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Abstract The ambiguity acceptance test is an important
quality control procedure in high precision GNSS data
processing. Although the ambiguity acceptance test methods
have been extensively investigated, its threshold determine
method is still not well understood. Currently, the threshold
is determined with the empirical approach or the fixed fail-
ure rate (FF-) approach. The empirical approach is simple but
lacking in theoretical basis, while the FF-approach is theo-
retical rigorous but computationally demanding. Hence, the
key of the threshold determination problem is how to effi-
ciently determine the threshold in a reasonable way. In this
study, a new threshold determination method named thresh-
old function method is proposed to reduce the complexity of
the FF-approach. The threshold function method simplifies
the FF-approach by a modeling procedure and an approxi-
mation procedure. The modeling procedure uses a rational
function model to describe the relationship between the FF-
difference test threshold and the integer least-squares (ILS)
success rate. The approximation procedure replaces the ILS
success rate with the easy-to-calculate integer bootstrapping
(IB) success rate. Corresponding modeling error and approx-
imation error are analysed with simulation data to avoid nui-
sance biases and unrealistic stochastic model impact. The
results indicate the proposed method can greatly simplify
the FF-approach without introducing significant modeling
error. The threshold function method makes the fixed failure

L. Wang (B)
Science and Engineer Faculty, Queensland University
of Technology, Brisbane, Australia
e-mail: l62.wang@qut.edu.au

S. Verhagen
Delft University of Technology, Delft, Netherlands
e-mail: A.A.Verhagen@tudelft.nl

rate threshold determination method feasible for real-time
applications.
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1 Introduction

Integer ambiguity resolution (AR) is the key technique for
precise GNSS positioning applications. With the correctly
fixed integer ambiguity parameters, centimetre to millime-
tre positioning accuracy is achievable. However, incorrectly
fixed integer ambiguity can introduce an unacceptable large
error into positioning results without notice. Reasonably
reject unreliable integer ambiguities can reduce the fail-
ure risk and improves the AR reliability. The procedure of
determining whether to accept the fixed integer ambiguity is
known as ambiguity acceptance test.

The integer aperture (IA) estimation theory has been
established to solve the ambiguity acceptance test problem
(Teunissen 2003a, b). Under the IA framework, different IA
estimators are constructed with different acceptance regions.
The most popular IA estimators are derived from the ’dis-
crimination test’, e.g. the ratio test (Euler and Schaffrin 1991;
Abidin 1993), the difference test (Tiberius and De Jonge
1995) and the projector test (Han 1997; Wang et al. 1998).

Besides the acceptance region shape, the size of the accep-
tance region (or named the test threshold) is also important in
ambiguity acceptance test. Generally, the threshold determi-
nation method can be classified into two classes: the empir-
ical approach and the fixed failure rate (FF-) approach. The
empirical approach gives a fixed threshold according to indi-
vadual experience,e.g. (Euler and Goad 1991; Han 1997).
This method is simple but lacking in theoretical basis. The
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FF-approach (Teunissen and Verhagen 2009) determines the
threshold according to the underlying model and the fail-
ure rate tolerance. The FF-approach incorporates the impact
of underlying model in decision making and the reliability
becomes controllable. The limitation of the FF-approach is
its complexity,which is caused by the failure rate calculation
and the inverse integration equation problem. The failure
rate calculation is a high-dimensional integration problem
over an irregular region. It is difficult to obtain the analyt-
ical solution, thus the Monte Carlo method is adopted as
an alternative. The Monte Carlo method requires large-scale
simulation work and introduces the ‘computation burden’
problem into the FF-approach. The threshold determination
problem is the ‘inversion’ of the integral equation that links
the failure rate to the size of the aperture (Teunissen and Ver-
hagen 2009). A look-up table method for the FF-ratio test
has been proposed to overcome the ‘inversion’ problem in
the FF-approach (Teunissen and Verhagen 2009; Verhagen
and Teunissen 2013; Wang and Feng 2013).

In this paper, a new threshold determination method
named threshold function method is proposed to simplify
the FF-approach. The remaining parts of the paper are orga-
nized as follows: current threshold determination methods,
including the empirical approach and the FF-approach, are
reviewed in Sect. 2. The methodology of establishing the
threshold function is introduced in Sect. 3. The modeling
error and performance validation of the threshold function
method is discussed in Sect. 4. Finally, the conclusion and
outlook are summarized in Sect. 5.

2 Threshold determination methods in ambiguity
acceptance test

The ambiguity acceptance test is a quality control proce-
dure deciding whether to accept the estimated integer ambi-
guity. The threshold determination is an important aspect
of the ambiguity acceptance test problem. Current threshold
determination methods can be divided into two classes: the
empirical approach and the fixed failure rate approach. In this
section, these threshold determination approaches are briefly
reviewed.

2.1 The procedure of the ambiguity estimation and
validation

The carrier phase based GNSS positioning model can be
given as:

E(y) = Aa + Bb, D(y) = Qyy (1)

where E(·) and D(·) are the mathematical expectation and
dispersion operators respectively. y is the observation vector
including both code and carrier phase measurements. a and b

are the integer parameter vector and the real-valued parame-
ter vector respectively. A and B are the design matrices of a
and b respectively. The observation vector y is assumed fol-
lowing the normal distribution and corresponding variance-
covariance (vc-) matrix is denoted as Qyy .

The mixed integer model (1) can be solved in four steps:

1. Solving Eq. (1) with standard least-squares method. In
this step, the integer nature of a is not considered. The
estimated parameters â and b̂ are known as ’float solu-
tion’.

2. Integer ambiguity estimation. The float solution â is
mapped to integer vector ǎ by the integer estimator.
The optimal integer estimator is the integer least-squares
(ILS) (Teunissen 1999). The integer estimation procedure
can be described as ǎ = I (â), with I : R

n → Z
n . The

integer estimator maps all â falling in particular pull-in
region Sǎ to same integer vector. The shape of the pull-in
region Sǎ is defined by the integer estimator.

3. Ambiguity acceptance test. This step determines whether
to accept the integer vector ǎ with IA estimators. This
study discusses how to reasonably determine the thresh-
old of the IA estimators.

4. If the fixed integer ambiguity ǎ is accepted by the IA
estimators, the real-valued parameters can be updated
with b̌ = b̂ − Qb̂â Q−1

ââ (â − ǎ). The ǎ and b̌ are known
as the ’fixed solution’. If ǎ is rejected, the float solution
b̂ is preferred.

2.2 The ratio test and the difference test

There are many IA estimators available for the ambiguity
acceptance test problem, e.g. the ellipsoidal integer aperture
(EIA) (Teunissen 2003a), the optimal integer aperture (OIA)
(Teunissen 2005). In this study, the ratio test and difference
test are selected due to their simplicity and high performance
(Verhagen 2005).

