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Abstract We address the evaluation of the potential and of
the gravitational attraction of mass distributions, assigned by
means of a Digital Terrain Model (DTM), for terrain correc-
tion computations. In particular, we improve a recent analyt-
ical formulation based on the approximation of topographic
masses by vertical prisms with linear top surfaces and com-
pare the computational features of the enhanced formula-
tion with alternative ones based on polyhedral modeling on
bilinear approximation of the surface relief or on numerical
approaches. The numerical tests carried out on the DTM of an
area near Cassino (Italy) proved that the proposed enhanced
analytical formulation, besides providing exact values of the
potential and of the gravitational attraction, turns out to be
faster than alternative approaches.

Keywords Gravitational potential · Gravitational attrac-
tion · Digital terrain model · Linear and bilinear prism ·
Polyhedral modeling

1 Introduction

Several methods can be found in the literature for computing
the gravitational attraction of topographic masses defined by
means of height information assigned on a regular grid. Basi-
cally, they differ in the search of an adequate compromise
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between computational efficiency and advanced modeling
techniques of the topographic surface.

To this end analytical, numerical and mixed, i.e. both ana-
lytical and numerical, methods have been contributed so far.
In the first category, the gravitational effect at an observation
point P is evaluated by summing the separate contribution of
constant-density bodies having a simple geometrical shape,
usually a right rectangular parallelepiped (prism).

Actually, one can invoke well known (Kellogg 1929;
MacMillan 1930; Mader 1951; Nagy 1966; Heiskanen and
Moritz 1967; Banerjee and DasGupta 1977; Nagy et al. 2000;
Tsoulis 2000) and recently established (Jiancheng and Wen-
bin 2010; D’Urso 2012) analytical formulas for the gravity
effects.

A refinement of the classical prism with flat tops has been
considered by Woodward (1997), Blais and Ferland (1983)
and subsequently addressed by Smith (2000) by considering
prisms with inclined top and bottom faces.

A significant improvement to the effective computation
of terrain effects has been achieved in terms of program-
ming efficiency and modeling of surface relief by developing
formulas for the gravity effects of homogeneous polyhedral
bodies, see, e.g., Paul (1974), Barnett (1976), Götze (1978),
Okabe (1979), Waldvogel (1979), Pohanka (1988), Werner
(1994), Petrović (1996), Werner and Scheeres (1997), Hol-
stein (2002) and Benedek (2004).

Recently D’Urso (2014a) has developed additional for-
mulas, expressed solely as function of the coordinates of the
vertices of the polyhedron, on the basis of recent analytical
results, (D’Urso 2012, 2013a), addressing the singularities
affecting the computation of the gravity effects in a system-
atic manner.

Mixed methods for terrain correction computations have
been contributed by Forsberg (1985) and Sideris (1985) on
the basis of the Fast Fourier Transform (FFT). A further
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method exploiting multiple expansions has been proposed by
Martinec et al. (1996). A numerical method based on quadra-
ture formulas has been presented by Hwang et al. (2003).

To overcome some shortcomings of the FFT technique in
the zones adjacent to the observation point, Tsoulis (2001)
proposed to replace the FFT with an analytical method only
in these zones and to exploit the efficiency of the FFT in the
complementary parts of digital terrain models (DTM).

In a subsequent paper, Tsoulis et al. (2003) presented a
new mixed method for the computation of the gravitational
attraction of DTMs by adopting a bilinear surface for the
representation of the terrain relief. By inserting the bilinear
approximation into the analytical expression of the potential
and its first-order derivatives, Tsoulis et al. (2003) proved
that the new method was comparable or even faster than a
terrain modeling using polyhedra.

However, in his analysis, no comparison was made by
Tsoulis et al. (2003) with the previous contribution by Smith
(2000) in which an analytical, though particularly involved,
expression of the gravitational attraction had been derived.
Conversely, the approach by Tsoulis et al. (2003) requires,
besides some refined analytical manipulations, a numerical
integration of the resulting 1D integrals for which they pro-
posed to adopt the classical Simpson’s rule.

Taking also into account the recent contributions by the
first author (D’Urso 2013a, 2014a) on the computation of
gravity effects by polyhedral modeling, aim of this paper is
to provide a comparison between the performances of the
existing methods for terrain correction computations and a
novel analytical method contributed in the paper.

To this end, the original approach by Smith (2000), in
which it is provided a closed formula for computing the grav-
itational attraction of a vertical prism with inclined top and
bottom faces, is enhanced in a two-fold manner:

(i) By extending it to the computation of the potential;
(ii) By proving that the potential and the gravitational attrac-

tion can be computed in a considerably simpler way.

Furthermore, a comparison with the results by Tsoulis
et al. (2003) is carried out together with a Gauss numerical
integration of the 2D integral pertaining to the bilinear surface
proposed by them.

The paper is organized as follows. Section 2 contains a
brief summary of the analytical formulas derived in (D’Urso
2013a, 2014a) and of the existing analytical approaches con-
tributed thus far in the literature.

Section 3 presents the enhanced version of Smith’s
approach by making reference to the Appendix 1 and 2 for
details on the evaluation of the relevant integrals.

The approach by Tsoulis et al. (2003) is succinctly
accounted for in Sect. 4 mainly to draw the reader’s attention
on two typographical errors contained in the original paper.

Finally, numerical examples are presented and discussed
in Sect. 5.

2 Theory

The potential and gravity vector induced at an arbitrary point
P by a continuous distribution of mass, with constant density
δ, occupying a bounded domain Ω are given by:

U (P) = Gδ
∫

�

dV

(r · r)1/2
(1)

and

U,P = −Gδ
∫

�

r
(r · r)3/2

dV (2)

where dV is the infinitesimal volume element belonging to
Ω and (·),P denotes differentiation with respect to P .

Furthermore, G is the gravitational constant and r is the
position vector with respect to the observation point P of
an arbitrary source point belonging to Ω . For this reason it
is convenient to consider a three-dimensional (3D) cartesian
reference frame (P, x, y, z) having origin at P , see, e.g.,
Kellogg (1929), MacMillan (1930), Heiskanen and Moritz
(1967).

The most general approach to the evaluation of (1) and (2)
is based on the polyhedral approximation ofΩ . Denoting by
NF , the number of faces belonging to the boundary ∂Ω and
di the signed distance between P and the i-th face Fi ∈ ∂Ω
it turns out, D’Urso (2014a):

U (P) = Gδ

2

NF∑
i=1

di
{

IFi − |di |αi
}

(3)

and

U,P = −Gδ
NF∑
i=1

(IFi − |di |αi )ni (4)

where IFi can be computed analytically as function of the 3D
position vectors of the vertices which define the polyhedron
faces and ni is the unit normal to the face Fi , pointing outside
Ω .

The expression of the integral IFi , which represents the
main quantity to compute over each face Fi of the polyhe-
dron, can be found in (D’Urso 2012, 2013a, 2014a).

The correction factor αi in formulas (3) and (4) accounts
for the singularity of the field 1/(r · r)1/2 when P ∈ Ω . It
can be computed as shown in D’Urso and Russo (2002) and
D’Urso (2014a).

