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Abstract Although the analytical solutions for total least-
squares with multiple linear and single quadratic constraints
were developed quite recently in different geodetic publi-
cations, these methods are restricted in number and type
of constraints, and currently their computational efficiency
and applications are mostly unknown. In this contribution,
it is shown how the weighted total least-squares (WTLS)
problem with arbitrary applicable constraints can be solved
based on a Newton type methodology. This iterative process
with quadratic convergence is expanded upon to become a
compact solution for the WTLS with or without constraints.
This compact solution is then further interpreted as a uni-
versal formula for the symmetrical adjustment of the errors-
in-variables model which represents affine, similarity and
rigid transformations in two- and three-dimensional space.
Furthermore, statistical analysis of the constrained WTLS
including the first-order approximation of precision and the
bias was investigated. In order to substantiate our proposed
method’s applicability, it was used to solve the affine, simi-
larity and rigid transformation problem in two- and three-
dimensional cases, where the structure of the coefficient
matrix and multiple constraints were taken into account
simultaneously.
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1 Introduction

The well-known least-squares (LS) has been widely used for
adjusting the Gauss–Markov model (GMM) in geodesy and
related fields. The usual prerequisite for applying this linear
LS technique within the GMM is that the coefficient matrix is
error free. However, this assumption is not always satisfied
in many cases, for example, in regression problems (e.g.,
Schaffrin and Wieser 2008; Grafarend and Awange 2012;
Amiri-Simkooei et al. 2014) as well as in geodetic trans-
formations (e.g., Teunissen 1988; Schaffrin and Felus 2008;
Cai and Grafarend 2009). In mathematics, if the coefficient
matrix is affected by random errors, this nonlinear LS estima-
tion within the GMM containing such a coefficient matrix is
called total least-squares (TLS) within the errors-in-variables
(EIV) model (see Golub and Van Loan 1980; Van Huffel
and Vandewalle 1991). It is acknowledged that in Teunis-
sen (1988) it is the first time that an EIV or TLS problem
was formulated and solved in the geodetic literature. More-
over, the solution given was an exact, non-iterative, analytical
solution with an outstanding example of the planar similar-
ity transformation. From a geodetic point of view, this is in
fact (Teunissen 1988) as well as Teunissen (1985) reformu-
lated the EIV model to the standard nonlinear Gauss–Markov
model, and therefore they have the advantage that all avail-
able knowledge (numerical and statistical) of solving non-
linear observation equations by least-squares can be directly
applied. Of course, the EIV model can be also handled as a
nonlinear Gauss–Helmert model (GHM) (see Neitzel 2010),
and equivalently transformed to condition equations contain-
ing an uncertain coefficient matrix (see Schaffrin and Wieser
2011).

Recently a large number of iterative algorithms were
investigated which attempted to solve the weighted TLS
(WTLS) problem (see Schaffrin and Wieser 2008; Neitzel
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2010; Amiri-Simkooei and Jazaeri 2012, 2013; Mahboub
2012; Snow 2012; Xu et al. 2012; Amiri-Simkooei 2013;
Jazaeri et al. 2014; Xu and Liu 2014). These algorithms were
individually developed using different approaches, but all of
them were based on the first derivative of the WTLS objective
function. Fang (2011) and Fang (2013) proposed an iterative
Newton method based on the second-order approximation of
the WTLS objective function. This Newton approach pre-
sented its local quadratic convergence rate (e.g., Teunissen
1990) and can treat the WTLS problem with an arbitrary
positive definite cofactor matrix.

It is quite common to introduce constraints of unknown
parameters in a system of equations. As far as we know, incor-
porating equality constraints frequently avoid a trivial solu-
tion, introduce the prior knowledge, guarantee the stability of
estimates and mitigate bias. The biases are namely due to the
nonlinearities involved. By making use of differential geo-
metric concepts, the bias of the nonlinear least-squares esti-
mators of the similarity transformation has been determined
in Teunissen (1989a). The bias results in Teunissen (1989a)
are also given in the textbook by Borre and Strang (2012),
p. 186. The same consideration to introduce the constraints
arises in the EIV model. The constrained TLS (CTLS) prob-
lem has been discussed primarily in mathematics and geo-
desy. Van Huffel and Vandewalle (1991, p. 275) and Dowl-
ing et al. (1992) proposed a closed form solution for the TLS
problem with linear constraints. Schaffrin and Felus (2005)
and Schaffrin (2006) presented an iterative CTLS solution
with the fixed and stochastic right-hand-side vector in linear
constraint equations, respectively. In quadratic constraints,
Golub et al. (1999) and Sima et al. (2004) and Beck and
Ben-Tal (2006) established the CTLS algorithms that dealt
with a quadratic constraint in the context of regularization. In
this case, where linear and quadratic constraints are consid-
ered simultaneously, Schaffrin and Felus (2009) proposed a
solution to treat the mixed constrained TLS problem, which
also could be extended to the fairly weighted case, accord-
ing to Schaffrin and Wieser (2008). The mixed constrained
TLS solution is obtained iteratively by solving the Lagrange
multiplier associated with the quadratic constraint within a
deduced quadratic equation. Recently, Mahboub and Sharifi
(2013) extended the mixed constrained TLS solution to the
mixed constrained WTLS (CWTLS) solution and presented
its regularization effects. This estimator is capable of solv-
ing the constrained WTLS problem in a weighted case, where
the structure of the weighted matrix of the coefficient matrix
is not limited. Quite recently, Fang (2014a) generalized the
CWTLS to a fully populated covariance matrix, including
cross-correlations between the coefficient matrix and the tra-
ditional observation vector. One should not underestimate
the significance in the differences of weights, as they rep-
resent different levels of generality in admission of weights
into the EIV model. Regarding the importance and progres-