The ratio test is defined as (Frei and Beutler 1990):

μR =
∥
∥â − ǎ2

∥
∥2

Qââ
∥
∥â − ǎ

∥
∥2

Qââ

≥ μ̄R (2)

where μR and μ̄R as the ratio test statistic and correspond-
ing threshold respectively. ǎ and ǎ2 are the ’best integer
candidate’ and the ’second best integer candidate’ respec-
tively. The best integer candidate ǎ is defined as ǎ =
arg min

z∈Zn

∥
∥â − z

∥
∥

2
Qââ

and the second best integer candidate

ǎ2 has the second smallest Euclidean norm.
∥
∥â − z

∥
∥2

Qââ
=

(â − z)T Q−1
ââ (â − z). The float ambiguity â and its vc-matrix

Qââ can be obtained by the standard least-squares and ǎ, ǎ2

can be obtained from the integer estimation.
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The ratio test is a member of integer aperture estima-
tor,which is known as ratio test integer aperture (RTIA). Its
acceptance region can be constructed from its definition (2),
which is given as (Verhagen 2005; Verhagen and Teunissen
2006a):

�0,R =
{

x ∈ S0|
∥
∥
∥
∥

x + μ̄R

1 − μ̄R
z

∥
∥
∥
∥

2

Qââ

≤ μ̄R

(1 − μ̄R)2
‖z‖2

Qââ
∀z ∈ Z

n\{0}
}

(3)

where �0,R is the acceptance region of the RTIA centered at
the integer vector {0}. The acceptance region is an overlap
of many hyper-ellipsoids, and its size is determined by the
threshold μR . The details of the ratio test acceptance region
have been discussed (Verhagen 2005; Verhagen and Teunis-
sen 2006a; Wang et al. 2014).

Besides the ratio test, the difference test is a high perfor-
mance IA estimator as well. Recent research indicated the
FF-difference test is an approximation of OIA and achieves
higher success rate than the FF-ratio test in strong models
(Wang et al. 2014), so the difference test is worth to investi-
gation.

The difference test is defined as (Tiberius and De Jonge
1995):

μD = ∥
∥â − ǎ2

∥
∥

2
Qââ

− ∥
∥â − ǎ

∥
∥2

Qââ
≥ μ̄D (4)

Similarly, μD and μ̄D are the difference test statistic value
and corresponding threshold. The difference test uses the
difference of the two distances rather than the ratio to test the
closeness between â and ǎ.

Similar to the ratio test, the difference test is known as
the difference test integer aperture (DTIA) (Verhagen 2005;
Verhagen and Teunissen 2006a). The definition of the DTIA
can be derived from Eq. (4) and expressed as:

�0,D =
{

x ∈ S0|xT Q−1
ââ z ≤ 1

2
(‖z‖2

Qââ
− μ̄D),

∀z ∈ Z
n\{0}

}

(5)

where xT Q−1
ââ z is a dot product of the vector x and z in Q−1

ââ
spanned space. The geometrical interpretation of the differ-
ence test is shown in Fig. 1. zmin = arg min

z∈Zn\{0}
∥
∥â − z

∥
∥

2
Qââ

.

The projection of vector x on the vector zmin is
xT Q−1

ââ zmin

zT
min Q−1

ââ zmin
zmin,

which is denoted as the vector x p in Fig. 1. B is the inter-
section of the DTIA acceptance region bound and the vec-
tor zmin. The difference test compares the norm of vector
∥
∥x p

∥
∥

2
Qââ

and ‖B‖2
Qââ

, if
∥
∥x p

∥
∥

2
Qââ

≤ ‖B‖2
Qââ

, x will be
accepted. The size of the DTIA acceptance region is con-
trolled by the threshold μ̄D .
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Fig. 1 A two-dimensional example of the difference test acceptance
region

2.3 The empirical approach

The ratio test and the difference test define their accep-
tance region shape and their thresholds determine the accep-
tance region size. With regard to the threshold determination
problem, there are two classes of approaches: the empirical
approach and the fixed failure rate (FF-) approach.

The empirical approach determines the threshold accord-
ing to individual experiences. Normally, the empirical thresh-
old is a constant. Landau and Euler (1992) and Wei and
Schwarz (1995) recommended 2 as ratio test threshold, while
Han (1997) suggested 1.5 as the threshold with an improved
stochastic model in kinematic data process. A more conser-
vative ratio test threshold (e.g. 3) is also popular in GNSS
data process, e.g. (Leick 2004; Takasu and Yasuda 2010).
Difference test threshold is suggested as 15 by Tiberius and
De Jonge (1995).

The empirical thresholds may work well in particular sce-
narios, but it is still far from enough. The empirical approach
simply assumes the threshold is independent from under-
lying model, while it is unrealistic. The definition of the
ratio test and the difference test has indicated the test sta-
tistics are connected to Qââ . While Qââ is determined by the
design matrices A, B and the observation noise vc-matrix
Qyy . Moreover, it is difficult to evaluate the performance of
the ambiguity acceptance test with empirical threshold, since
there is no reliability indicator in the empirical approach.
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Fig. 2 Illustration of
one-dimensional integer
aperture estimation model for
the ambiguity validation
problem. The two curves show
fε̌ (x) (upper) and fâ(x − a)

(lower). The area of regions
shows different probability
(Wang and Feng 2013)
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2.4 The fixed failure rate approach

The FF-approach determines the threshold based on the prob-
ability theory, while it is more complex than the empirical
approach.

The probability model for the ambiguity acceptance test
is demonstrated in Fig. 2. In one dimensional case, the inte-
ger estimator pull-in region S0 is the interval [−0.5, 0.5] and
�0 ⊂ S0. Assuming the float solution â follows normal dis-
tribution N(a,Qââ), the probability density function (PDF)
of â is given as:

fâ(x) = 1
√|Qââ |(2π)n

exp

{

−1

2
‖x − a‖2

Qââ

}

(6)

where | · | is the determinant of the matrix. The expectation of
â is the unknown integer vector a. The ambiguity residuals
ε̌ is defined as ε̌ = â − ǎ and its PDF is given as (Teunissen
2002; Verhagen and Teunissen 2006b):

fε̌ (x) =
∑

z∈Zn

fâ(x + z)s0(x), sz(x) =
{

1 if x ∈ Sz

0 otherwise

(7)

where Sz is the integer estimator pull-in region centered at
the integer vector z, sz(x) is an indicator function.

The two curves in the figure show the fε̌ (x) (upper) and
fâ(x−a) (lower). If the size of the acceptance region is deter-
mined, the success rate and failure rate of the IA estimators
are defined as (Teunissen 2003b; Verhagen 2005):

Ps =
∫

�0

fâ(x − a)dx,�0 ⊂ S0 (8)

Pf =
∫

�0

fε̌ (x)dx −
∫

�0

fâ(x − a)dx,�0 ⊂ S0 (9)

Ps and Pf can be geometrically interpreted as the area of
dark grey and light grey region in the acceptance region. If
�0 = S0, Eqs. (8) and (9) can be used to calculate the success
rate and failure rate of integer estimator. The success rate and
failure rate reflect the correct and incorrect probability in the
acceptance region. The correct and incorrect probability in
the rejected region are known as false alarm rate and correctly
rejected rate respectively.

