y are not
degraded. This is accomplished if the variance factor σ 2 is
estimated from (55) by

√
σ̂ 2 ≈ 1. With 13 knots in the direc-

tion of z, 14 knots in the direction of x and q1 = q2 = 3,
the number of unknown control points is 90 and the estimate
from (55)
√

σ̂ 2 = 1.080. (59)

Due to the local property of the B-splines, the more poly-
nomial segments are chosen, the more difficult becomes the
detection of outliers as the coordinates y do not control each
other. On the other hand because of the local property, evenly
distributed outliers do not much affect the estimation of the
control points.

To determine by (37) the MDBs, one, two and three out-
liers have been assumed, i.e. r ∈ {1, 2, 3}, see first column
of Table 1. Depending on q in (23), the submatrix (39) fol-
lowing from the reliability matrix (38) has to be determined.
The variance σ 2

ε is also needed in (37), it follows with (5)
and (14) from (21). The non-centrality parameter λ0 in (37)
is computed with β = 0.80 as the (1−β)-percentage point
of the non-central F-distribution from (30). It follows from
the upper percentage point (28) of the F-distribution with
size α/q for the test of the individual observation. The size
of the outlier test (12) is chosen as α = 0.05. The num-
bers q of combinations to be tested are obtained from (23)
with n = n p = 728 for r ∈ {1, 2, 3}. They are given in
the second column of Table 1 together with the values for
the size 0.05/q. The upper percentage points (28) and the
non-centrality parameters λ0 follow in the third column of
Table 1.

The quadratic form (32) is minimized with computing the
eigenvalues and eigenvectors by the Jacobi method, cf. Golub
and van Loan (1984, p. 295). The smallest value of (36) is
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Table 1 Number r of outliers, combinations q and size 0.05/q of the
tests, upper percentage points and non-centrality parameter λ0, mini-
mal detectable outliers with magnitudes and points, standard deviation

√
σ̂ 2, test statistic T , power β from 100,000 generated coordinates yi ,

factor for minimal detectable outliers, test statistic T and power β

r q Percent. p. Min. detect. outl. magn. points (cm)
√

σ̂ 2 Factor
Size 0.05/q λ0 T T

β β

1 728 16.06 0.262 355 1.102 1.32

0.686e−06 23.55 25.78 43.94

0.268 0.799

2 264,628 15.86 0.122 356 1.097 1.94

0.189e−08 23.31 0.238 406 10.15 41.13

0.000 0.805

3 64,039,976 15.66 0.030 34 1.100 2.22

0.781e−11 23.06 0.136 355 8.651 40.12

0.234 406 0.000 0.805

determined among the q combinations. As can be recog-
nized in Table 1, the number q of combinations increases
rapidly with the number r of outliers. Instead of systemati-
cally searching the minimum of (36) for large numbers of q,
one could randomly seek for r outliers among the n p coordi-
nates yi to which points the minimum is moving. The search
can then be restricted to the vicinity of these points. The min-
imum leads to the MDBs from (37). Their magnitudes and
the numbers of the points where they occur are presented in
the following two columns of Table 1. The points are also
shown in Fig. 1. The numbering of the points follows the
sequence of the scans from the lower left corner of the grid
to the upper right corner.

The MDB from (40) with λ0 from (41) of Baarda (1968)
equals 0.223 cm. The difference against 0.262 in Table 1
is caused by applying the F-distribution instead of the χ2-
distribution and by the size 0.05/728=0.686e−06 of the test
instead of 0.001.

The MDBs are introduced as outliers with positive signs
for the coordinates yi at the points where they occur. One
could have selected the sign such that the standard devia-
tions

√
σ̂ 2 for the surface fit increase. This has not been tried

to avoid the impression of manipulating the data. The sixth
column in Table 1 shows

√
σ̂ 2.