Further applications of the same approach can be found
in (D’Urso 2013b, 2014b) for bodies with linearly varying
density, in D’Urso and Marmo (2013c), Sessa and D’Urso
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Fig. 1 Surface modeling for a 2×2 DTM by constant, linear and bilin-
ear prisms (Tsoulis et al. 2003)

(2013) for geomechanics, in D’Urso and Marmo (2013d) for
geosciences, in Rosati and Marmo (2014) for heat transfer.

Topographic masses represent an important source of
gravity field information, e.g., for geoid determination, espe-
cially nowadays since global-detailed digital elevation mod-
els of the topography at the continents and of the bathymetry
at the oceans are accessible.

For a digital terrain model, the arbitrary polyhedron con-
sidered thus far can be replaced by a simpler polyhedral shape
in which NF − 1 faces are parallel to the coordinate planes
of a Cartesian reference frame, see, e.g., Fig. 1.

For simplicity, we shall denote such polyhedral shapes
by linear or bilinear prisms depending on the fact that the
bottom face of the polyhedron, usually in x − y plane, has a
triangular or a rectangular shape. In this respect we remind
that, from a rigorous point of view, only the first one is a real
polyhedron since the top surface is a plane.

The particular shape of the prisms used in digital terrain
modeling naturally suggests to compute the potential and the
gravity vector by first integrating the relevant 3D expressions
along the vertical (z) direction and, subsequently, performing
the evaluation of the resulting 2D expression in the horizontal
(x − y) plane.

Unfortunately, only the gravitational attraction, i.e. the
z component of the gravity vector, was amenable to exact
integration (Woodward, 1997; Smith, 2000).

Conversely, we show in the sequel that also the potential
can be exactly integrated and that its evaluation requires the
analytical computation of the same 1D integral previously
addressed in Woodward (1997) and Smith (2000). To this
end, we prove in the Appendix that its evaluation can be
considerably simplified with respect to the solution strategy
proposed in Smith (2000).

Furthermore, numerical integration is proposed for the x
and y component of the gravity vector since the relevant 1D
integrals, which are arrived at by two consecutive integra-
tions along z and y, have turned out to be not analytically
integrable.

For a bilinear prism, two different strategies can be
exploited. The first one is the one contributed in Tsoulis et al.
(2003) in which the original 3D expression of the potential
and of the gravity vector is replaced by its 2D counterpart on
the boundary surface of the prism while analytical integra-
tion is subsequently carried out for the integral extended to
the bilinear surface.

This yields 1D integrals which, however, cannot be analyt-
ically integrated so that a Gauss-based numerical integration,
different from the Simpson-based one adopted in Tsoulis et
al. (2003), is carried out.

The impossibility of achieving a fully analytical integra-
tion of the 2D integral extended to the bilinear surface suggest
to carry out its numerical integration, representing the second
strategy for the bilinear prism.

To sum up, we shall compare the computational perfor-
mances of four different approaches to the analytical eval-
uation of the potential and of the gravity vector of gridded
data:

(a) The approach by Smith (2000) enhanced as detailed
below;

(b) The approach by Tsoulis et al. (2003) in which a Gauss
based rather than a Simpson-based numerical integra-
tion of the 1D integrals is carried out;

(c) A Gauss-based numerical integration of the 2D integral
extended to the bilinear surface according to the Tsoulis
approach;

(d) A fully polyhedral approach based on the use of formu-
las (3) and (4).

3 An enhanced version of Smith’s approach

Smith (2000) derived a closed formula for computing the
gravitational attraction of a vertical prism with inclined top
and bottom faces. Though conceptually elegant, the formula
obtained by Smith is particularly involved.

For this reason, we provide hereafter a different derivation
which leads to a considerably simpler expression not only for
the gravitational attraction but also for the potential.

Although not contained in the original paper by Smith
(2000), the computation of this last quantity is carried out to
parallel the paper by Tsoulis et al. (2003) in which both the
potential and the gravitation vector have been computed.

3.1 Evaluation of the potential for an element of a DTM

Let us consider an arbitrary element of a Digital Terrain
Model (DTM), see, e.g., Fig. 2, typically assigned by means
of gridded data.

Supposing that the DTM is defined by Nx (Ny) rectangular
elements in the x (y) direction, the potential U in (1) can be
expressed as
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Fig. 2 Triangular sub-domains of an arbitrary element of a DTM

U (P) = Gδ

Nx ∗Ny∑
i=1

IΘ(i) (5)

where it has been set

IΘ(i) =
∫

Θ(i)

⎡
⎢⎣

zi (x,y)∫

0

dz

(x2 + y2 + z2)1/2

⎤
⎥⎦ dx dy (6)

Θ(i) denotes the domain of the i-th element of the DTM and
zi the function which defines the height corresponding to the
generic pair of values x, y belonging to Θ(i).

In the sequel, we shall concentrate on the computation
of the generic integral in (6) so that the suffix (·)(i) will be
omitted for notational simplicity.

Assuming that the surface relief is represented by means of
triangular prisms, the generic element of the DTM is divided
in two sub-elements; accordingly, the generic integral in (6)
becomes

IΘ = IΛ1 + IΛ2

=
∫

Λ1

⎡
⎢⎣

z1(x,y)∫

0

dz

(x2 + y2 + z2)1/2

⎤
⎥⎦ dx dy

+
∫

Λ2

⎡
⎢⎣

z2(x,y)∫

0

dz

(x2 + y2 + z2)1/2

⎤
⎥⎦ dx dy (7)

where z1(x, y) = u1x+v1 y+k1 and z2(x, y) = u2x+v2 y+
k2 are the equations of the planes defined on the sub-domains
Λ1 and Λ2 in Fig. 2, respectively.

Being the previous integrals substantially equivalent, we
shall make reference in the sequel to the computation of the
generic integral

IΛ =
∫

Λ

⎡
⎢⎣

ux+vy+k∫

0

dz

(x2 + y2 + z2)1/2

⎤
⎥⎦ dx dy (8)

where Λ reminds of a triangular domain of integration.

Performing the integration with respect to z one has

IΛ =
∫

Λ

[
ln

(
z +

√
x2 + y2 + z2

)]z=ux+vy+k

z=0
dx dy

=
∫

Λ

ln
[
ux + vy + k

+
√

x2 + y2 + (ux + vy + k)2
]
dx dy

−
∫

Λ

ln
√

x2 + y2dx dy (9)

Unfortunately it has not been possible, even by employing
the current version of symbolic mathematics softwares, to
find the primitives of the two integrand functions above.

For this reason, we proceed in a different way by try-
ing to transform the 2D integrals (9) into a 1D integral. To
simplify the ensuing developments, we introduce the vectors
g = (u, v) and ρ = (x, y) so that

ux + vy + k = g · ρ + k (10)

Accordingly, setting

χ(ρ, k) =
√

ρ · ρ + (g · ρ + k)2 (11)

and

ψ(ρ, k) = g · ρ + k + χ(ρ, k) (12)

we write (9) as

IΛ =
∫

Λ

lnψ(ρ, k)dx dy −
∫

Λ

ln
√

ρ · ρ dx dy

= IΛa − IΛb (13)

It is worth noting that the second integrand function in (13)
is the specialization of the first one by setting in (11) and (12)
g = o, where o is the zero vector, and k = 0. Nevertheless,
the computation of the two integrals is based on a completely
different approach since the functionψ(ρ, k) is non-singular;
hence, by a suitable transformation of the original expression,
analytical integration can be performed.