The FF-approach follows a four-step procedure, which is
described as (Verhagen 2005; Verhagen and Teunissen 2013;
Wang and Feng 2013):

1. Calculating the test statistics value μ (e.g. μD =
∥
∥â − ǎ2

∥
∥2

Qââ
−∥

∥â − ǎ
∥
∥2

Qââ
) with the float solution â and

the fixed solution ǎ.
2. Addressing the relationship between the threshold μ̄ and

the failure rate Pf with simulation. A number of sam-
ples (e.g. 100,000 samples)following the normal distri-
bution N (0, Qââ) is simulated to numerically describe
the probability distribution of â. The integer estimation
procedure is performed on each sample and correspond-
ing test statistic value can be calculated. The fixed solu-
tion of each sample is compared with the true ambiguity
vector 0 to verify their correctness. The distribution of
failed samples against the test statistic value μ can be
numerically determined with the simulated samples and
corresponding PDF is denoted as fPf (x). The relation-
ship between the failure rate Pf and the test threshold μ̄

can be expressed as :

Pf (μ̄) =
∫ ∞

μ̄

fPf (x)dx (10)

It is noticed that integration interval depends on the def-
inition of IA estimator, the interval [μ,∞] is derived
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A new ambiguity acceptance test threshold determination method 365

from the Eqs. (2) and (4). Equation (10) indicates large
μ̄ corresponds to small Pf .

3. Threshold determination. According to Eq. (10), the FF-
threshold can be determined with μ̄ = arg min

Pf (μ)≤P̄ f

{μ}
with P̄ f is the failure rate tolerance. It is noticed that
obtaining μ̄ from Eq. (10) is an ‘inverse integration’
problem. The problem can be solved by the numerical
root-finding method (Verhagen 2005).

4. Comparing the threshold μ̄ calculated from step (3) with
the test statistic value μ from step (1) to make the final
decision.

The key of the FF-approach is the function connecting
the failure rate Pf and the threshold μ̄. Unfortunately, the
function depends on the vc-matrix Qââ , thus the simulation
is always necessary for different Qââ . Moreover, the ’inverse
integration’ problem in the third step is also difficult to find
the analytical solution. The root-finding method can only find
the numerical root of the implicit function (10).

2.4.1 The look-up table method for the FF-ratio test

The FF-approach presents a general threshold determination
method for all IA estimators. With regarding to a specific
IA estimator, the FF-approach can be simplified. The look-
up table method is a simplified version of FF-approach for
the ratio test (Teunissen and Verhagen 2009; Verhagen and
Teunissen 2013). The method attempts to express the rela-
tionship between the failure rate Pf and the threshold μ̄ with
a two-dimensional table. In this method, the FF-ratio test
threshold is expressed as a function of the ILS failure rate
and the ambiguity dimension. How to establish the look-up
table has been described by Verhagen and Teunissen (2013).
An look-up table example is shown in Table 1. Since the
key relationship in the FF-approach is explicitly modeled
in the table, the threshold calculation becomes easier. The
desired FF-threshold can be calculated with proper interpo-
lation method rather than the root-finding method.

2.5 Comparison of the threshold determination methods

The principle of the empirical approach and the FF-approach
has been discussed, while the difference between the two
methods still needs to be examined.

Whether the underlying model impacts the threshold is the
fundamental difference between the two approaches. In order
to investigate this problem, two examples are employed. The
first model is the single-frequency short-baseline model and
the ionosphere is assumed absent. The second model is the
single-frequency ionosphere-weighted model, which is suit-
able for medium baseline data processing (Odijk 2002). The
ILS success rate Ps,ILS of the two examples are 99.9 % and

Table 1 Example of a part of the look-up table for 1/μ̄R , given
P̄ f = 0.1 %, with n equals to the number of ambiguities (Verhagen
and Teunissen 2013)

Pf,ILS n = 2 n = 3 n = 4 n = 5 n = 6 n = · · ·
0.0010 1.00 1.00 1.00 1.00 1.00 · · ·
0.0012 0.94 0.94 0.94 0.94 0.94 · · ·
0.0015 0.87 0.87 0.88 0.88 0.89 · · ·
0.0020 0.78 0.78 0.80 0.80 0.81 · · ·
0.0050 0.54 0.54 0.57 0.57 0.59 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

. · · ·

Table 2 The ratio test success rate and failure rate comparison with
different threshold determination method

Model Threshold 1 1.5 2 3 5 10

Model 1 Ps,RTIA 99.906 99.068 96.030 82.407 48.075 11.220

Pf,RTIA 0.094 0.008 0.001 0.000 0.000 0.000

Model 2 Ps,RTIA 61.305 35.408 18.999 6.105 1.029 0.072

Pf,RTIA 38.695 7.432 2.018 0.289 0.034 0.001

The unit of success rate and failure rate is percentage (%)

61.3 % respectively, thus the first model is stronger than the
second one. The success rate and failure rate of the ratio test
are denoted as Ps,RTIA and Pf,RTIA and listed in Table 2.

With the empirical approach, for example, the threshold is
set as 2. Corresponding failure rates are 0.001 % and 2.018 %
for the two models respectively. In order to achieve the same
failure rate as the first model, the second model has to set its
ratio test threshold as 10. There is no doubt that choosing 10
as threshold can ensure both of the models have their failure
rate smaller than 0.001 %, but it is unfair for the first model
since the over-conservative threshold decreases its success
rate from 99.068 % to 11.220 % for no reason. Thus it is
difficult to find a proper empirical threshold fitting all under-
lying models.

The FF-approach determines the threshold according to
the failure rate. Given P̄ f = 0.001 %, the FF-approach can
automatically identify that the best threshold are 2 and 10
for the two models respectively. Comparing to the empirical
approach, the limitation of the FF-approach is its complex-
ity. Hence, reducing the complexity of the FF-approach is
important for solving the threshold determination problem
in ambiguity acceptance test.

3 The threshold function method for FF-difference test

The FF-approach has been attempted to simplified with a
look-up table method for the ratio test. In this study, the FF-
difference test is used to simplify the FF-approach.
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Table 3 The simulation strategy

Scheme Freq. number σz,φ (mm) σz,P (cm) σz,I (mm)

Scheme I Single freq. 1 10 0

Scheme II Dual freq. 1 10 20

Scheme III Triple freq. 1 10 30

Scheme VI Single freq. 2 20 0

σz,φ , σz,P and σz,I refer to the undifferenced carrier phase, pseudorange
and ionosphere standard deviation on zenith direction respectively

3.1 The simulation strategy

In order to exclude the impact of inaccurate stochastic
model, unexpected biases and outliers on ambiguity accep-
tance test, our study is numerical simulation based. Short- to
medium-distance real-time kinematic (RTK) positioning sce-
nario is considered in this study. The least-squares is adopted
to estimate the float solution based on single epoch GPS
observations. The elevation-dependent weighting strategy is
used to capture the elevation-dependent observation noise
and ionosphere noise, which is given as (Verhagen et al.
2012):

w = (1 + 10e− E
10 )−

1
2 (11)

where w is the weight factor and E is the elevation angle in
degree.