sion of weighting schemes within the EIV model, we refer to
Snow (2012) discussion for the WTLS, which is also valid in
the constrained WTLS environment. Furthermore, De Moor
(1990), Zhang et al. (2013) and Fang (2014b) investigated the
TLS or WTLS problem with linear inequality constraints.

The types and the number of the constraints, however, have
still been limited until now. For example, existing methods
only allow linear constraints and a maximum of one quadratic
constraint to be considered. In addition, Schaffrin and Felus
(2009) admitted that the exact convergence behavior of their
algorithm is still to be determined, which is also the case
for Mahboub and Sharifi (2013) and Fang (2014a). These
algorithms might be inefficient, especially in a case with large
perturbations, see Example 2 in Schaffrin and Felus (2009).
It is also mentioned in Schaffrin and Felus that the CTLS
solution should be examined in real geodetic applications.
Furthermore, the statistical analysis of the constrained WTLS
solution have not received due attention.

In this contribution, a WTLS problem with arbitrary types
and numbers of applicable constraints (defined in the next
section) is investigated. Based on sequential quadratic pro-
gramming (SQP), the algorithm is designed, which is then
presented to be directly applicable to affine, similarity and
rigid transformation in the two- and three-dimensional space.
The quality description of the CWTLS solution is given.
Applications are then employed to demonstrate the use of
the algorithm in the geodetic problems.

2 CWTLS problem and its nonlinear normal equations

2.1 CWTLS problem

Let the constrained EIV model be defined by the functional
model and constraints:

y − ey = (A − EA)ξ

subject to c(ξ) = 0 (1)

and the stochastic model representing properties of random
errors

e :=
[

vec(EA)

ey

]
=

[
eA

ey

]
∼

([
0
0

]
, σ 2

0 Qll =σ 2
0 P−1

)
(2)

In the above constrained EIV model y and ey are the n × 1
observation vector and the corresponding random error vec-
tor, respectively. Matrices A and EA are the full column-rank
n×u stochastic model matrix and the corresponding random
error matrix, respectively. Vector ξ is the unknown parameter
vector with dimension u × 1. e is the extended random error
vector, where eA = vec(EA) (‘vec‘ denotes the operator that
stacks one column of a matrix underneath the previous one,
see Schaffrin and Felus 2008). The symbol σ 2

0 denotes the
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unknown variance component. Matrices Qll and P are the
cofactor matrix and the weight matrix of the extended obser-
vation vector l := vec(

[
A, y

]
). The applicable constraints

c(ξ) = 0 with dimension m × 1 denote a compact formu-
lation of constraints. ‘Applicable’ refers to 1) that the con-
straints c(ξ) are assumed to be twice differentiable; 2) that
the number of constraints must be smaller than the number
of unknown parameters, i.e., m < u; and 3) that the Jaco-
bian matrix of the constraints with respect to the unknown
parameter vector has full row-rank. Except for the three con-
straint properties mentioned above, the types and the number
of the constraint functions can be arbitrary.

The cofactor matrix is segmented in further detail (see
Fang 2011) as

Qll =
[

QAA QAy

QyA Qyy

]
=

⎡
⎢⎢⎢⎢⎣

Q1

. . .

Qk

. . .

Qu+1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

Q11 . . . Q1 j . . . Q1(u+1)

... ... ...

Qk1 ... Qk j ... Qk(u+1)

... ... ...

Q(u+1)1 ... Q(u+1) j ... Q(u+1)(u+1)

⎤
⎥⎥⎥⎥⎦ ,

(3)

where QAA, QAy, QyA and Qyy are the block cofactor matri-
ces with dimension nu × nu, nu × n, n × nu and n × n,
respectively. Matrix Qk is an n × n(u + 1) cofactor matrix
and Qk j is an n×n cofactor matrix, both being certain blocks
of whole cofactor matrix Qll.