Conversely, the integrand function ln
√

ρ · ρ in the second
integral of (13) can trivially exhibit a singularity at ρ =
o; accordingly, a specifically devised integration technique
needs to be invoked. For these reasons, the computation of the
two integrals in (13) is illustrated separately in the fallowing
two subsections.

3.1.1 Evaluation of the integral IΛa in (13)

The integral IΛa in (13) has been computed analytically by
Smith (2000) but the final expression turned out to be lengthy
and required special care in its programming. Actually, as
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pointed out by the author, there were two main complications
in the application of Smith’s formula.

The first one was associated with singularities which can
occur for special geometries while the second one prompted
from the occasional occurrence of complex numbers what
required special coding to get correct results.

To simplify the computation of IΛa with respect to Smith’s
approach we try to express IΛa as a line integral extended
to the boundary of the triangle Λ in (13). in this respect we
anticipate that this objective has been only partially fulfilled
since our procedure actually leads to a simpler evaluation
of IΛa with respect to Smith’s formulation although it still
requires to compute a domain (2D) integral.

To illustrate the rationale of our approach we remind the
differential identity

div(ϕ u) = gradϕ · u + ϕ divu (14)

where ϕ (u) is a continuous scalar (vector) field while
div (grad) denoted the divergence (gradient) operator Tang
(2006).

Thus, being

grad[lnψ(ρ, k)] = 1

ψ(ρ, k)

[
g+ ρ+(g · ρ+k)g√

ρ · ρ+(g · ρ+k)2

]

(15)

the identity (14) yields

div[lnψ(ρ, k)ρ] = g · ρ

ψ(ρ, k)
+ ρ · ρ + (g · ρ + k)(g · ρ)

ψ(ρ, k)χ(ρ, k)
+ 2 lnψ(ρ, k) (16)

on account of (11).
Grouping the terms, multiplying the quantity (g ·ρ) in the

previous expressions and recalling the definition ofψ in (12)
one has

div[lnψ(ρ, k)ρ] = (g · ρ)ψ(ρ, k)+ ρ · ρ

ψ(ρ, k)χ(ρ, k)
+ 2 lnψ(ρ, k)

= g · ρ

χ(ρ, k)
+ ρ · ρ

ψ(ρ, k)χ(ρ, k)
+2 lnψ(ρ, k)

(17)

Let us now observe that

ρ · ρ

ψ(ρ, k)χ(ρ, k)
= g · ρ + k − χ(ρ, k)

(g · ρ + k)2 − χ2(ρ, k)

ρ · ρ

χ(ρ, k)

= −g · ρ + k

χ(ρ, k)
+ 1 (18)

having multiplied the numerator and denominator of the ratio
ρ · ρ/ψ(ρ, k) by [g · ρ + k − χ(ρ, k)].

Substituting the previous expression in (17) we finally get

div[lnψ(ρ, k)ρ] = 1 − k

χ(ρ, k)
+ 2 lnψ(ρ, k) (19)

Hence, according to Gauss theorem, Tang (2006), the first
integral in (13) becomes

IΛa = − AΛ
2

+ k

2
JΛa + 1

2
KΛa

= − AΛ
2

+ k

2

∫

Λ

dxdy

χ(ρ, k)
+ 1

2

∫

∂Λ

[lnψ(ρ, k)](ρ · ν)ds

(20)

where AΛ denotes the area of the triangleΛ, ∂Λ the boundary
of Λ and ν the relevant unit normal directed outwards.

The authors did not succeed in expressing the 2D integral
on the right-hand side of the previous expression in terms
of line integrals. For this reason we proceed to its analyti-
cal integration by making reference, to fix the ideas, to the
integral associated with the triangular domain 1 in Fig. 2.

JΛ1a =
∫

Λ1

dxdy

χ(ρ, k)
=

x2∫

x1

y(x)∫

y1

dxdy√
x2 + y2 + (ux + vy + k)2

(21)

Performing the integration with respect to y and setting

G(x, y) = ln[kv + uvx + y + v2 y + √
1 + v2χ(ρ, k)]√

1 + v2

(22)

one has:

JΛ1a =
x2∫

x1

G(x, y)
∣∣∣y=mx+n

y=y1
dx (23)

where y = mx + n is the equation of the line joining the
points (x1, y1) with (x2, y2) in Fig. 2.

Setting

Gl(x) = G(x,mx + n) (24)

where the suffix (·)l reminds of line, and

G y1(x) = G(x, y1) (25)

one has

JΛ1a =
x2∫

x1

Gl(x)dx −
x2∫

x1

G y1(x)dx = JΛ1a1 − JΛ1a2 (26)

The computation of the previous integrals hinges on the eval-
uation of Iln in the Appendix 1 and turns out to be consider-
ably simpler than the solution illustrated by Smith (2000).

The explicit expression of the integrands in (26) is reported
hereafter for the reader’s convenience
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Gl(x) = 1√
1 + v2

ln

[
f x + g√
1 + v2

+
√

hx2 + 2i x + j

]

(27)

G y1(x) = 1√
1 + v2

ln

[
px + q√
1 + v2

+
√

r x2 + 2sx + t

]

(28)

where it has been set

f = uv + m(1 + v2)

g = kv + n(1 + v2)

h = m2 + 1 + (u + vm)2

i = mn + (u + vm)(vn + k)

j = n2 + (vn + k)2 (29)

and

p = uv

q = kv + y1(1 + v2)

r = u2 + 1

s = u(vy1 + k)

t = y2
1 + (vy1 + k)2 (30)

It is worth noting that, coherently with the definitions of
Gl(x) and G y1(x) in (24) and (25), the last set of relations is
obtained by specializing the set (29) to the case m = 0 and
n = y1.

In conclusion the integral IΛ in (13) associated with the
triangle 1 in Fig. 2, and denoted in accordance as IΛ1a hence-
forth, is given by

IΛ1a = − (x2 − x1)(y2 − y1)

2
+ k

2
JΛ1a + 1

2
KΛ1a (31)

where JΛ1a is defined in (26), provided that the coefficients
in (29) and (30) are evaluated as function of the values u1, v1,
k1 which define, according to (10), the top surface defined
on Λ1 as u1x + v1 y + k1 = g1 · ρ + k1.

Furthermore

KΛ1a =
∫

∂Λ1

ln[g1 · ρ + k1 + χ(ρ, k1)](ρ · ν)ds (32)

is evaluated in the Appendix 2.

3.1.2 Evaluation of the integral IΛb in (13)

In line of principle, the evaluation of IΛb could be simply
obtained by specializing the expression (20) of IΛa to the
case g = o and k = 0; actually, this implies ψ = χ in (12)
and makes the integrand function of IΛa coincide with that
of IΛb.

However, the integrand function appearing in the expres-
sion of IΛa is always non-singular being g �= o and k �= 0.
Conversely, the integrand function ln

√
ρ · ρ in IΛb can

exhibit a singularity at ρ = o, a situation which is not taken
into account in the expression (20) of IΛa .

