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Abstract A new mathematical model for evaluation of the
third-order (disturbing) gravitational tensor is formulated in
this article. Firstly, we construct corresponding differential
operators for the components of the third-order (disturbing)
gravitational tensor in a spherical local north-oriented frame.
We show that the differential operators may efficiently be
decomposed into an azimuthal and an isotropic part. The
differential operators are even more simplified for a certain
class of isotropic kernels. Secondly, the differential oper-
ators are applied to the well-known integrals of Newton,
Abel-Poisson, Pizzetti and Hotine. In this way, 40 new inte-
gral formulas are derived. The new integral formulas allow
for evaluation of the components of the third-order (dis-
turbing) gravitational tensor from density distribution, dis-
turbing gravitational potential, gravity anomalies and grav-
ity disturbances. Thirdly, we investigate the behaviour of
the corresponding integral kernels in the spatial domain.
The new mathematical formulas extend the theoretical appa-
ratus of geodesy, i.e. the well-known Meissl scheme, and
reveal important properties of the third-order gravitational
tensor. They may be exploited in geophysical studies, con-
tinuation of gravitational field quantities and analysing the
gradiometric-geodynamic boundary value problem.
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1 Introduction

Currently available sensors in geodesy and geophysics allow
for measuring scalar, vectorial and second-order tensorial
quantities of the Earth’s gravitational potential field, see, e.g.
(Torge 1989; Schwarz and Li 1997; Chelton et al. 2001; See-
ber 2003; Forsberg and Olesen 2010; Rummel 2010; Tim-
men 2010; Torge and Müller 2012). Such observables have
widely been exploited by geodesists in various parametriza-
tion methods, such as harmonic analysis, integral formulas
or radial basis function approach, for the purpose of the
Earth’s gravitational field modelling. Theoretical aspects of
these quantities have also been extensively studied and well
understood (Meissl 1971; Rummel and van Gelderen 1995;
Rummel 1997; Grafarend 2001; Bölling and Grafarend 2005;
Freeden and Schreiner 2009).

On the other hand, new sensors proposed for observing
a third-order gravitational tensor are currently under devel-
opment. This fact may be illustrated by the project Dulkyn
(http://www.dulkyn.ru/) which aims at developing a system
that would eventually observe directional derivatives of the
gravitational potential up to the third order together with
their temporal variations on the Earth surface (Balakin et
al. 1997). In addition, the gravity-dedicated satellite mission
called OPTIMA (OPTical Interferometry for global MAss
change detection from space), which should measure third-
order derivatives of the Earth’s gravitational potential, was
proposed (Brieden et al. 2010).

Although not currently observable, third-order potential
derivatives have already been discussed in various contexts
in geodesy. Moritz (1967) investigated parameters of the dis-
turbing gravitational field up to the third-order disturbing
gravitational tensor. He showed that gravitational tensors of
order three and higher were independent of orientation on
platforms without inertial stabilization. Thus, any instrument
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capable of observing such quantities would provide a purely
gravitational signal. Cunningham (1970) derived spherical
harmonic series for gravitational tensors of an arbitrary order
in a geocentric reference frame. This study, which is of par-
ticular interest to satellite geodesy and celestial mechanics,
was further extended by Metris et al. (1999) and Petro-
vskaya and Vershkov (2010). Higher-order vertical deriva-
tives of a harmonic function for its analytical continuation in
space were also considered by Velkoborský (1982). Rummel
(1986), Koop (1993) and Albertella et al. (2000) used a third-
order gravitational tensor for error analysis of gradiomet-
ric observations. Wang (1989) provided expressions for the
third-order derivatives of the normal gravitational potential
generated by an equipotential ellipsoid for analysing sensi-
tivity of second-order gradients measured by an airborne gra-
diometer. Similarly, Ardalan and Grafarend (2001) expanded
the normal gravitational potential in the Taylor series up
to the third-order potential derivatives in analysing Bruns’s
formula. Grafarend (1997) derived a functional relationship
between curvature and torsion of a plumb-line to the second-
and third-order derivatives of the gravitational potential.