In order to capture the satellite geometry impact, a 15◦ ×
15◦ global-covered, evenly distributed ground tracking net-
work is simulated and 24 h observation data from all monitor
stations are generated with 1,800 s sampling interval. In this
case, the satellite geometry in different location, different
time can be captured by the simulated data set. In order to
investigate the impact of the underlying model, four simula-
tion schemes are designed and the simulation configurations
are listed in Table 3. These schemes are designed to reveal
the impacts of the frequency number, the ionosphere vari-
ance and the observation noise on the ratio test and difference
test threshold. The short-baseline model is used for single-
frequency case, since it is too weak to handle the ionosphere
parameters in single epoch mode. For dual frequency and
triple frequency cases, the ionosphere standard deviation on
zenith direction σz,I corresponds to 50 and 75 km base-
line respectively (Odijk 2002). As ambiguity resolution is
attempted only if the underlying model is strong enough,
otherwise the fixed rate would be extremely low (Verhagen
and Teunissen, 2013). In this study, the IB success rate Ps,IB

higher than 85 % is used as the model strength criterion
empirically. The epochs with low IB success rate are ignored
in the simulative study. For each epoch, 100,000 samples are
generated to calculate its Ps,ILS and Pf,ILS.

3.2 Comparison of the FF-difference test threshold
and the FF-ratio test threshold

The characteristic of the FF-difference test threshold is com-
pared with the FF-ratio test threshold since the FF-ratio
test threshold has been modeled with the look-up table. In
the comparison, the Ps,ILS is used as the underlying model
strength indicator and the FF-ratio test threshold and the FF-
difference test threshold are expressed as a function of the
Ps,ILS. The simulation results are presented in Fig. 3 with
P̄ f = 1 %. The left panel shows the FF-difference test thresh-
old decreases as the Ps,ILS increases and the decreasing trends
are consistent for all four schemes. The thresholds are dis-
tributed quite concentrated and the dispersion is caused by
the simulation error and possibly other errors. The dispersion
depends on the P̄ f . According to the result, the relationship
between the FF-difference test threshold and the Ps,ILS can
be presented as a function. Once the function is given, the
threshold can be calculated with a given Ps,ILS rather than
relying on the root-finding method. Hence, it is possible to
simplify the FF-approach with a ‘threshold function’.

The variation of the FF-ratio test threshold is shown in the
right panel of Fig. 3. The figure indicates that the FF-ratio
test threshold also decreases as the Ps,ILS increases, but the
decreasing trends depend on the simulation schemes. The FF-
ratio test threshold is more spread out in the single-frequency
case. The dispersion of μ̄R may be caused by the underlying
model or other factors (e.g. the ambiguity dimension).

The comparison results indicate the FF-difference test
threshold can be presented as a function of Ps,ILS without
considering other model factors e.g. the ambiguity dimen-
sion, the stochastic model. On the other hand, the FF-ratio
test threshold is also possible to be fitted as a function of the
Ps,ILS, but it is not as good as the FF-difference test thresh-
old, since its threshold is more spread out and sensitive to
other factors like ambiguity dimension.

3.3 Establishing the threshold function
for the FF-difference test

The previous analysis has revealed the potential of estab-
lishing the threshold function for the FF-difference test, the
methodology of establishing the function is discussed in this
section. The regression analysis method is used to establish
the threshold function for the FF-difference test. The Ps,ILS

and the threshold are selected as the independent variable and
the dependent variable respectively in the regression analy-
sis.

3.3.1 The rational model as the threshold function

The first step of establishing the threshold function is to iden-
tify the right model to fit the threshold. The distribution of
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A new ambiguity acceptance test threshold determination method 367

the FF-difference test threshold has been shown in Fig. 3, it
helps to select potential models. In order to keep the func-
tion simple, several commonly used non-linear models are
attempted, including the exponential function, the hyperbolic
function, the polynomial function and the rational function.
The fitting residuals are used to evaluate the goodness of fit-
ting. The fitting results indicate that the rational function has
a simple form and relatively small fitting residuals, thus is
selected as the threshold function model. The rational func-
tion refers to a fractional function with its numerator and the
denominator are both polynomial functions. The threshold
function for the FF-difference test is given as:

μ̂Pf (x) = e1 + e2x

1 + e3x + e4x2 (12)

where μ̂ means the FF-difference test threshold calculated
from the threshold function method. μ̂ is expressed as a func-
tion of Ps,ILS. e1, · · · , e4 are the coefficient of rational func-
tion.

It is noticed that the rational model is not the only valid
threshold function model. Fitting the threshold function with
other models is also possible, the rational model is chosen
in this study is because of its small fitting residuals. The
threshold function also can be fitted with higher order ratio-
nal functions. High order rational function model achieves
comparable fitting precision as Eq. (12), but they involves
more coefficients. Overall, the advantages of the selected
model are its simple form and small fitting residuals.

3.3.2 Fitting the threshold function

With the function model been identified, the next step is to
estimate the coefficient in the model. There are several curve

fitting methods applicable for this non-linear curve fitting
problem, such as the Gauss–Newton method, the Levenberg–
Marquardt method and the trust-region method (Teunis-
sen 1990). In this study, the popular Levenberg–Marquardt
method is adopted to fit the rational function. This method is
an improved version of the Gauss–Newton method (Teunis-
sen 1990), which can adaptively adjust the damping parame-
ter according to the gradient descent to accelerate the con-
vergence (Marquardt 1963).

Similar to the Gauss–Newton method, the Levenberg–
Marquardt method relies on the gradient methods to approx-
imate the true curve iteratively. The non-linear problem is
linearized with the Taylor series, which is expressed as:

μ̂k+1 = μ̂k + J�e, k = 0, 1, 2, . . . (13)

where μ̂k is the rational function value calculated in the kth
iteration. J is the Jacobian matrix ∂μk/∂ek . ek is coefficient
on kth iteration. �e is a 4 × 1 increment vector of the coef-
ficient parameters.