For this reason, we have exploited a different approach
which is based on the use of a formula proved in Rosati and
Marmo (2014). It entails the replacement of the original 2D
integral with a line integral extended to the boundary of Λ.

to make the paper reasonably self-contained we report
hereafter the expression which is obtained by setting z = 0
in formulas (27) and (28) of Rosati and Marmo (2014)

IΛb = − AΛ
2

+ α(o)+ 1

2
KΛb

= − AΛ
2

+ α(o)+ 1

2

∫

∂Λ

[ln √
ρ · ρ](ρ · ν)ds (33)

whereα(o) represents the angular measure, expressed in radi-
ans, of the intersection between Λ and a circular neighbor-
hood of the singularity point ρ = o. Hence:

α(o) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if o �∈ ◦
Λ

π if o ∈ ∂Λ
f (π) if o ∈ ∂Λ\∂Λ
2π if o ∈ ◦

Λ

(34)

where
◦
Λ denotes the interior of Λ and ∂Λ the set of the

regular points of the boundary ∂Λ, i.e. the points at which
the tangent is defined. When Λ is polygonal and the origin
coincides with a vertex ofΛ, α(o) simply measures the angle
formed by the two consecutive sides of ∂Λ intersecting at the
origin. A general algorithm for computing α(o) can be found
in D’Urso and Russo (2002).

It is interesting to compare the expression (33) with (20)
to realize that the first and the third term, apart from the
integrand function, on the right-hand side of both expressions
do coincide.

Conversely the quantity α(o) in (33) replaces the second
term on the right-hand side of (20) since this last one becomes
singular at ρ = o when g = o and k = 0.

The third integral in (33) can be computed as shown in the
Appendix 2.

3.1.3 Total potential of a DTM

Collecting the results provided in (31) and (33) the final
expression of the integral IΛ1 in (7) is given by

IΛ1 = IΛ1a − IΛ1b (35)

The integral IΛ2 in (7) can be analogously expressed as

IΛ2 = IΛ2a − IΛ2b (36)

where according to (31),

IΛ2a = − (x2 − x1)(y2 − y1)

2
+ k

2
JΛ2a + 1

2
KΛ2a (37)
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and KΛ2a is defined as in (32) provided that Λ1 is replaced
by Λ2 and reference is made to the parameters u2, v2, k2

which define, according to (10), the top surface defined on
Λ2 as u2x + v2 y + k2 = g2 · ρ + k2.

Furthermore, recalling (20) and (22), it turns out

JΛ2a =
∫

Λ2

dxdy

χ(ρ, k2)
=

x2∫

x1

G(x, y)
∣∣∣y=y2

y=mx+n
dx

=
x2∫

x1

G y2(x)dx −
x2∫

x1

Gl(x)dx = JΛ2a1 − JΛ2a2

= JΛ2a1 − JΛ1a1 (38)

where G y2(x) is given by (28) provided that y1 in the expres-
sions (30) is replaced by y2.

Analogously, recalling (33)

IΛ j b = − (x2 − x1)(y2 − y1)

2
+ α(o)+ 1

2
KΛ j b j = 1, 2

(39)

where KΛ j b is defined in (33); it can be computed as shown
in formula (101) of Appendix 2.

In conclusion, recalling (5–7) and (35–36), we finally have

U (P) = Gδ

Nx ∗Ny∑
i=1

(I (i)Λ1
+ I (i)Λ2

)

= Gδ

Nx ∗Ny∑
i=1

(I (i)Λ1a − I (i)Λ1b + I (i)Λ2a − −I (i)Λ2b) (40)

where the integrals IΛ1a ,IΛ2a [IΛ1b-IΛ2b] are provided by
(31), (37), (39).

3.2 Evaluation of the gravitational attraction for an element
of a DTM

For a generic element of a DTM see, e.g., Fig. 2, the gradient
of the potential in (2) can be expressed as

U,P = −Gδ

Nx ∗Ny∑
i=1

�Θ(i) (41)

where

�Θ(i) =
∫

Θ(i)

⎡
⎢⎣

zi (x,y)∫

0

rdz

(r · r)3/2

⎤
⎥⎦ dx dy (42)

Splitting the domain of integration into the two triangu-
lar sub-domains of Fig. 2 and omitting the suffix (·)(i) for
notational simplicity, the previous integral becomes

�Θ = �Λ1 + �Λ2

=
∫

Λ1

⎡
⎢⎣

z1(x,y)∫

0

rdz

(r · r)3/2

⎤
⎥⎦ dx dy

+
∫

Λ2

⎡
⎢⎣

z2(x,y)∫

0

rdz

(r · r)3/2

⎤
⎥⎦ dx dy (43)

where z1(x, y) and z2(x, y) have been defined in (7).
The gravitational attraction (U,z)Θ , which is used to cor-

rect gravity measurements, is represented by the third com-
ponent of the previous expression and reads

(U,z)Θ = �z
Θ = �z

Λ1
+ �z

Λ2

=
∫

Λ1

⎡
⎢⎣

z1(x,y)∫

0

zdz

(x2 + y2 + z2)3/2

⎤
⎥⎦ dx dy

+
∫

Λ2

⎡
⎢⎣

z2(x,y)∫

0

zdz

(x2 + y2 + z2)3/2

⎤
⎥⎦ dx dy (44)

while �x
Θ and �

y
Θ , are obtained by replacing the numerator

with x and y, respectively.
Due to the similarity of the integrals appearing in the

expressions of �x
Θ , �

y
Θ and �z

Θ we shall make reference
to the integrals

�x
Λ =

∫

Λ

⎡
⎢⎣

ux+vy+k∫

0

xdz

(x2 + y2 + z2)3/2

⎤
⎥⎦ dx dy (45)

�
y
Λ =

∫

Λ

⎡
⎢⎣

ux+vy+k∫

0

ydz

(x2 + y2 + z2)3/2

⎤
⎥⎦ dx dy (46)

and

�z
Λ =

∫

Λ

⎡
⎢⎣

ux+vy+k∫

0

zdz

(x2 + y2 + z2)3/2

⎤
⎥⎦ dx dy (47)

extended to a generic triangular domain Λ.
Performing the integrations with respect to z one obtains

�x
Λ =

∫

Λ

xz

(x2 + y2 + z2)1/2

∣∣∣z=ux+vy+k

z=0
dx dy (48)

�
y
Λ =

∫

Λ

yz

(x2 + y2 + z2)1/2

∣∣∣z=ux+vy+k

z=0
dx dy (49)

and

�z
Λ = −

∫

Λ

[
1

(x2 + y2 + z2)1/2

]z=ux+vy+k

z=0
dx dy (50)
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The first two integrals cannot be computed analytically
and will not be considered in the sequel.

Conversely, on account of (11), �z
Λ becomes

�z
Λ = −

∫

Λ

dx dy

χ(ρ, k)
+

∫

Λ

dx dy√
ρ · ρ

= −�z
Λa + �z

Λb (51)

A comparison with (20) shows that

�z
Λa = JΛa (52)

while �z
Λb can be computed by means of formula (18) of

D’Urso (2013a) in which the original 2D integral is replaced
by a line integral.