Nagy et al. (2000) provided directional derivatives of
the gravitational potential up to third-order for the mass
prism. Keller and Sharifi (2005) analysed satellite gradiome-
try using a pair of satellites and investigated the influence of
higher-order gravitational tensors. Tóth (2005) investigated
the gradiometric-geodynamic boundary value problem and
its linearisation, and provided expressions of the third-order
gravitational tensor in a spherical local reference frame. Mak-
ing use of the same expressions, Tóth and Földváry (2005)
studied projection of the second-order gravitational tensor
observed by the gradiometric mission GOCE (Gravity field
and steady-state Ocean Circulation Explorer, ESA 1999)
onto a geocentric sphere approximating its orbit. Casotto and
Fantino (2009) provided general equations for gravitational
tensors up to the fourth order by tensor analysis. They also
derived explicit expressions for gravitational tensors in the
local and global reference frames up to the third order. Csapó
et al. (2009) exploited third-order derivatives of the gravita-
tional potential for evaluation of the second-order vertical
gradient which is not directly observable by a torsion bal-
ance apparatus. Sali (2009) modelled the third-order vertical
derivative of the gravitational potential to reduce observation
noise in aerial gradiometry data caused by aircraft motion.

Computational aspects of harmonic synthesis up to third-
order derivatives of Legendre functions were also discussed
(Fantino and Casotto 2009; Fukushima 2012, 2013). Moti-
vated by higher sensitivity of the third-order derivatives to
short-wavelength structures of potential fields (Jacoby and
Smilde 2009), their exploitation has also been suggested
for geophysical exploration purposes, see, e.g. (Troshkov
and Shalaev 1968; Smith et al. 1998; Fedi and Florio 2001;
Thurston et al. 2002; Abdelrahman et al. 2003; Hafez et al.

2006; Pajot et al. 2008; Veryaskin and McRae 2008; Beiki
2010; Klokočník et al. 2010; Eppelbaum 2011).

Higher-order potential tensors have been applied also in
other sciences. Jordan et al. (1995) constructed potential
energy surfaces from third-order potential derivatives for
studies in molecular chemistry. Sun et al. (2011) provided
a mathematical formulation, which splits Hamiltonian into
both kinetic and potential energy. Such formulation may be
defined by an operator containing third-order potential deriv-
atives and allows for solving related problems of astronomy
and celestial mechanics.

In this article, we provide a rigorous mathematical model
for transformation of the third-order gravitational tensor to
other parameters of the Earth’s gravitational field. Namely,
we derive differential operators for the components of the
third-order (disturbing) gravitational tensor in the spherical
local north-oriented frame (LNOF). We also provide integral
formulas that relate the volumetric mass density distribution,
disturbing gravitational potential, gravity anomaly and grav-
ity disturbance to the components of the third-order (disturb-
ing) gravitational tensor.

The presented study reveals important properties of the
third-order gravitational tensor and further extends the Meissl
scheme of physical geodesy, i.e. the well-known theoreti-
cal paradigm interrelating various parameters of the Earth’s
gravitational field. The new formulas may be exploited in
geophysical studies, continuation of gravitational field quan-
tities in space, e.g. by Taylor expansions or gravity trans-
port (Marussi 1985), and in analysing the gradiometric-
geodynamic boundary value problem (Tóth 2005). Further
applications of the new formulas may emerge in the future
after successful development of instruments sensing directly
the third-order gravitational gradients.

The article is organised as follows: the nomenclature is
defined in Sect. 2; in Sect. 3, we define differential operators
for the components of the third-order (disturbing) gravita-
tional tensor in LNOF; in Sect. 4, we apply the differential
operators to the integrals of Newton, Abel-Poisson, Pizzetti
and Hotine and in Sect. 5, we investigate properties of corre-
sponding integral kernels. Finally, main contributions of the
article are summarized in the conclusions.