The Levenberg–Marquardt method adds a positive damp-
ing scaler λ into the cost function and its normal equation is
expressed as (Marquardt 1963):

(J T W J + λdiag(J T W J ))�e = J T W (μILS − μ̂k) (14)

where W is the weight matrix. diag(·) means diagonalise
the matrix, which keeps major diagonal entries and sets off-
diagonal entries as 0. μILS is the threshold calculated with
the FF-approach and Ps,ILS, which is the observation in the
modeling procedure. The coefficient increment �e can be
estimated by solving the normal Eq. (14).
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Fig. 3 The threshold comparison of FF-ratio test and FF-difference test using four schemes with P̄ f = 1 % (left FF-difference test; right FF-ratio
test)
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Fig. 4 The flowchart of Levenberg–Marquardt method for the non-
linear fitting problem

The damping scaler λ is the key of the algorithm,which
can be interpreted as a compromise between the Newton’s
method and the steepest descent method. When λ = 0,
the Levenberg-Marquardt method degrades as the Newton’s
method and it becomes the steepest descent method when
the λ is sufficient large (Teunissen 1990). Moreover, the term
λdiag(J T W J ) can ensure the term J T W J +λdiag(J T W J )

is always positive definite. During the iteration process, the
damping factor is controlled by the quadratic form of poste-
rior residual σ̂ ′, which is defined as:

σ̂ ′ = (μILS − μ̂k+1)
T W (μILS − μ̂k+1) (15)

The procedure of the Levenberg-Marquardt method is
described in Fig. 4. The criterion ε0 can be calculated with
ε0 = (μILS − μ̂0)

T W (μILS − μ̂0). The iterative procedure
requires several initial factors: the ILS success rate Ps,ILS

and the FF-difference test threshold μ,ILS. The initial damp-
ing parameter λ and initial coefficient e0 are essential as well.
In the flowchart, the initial λ is an arbitrary positive scaler.
α is empirically given as 10. ε is an arbitrary small positive
number controls the convergency, which is given as 10−5. | · |
means absolute value.

3.3.3 The fitted threshold function and the quality control
issues

The quality of fitting can be described by the posteriori stan-
dard deviation, which is defined as:

σ̂ =
√

vT Wv

n − r
(16)

Table 4 The coefficient of the threshold function for the FF-difference
test with different failure rate tolerance

P̄ f (%) e1 e2 e3 e4

0.1 13.2009 −13.2119 −0.8096 −0.1862

0.2 13.5300 −13.5549 −0.6293 −0.3638

0.3 13.4099 −13.4481 −0.5373 −0.4535

0.4 12.6968 −12.7458 −0.5404 −0.4487

0.5 12.6739 −12.7359 −0.4739 −0.5134

0.6 11.9977 −12.0686 −0.5035 −0.4827

0.7 11.5166 −11.5963 −0.5182 −0.4669

0.8 11.2055 −11.2944 −0.5172 −0.4668

0.9 10.5497 −10.6443 −0.5710 −0.4124

1.0 10.1285 −10.2297 −0.5972 −0.3854

where v = μILS − μ̂k+1, n is the number of observation and
r is the parameter number. In this study, the weight matrix
W is an identity matrix and r = 4. σ̂ reflects the discrepancy
between the observation and the fitted model. The discrep-
ancy may be caused by the random error of the observation
or the systematical bias of the model. For a given data set,
the model with smallest σ̂ has the smallest systematical bias.

A group of fitted curve coefficient with different failure
rate tolerance is listed in Table 4. With these coefficients, the
FF-difference test threshold can be directly calculated with
given ILS success rate. The fitted threshold function and cor-
responding σ̂ are illustrated in Fig. 5. The left panel shows the
agreement of the fitted curve with different failure rate toler-
ance. The dots shows the FF-difference test threshold calcu-
lated with the FF-approach and the dashed line shows corre-
sponding fitted rational function. The fitted function locates
in the middle of the threshold dots and thus describes the
relationship well.

The right panel shows the posterior standard deviation σ̂ of
the threshold function. The figure shows the smaller failure
rate tolerance case deserves larger fitting errors, which is
consistent with the left panel.

3.4 The feasibility of replacing ILS success rate with IB
success rate

The fitted threshold function approximately describes the
relationship between the ILS success rate Ps,ILS and the FF-
difference test threshold and it solves the ‘inverse integration’
problem in the FF-approach. However, the calculation of the
Ps,ILS is still time-demanding. In order to further reduce the
computation burden, we have to find an easier way to calcu-
late the Ps,ILS. In this section, the possibility of approximate
the Ps,ILS with the integer bootstrapping (IB) success rate
Ps,IB is discussed.
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Fig. 5 The goodness of fitting the rational model. The left panel shows the agreement of the fitting threshold μ̂ (dash-lines) and FF-threshold μILS
(dots), and the right panel shows the posterior standard deviation σ̂

Although the Ps,ILS is difficult to calculate directly, cal-
culating its upper bound or lower bound is possible (Hassibi
and Boyd 1998; Teunissen 1998; Verhagen 2003; Feng and
Wang 2011). Many upper bounds and lower bounds of the
Ps,ILS have been proposed from different point of view (Ver-
hagen et al. 2013). If the bounds are sharp enough, it can be
used to approximate the Ps,ILS.

The question is using the upper bound or the lower bound
to approximate the Ps,ILS in this context. The coefficient
listed in Table 4 is the median curve of the threshold, it
means about 50 % FF-difference test thresholds are larger
than the threshold function. Hence, the threshold function is
not conservative enough. Since the threshold functions are
monotonously decreasing function, the lower bound of the
Ps,ILS makes the threshold function more conservative. The
sharpest lower bound of the Ps,ILS is the integer bootstrap-
ping (IB) success rate Ps,IB (Verhagen et al. 2013), thus the
Ps,IB is suitable to approximate the Ps,ILS. The Ps,IB is easy-
to-calculate, which can be calculated with (Teunissen 1998):

Ps,IB =
n

∏

i=1

(

2�

(

1

2σâi |I

)

− 1

)

(17)

where n is the dimension of Qââ , �(·) is the cumulative dis-
tribution function (CDF) of the normal distribution. σâi |I is
the i th conditional variance conditioning on {1, · · · , i − 1}.
σâi |I can be obtained by the LDL decomposition. It is noticed
that the decorrelated version of Qââ must be used in the suc-
cess rate calculation, as IB success rate is not invariant against
parameterizations of the ambiguities (Teunissen 1998). The
decorrelation method and the LDL decomposition method
are described in Teunissen (1995).

The price of approximating the Ps,ILS with the Ps,IB

is introducing the approximation error into the threshold
function method. As a trade-off between the computational
burden and the approximation error, the feasibility of the
approximation has to be examined carefully, as the oversized
approximation error would make the method meaningless.