Such a formula specializes to the case of interest as follows

�z
Λb =

∫

Λ

dx dy√
ρ · ρ

=
∫

∂Λ

ρ(s) · ν(s)√
ρ(s) · ρ(s)

ds (53)

or, equivalently,

�z
Λb =

3∑
j=1

(ρ j · ν j )

∫

l j

ds j√
ρ(s j ) · ρ(s j )

(54)

where l j denotes the length of the j-th edge of Λ, ν j is the
relevant unit normal pointing outwards and ρ j is the vector
containing the coordinates of the j-th vertex of Λ.

The reader is warned on the slight abuse of notation asso-
ciated with the fact that the same suffix, i.e. j , is used both for
ρ j , which denotes the position vector of the j−th vertex of
Λ, and for ν j which is the (constant) unit vector orthogonal
to the j−th edge, i.e. the edge connecting the vertices j and
j + 1.

The unit normal ν j is related to the position vectors ρ j
and ρ j+1 of the end vertices of the j-th edge by the following
expression

ν j = (ρ j+1 − ρ j )
⊥

l j
= ρ⊥

j+1 − ρ⊥
j

l j
(55)

where (·)⊥ stands for a vector orthogonal to (·), hence having
the same length as (·). In particular, assuming a counter-
clockwise orientation of the boundary of Λ, (·)⊥ denotes
a clockwise rotation of the vector (·); for instance, making
reference to ρi = (xi , yi ) as an example, ρ⊥

i = (yi ,−xi ).
For instance, for the triangle Λ1 in Fig. 2, it turns out

ρ1 =
[

x1

y1

]
ρ2 =

[
x2

y1

]
ρ3 =

[
x2

y2

]
(56)

and

ρ⊥
1 =

[
y1

−x1

]
ρ⊥

2 =
[

y1

−x2

]
ρ⊥

3 =
[

y2

−x2

]
(57)

Introducing the adimensional abscissa λ j = s j/ l j along
the j-th edge and adopting the following parameterization

ρ(λ j ) = ρ j + λ j (ρ j+1 − ρ j ) (58)

the integral (54) becomes

�z
Λb =

3∑
j=1

(ρ j · ρ⊥
j+1)

∫ 1

0

dλ j√
ρ(λ j ) · ρ(λ j )

=
3∑

j=1

(ρ j · ρ⊥
j+1)

∫ 1

0

dλ j√
āλ2

j + 2b̄λ j + c̄
(59)

where

ā j = (ρ j+1 − ρ j ) · (ρ j+1 − ρ j )

b̄ j = ρ j · (ρ j+1 − ρ j )

c̄ j = ρ j · ρ j (60)

Being
∫

dx√
ax2 + 2bx + c

= 1√
a

ln
[
2
(

ax + b + √
a
√

ax2 + 2bx + c
)]

(61)

and setting

L N z
jb = 1√

ā j
ln

ā j + b̄ j + √
ā j

√
ā j + 2b̄ j + c̄ j

b̄ j + √
ā j c̄ j

(62)

one finally has

�z
Λb =

3∑
j=1

(ρ j · ρ⊥
j+1)L N z

jb (63)

The discussion on the well posedness of the previous
expression can be carried out as in formulas (24–26) of
D’Urso (2014a). In particular, ā j > 0 and

ā j + 2b̄ j + c̄ j = ρ j+1 · ρ j+1 (64)

so that L N z
jb becomes infinite if ρ j+1 = o (ρ j = o) since

ā j + 2b̄ j + c̄ j = 0 (b̄ j = c̄ j = 0) in this case.
However, L N z

jb is scaled by ρ j ·ρ⊥
j+1 in (63). Accordingly,

denoting by ε either |ρi | or |ρi+1|, the previous cases can be
addressed by invoking the fundamental limit:

lim
ε→0

ε ln ε = 0 (65)

stemming from the property of the logarithm of being an
infinite of arbitrarily low degree. Hence, the computation of
L N z

jb can be skipped when ρ j = o or ρ j+1 = o.
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In conclusion, formulas (41), (44) and (51) yield

U,z = −Gδ

Nx ∗Ny∑
i=1

(�z
Λ1

+ �z
Λ2
)(i)

= Gδ

Nx ∗Ny∑
i=1

(�z
Λ1a − �z

Λ1b + �z
Λ2a − �z

Λ2b)
(i) (66)

where the suffix (·)(i) means that the quantities in parentheses
have to be computed for the i-th element of the DTM.

Recalling also (52) one finally has

U,z = Gδ

Nx ∗Ny∑
i=1

(JΛ1a − �z
Λ1b + JΛ2a − �z

Λ2b)
(i) (67)

where JΛ1a [JΛ2a] are given by (26) [(38)] and �z
Λ1b [�z

Λ2b]

are given by (63) provided that the coefficients ā j , b̄ j and c̄ j

in the expression (62) of L N z
jb are evaluated as function of

the end vertices of Λ1 [Λ2].

3.3 Hints for programming the enhanced Smith’s approach

According to the enhanced version of Smith’s approach for-
mulated in the previous subsections, the potential and the
gravitational attraction are obtained as sums extended to the
rectangular elements of the DTM, see, e.g., formulas (40) and
(67), respectively, of quantities related to the two triangles in
which each rectangle is subdivided.

In turn, the quantities associated with each triangle are
composed of two addends, one denoted by the suffix “a” and
the other one by the suffix “b”.

It is apparent from formulas (13) and (51) that only quan-
tities denoted by the suffix “a” depend upon the parameters g
and k which define the top plane assigned over each triangle;
actually, g and k enter the definition of the functions χ in
(11) and ψ in (12) which, in turn, appear in the expression
of the first addend of (51) and (13), respectively.

Conversely, the second addend in (13) and (51) depend
only upon the geometric quantity ρ and both of them, as
detailed in (33) and (54), are evaluated as function of bound-
ary integrals.

This means that the contributions to the boundary inte-
grals in IΛb and �z

Λb, provided by the edge common to adja-
cent triangles, cancel out since the same edge is traversed in
opposite directions when circulating along the boundary of
the triangles sharing the edge, see, e.g., Fig. 3.

Accordingly, the boundary integrals appearing in the
expression of IΛb and �z

Λb have to be computed only along
the perimetrical edges of the DTM domain. In particular, the
boundary integrals associated with edges characterized by
the same normal, such those lying along the segments AB,
BC, CD and DA can be grouped in a unique expression.

Fig. 3 Outward unit normals to internal and perimetrical domains of
the DTM

Thus, writing formulas (40) and (67) as

U (P) = Gδ

⎡
⎣

Nx ∗Ny∑
i=1

(I (i)Λ1a + I (i)Λ2a)−
Nx ∗Ny∑

i=1

(I (i)Λ1b+ I (i)Λ2b)

⎤
⎦

(68)

and

U,z =Gδ

⎡
⎣

Nx ∗Ny∑
i=1

(JΛ1a + JΛ2a)
(i)−

Nx ∗Ny∑
i=1

(�z
Λ1b+�z

Λ2b)
(i)

⎤
⎦

(69)

the second addend in the previous formulas can be specialized
as follows.

Recalling (39) and (101) one has

Nx ∗Ny∑
i=1

(I (i)Λ1b + I (i)Λ2b) = − AABC D

2
+ α(o)

+ 1

2

4∑
j=1

(ρ j · ρ⊥
j+1)L N jb (70)

where L N jb is defined in (102) and j refers to the four edges
AB, BC, CD and DA in Fig. 3. Hence ρ1 = ρ A, ρ2 = ρB ,
ρ3 = ρC , ρ4 = ρD .