2.2 Constrained normal equation through using the
Lagrange approach

A CWTLS problem can be formulated by a WTLS target
function subject to Eq. (1) as

min eTPe
subject to y − Aξ + EAξ − ey = 0
and c(ξ) = 0.

(4)

According to the traditional Lagrange approach, the CWTLS
target function is formed as follows:

�(e, λ, ξ, μ)=eTPe+2λT(y−Aξ+EAξ − ey) + 2μTc(ξ)

= eTPe + 2λT(y − Aξ + Be) + 2μTc(ξ), (5)

where the vectors λ and μ are the Lagrange multipliers vec-
tors associated with the functional model and the constraint
functions, respectively. The full row-rank matrix Bn×n(u+1)

is defined by
[
ξT ⊗ In,−In

]
where ⊗ is the Kronecker prod-

uct. In is identity matrix with dimension n × n.

Setting the partial derivatives of the target function with
respect to vectors ξ, e, λ and μ each equal to zero, gives the
necessary conditions as

1

2

∂�

∂ξ

∣∣∣ξ̂ ,ẽ,λ̂,μ̂
= −ATλ̂ + ẼT

Aλ̂ + ĈTμ̂ = 0, (6)

1

2

∂�

∂e

∣∣∣ξ̂ ,ẽ,λ̂ = Pẽ + B̂Tλ̂ = 0, (7)

1

2

∂�

∂λ

∣∣∣ξ̂ ,ẽ = y − Aξ̂ + B̂ẽ = 0, (8)

1

2

∂�

∂μ

∣∣∣ξ̂ = c(ξ̂ ) = 0 (9)

with C = C(ξ) := ∂c(ξ)/∂ξT. From Eq. (7) the random
error vector is predicted as

ẽ = −QllB̂Tλ̂. (10)

Using Eq. (10) in Eq. (8) λ̂ can be estimated by

λ̂ = (B̂QllB̂
T)−1(y − Aξ̂ ). (11)

Then by reinserting Eq. (11) into Eq. (10), the predicted error
vector is directly formed by e(ξ̂ ), a function of the estimated
parameter vector:

ẽ = e(ξ̂ ) = −QllB̂T(B̂QllB̂
T)−1(y − Aξ̂ ). (12)

The above predicted error vector leads to the predicted ran-
dom error matrix ẼA by EA(ξ̂ ) as:

ẼA = EA(ξ̂ )

= −
[
QB̂

1 T (B̂QllB̂
T)−1(y − Aξ̂ ), . . . ,

QB̂T
u (B̂QllB̂

T)−1(y − Aξ̂ )
]
. (13)

Combining Eqs. (6), (9) and (11), the constrained normal
equations can be formulated by

(ẼA − A)T(B̂QllB̂
T)−1(y − Aξ̂ ) + ĈTμ̂ = 0

c(ξ̂ ) = 0. (14)

The solution of the CWTLS problem is now converted to
solve the constrained nonlinear normal equations (CNNE).
It is well known that nonlinear equations can be solved by a
Newton type method. Forming an equivalent CWTLS prob-
lem based on the knowledge presented in Fang (2013) will
facilitate directly applying the Newton method.

2.3 Equivalent approach in forming the constrained normal
equations

Another formulation of the CWTLS problem can be written
based on the alternative WTLS objective function by Fang
(2011) and Fang (2013) with the same constraint functions
as follows:
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min f (ξ) = 1

2
(y − Aξ)T(BQllB

T)−1(y − Aξ)

subject toc(ξ) = 0,

(15)

where B = [
ξT ⊗ In,−In

]
.

The analytical form of the gradient vector g(ξ) and the
Hessian matrix H(ξ) of the function f (ξ) was presented in
Fang (2013), Fang (2014b) and repeated here as

g(ξ) = ∂ f (ξ)

∂ξ
= −(A + A∗)T(BQllB

T)−1(y − Aξ)

= (EA(ξ) − A)T(BQllB
T)−1(y − Aξ),

(16)

H(ξ) = ∂2 f (ξ)

∂ξ∂ξT = (A + A∗ + A∗∗)T(BQllB
T)−1

×(A + A∗ + A∗∗) − [
�k j

]
, (17)

with the auxiliary matrices A∗ A∗∗ and
[
�k j

]
defined by:

A∗ =
[

Q1BT
(

BQllB
T
)−1

(y − Aξ) , . . . ,

QuBT
(

BQllB
T
)−1

(y − Aξ)

]
,

A∗∗ =
[

BQT
1

(
BQllB

T
)−1

(y − Aξ) , . . . ,

BQT
u

(
BQllB

T
)−1

(y − Aξ)

]
,

�k j = (y − Aξ)T
(

BQllB
T
)−1

Qk j

(
BQllB

T
)−1

(y − Aξ) .