The MDBs give the outliers for the alternative hypothesis
H1 in (12). To find out whether the false null hypothesis H0

for such a case is on the average rejected with a power of 0.80,
independent normally distributed errors with zero expecta-
tions and standard deviations σyi from (57) times

√
σ̂ 2 from

Table 1 are added to the coordinates yi plus outliers, cf. Koch
(2007, p. 197), to obtain 100,000 random variates of the coor-
dinates yi and to compute the test statistics T from (13). The
average percent of rejecting the false null hypothesis, i.e. the
power β, is thus determined.

By introducing in case of r = 1 the MDB for point 355 as
outlier,

√
σ̂ 2 increases from 1.080 of (59) to 1.102. The test

statistic T = 25.78 given in the sixth column of Table 1 is
larger than the upper percentage point of 16.06 of the third
column of Table 1. The null hypothesis that the outlier is equal
to zero is therefore rejected. However, a power β = 0.268 is
only reached for the minimal detectable outlier of point 355
as shown in Table 1. The reason might be the local property
of the B-splines as mentioned after (59). Furthermore, the
MDB = 0.262 cm is quite optimistic. The standard deviation
from (58) times

√
σ̂ 2 of Table 1 is σ̄yi

√
σ̂ 2 = 0.107 cm. This

standard deviation has to be multiplied by only 2.45 to obtain
the MDB = 0.262. The factor of 3.00 according to the 3σ -
rule would have allowed a better detection of the outlier.

In case of r = 2 outliers, the standard deviation
√

σ̂ 2 in
Table 1 drops from 1.102 to 1.097. As the MDBs for points
356 and 406 are introduced as outliers with positive signs,
they improve the surface fit by reducing the residuals of the
coordinates yi of these points. The test statistic T = 10.15 is
smaller than the percentage point 15.86 and the null hypoth-
esis is accepted. The power β = 0.000 therefore follows. By
introducing three outliers,

√
σ̂ 2 in Table 1 increases to 1.100

but it is still smaller than 1.102. The test statistic T = 8.651 is
smaller than the percentage point 15.66. The null hypothesis
is accepted and the power is β = 0.000.

The seventh column of Table 1 shows together with the
test statistic T the factors by which the MDBs have to be
enlarged in order to obtain the power β = 0.80 for 100,000
random variates for the coordinates yi . In case of two and
three outliers, the effects of improving the surface fits by
adding positive MDBs have to be compensated by enlarging
the MDBs so that the outliers act as outliers. The necessary
factors of 1.94 and 2.22 approximate the factor of 2.45 given
above to obtain the MDB = 0.262 cm from the standard
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deviation. This explains the increase of the MDBs to obtain
β = 0.80.

6 Conclusions

Starting from a linear model with an unknown variance fac-
tor, the mean-shift model is presented for multiple outlier
testing. The test statistic, which has the F-distribution, and
the non-centrality parameter, in case the alternative hypoth-
esis is true, are given. Outliers are searched for all combi-
nations of the observations with respect to the number of
outliers. To keep the size of the outlier test constant, the test
of the individual observations has to depend on the number
of combinations. The power of the test is set to 0.80.

The non-centrality parameter is computed as the (1−0.80)-
percentage point of the non-central F-distribution. It is a
function of a quadratic form, which is minimized by com-
puting the eigenvalues and eigenvectors. The smallest mini-
mum among all combinations gives the MDBs, the minimal
detectable outliers.

The method is applied to the reconstruction of a bell-
shaped surface measured by a laser scanner. The MDBs of
one, two and three outliers are determined together with
the points where they occur. The MDBs are introduced as
given outliers into the alternative hypothesis of the outlier test
so that the null hypothesis is false. A Monte Carlo method
checks whether on the average the false null hypotheses are
rejected with a power of 0.80. It turns out that this is not the
case. The MDBs have to be multiplied by 1.32 for one, 1.94
for two and 2.22 for three outliers. The reasons for enlarging
the MDBs are outlined.
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