2 Nomenclature

Before we start mathematical derivations, we define the
nomenclature used throughout the article. Generally, a grav-
itational tensor and a gravitational gradient are synonyms,
both composed of components. Components of the gravita-
tional tensor will be referred to as gravitational gradients
since this terminology has widely been used in geodesy.
Whenever important, an order of gravitational gradients will
also be specified to indicate the order (or rank) of the respec-
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tive gravitational tensor. We consider only gravitational gra-
dients referred to the spherical LNOF. Such a reference frame
has a moving origin and it is defined by a right-handed orthog-
onal basis with the following orientation of axes: the x-axis
points to the north, the y-axis points to the west and the z-axis
is directed radially outward.

In the article, we will use angular geocentric spherical
coordinates with the triad (r,�), where r is the geocentric
radius and � = (ϕ, λ) represents a pair of angular spherical
geocentric coordinates, i.e. spherical latitude ϕ and longitude
λ, to designate the position of an evaluation point. The eval-
uation point stands for a point in which an integral formula is
evaluated. The primed spherical triad (r ′,�′) stands for the
position of an integration volume element, i.e. an infinitesi-
mal tesseroidal volume r ′2 dr ′ d�′. For a constant value of
r ′ = R, where R represents the radius of a mean geocentric
sphere approximating the geoid, the spherical triad (R,�′)
designates the position of an integration surface element, i.e.
an infinitesimal spherical surface R2 d�′.

Except for the angular geocentric spherical coordinates,
we define the angular spherical polar coordinates α =
α(�,�′), α′ = α′(�,�′) and ψ = ψ(�,�′), see Fig. 1.
The symbol α abbreviates the direct azimuth, i.e. the azimuth
between an evaluation point and an integration element. It is
measured at the evaluation point clockwise from the north.
The symbol α′ stands for the backward azimuth, i.e. the
azimuth between an integration element and an evaluation
point as measured at the integration element clockwise from
the north. The symbol ψ abbreviates the spherical distance
between an evaluation point and an integration element.

We also introduce the following substitutions—unitless
variables:

t = t (r, r ′) = r ′

r
, r ′ ≤ r, (1)

u = u(�,�′) = cosψ, (2)

g = g(t, u) =
√

1 − 2tu + t2, (3)

Fig. 1 Graphical illustration of the angular spherical polar coordinates,
i.e. the direct azimuth α, the backward azimuth α′ and the spherical
distance ψ , between the points P and Q. P designates an evaluation
point and Q is the centre of an integration surface element. PN is the
North pole and O is the centre of the mean geocentric sphere with
radius R

where t is the attenuation factor, u is a cosine of the spheri-
cal distance and g represents the normalised Euclidean dis-
tance. These substitutions allow for simpler representations
of mathematical formulas.

3 Differential operators for third-order gravitational
gradients

A third-order gravitational tensor is generally represented
by 27 gravitational gradients Vμντ ; μ, ν, τ ∈ {x, y, z}. Due
to continuity of the gravitational field, the third-order grav-
itational tensor is symmetric with respect to the pairs of
indices (μ, ν), (ν, τ ) and (μ, τ), i.e. it holds Vμντ = Vνμτ ,
Vμντ = Vμτν and Vμντ = Vτνμ. By such a symmetry, the
third-order gravitational tensor can be defined only by ten
gravitational gradients, see, e.g. (Tóth 2005). Another sim-
plification comes from the Laplace differential equation that
holds for the gravitational potential in mass-free space and by
which Vxxν+Vyyν+Vzzν = 0, ν ∈ {x, y, z}, see (Casotto and
Fantino 2009). In such a case, the third-order gravitational
tensor is composed of seven independent components.

Throughout the article, we will provide explicit expres-
sions for ten gravitational gradients of the third order. These
may further be divided into the four groups, i.e.