(18)

In order to obtain the minimum of (15), the Lagrange function
is again used for this context as

L(ξ, μ) = f (ξ) + μTc(ξ). (19)

The first order necessary condition of this problem, mini-
mization of the function L(ξ, μ), can be written as a system
of u + m equations including the u + m unknowns ξ and μ:

f(ξ̂ , μ̂) = ∂L(ξ, μ)

∂
[
ξT, μT

]T

∣∣∣∣∣
ξ̂ ,μ̂

=
[

g + CTμ̂

c

]
= 0. (20)

Note that the identity of (14) and (20) can be recognized by
the formulation of the vector g. For brevity of notation, we
denote the estimates ξ and μ by ξ̂ and μ̂ but keep the notation
of c, g, H and C to denote their estimates c(ξ̂ ), g(ξ̂ ), H(ξ̂ )

and C(ξ̂ ) in the following part, respectively.
Equation (20), the first-order derivatives f(ξ̂ , μ̂) = 0,

are identical to the CNNE (14). This equivalence indicates
that the alternative CWTLS objective function (15) yields
an identical solution to the solution based on the optimiza-
tion problem (4). The strict CTLS solution is further verified
by the positive quadratic form of the Hessian matrix H and

any feasible active direction which is determined by the con-
straints.

3 WTLS and CWTLS solution based on Newton
iteration

As far as we know, Eq. (15) is a standard nonlinear program.
Thus, the CWTLS problem (15) can be categorized as a local
SQP problem (see Nocedal and Wright 2006, p. 530). One
approach to solving Eq. (20) is here suggested by Newton’s
method. The total Hessian matrix with respect to the aug-
mented vector

[
ξT, μT

]T
is given by

∂2L(ξ, μ)

∂
[
ξT, μT

]T [
ξT, μT

]
∣∣∣∣∣
ξ̂ ,μ̂

= ∂f(ξ̂ , μ̂)

∂
[
ξT, μT

]
∣∣∣∣∣∣
ξ̂ ,μ̂

=
⎡
⎣ H +

m∑
t=1

μ̂t Ht CT

C 0

⎤
⎦ , (21)

where the Hessian matrix of the tth constraint is defined as
Ht = Ht (ξ̂ )= ∂2ct (ξ̂ )/∂ξ∂ξT, and μ̂t is the tth component
of the vector μ̂ (t = 1, ..., m).

By combining Eqs. (20) and (21), the Newton step to com-
pute increments of the parameter vector and the Lagrange
multiplier vector is presented as⎡
⎣ H +

m∑
t=1

μ̂t Ht CT

C 0

⎤
⎦ [

d ξ̂

dμ̂

]
= −

[
g + CTμ̂

c

]
. (22)

By elimination of the increment of the Lagrange multipliers
vector dμ̂, the estimates of the parameter increment d ξ̂ and
the Lagrange multipliers vector μ̂ can be iteratively derived
based on Eq. (22) by

[
d ξ̂

μ̂

]
= −

⎡
⎣ H +

m∑
t=1

μ̂t Ht CT

C 0

⎤
⎦

-1 [
g
c

]
. (23)

This Newton iteration is well defined when the augmented
Hessian matrix is nonsingular. If the regular inversion of the
augmented matrix is not available, we can establish a positive
definite matrix as the approximation of the original Hessian
matrix.

If these constraints are not considered, the unconstrained
WTLS solution can be simplified based on Eq. (23). The
increment of the parameter dξ can be obtained by multiplying
the gradient vector by the negative inverted Hessian matrix
(Fang 2013):

dξ̂ = −H−1g. (24)

In summation, the algorithm of this WTLS solution with or
without arbitrary applicable constraints is designed as:
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Being a Newton’s type, this compact algorithm for solving
the WTLS with or without constraints works efficiently, and
provides a local quadratic convergence at the desired local
minimum (Nocedal and Wright 2006)—bearing in mind

that the convergence behavior of other CTLS algorithms is
unknown. It is noted that this local behavior implies (Teu-
nissen 1990): (1) that convergence is not guaranteed and (2)
that approximate values still need to be good enough. The
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Table 1 The common functional model and stochastic model, and the different constraints represent the three transformations in the 2D and 3D
cases

2D Functional model y − ey = (A − EA)ξ

ξ = [
vecT(�2×2),

[
	x 	y

]]T

A = [
I2 ⊗ [

xs ys
]
, I2 ⊗ 1

]
y = [

xT
t , yT

t

]T

Stochastic model D(vec
[

A y
]
) = σ 2

0 Qll

=
[

F2D 0
0 I

]
D(

[
xT

s yT
s xT

t yT
t

]T
)