The examination of the success rate approximation feasi-
bility includes two aspects: checking the difference between
the two success rates and checking the impact of the approx-
imation on the failure rate. The difference between the
Ps,ILS and Ps,IB is shown in Fig. 6. The figure shows the
Ps,IB is a sharp lower bound of the Ps,ILS. The difference
between the Ps,IB and Ps,ILS is normally smaller than 5 %
for Ps,IB > 90 % case. The difference decreases as the Ps,IB

increases.
The second aspect of the feasibility examination is to

investigate how the success rate difference changes the
behavior of actual failure rate. The threshold calculated with
the threshold function with Ps,ILS and Ps,IB are denoted as
μ̂ILS and μ̂IB respectively. In the validation procedure, the
failure rate calculated with μ̂ILS and μ̂IB are denoted as P̂ f,ILS

and P̂ f,IB respectively.
Figure 7 presents P̂ f,ILS and P̂ f,IB with respect to corre-

sponding failure rate tolerance P̄ f . The left panel shows there
is about 50 % P̂ f,ILS larger than P̄ f . Thus μ̂ILS is not con-
servative enough as an approximation of FF-approach. The
right panel shows the majority of P̂ f,IB is smaller than the P̄ f .
Since Ps,IB ≤ Ps,ILS, μ̂IB ≥ μ̂ILS and then P̂ f,IB ≤ P̂ f,ILS.
After the approximation, the failure rate tolerance P̄ f is close
to the upper bound of P̂ f,IB. Meanwhile, the uncertainty of
P̂ f,IB is larger than P̂ f,ILS. It is because μ̂ILS is free of the
approximation error. Overall, the success rate approximation
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Fig. 6 Comparison of the Ps,IB and the Ps,ILS

procedure makes the threshold function method more con-
servative and P̂ f,IB is still controllable in majority case.

4 Validation of the threshold function method
and modeling error analysis

The modeling procedure and the approximation procedure
can efficiently simplify the FF-approach, while these pro-
cedures also introduce errors inevitably. The impact of the
errors on the decision making is analysed in this section. The
FF-approach is only affected by the simulation error and the
simulation error can be mitigated with larger sample size.
The threshold function involves the modeling error and the
approximation error besides the simulation error. The total
impact of the modeling error and approximation error can be
analysed by comparing with the original FF-approach and
the magnitude of the simulation error can be analysed by
repeatability check.

4.1 The modeling error and the approximation error impact

The modeling error and the approximation error are intro-
duced to the threshold function method while the original
FF-approach does not suffer from these errors. Thus, the
impact of these two errors can be isolated by comparing the
threshold function method with the original FF-approach. In
this section, the impact of the two errors on the failure rate
and the false alarm rate is analysed.

The failure rate and the false alarm rate difference
between the threshold function method and the FF-approach
are calculated and shown in Fig. 8. In this compari-
son,the actual failure rate calculated with the original FF-
approach in validation procedure is denoted as Pf,ILS. The

left panel shows P̂ f,IB ≤ Pf,ILS holds in majority case.
There are only a few samples having slightly higher P̂ f,IB.
The failure rate difference increases as Ps,ILS increases.
It is because the failure rate difference depends on the
success rate difference and the gradient of the threshold
function.

The right panel in Fig. 8 shows the false alarm rate dif-
ference between the two methods. As the μ̂IB is more con-
servative, the corresponding type I error will be inevitably
increasing. The figures show the type I error of the thresh-
old function method is larger than the original FF-approach in
most cases. In most cases, the type I error difference between
the two methods is smaller than 5 %.

4.2 The simulation error impact

Both the FF-approach and the threshold function method
are inevitably impacted by the simulation error, since both
of them employs numerical methods. The magnitude of the
simulation error depends on the simulated sample size. As
a trade-off between the simulation error and the computa-
tional efficiency, 100,000 samples are simulated to calculated
the threshold in this experiment. Due to the randomness of
the simulation samples, the threshold may slightly different
between different experiment and it is considered as the sim-
ulation error.

The simulation error can be evaluated by checking the
experiment repeatability. A 16-dimensional example with
Ps,ILS ≈ 97.1 % is used to investigate the simulation error
impact. The validation process includes two steps: the first
step is to determine the threshold with the FF-approach .
The simulation error may cause the FF-threshold and Ps,ILS

slightly different. The second step is calculating the actual
failure rate with a fixed threshold. In this experiment, the
maximum and minimum threshold out of the 1,000 repeat
experiments are used as the fixed threshold and the corre-
sponding maximum and minimum actual failure rate are cal-
culated. we denote the threshold and actual failure rate cal-
culated with the original FF-approach as μILS and Pf,ILS for
simplicity.

The experiment results are presented in Fig. 9. The left
panel shows the simulation error impact on the FF-difference
test threshold. The figure shows threshold calculated with the
original FF-approach μILS and the threshold function μ̂ILS

are impacted by the simulation error. The simulation error
impact on μ̂ILS is smaller than μILS. μ̂IB is immune from the
simulation error as it does not employ simulation procedure.
The figure also indicates the curve fitting procedure intro-
duced in Sect. 3.3 can mitigate the simulation error impact
and μ̂IB ≥ μ̂ILS. The right panel shows the maximum and
minimum actual failure rate in the 1,000 repeat experiments.
The uncertainty in this figure reflects the accumulated sim-
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Fig. 7 Distribution of P̂ f,ILS (left) and P̂ f,IB (right). The black dashed lines are the failure rate tolerances P̄ f

Fig. 8 The failure rate and false alarm rate difference between the threshold function method and the FF-approach

ulation error impact in the two validation steps. The simu-
lation error impact on the actual failure rate is similar to its
impact on the threshold, but the uncertainty increases as P̄ f

increases this time. The figure shows the actual failure rate of
the original FF-approach may also exceed the failure rate tol-
erance due to the simulation error impact. While P̂ f,ILS have
a smaller uncertainty than Pf,ILS. P̂ f,IB is immune from the
simulation error impact and meets the tolerance in majority
cases. With regarding to the simulation error impact, the μ̂IB

somehow even outperforms the μILS.

4.3 Validation of the threshold function method

With errors been analysed, the performance of the threshold
function is evaluated with extensive data. The performance

can be measured by two indicators: the maximum actual fail-
ure rate Max{P̂ f,IB} and the percentage of samples meeting
P̂ f,IB ≤ Pf .

The validation procedure described in Sect. 4.2 is applied
to all samples described in Sect. 3.1 and the validation results
are presented in Fig. 10. The left panel shows the largest
overflowed actual failure rate Max{P̂ f,IB}− P̄ f . The largest
overflowed failure rate related to the P̄ f . Small P̄ f deserves
small overflowed failure rate in general. In the worst case, the
overflowed failure rate reaches 0.08 %, which is still smaller
than simulation error impact on Pf,ILS. The right panel shows
the percentage of samples meet the failure rate tolerance.
There are more than 97 % samples meeting the requirement
for P̄ f > 0.1 % cases. The P̄ f = 0.1 % case has a rela-
tively lower percentage and it still achieves 92 %. Hence, the
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Fig. 9 The impact of the simulation error on threshold determination (left) and actual failure rate (right)
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Fig. 10 The validation results of the threshold function. The left panel shows the difference between the largest P̂ f,IB and P̄ f . The right panel
shows the percentage of samples meeting the failure rate requirements

majority samples still meet the failure rate tolerance with the
threshold function method.