The singularity correction α(o) is now evaluated, accord-
ing to D’Urso and Russo (2002), by checking the relative
position of the point ρ = o with respect to the bottom face
of the DTM considered as a whole, rather than applying the
algorithm for each triangle separately.

Furthermore, on account of (63), the second sum in (69)
specializes as

Nx ∗Ny∑
i=1

(�z
Λ1b + �z

Λ2b)
(i) =

4∑
j=1

(ρ j · ρ⊥
j+1)L N z

jb (71)

123



208 M. G. D’Urso, S. Trotta

where L N z
jb is defined in (62) and the vectors ρ j have the

same meaning as in (70).
Clearly, use of the last two formulas results in significant

savings in computing time.

4 The approach by Tsoulis et al. (2003)

In a recent paper Tsoulis et al. (2003) have presented a mod-
eling method of the surface relief which is particularly useful
for DTMs since height data are assigned on a regularly sam-
pled grid, usually of rectangular shape.

In a sense the approach by Tsoulis et al. (2003) represents
an extension of the polyhedral one. Actually, the potential
and its gradient are evaluated by means of surface integrals
extended to the faces of each rectangular prism of the DTM.

All faces, apart from the top one, are polygonal and planar
so that they have been addressed by Tsoulis et al. (2003) as
boundary elements of a standard polyhedron.

Furthermore, to directly interpolate the height values
assigned at the vertices of the rectangular base of the prism,
see, e.g., Fig. 1, Tsoulis et al. (2003) have adopted a bilinear
polynomial for the top surface.

Being non-planar, hence characterized by a non-constant
unit normal, the integral extended to the top surface has been
evaluated by Tsoulis et al. (2003) by performing a change of
variables from the original surface to the x − y plane.

We report hereafter the basic elements of the paper by
Tsoulis et al. (2003), using the same terminology, since two
typographical errors were detected.

The bilinear surface defined on the rectangular base of the
generic prism is assigned in the form

z = a00 + a10x + a01 y + a11xy (72)

where the coefficients a00, a10, a01, a11, which interpolate
the known height values zi , (i = 1 . . . 4), assigned at the
vertices of the rectangular base, are detailed in formula (8)
of the paper by Tsoulis et al. (2003).

The contribution to the potential and to the gravitational
attraction provided by the bilinear surface is given by

Ub = Gδ

2

x2∫

x1

y2∫

y1

a00 − a11xy

l(x, y)
dydx (73)

and

(Ub),z = Gδ

x2∫

x1

y2∫

y1

1

l(x, y)
dydx (74)

where

l(x, y) =
√
α(x)+ β(x)y + γ (x)y2 (75)

and

α(x) = x2 + (a00 + a10x)2

β(x) = 2(a00 + a10x)(a01 + a11x) (76)

γ (x) = 1 + (a01 + a11x)2

A first integration with respect to y yields in (73) and (74)

Ub = Gδ

2

x2∫

x1

[(
a00 + a11x

β(x)

2γ (x)

)
F1(x)

−a11x F2(x)
]
dx (77)

and

(Ub),z = Gδ

x2∫

x1

F1(x)dx (78)

where

F1(x) = 1√
γ (x)

ln
2
√
γ (x)

√
l(x, y2)+ 2γ (x)y2 + β(x)

2
√
γ (x)

√
l(x, y1)+ 2γ (x)y1 + β(x)

(79)

and

F2(x) = l(x, y2)− l(x, y1)

γ (x)
(80)

The reader is warned on the square root appearing in the
factor 1/

√
γ (x)multiplying the ln function in (79). Actually,

due to typographical errors, it was missing in two formulas
of the original paper by Tsoulis et al. (2003).

Differently from the quoted paper where it is adopted a
numerical integration based on a Simpson’s rule, the inte-
grals (77) and (78) are evaluated here by a Gauss quadrature
rule. Numerical experiments have shown that a 4-point rule
is sufficient for accuracy.

To provide a further element of validation for the com-
putational burden of the procedures illustrated thus far, the
integrals in (73) and (74) have been numerically evaluated by
means of a 2D Gauss quadrature scheme. In this case, 9 × 9
sampling points have been used for the bilinear surface while
the polyhedral approach has been adopted for the additional
faces of the prism. The results are reported in the following
section.

5 Numerical examples

The formulas presented in the previous sections have been
implemented in Matlab� (2012) to comparatively assess the
effectiveness of the different approaches for computing the
potential and the gravitational attraction of the mass distrib-
ution originated by a DTM.
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Table 1 Values of the potential and of the gravitational attraction for the DTM in Fig. 4

Present Polyhedral (D’Urso) Tsoulis et al. 2D Gauss quadrature rule
Analytical 1D Analytical 3D/1D Analytical/4 points Gauss rule Numerical - 9 × 9 points

P1

U (m2 s−2) 0.222 910 983 5 0.222 910 983 4 0.222 910 91 0.222 910 91

U,z(ms−2) 1.256 307 754e−05 1.256 307 750e−05 1.256 233 e−05 1.256233e−05

Time (min) 2.68 6.58 3.39 11.51

P2

U (m2 s−2) 0.409 445 470 85 0,409 445 470 84 0,409 445 0 0.409 445 0

U,z(ms−2) 8.383 550 722 9e−05 8.383 550 722 5e−05 8.383 468e−05 8.383 468e−05

Time (min) 2.67 6.57 3.40 11.51

P3

U (m2 s−2) 0.428 006 498 05 0,428 006 498 04 0.428 005 0,428 005

U,z(ms−2) 2.795 322 554e−05 2.795 322 555e−05 2.795 146e−05 2.795 146e−05

Time (min) 2.68 6.57 3.40 11.51

P4

U (m2 s−2) 0,266 104 417 3 0,266 104 417 4 0,266 104 3 0,266 104 3

U,z(ms−2) 2.629 881 63e−05 2.629 881 64e−05 2.629 788e−05 2.629 788e−05

Time (min) 2.67 6.57 3.39 11.51

P5

U (m2 s−2) 0,431 693 818 14 0,431 693 818 11 0,431 693 84 0,431 693 84

U,z(ms−2) 1.027 540 747e−04 1.027 540 743e−04 1.027 540 6e−04 1.027 540 6e−04

Time (min) 2.68 6.58 3.40 11.50

Several numerical examples were carried out on differ-
ent DTMs to thoroughly check the robustness of the com-
puter code. In particular for each DTM, we have compared
the values of the potential and of the gravitational attrac-
tion by adopting the enhanced version of Smith’s approach
illustrated in Sect. 3, the polyhedral approach presented in
(D’Urso 2013a, 2014a), the approach by Tsoulis et al. (2003)
and the numerical evaluation of integrals (73) and (74) based
on a 2D Gauss quadrature rule.

With reference to the polyhedral approach, which has not
been explicitly dealt with in the previous sections, the fol-
lowing considerations are in order.

The evaluation of the surface integrals has to be extended
to the top and to the bottom triangular domains as well as to
the vertical quadrilateral element lying only along the outer
boundary of the DTM.