[
F2D 0

0 I

]T

Constraints c(ξ) = 0 for Affine Similarity Rigid

No
ξ2

11 + ξ2
12 − ξ2

21 − ξ2
22 = 0

ξ11ξ21 + ξ12ξ22 = 0

ξ2
11 + ξ2

12 − ξ2
21 − ξ2

22 = 0
ξ11ξ21 + ξ12ξ22 = 0
ξ2

11 + ξ2
12 − 1 = 0

3D Functional model y − ey = (A − EA)ξ

ξ = [
vecT(�3×3),

[
	x 	y 	z

]]T

A = [
I3 ⊗ [

xs ys zs
]
, I3 ⊗ 1

]
y = [

xT
t yT

t zT
t

]T

Stochastic model D(vec
[

A y
]
) = σ 2

0 Qll

=
[

F3D 0
0 I

]
D(

[
xT

s yT
s zT

s xT
t yT

t zT
t

]T
)

[
F3D 0

0 I

]T

Constraints c(ξ) = 0 for Affine Similarity Rigid

No

ξ2
11 + ξ2

12 + ξ2
13 − ξ2

31 − ξ2
32 − ξ2

33 = 0
ξ2

21 + ξ2
22 + ξ2

23 − ξ2
31 − ξ2

32 − ξ2
33 = 0

ξ11ξ21 + ξ12ξ22 + ξ13ξ23 = 0
ξ11ξ31 + ξ12ξ32 + ξ13ξ33 = 0
ξ31ξ21 + ξ32ξ22 + ξ33ξ23 = 0

ξ2
11 + ξ2

12 + ξ2
13 − ξ2

31 − ξ2
32 − ξ2

33 = 0
ξ2

21 + ξ2
22 + ξ2

23 − ξ2
31 − ξ2

32 − ξ2
33 = 0

ξ2
11 + ξ2

12 + ξ2
13 − 1 = 0

ξ11ξ21 + ξ12ξ22 + ξ13ξ23 = 0
ξ11ξ31 + ξ12ξ32 + ξ13ξ33 = 0
ξ31ξ21 + ξ32ξ22 + ξ33ξ23 = 0

linear search strategy to find the step length, which satisfies
the (strong) Wolfe condition, can be introduced to improve
convergence behavior of the iterative TLS solution (e.g., Teu-
nissen 1990; Fang 2014c). Furthermore, the compact form
presented will be a promising tool for estimating the trans-
formation parameters in different types of geodetic transfor-
mations.

4 Universal formula for geodetic symmetrical
transformations

It is well known that attaining an estimation of the transfor-
mation parameters in the presence of two sets of (2D or 3D)
coordinates for a given geodetic network is a long-standing
problem in geodetic science (see Schaffrin et al. 2012; Fang
2014c). In Table 1, the adjustment of the different geodetic
transformations, including affine, similarity and rigid trans-
formations, can be interpreted as the WTLS or CWTLS prob-
lem if one perfectly describes the constraints for the corre-
sponding 2D or 3D transformation models.

In 2D case, the matrix �2×2 =
[

ξ11 ξ12

ξ21 ξ22

]
contains the

four synthetic parameters, and its transpose is computed

using the product of the rotation matrix, the affinity matrix
and the scaling matrix containing two scales for the x and y
coordinates (see Mahboub 2012). It is noted that if one deals
with a rotation matrix, then not only the columns are of unit
length and mutually orthogonal, but also the determinant of
the matrix must be +1. xt and yt are the random vectors of the
x and y coordinates of the target system while xs and ys are
the random vectors of the x and y coordinates of the source

system.
[
	x 	y

]T
are the translations in the x and y orien-

tations. 1 is the vector of ones with the corresponding size
(number of common points). The matrix F2D = ∂vec(A)

∂
[

xT
t yT

t

]
represents the relationship between the vectorized coefficient
matrix and the coordinates of the target system.

In 3D case, the parameter matrix �3×3 =
⎡
⎣ ξ11 ξ12 ξ13

ξ21 ξ22 ξ23

ξ31 ξ32 ξ33

⎤
⎦

is enlarged with a dimension of 3 × 3 and the translation 	z
in the z axis is considered. The covariance matrix calculated
by F3D = ∂vec(A)

∂
[

xT
t yT

t zT
t

] , which can be obtained as it is com-

puted in the 2D case, is also valid for all three types of 3D
transformations.

Although the matrix A, the observation vector y and the
parameter vector ξ in a 3D case are different from those in
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a 2D case, we can still use the same symbols A, y and ξ

to hold the formulation of the EIV model. Furthermore, the
functional model (the matrix A, the observation vector y and
the parameter vector ξ) and the stochastic model (the cofactor
matrix Qll) are common for the three kinds of transformations
in the corresponding dimension.

It has been presented that affine, similarity and rigid trans-
formations in 2D and 3D space can be interpreted as the
WTLS problem with or without constraints. Hence, Algo-
rithm 1 can be directly applicable to all of the transformations
and can be referred to as a universal formula for geodetic sym-
metrical transformations. When some extra constraints (e.g.,
fixed baselines) need to be taken into consideration simul-
taneously (see Shen et al. 2011), our proposed algorithm is
also applicable.