4.4 The procedure of applying the threshold function
method

In this section, the procedure of applying the threshold
function method is summarized. Similar to the original FF-
approach, the procedure of applying the threshold function
method also follows four steps:

1. Form the difference test statistics μD = ∥
∥â − ǎ2

∥
∥

2
Qââ

−
∥
∥â − ǎ

∥
∥

2
Qââ

. The squared Euclidean norm
∥
∥â − ǎ

∥
∥2

Qââ

and
∥
∥â − ǎ2

∥
∥2

Qââ
can be obtained from the integer least-

squares estimator.

2. Calculate the IB success rate of Qââ with Ps,IB =
∏n

i=1(2�( 1
2σâi |I

) − 1). The decorrelated version of Qââ

has to be used in the IB success rate calculation, as the IB
success rate depends on the parametrisation form of the
ambiguities. The decorrelation methods can be found in
Teunissen (1995) and De Jonge and Tiberius (1996)

3. Calculate the test threshold with the threshold function.
Choosing a group of coefficient from Table 4 according to
the P̄ f , the FF-difference test threshold can be calculated
with

μ̂ =

⎧

⎪⎪⎨

⎪⎪⎩

∞, Ps,IB < 0.85
e1+e2 Ps,IB

1+e3 Ps,IB+e4 P2
s,IB

, 0.85 ≤ Ps,IB < 1 − P̄ f

0, Ps,IB ≥ 1 − P̄ f

(18)
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Table 5 A comparison of three threshold determination procedures with controllable failure rate

Steps Original FF-approach Look-up table method Threshold function method

Test statistic construction Any IA estimator Ratio test Difference test

Probability calculation Address the relationship between
threshold and failure rate with
simulation

Calculate ILS failure rate with simulation Calculate IB success rate from
Eq. (17)

Threshold determination Root-finding method Look-up table Threshold function

Decision-making Compare the test statistics with the threshold

If Ps,IB < 0.85, the model is considered as too weak to
resolve the ambiguity and more observations are required
to improve the model strength. Ps,IB ≥ 1 − P̄ f means
the failure rate of integer estimator is smaller than the
tolerance, μ̂ is set as 0 to avoid negative threshold in this
case.

4. Compare μD and μ̂. If μD ≥ μ̂, ǎ can be accepted,
otherwise reject it.

The procedures of the three different threshold determina-
tion methods with controllable failure rate are compared in
Table 5. The three methods follow a similar four-step proce-
dure. The original FF-approach is the most general method
and feasible to all IA estimators. The look-up table method is
proposed for the ratio test and the threshold function method
is designed for the difference test. The second step is the most
time-demanding step in FF-approach due to large simulation
work. The look-up table method still relies on the simulation
to calculate the ILS failure rate. In contrast, the threshold
function method enables to directly calculate the success rate
rather than simulation, so it is more efficient than the other
two methods. Both the look-up table method and the thresh-
old function method circumvent the root-finding procedures.
The look-up table method employs an interpolation proce-
dure to obtain the threshold whereas the threshold function
method resorts to a function to calculate the threshold. The
decision-making step is the same for all three methods.

4.5 Some remarks

Besides above discussion, there are several interesting topics,
which are discussed in this section.

4.5.1 Computation efficiency improvement

The threshold function method circumvents the simulation
step in the FF-approach and thus greatly improves the compu-
tational efficiency. The computational efficiency of the orig-
inal FF-approach depends on the underlying model strength.
The essential time consumption of the FF-approach varies
from a few seconds to several minutes. The threshold function
method reduced the time consumption to a negligible level.

Moreover, the computation time becomes independent from
the underlying model. Thus, the threshold function method
makes the fixed failure rate ambiguity validation approach
always applicable for real-time applications.

4.5.2 Applicability of the threshold function

All above discussion about the threshold function method is
confined to the FF-difference test, one may concern whether
it is applicable to other IA estimators (e.g. the FF-ratio test).
The threshold function is applicable to the ratio test according
to Fig. 3. However, the threshold function may not performs
as good as the FF-difference test, due to the FF-ratio test
threshold distribution. The FF-ratio test threshold function
may be different for different ambiguity dimension. The fea-
sibility and performance of the threshold function need to be
checked before applying it to other IA estimators.

4.5.3 Is success rate approximation applicable
to the look-up table method?

The success rate approximation is also applicable for the
look-up table method, but the approximation would makes
the threshold over conservative. The thresholds listed in the
look-up table are upper bound of the simulated thresholds,
calculating with Ps,ILS is a conservative solution already. If
Ps,ILS is approximated with Ps,IB, the calculated threshold
would be over conservative. Although the step can reduce the
computation burden, the approximation makes the threshold
discrepancy between the FF-approach and the look-up table
approach larger.

5 Conclusion and outlook

The paper has investigated the threshold determination issue
in the ambiguity acceptance test problem. At first, current
threshold determination methods, the empirical method and
the FF-approach have been reviewed and compared. The FF-
approach is more rigorous, but computationally demanding.
Thus, the key challenge of the threshold determination issue
is how to reduce the complexity of FF-approach.
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A new method named the threshold function method is
proposed to reduce the complexity of the FF-approach. The
method reduces the FF-approach with a two-step procedure.
In the first step, the relationship between the FF-difference
test threshold and the ILS success rate is modeled as a rational
function. With the rational function, the ‘inverse integration’
problem is converted to a direct calculation problem. Then,
the ILS success rate in the model is replaced by the IB success
rate, since the IB success rate can be easily calculated without
any simulation.

The errors of the threshold function method are analysed in
this paper as well. The experiment results indicate the thresh-
old function modeling procedure can mitigate the simulation
error impact. The success rate approximation procedure can
improve the computational efficiency and also makes the
threshold function method conservative. Extensive simula-
tion results show the threshold function method can meet the
failure rate tolerance in the majority cases. The occasional
overflowed failure rate is smaller than the simulation error
impact, thus the threshold function method reduced the com-
putational burden of the FF-approach without degradation of
its performance.

The proposed threshold function method reduces the com-
putation burden of the FF-approach to a negligible level
with proper modeling and approximation procedure.It cir-
cumvents the complex theory and computation successfully
and makes the fixed failure rate ambiguity validation method
easy-to-apply. However, the ambiguity validation problem is
still challenging due to the potential discrepancy between real
data and underlying model. The feasibility of the threshold
function method is analysed from theoretical prospective,
while the practical issues still need to be addressed before
testing the method with real GNSS data.

Acknowledgments This work is financially supported by the Aus-
tralia cooperative research center for spatial information (CRC-SI)
project 1.01 New carrier phase processing strategies for achieving pre-
cise and reliable multi-satellite, multi-frequency GNSS/RNSS position-
ing in Australia. Large-scale simulation in this research is supported by
QUT High performance computing facilities. Discussions with Prof.
Teunissen on the theory of integer aperture estimation and the idea of
using a functional description for the threshold values are greatly appre-
ciated.