However, the vertical faces lying along the boundary com-
mon to internal domains give an overall null contribution both
to the potential and to the gravitational attraction since, for
each internal boundary, the same vertical quadrilateral ele-
ment, belonging to two adjacent prisms, is characterized by
outward unit normals opposite in sign.

The same does happen for the bottom face of the DTM
with reference to the internal common boundary of the tri-
angular domains. This is schematically illustrated in Fig. 3.

The same considerations do apply to the approach detailed
in Tsoulis et al. (2003) apart from the obvious modifications
that integrals pertaining to the top and bottom surface of the
DTM refer to rectangular domains.

For each DTM considered in the validation tests which
have been carried out, the position of the observation point
has been considered in a two-fold manner. First, the point
has been placed arbitrarily within the domain; second, it has
been assumed to coincide with the vertices of a regular grid
obtained by dividing the edges of the DTM by multiples of
two.

Independently from the position of the observation point,
the same accuracy of the numerical results was achieved for
all the examined DTM’s. For this reason, we have decided to
summarize in Table 1 the computational features of the results
which have been obtained with reference to a generic DTM,
namely the densely sampled one illustrated in Figs. 4 and 5.

The DTM is composed of 500 × 500 compartments, each
having a dimension of 20 × 20 m, or, equivalently, by 501 ×
501 points. It has been purchased by the IGM, i.e. the Italian
organization for Military Geographical Institute.

The results reported in Table 1 refer to the points P1 . . . P5

in Fig. 4 and have been obtained by running the Matlab pro-
gram on a INTEL CORE2 PC with 16Gb of RAM and a
i7-4700HQ CPU having clock speed of 2,40 GHz. Points
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Fig. 4 DTM of an area near
Cassino (Italy)

P1 . . . P5 have zero vertical height while the values of the con-
stants are G = 6.67259 10−11 m3 kg−1 s−2 and δ = 2,670
kg m−3.

It is worth noting that the first two columns in Table 1 refer
to analytical methods based on linear (triangular) surfaces
while the last two columns report, in turn, the results of a
mixed (analytical/numerical) and a purely numerical method
which adopt bilinear (rectangular) surfaces.

This means that the mass distribution is similar for the first
two methods, which are both rigorous, and slightly different
from that adopted in the last two methods.

Accordingly, the results of the first two methods do coin-
cide to within round-off errors which are in the order of 10−11

for the potential and 10−15 for the gravitational attraction. For
this reason decimal digits common to the results in the first
two columns have been printed in boldface.

Both for U and U,z the analytical results exhibit a greater
accuracy with respect to mixed or purely numerical values.
In particular the results by Tsoulis et al. (2003) exhibit differ-
ences to the first two columns in an order ranging from 10−6

to 10−8 in geoid height and from 10−9 to 10−11 in gravity.

This has been emphasized by printing in bold italic the dig-
its in the third column which are equal to the corresponding
result in the first two columns.

In any case the results of all methods exhibit very high
accuracy as they agree within the micrometer geoid level
or sub-microgal gravity level. Even the differences between
linear (triangular) and bilinear (rectangular) surfaces are neg-
ligible.

Times associated with each analysis have been reported in
Table 1. Clearly they have to be intended in a relative sense,
i.e. just to give a comparative idea of the computational cost
of each approach by taking also into account that, for some
of them, the computational burden depends on the way in
which they have been coded.

For instance, computing times associated with the poly-
hedral approach and that by Tsoulis et al. (2003) depend on
how the code handles each polyhedron of the DTM in terms
of unit normals, common faces to adjacent polyhedrons and
so on.

In particular, to conveniently account for the high number
of polyhedrons which typically constitute a DTM, each poly-
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Fig. 5 3D view of the DTM

hedron has been processed singularly. Consequently, several
logical tests need to be performed on the faces of each poly-
hedron to avoid useless computations on the vertical faces
common to adjacent polyhedrons and on the faces belonging
to the base.

The converse approach in polyhedral modeling of the
DTM has also been exploited, i.e. each face of the polyhedron
has been processed in the same way independently from the
fact that it is shared by two adjacent polyhedrons. However,
this considerably increases computing times and deteriorates
accuracy due to accumulation of round-off errors.

The necessity of processing two top surfaces for each com-
partment of the DTM in the linear surface representation of
the polyhedral approach justifies computing times which are
almost twice as the ones which characterize the method by
Tsoulis et al. (2003) in which one bilinear surface for each
compartment is considered.

In conclusion, times reported in Table 1 should be con-
sidered as preliminary results also on account of the fact that
they have been obtained using Matlab, i.e. an interpreted pro-
gramming language.

Nevertheless, we remark that the substantial difference in
terms of computing times between analytical and numerical
methods has been already experienced by Smith (2000), see
comments after formula (27) of this paper.

To provide a further insight on the computational burden
of the approaches which have been implemented, we provide
hereafter some additional information which can be useful
for future comparisons with alternative procedures.

First, we remind once more that a 1D numerical inte-
gration is required in the approach contributed by Tsoulis
et al. (2003) and that the results reported in the third col-
umn of Table 1 have been obtained by adopting a 4-point
Gauss quadrature. Actually, the adoption of the Simpson’s
rule, advocated by Tsoulis et al. (2003), resulted in com-
puter times three times greater than those pertaining to the
enhanced Smith’s approach contributed in the present paper.

The number of Gauss points adopted to derive the results
reported in the third column of Table 1 has been chosen as
a reasonable compromise between computational cost and
numerical accuracy of the final result. Actually, numerical
experiments, not documented here for brevity, have shown
that, apart from exceptional cases, the use of 3 or 2 Gauss
points does not substantially modify the final result and the
computational burden.

Finally, 2D numerical integration has been adopted to
derive the results reported in the last column of Table 1. The
high number of Gauss points, i.e. 9 × 9, has been moti-
vated by the will of obtaining results with a numerical accu-
racy comparable with that which characterizes the approach
by Tsoulis et al. (2003). However, if comparison is made
with the present approach and with the polyhedral one, a
3 × 3 quadrature rule suffices and the computational burden
halves.

As a final remark it is not superfluous to point out
that, besides the algorithm, the accuracy and efficiency
of approaches for modeling the potential and gravitational
attraction depend on grid resolution and extent, available ter-
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rain data and how the chosen interpolation surface, either
linear or bilinear, fits the real topography.

6 Conclusions

The analytical formula contributed by Smith (2000) for com-
puting the gravitational attraction of a general vertical prism
with N +1 faces, N being the number of bottom and vertical
faces, has been enhanced in this paper by proposing a more
efficient evaluation of the 2D integral considered by Smith.

It has been obtained by substituting Smith’s integral with
a line integral, for which closed-form evaluation has been
contributed elsewhere, and a new 2D integral for which ana-
lytical integration is carried in a considerably simpler way
than that proposed in Smith (2000).

The same approach has been also applied to evaluate the
potential of vertical prisms with included top surface, an issue
not addressed by Smith (2000).

The formulas derived in the paper have been coded in
a Matlab® program, which is available upon request, to
compare their computational burden with that pertaining
to alternative analytical methods, namely the fully polyhe-
dral approach contributed in (D’Urso 2013a, 2014a), the
analytical–numerical method proposed by Tsoulis et al.
(2003) and an alternative one in which the surface integral
extended to the bilinear surface assumed in Tsoulis et al.
(2003) is evaluated by a 2D Gauss quadrature rule.