5 Statistical analysis of CWTLS solution

Although our algorithm has been developed for the CWTLS
problem, statistical aspects of the CWTLS estimation were
not investigated. Teunissen (1989b) provided general diag-
nostics of the first and second moments of the nonlinear LS
estimate for the first time in the geodetic literature. Xu et al.
(2012) applied the theory and methods by Box (1971) to
work out the statistical aspects of parameter estimation in
the unconstrained EIV model.

In order to obtain the quality description by using the exist-
ing knowledge, we can formulate the functional part of the
TLS model as a nonlinear LS problem (Teunissen 1988):

y − ey = Āξ = (ξT ⊗ I)(Ft aI + d)

aI − eAI = āI

The symbol āI with dimension s×1 and eAI denotes the true
vector of the independent elements within the true coefficient
matrix Ā and its error vector, respectively. Ft is the transfor-
mation matrix (F2D or F3D) to convert the vector āI to the
vectorized (true) coefficient matrix vec(Ā) = Ft āI + d.

In the case of the CWTLS model, it is usually formulated
that the constraints approximately equal pseudo-equations:
0 − δ ≈ c(ξ) with δ ∼ ( 0, σ 2

0 Qδδ ). However, we should
note that it is numerically admissible to treat the constraints
completely as the pseudo-equations (0 − δ̂ = c(ξ̂ )), as the
variance of the random vector δ is sufficiently small (see Fang
2011, p. 45).

Combining the above models, a nonlinear Gauss–Markov
model can be written as follows:⎡
⎣ y

aI

0

⎤
⎦ = f(x) + ε = f

([
ξ

āI

])
+

⎡
⎣ ey

eAI

δ

⎤
⎦

Based on the existing knowledge, the first-order approxima-
tion of the dispersion matrix and the bias vector bx of the

CWTLS estimates of the extended unknown parameter vec-
tor x are simply given as follows:

D(x) = σ 2
0 (FTWF)−1 (25)

and

bx = −σ 2
0

2
(FTWF)−1FTWm (26)

with

F = ∂f
∂xT =

⎡
⎣ Ā (ξT ⊗ In)Ft

0 Is

C 0

⎤
⎦ W =

[
PI 0
0 Q−1

δδ

]

m =

⎡
⎢⎢⎢⎣

tr((FTWF)−1M1)

tr((FTWF)−1M2)
...

tr((FTWF)−1Ms+n+t )

⎤
⎥⎥⎥⎦ Mi = ∂2 fi

∂x∂xT

where fi is the ith function of f , and PI denotes the weight
matrix of the independent errors.

In the case of the above nonlinear adjustment problem, we
have the second partial derivatives Mi for each fi , which is
given by

Mi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
0 (Iu ⊗ ei )Ft

FT
t (Iu ⊗ eT

i ) 0

]

0[
Hi−n−s 0

0 0

]
i = 1, . . . , n

i = n + 1, . . . , n + s
i = n + s + 1, . . . , n + s + t

The total sum of squared residual (TSSR) is easily deter-
mined from objective function f (ξ̂CWTLS) so that a estimate
of the variance component can be obtained through

σ̂ 2
0 = f (ξ̂CW T L S)

n − u + t
. (27)

6 Case study of 2D and 3D affine, similarity and rigid
transformations

In this case study, we demonstrate Algorithm 1 as the uni-
versal formula for affine, similarity and rigid transformations
in 2D and 3D space, and provide the quality description for
the solutions. The data for the 2D transformations, as seen in
Table 2, originate from Mikhail and Gracie (1981, p. 397–
402), and was also presented in Neitzel (2010) and Schaffrin
et al. (2012) for the WTLS problem.

For these problems of affine, similarity and rigid transfor-
mations in 2D, Algorithm 1 was implemented when the con-
straints were perfectly described, as proposed in Sect. 4. In
Table 3, we present the WTLS solution for the affine transfor-
mation and the CWTLS solution for the similarity and rigid
transformations. The results of the similarity transformation
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Table 2 Target and source coordinates from Mikhail and Gracie (1981,
p. 397–402)

Point no. xt (target) yt (target) xs (source) ys (source)

1 −117.478 0 17.856 144.794

2 117.472 0 252.637 154.448

3 0.015 −117.41 140.089 32.326

4 −0.014 117.451 130.40 267.027

Table 3 Estimates of the case study by Algorithm 1 for three types of
2D transformation