• horizontal–horizontal–horizontal (HHH) if μ, ν, τ ∈
{x, y},

• horizontal–horizontal–vertical (HHV) if μ, ν ∈ {x, y}
and τ = z,

• horizontal–vertical–vertical (HVV) if μ ∈ {x, y} and
ν, τ = z,

• and vertical–vertical–vertical (VVV) if μ, ν, τ = z.

Obviously, the third-order gravitational tensor is composed
of four HHH, three HHV, two HVV and one VVV gravita-
tional gradients.

The gravitational tensor of the third order is obtained by
the successive application of the gradient operator to the grav-
itational potential. Therefore, the ten gravitational gradients
are defined by differential operators. Such differential oper-
ators in terms of the spherical geocentric coordinates (r,�)
read as follows (Tóth 2005; Casotto and Fantino 2009):

Dxxx = − 1

r2

(
2

r

∂

∂ϕ
− 3

∂2

∂r∂ϕ
− 1

r

∂3

∂ϕ3

)
, (4)

Dxxy = − 1

r2 cosϕ

(
2 tan2 ϕ

r

∂

∂λ
+ ∂2

∂r∂λ

+ 2 tan ϕ

r

∂2

∂ϕ∂λ
+ 1

r

∂3

∂ϕ2∂λ

)
, (5)

Dxxz = −1

r

(
1

r

∂

∂r
− ∂2

∂r2 + 2

r2

∂2

∂ϕ2 − 1

r

∂3

∂r∂ϕ2

)
, (6)
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Dxyy = − 1

r2

(
1

r cos2 ϕ

∂

∂ϕ
− ∂2

∂r∂ϕ
+ tan ϕ

r

∂2

∂ϕ2

− 2 tan ϕ

r cos2 ϕ

∂2

∂λ2 − 1

r cos2 ϕ

∂3

∂ϕ∂λ2

)
, (7)

Dxyz = 1

r2 cosϕ

(
2 tan ϕ

r

∂

∂λ
− tan ϕ

∂2

∂r∂λ

+ 2

r

∂2

∂ϕ∂λ
− ∂3

∂r∂ϕ∂λ

)
, (8)

Dxzz = 1

r

(
2

r2

∂

∂ϕ
− 2

r

∂2

∂r∂ϕ
+ ∂3

∂r2∂ϕ

)
, (9)

Dyyy = 1

r2 cosϕ

(
2

r cos2 ϕ

∂

∂λ
− 3

∂2

∂r∂λ
+ 3 tan ϕ

r

∂2

∂ϕ∂λ

− 1

r cos2 ϕ

∂3

∂λ3

)
, (10)

Dyyz = −1

r

(
1

r

∂

∂r
− 2 tan ϕ

r2

∂

∂ϕ
− ∂2

∂r2 + tan ϕ

r

∂2

∂r∂ϕ

+ 2

r2 cos2 ϕ

∂2

∂λ2 − 1

r cos2 ϕ

∂3

∂r∂λ2

)
, (11)

Dyzz = − 1

r cosϕ

(
2

r2

∂

∂λ
− 2

r

∂2

∂r∂λ
+ ∂3

∂r2∂λ

)
, (12)

Dzzz = ∂3

∂r3 . (13)

The superscripts on the left-hand sides of Eqs. (4)–(13) indi-
cate gravitational gradients that are obtained by applying the
differential operators. Note that these differential operators
were originally derived in a right-handed spherical LNOF
with the x-axis pointing eastwards and the y-axis pointing
north.

The differential operators of Eqs. (4)–(13) are composed
of derivatives with respect to the spherical coordinates r ,
ϕ and λ up to the third order. These are of a particular
interest when the gravitational potential is expanded in a
spherical harmonic series. For parametrization of the Earth’s
gravitational field, e.g. by integral transformations, least-
squares collocation or radial basis function approach, other
representations, such as those in the spherical polar coordi-
nates (r, ψ, α) or in terms of (t, u, α), are more appropriate.
These lead to decomposition of the differential operators in
Eqs. (4)–(13) into an azimuthal and an isotropic part and sig-
nificantly simplify subsequent mathematical derivations and
numerical evaluation.