Numerical tests carried out on several DTMs, and only
partly documented in the paper, have shown that, assum-
ing the same level of accuracy in the final result, the pro-
posed approach is, on a average, 20 % faster than the method
proposed by Tsoulis et al. (2003), three times faster than
the polyhedral approach by (D’Urso 2013a, 2014a) and five
times faster than the method which adopt a Gauss quadrature
rule for the bilinear top surface of the prism.

However, it has to be pointed out that the previous per-
centages in terms of computing times strongly depend on
the hardware specifications and programming skill, notwith-
standing that, in any case, the enhanced version of Smith’s
approach contributed in the paper is always faster with
respect to the alternative approaches.
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in an improved version of the original manuscript.

Appendix 1

Aim of this appendix is to analytically compute the integral

Iln =
x2∫

x1

ln[wx + e +
√

ax2 + bx + c]dx a > 0 (81)

The idea of computing Iln using a software of symbolic
mathematics cannot be pursued since the resulting expres-
sion, as already shown by Smith (2000), is rather cumber-
some. For this reason we set
√

ax2 + bx + c = √
a(t − x) (82)

what yields

x = at2 − c

b + 2at
(83)

and

√
ax2 + bx + c = √

a
at2 + bt + c

b + 2at
(84)

Thus, from (83), the differentials of x and t are related by

dx = 2a(at2 + bt + c)

(b + 2at)2
dt (85)

Setting

f̂ = a(w + √
a)

ĝ = 2ae + √
ab (86)

ĥ = (
√

a − w)c + be

we have

Iln = 2a

t2∫

t1

ln

[
f̂ t2 + ĝt + ĥ

b + 2at

]
at2 + bt + c

(b + 2at)2
dt (87)

where

ti =
√

ax2
i + bxi + c

a
+ xi (i = 1, 2) (88)

on account of (82).
The expression (87) can be further simplified by setting

y = b + 2at (89)

what yields, after some manipulation,

Iln = 1

4a2

y2∫

y1

ln

[
f̂ y2 + p̂y + q̂

4a2 y

]
ay2 + r̂

y2 dy (90)

having set yi = b + 2ati and

p̂ = 2aĝ − 2b f̂

q̂ = f̂ b2 − 2abĝ + 4a2ĥ (91)

r̂ = 4a2c − ab2
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The integral (90) has been computed using Mathematica
2013. In particular setting

Δ =
√

4 f̂ q̂ − p̂2 Γ (y) = f̂ y2 + p̂y + q̂

L N (y) = ln
f̂ y2 + p̂y + q̂

4a2 y

AT N (y) = arctan
2 f̂ y + p̂

Δ
(92)

one has

Iln = 1

4a2

{( a

f̂
+ r̂

q̂

)
Δ[AT N (y2)− AT N (y1)]

+ r̂
p̂

q̂
ln

y2

y1
+

(a p̂

2 f̂
− r̂ p̂

2q̂

)
ln
Γ (y2)

Γ (y1)

+
( r̂

y2
− ay2

)
[1 − L N (y2)]

−
( r̂

y1
− ay1

)
[1 − L N (y1)]

}
(93)

which has a considerably simpler expression than the one
reported in Smith (2000).

Appendix 2

Aim of this appendix is to provide an explicit evaluation of
the integral KΛ1a in (32) and the analogous one for Λ2. To
fix the ideas we shall make reference to a generic triangle Λ
by writing

KΛa =
3∑

j=1

(ρ j · ν j )

∫

l j

ln[ψ(ρ(s j ), k)]ds j (94)

where ψ(ρ(s j ), k) denotes the value of the function (12)
evaluated at the curvilinear abscissa s j spanning the j-th
edge.

Setting λ j = s j/ l j the previous expression can also be
written as

KΛa =
3∑

j=1

(ρ j · ρ⊥
j+1)

∫ 1

0
ln[ψ(ρ(λ j ), k)]dλ j (95)

where ρ j and ρ⊥
j+1 are defined in (59).

Adopting in the previous integral the parameterization
(58) for the j-th edge one has

χ(ρ(λ j ), k) = a jλ
2
j + 2b jλ j + c j (96)

and

g · ρ(λ j )+ k = d jλ j + e j (97)

where it has been set

a j = (ρ j+1 − ρ j ) · (ρ j+1 − ρ j )+ d2
j

b j = ρ j · (ρ j+1 − ρ j )+ d j e j

c j = ρ j · ρ j + e2
j (98)

d j = g · (ρ j+1 − ρ j )

e j = g · ρ j + k

Thus, the integral (95) becomes

KΛa =
3∑

j=1

(ρ j · ρ⊥
j+1)L N ja (99)

where it has been set

L N ja =
∫ 1

0
ln[d jλ j + e j +

√
a jλ

2
j + 2b jλ j + c j ]dλ j

(100)

In this way, we are finally led to compute an integral of
the kind addressed in the Appendix 1.

To compute KΛb in (33) and correctly take into account
the singularities which can affect its evaluation we observe
that, similarly to (99), we can write for a generic triangle Λ

KΛb =
3∑

j=1

(ρ j · ρ⊥
j+1)L N jb (101)

where

L N jb =
∫ 1

0
ln[

√
ā jλ

2
j + 2b̄ jλ j + c̄ j ]dλ j (102)

and ā j , b̄ j and c̄ j are defined in (60). Actually d j = e j = 0
in (98) due to the fact that now g = o and k = 0.

It is simpler and computationally more effective to directly
evaluate (102) rather than applying formula (81). To this end,
setting

L N1 j = ln (ā j + 2b̄ j + c̄ j )

L N2 j = ln c̄ j (103)

and

AT N1 j = arctan
ā j + b̄ j√
ā j c̄ j − b̄2

j

AT N2 j = arctan
b̄ j√

ā j c̄ j − b̄2
j

(104)

we finally have

L N jb = −1 +
√

ā j c̄ j − b̄2
j (AT N1 j − AT N2 j )

+ L N1 j + b̄ j

ā j
(L N1 j − L N2 j ) (105)
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The previous expressions are certainly well defined on
account of (64) and of the further property√

ā j c̄ j − b̄2
j = (ρ j+1 · ρ j+1)(ρ j · ρ j )− (ρ j · ρ j+1)

2

= (ρ j · ρ⊥
j+1)

2 (106)

Hence L N1 j (L N2 j ) in (103) becomes infinite if ρ j+1 =
o (ρ j = o) since ā j + 2b̄ j + c̄ j = 0 (c̄ j = 0) in this case.

However, this produces no consequences from the practi-
cal point of view since L N jb in (105) is scaled by ρ j · ρ⊥

j+1
in the expression (101) of KΛb. Actually, recalling (65), the
computation of L N1i (L N2i ) can be skipped when ρi+1 = o
(ρi = o).

Analogously, should ā j c̄ j−b̄2
j = 0, the quantities AT N1 j

and AT N2 j would become numerically undefined but, in
fact, their evaluation can be skipped since both of them are
factored by the null quantity ρ j · ρ⊥

j+1.
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