Estimates Affine Similarity Rigid

ξ̂11 0.99902905 0.99900748 0.99915487

ξ̂12 0.04111867 0.04109806 0.04110413

ξ̂21 −0.04107747 −0.04109806 −0.04110413

ξ̂22 0.99898590 0.99900748 0.99915487

	x −141.26879 −141.26279 −141.28363

	y −143.93120 −143.93164 −143.95288

Objective function 0.00061868 0.00064325 0.00124378

Table 4 Standard deviations of the parameter estimates for three types
of 2D transformation

Standard deviation

Affine Similarity Rigid

ξ̂11 1.4968×10−4 0.7632×10−4 0.3902×10−4

ξ̂12 1.4974×10−4 0.7632×10−4 0.9487×10−4

ξ̂21 1.4968×10−4 0.7632×10−4 0.9487×10−4

ξ̂22 1.4973×10−4 0.7632×10−4 0.3902×10−4

	x 3.2661×10−2 1.7816×10−2 1.7641×10−2

	y 3.2660×10−2 1.7816×10−2 1.7444×10−2

coincide with the iterative GHM solution presented in Neitzel
(2010). The results of the affine and rigid transformation are
not much different from the results of the similarity transfor-
mation since the noises of the data set are small. It is clear
that the last row of Table 3 shows that the values of the objec-
tive functions become larger from the affine to similarity to
rigid transformation, as more constraints are considered for
the affine to similarity to rigid transformation.

According to Eqs. (25) and (26), we computed the stan-
dard deviations and biases of the estimates of the 2D trans-
formations and show them in Tables 4 and 5, respectively.
The standard deviations of the parameter vector for affine,
similarity and rigid are presented at the level of 10−4 for
the elements of the matrix �2×2 and at the level of 10−2

for the translations. Table 4 indicates the fact that the more
constraints are considered, the smaller the standard devia-
tion of each parameter is. The biases of the parameters are

Table 5 Biases of the parameter estimates for three types of 2D trans-
formation

Bias

Affine Similarity Rigid

ξ̂11 0.0111×10−6 0×10−6 −0.0045 × 10−6

ξ̂12 0.0004×10−6 0×10−6 −0.0002 × 10−6

ξ̂21 −0.0004 × 10−6 0×10−6 0.0002×10−6

ξ̂22 0.0112×10−6 0×10−6 −0.0045 × 10−6

	x −1.5831 × 10−6 0×10−6 0.6368×10−6

	y −1.6141 × 10−6 0×10−6 0.6489×10−6

presented in the magnitude of 10−6. The biases of the sim-
ilarity can be neglected in 10−6, whereas the biases of the
affine and the rigid have opposite signs for each parame-
ter.

A recent survey by Felus and Burtch (2009) lists a large
number of methods that have been developed to compute 3D
geodetic transformations between two sets of corresponding
points. Here, we will use the data set presented in this paper
to demonstrate the proposed solutions. In this demonstration,
six control points are identified and recorded in the two coor-
dinate systems (WGS 84 and a local datum), and those x, y
and z coordinate values are given in Table 6.

Algorithm 1 was used to compute the transformation para-
meters displayed in Tables 7, 8 and 9 for the affine, simi-
larity and rigid transformations, respectively. The results for
the similarity transformation are identical to the solution pre-
sented in Felus and Burtch. In these three transformations, the
differences between the estimated translations for the simi-
larity transformation and the estimated translations for the
affine and rigid transformation are significant. This could be
explained by the restricted rotation matrices and scale fac-
tor as well as the magnitude of the coordinates. Note that
the estimated rotation angles for the three transformations
are quite small (only at the level of seconds). The objective
function for the three types of transformations demonstrates
the fact that the similarity and rigid transformation includes
more constraints, thus resulting in a larger objective function
than the affine.

Now we calculate the standard deviations and biases of
the estimated parameters, for the 3D affine, similarity and
rigid transformations, and present them in Tables 10 and
11, respectively. All the standard deviations for the elements
within the matrix �3×3 are given in 10−4 while the standard
deviations of the translations are relatively large, in the mag-
nitude of 104 for the affine, and in the magnitude of 102 for
similarity and rigid. It needs to be pointed out, however, that
the computed standard deviations of the translations depends
on the datum, i.e., if we treat the real data by multiplying the
idempotent matrix (e.g., Felus and Burtch 2009), the stan-
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Table 6 Coordinates of source system and target system from Felus and Burtch (2009)

Point no. x (source) y (source) z (source) X (target) Y (target) Z (target)

80601 5,234,251.25 905,003.2011 3,518,869.674 5,233,991.482 905,003.1064 3,519,305.459

32,127 5,218,851.932 919,148.9749 3,537,928.348 5,218,595.021 919,152.3244 3,538,363.627

80,600 5,220,818.669 772,128.3613 3,569,828.606 5,220,565.466 772,130.563 3,570,253.01

32,136 5,148,067.252 803,912.306 3,668,491.426 5,147,806.722 803,921.3223 3,668,928.371