At least two different ways may be followed to get the
differential operators for the third-order gravitational gradi-
ents in terms of (r, ψ, α) or (t, u, α). In the first approach,
one starts with Eqs. (4)–(13) and applies the chain rule up
to the third-order derivatives with respect to r , ϕ and λ. In
the second approach, recursive relations between the differ-
ential operators for the second-order gravitational gradients,
which are summarized in Appendix A, and their third-order

counterparts are sought. Such a transition involves only first-
order differentiation with respect to r , ϕ and λwhich may be
handled more easily by the chain rule again.

Our experience has shown that the second approach was
less laborious; therefore, it will be followed in this arti-
cle below. To start with the second approach, we need the
recursive relation between the differential operators for the
second- and third-order gravitational gradients. This relation
is defined by the following proposition:

Proposition 1 The recursive relationships between the dif-
ferential operators for the second- and third-order gravita-
tional gradients are:

Dxxx = 1

r

(
2Dxz + ∂

∂ϕ
Dxx

)
,Dxxy = 1

r

(
Dyz + ∂

∂ϕ
Dxy

)
,

Dxxz = ∂

∂r
Dxx , Dxyy = 1

r

∂

∂ϕ
Dyy,

Dxyz = ∂

∂r
Dxy, Dxzz = ∂

∂r
Dxz,

Dyyy = 1

r

[
2

(Dyz − tan ϕDxy) − 1

cosϕ

∂

∂λ
Dyy

]
,

Dyyz = ∂

∂r
Dyy, Dyzz = ∂

∂r
Dyz, Dzzz = ∂

∂r
Dzz . (14)

One may prove Proposition 1 by applying Eq. (14) to those of
Eqs. (71)–(76). After performing differentiations and alge-
braic manipulations, we get expressions for the differential
operators of the third-order gravitational gradients defined by
Eqs. (4)–(13). Alternatively, Proposition 1 may be proven by
the recursive formula of Casotto and Fantino (2009, Eq. 24)
requiring the Christoffel symbols of the second kind.

It can be seen from Eq. (14) that the differential oper-
ators for the HHV, HVV and VVV gravitational gradients
are obtained by the first-order radial derivative of the corre-
sponding second-order differential operators. Generally, the
differential operators for the HHH gravitational gradients are
linear combinations of two terms: the first term may be either
zero, another second-order differential operator or a combi-
nation of second-order differential operators; the second term
is a first-order derivative either with respect to ϕ or λ of a
second-order differential operator.

We can now formulate representation of the differential
operators for the third-order gravitational gradients in terms
of the spherical polar triad (r, ψ, α) and in terms of (t, u, α):

Proposition 2 The differential operators for the third-order
gravitational gradients in terms of the spherical polar triad
(r, ψ, α) and in terms of (t, u, α) are:

Dxxx = 1

r ′3
(

cosαD1
3 + cos 3αD2

3

)
,

Dxxy = − 1

r ′3

(
1

3
sin αD1

3 + sin 3αD2
3

)
,

Dxxz = 1

r ′3
(
D3

3 + cos 2αD4
3

)
,
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Dxyy = 1

r ′3

(
1

3
cosαD1

3 − cos 3αD2
3

)
,

Dxyz = − 1

r ′3 sin 2αD4
3,

Dxzz = 1

r ′3 cosαD5
3, Dyyy =− 1

r ′3
(

sin αD1
3 −sin 3αD2

3

)
,

Dyyz = 1

r ′3
(
D3

3 − cos 2αD4
3

)
,

Dyzz = − 1

r ′3 sin αD5
3, Dzzz = 1

r ′3 D6
3, (15)

where

D1
3 = 3r ′3

r2

[
1

4r

(
2 + 1

sin2 ψ

)
∂

∂ψ
− ∂2

∂r∂ψ

− 1

4r

(

cotψ
∂2

∂ψ2 + ∂3

∂ψ3

)]