References

Abidin HZ (1993) Computational and geometrical aspects of on-the-fly
ambiguity resolution. Technical Report 164, UNB

De Jonge P, Tiberius C (1996) The LAMBDA method for integer ambi-
guity estimation: implementation aspects. Technical Report 12,
Delft Geodetic Computing Centre

Euler HJ, Goad CC (1991) On optimal filtering of GPS dual frequency
observations without using orbit information. J Geod 65(2):130–
143

Euler HJ, Schaffrin B (1991) On a measure for the discernibility between
different ambiguity solutions in the static-kinematic GPS-mode.
In: IAG Symposium, pp 285–295

Feng Y, Wang J (2011) Computed success rates of various carrier phase
integer estimation solutions and their comparison with statistical
success rates. J Geod 85(2):93–103

Frei E, Beutler G (1990) Rapid static positioning based on the fast ambi-
guity resolution approach FARA: theory and first results. Manuscr
Geod 15(6):325–356

Han S (1997) Quality-control issues relating to instantaneous ambi-
guity resolution for real-time GPS kinematic positioning. J Geod
71(6):351–361

Hassibi A, Boyd S (1998) Integer parameter estimation in linear models
with applications to GPS. IEEE Trans Signal Process 46(11):2938–
2952

Landau H, Euler H-J (1992) On-the-fly ambiguity resolution for precise
differential positioning. In: Proceedings of ION GPS pp 607–613

Leick A (2004) GPS satellite surveying. Wiley, New York
Marquardt D (1963) An algorithm for least-squares estimation of non-

linear parameters. J Soc Ind Appl Math 11(2):431–441
Odijk D (2002) Weighting ionospheric corrections to improve fast GPS

positioning over medium distances. In: Proceedings of the Institute
of Navigation 2000 meeting. Delft Technology University

Takasu T, Yasuda A (2010) Kalman-filter-based integer ambiguity res-
olution strategy for long-baseline rtk with ionosphere and tro-
posphere estimation. ION NTM, pp 161–171

Teunissen PJ (1990) Nonlinear least squares. Manuscr Geod 15(3):137–
150

Teunissen PJG (1995) The least-squares ambiguity decorrelation adjust-
ment: a method for fast GPS integer ambiguity estimation. J Geod
70(1):65–82

Teunissen PJG (1998) Success probability of integer GPS ambiguity
rounding and bootstrapping. J Geod 72(10):606–612

Teunissen PJG (1999) An optimality property of the integer least-
squares estimator. J Geod 73(11):587–593

Teunissen PJG (2002) The parameter distributions of the integer GPS
model. J Geod 76(1):41–48

Teunissen PJG (2003a) A carrier phase ambiguity estimator with easy-
to-evaluate fail rate. Art Sa 38(3):89–96

Teunissen PJG (2003b) Integer aperture GNSS ambiguity resolution.
Art Sa 38(3):79–88

Teunissen PJG (2005) GNSS ambiguity resolution with optimally con-
trolled failure-rate. Art Sa 40(4):219–227

Teunissen PJG, Verhagen S (2009) The GNSS ambiguity ratio-test
revisited: a better way of using it. Surv Rev 41(312):138–151

Tiberius C, De Jonge P (1995) Fast positioning using the LAMBDA
method. In: Proc. 4th Int Conf Differential satellite systems, Cite-
seer pp 1–8

Verhagen S (2003) On the approximation of the integer least-squares
success rate: which lower or upper bound to use. J GPS 2(2):117–
124

Verhagen S (2005) The GNSS integer ambiguities: estimation and val-
idation. Ph.D. thesis, Delft University of Technology

Verhagen S, Li B, Teunissen PJG (2013) Ps-LAMBDA: ambiguity
success rate evaluation software for interferometric applications.
Comput Geosci 54:361–376

Verhagen S, Teunissen PJG (2006a) New global navigation satel-
lite system ambiguity resolution method compared to existing
approaches. J Guid Control Dyn 29(4):981–991

Verhagen S, Teunissen PJG (2006b) On the probability density function
of the GNSS ambiguity residuals. GPS Solut 10(1):21–28

Verhagen S, Teunissen PJG (2013) The ratio test for future GNSS ambi-
guity resolution. GPS Solut 17(4):535–548

Verhagen S, Teunissen PJG, Odijk D (2012) The future of single-
frequency integer ambiguity resolution. In: Sneeuw N, Novák
P, Crespi M, Sansò F (eds) VII Hotine-Marussi Symposium on

123



A new ambiguity acceptance test threshold determination method 375

Mathematical Geodesy, volume 137 of International Association
of Geodesy Symposia, Berlin, Heidelberg. Springer, Berlin Hei-
delberg

Wang J, Stewart MP, Tsakiri M (1998) A discrimination test procedure
for ambiguity resolution on-the-fly. J Geod 72(11):644–653

Wang L, Feng Y (2013) Fixed failure rate ambiguity validation
methods for GPS and COMPASS. In: China Satellite Naviga-
tion Conference (CSNC) 2013 Proceedings, volume 2. Springer
pp 396–415

Wang L, Verhagen S, Feng Y (2014) Ambiguity acceptance testing : a
comparison of the ratio test and difference test. In: China Satellite
Navigation Conference (CSNC) 2014 Proceedings

Wei M, Schwarz K-P (1995) Fast ambiguity resolution using an integer
nonlinear programming method. In: Proceedings of ION GPS pp
1101–1110

123


	A new ambiguity acceptance test threshold determination method with controllable failure rate
	Abstract 
	1 Introduction
	2 Threshold determination methods in ambiguity acceptance test
	2.1 The procedure of the ambiguity estimation and validation
	2.2 The ratio test and the difference test
	2.3 The empirical approach
	2.4 The fixed failure rate approach
	2.4.1 The look-up table method for the FF-ratio test

	2.5 Comparison of the threshold determination methods

	3 The threshold function method for FF-difference test
	3.1 The simulation strategy
	3.2 Comparison of the FF-difference test threshold  and the FF-ratio test threshold
	3.3 Establishing the threshold function  for the FF-difference test
	3.3.1 The rational model as the threshold function
	3.3.2 Fitting the threshold function
	3.3.3 The fitted threshold function and the quality control issues

	3.4 The feasibility of replacing ILS success rate with IB success rate

	4 Validation of the threshold function method  and modeling error analysis
	4.1 The modeling error and the approximation error impact
	4.2 The simulation error impact
	4.3 Validation of the threshold function method
	4.4 The procedure of applying the threshold function method
	4.5 Some remarks
	4.5.1 Computation efficiency improvement
	4.5.2 Applicability of the threshold function
	4.5.3 Is success rate approximation applicable  to the look-up table method?


	5 Conclusion and outlook
	Acknowledgments
	References