80,598 5,081,676.23 771,786.8122 3,765,023.787 5,081,410.788 771,799.4256 3,765,460.689

80,597 5,022,479.06 955,283.5487 3,801,754.143 5,022,218.176 955,297.2538 3,802,185.975

Table 7 Estimates of the case study by Algorithm 1 for the 3D affine
transformation

Estimated translates
for the affine
transformation

Estimated parameter matrix for the affine
transformation

	x 4,274.5841 0.999438049 0.000622536 0.0021992977

	y −5,094.9028 −0.000101814 1.000112976 0.0004077426

	z −17,013.5995 −0.000425541 0.000493015 1.001581579

Objective function 58.5666

Table 8 Estimates of the case study by Algorithm 1 for the 3D similarity
transformation

Estimated translates
for the similarity
transformation

Estimated parameter matrix for the
similarity transformation

	x −293.3670 1.000010668 −0.000021228 0.000010763

	y 40.7974 0.000021228 1.000010668 −0.000018196

	z 354.7273 −0.000010763 0.000018196 1.000010668

Objective function 115.2651

Table 9 Estimates of the case study by Algorithm 1 for the 3D rigid
transformation

Estimated translates
for the rigid
transformation

Estimated parameter matrix for the rigid
transformation

	x −238.3801 1.000000000 −0.000021228 0.000010763

	y 49.9133 0.000021228 1.000000000 −0.0000181963

	z 393.5986 −0.000010763 0.0000181963 1.000000000

Objective function 123.4183

dard deviations are largely reduced. The phenomenon that the
standard deviations become smaller when more constraints
are available is also valid for the 3D case.

Comparing the most insignificant biases of the estimated
parameters for the similarity, the biases of the estimated para-
meters for the affine transformation are large, especially for
the translations. These large biases may be explained by the
significant differences between the translation estimates of
the affine and similarity transformations. In full analogy in

Table 10 Standard deviations of the parameter estimates for three types
of 3D transformation

Standard deviation

Affine Similarity Rigid

ξ̂11 15.3817×10−4 0.2090×10−4 0.1267×10−4

ξ̂12 2.7838×10−4 0.2370×10−4 0.2341×10−4

ξ̂13 11.0183×10−4 0.1890×10−4 0.1692×10−4

ξ̂21 15.3869×10−4 0.3362×10−4 0.3330×10−4

ξ̂22 2.7848×10−4 0.1843×10−4 0.1712×10−4

ξ̂23 11.0220×10−4 0.2577×10−4 0.2553×10−4

ξ̂31 15.3982×10−4 0.2452×10−4 0.2369×10−4

ξ̂32 2.7868×10−4 0.2226×10−4 0.2203×10−4

ξ̂33 11.0301×10−4 0.1732×10−4 0.1460×10−4

	x 1.2180×104 1.5959×102 1.0836×102

	y 1.2184×104 2.5654×102 2.5415×102

	z 1.2193×104 1.7358×102 1.6071×102

Table 11 Biases of the parameter estimates for three types of 3D trans-
formation

Bias

Affine Similarity Rigid

ξ̂11 1.1826×10−6 0 −0.0003 × 10−6

ξ̂12 0.2132×10−6 0 0

ξ̂13 0.8470×10−6 0 −0.0001 × 10−6

ξ̂21 0.2145×10−6 0 0

ξ̂22 0.0389×10−6 −0.0004 × 10−6 −0.0005 × 10−6

ξ̂23 0.1537×10−6 0 0

ξ̂31 0.8518×10−6 −0.0001 × 10−6 −0.0001 × 10−6

ξ̂32 0.1535×10−6 0 0

ξ̂33 0.6102×10−6 0 −0.0002 × 10−6

	x −9.3641 0.5828×10−3 1.9238×10−3

	y −1.6994 0.6929×10−3 0.8862×10−3

	z −6.7453 0.8479×10−3 1.7937×10−3

the 2D case, the biases of the affine and the rigid have oppo-
site signs for each parameter here (see Table 11 columns 2
and 4).
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7 Conclusions

This article investigated the WTLS solution with constraints,
which is intuitively very appealing for a symmetrical adjust-
ment of various geodetic transformations. Unlike other
CWTLS solutions, the proposed algorithm adapts itself to
arbitrarily applicable constraints. Furthermore, our method
is also highly reliable and efficient from a numerical point of
view due to having known quadratic convergence behavior.

Our proposed algorithm, which is referred to as the uni-
versal formula for the adjustment of transformations, was
implemented to deal with various transformations in 2D and
3D space by simply changing constraints. Furthermore, the
statistical analysis of the CWTLS estimates was investigated.

Along with Fang (2013, 2014b) this paper completes the
WTLS framework with varying types of prior information
about unknown parameters (random parameters, linear and
nonlinear, equality and inequality constraints).
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