=−3t3
√

1 − u2

(
∂

∂u
+t

∂2

∂t∂u
+u

∂2

∂u2 − 1 − u2

4

∂3

∂u3

)

, (16)

D2
3 = − r ′3

4r3

[ (
1

sin2 ψ
+ 2 cot2 ψ

)
∂

∂ψ

−3 cotψ
∂2

∂ψ2 + ∂3

∂ψ3

]
= t3

√
(1 − u2)3

4

∂3

∂u3 , (17)

D3
3 = −r ′3

r

(
1

r

∂

∂r
+ cotψ

r2
∂

∂ψ
− ∂2

∂r2 − cotψ

2r

∂2

∂r∂ψ

+ 1

r2
∂2

∂ψ2 − 1

2r

∂3

∂r∂ψ2

)

= t3

[

3t
∂

∂t
+ 2u

∂

∂u
+ tu

∂2

∂t∂u
+ t2 ∂

2

∂t2

−(1 − u2)

(
∂2

∂u2 + t

2

∂3

∂t∂u2

)]

, (18)

D4
3 = r ′3

r2

(
cotψ

r

∂

∂ψ
− cotψ

2

∂2

∂r∂ψ
− 1

r

∂2

∂ψ2 + 1

2

∂3

∂r∂ψ2

)

= −t3(1 − u2)

(
∂2

∂u2 + t

2

∂3

∂t∂u2

)

, (19)

D5
3 = −r ′3

r

(
2

r2
∂

∂ψ
− 2

r

∂2

∂r∂ψ
+ ∂3

∂r2∂ψ

)

= t3
√

1 − u2

(

2
∂

∂u
+ 4t

∂2

∂t∂u
+ t2 ∂3

∂t2∂u

)

, (20)

D6
3 = r ′3 ∂3

∂r3 = −t4

(

6
∂

∂t
+ 6t

∂2

∂t2 + t2 ∂
3

∂t3

)

. (21)

The proof of Proposition 2 may be performed in several steps.
Firstly, the differential operators of Eq. (77) are substituted
into those of Eq. (14). Secondly, we make use of the following
expressions, see, e.g. (Heiskanen and Moritz 1967, p. 113):

∂

∂ϕ
= − cosα

∂

∂ψ
,

1

cosϕ

∂

∂λ
= − sin α

∂

∂ψ
, (22)

and, e.g. (Winch and Roberts 1995):

∂ sin 2α

∂ϕ
= 2 cotψ cos 2α sin α,

∂ cos 2α

∂ϕ
= −2 cotψ sin 2α sin α,

∂ cos 2α

∂λ
= 2 cosϕ′ sin 2α cosα′

sinψ
. (23)

After performing some algebraic operations, we get the
expressions for the differential operators of the third-order
gravitational gradients in terms of the triad (r, ψ, α). Such a
representation is defined by Eq. (15) and the first equalities
of Di

3; i = 1, . . . , 6 of Eqs. (16)–(21). Thirdly, Eqs. (16)–
(21) are expressed in terms of the substitutions t and u, see
Eqs. (1) and (2), applying again the chain rule relations:

∂

∂r
= − t2

r ′
∂

∂t
,

∂

∂ψ
= −

√
1 − u2 ∂

∂u
,

∂2

∂r2 = t3

r ′2

(
2
∂

∂t
+ t

∂2

∂t2

)
,

∂2

∂r∂ψ
= t2

√
1 − u2

r ′
∂2

∂t ∂u
,

∂2

∂ψ2 = −u
∂

∂u
+

(
1 − u2

) ∂2

∂u2 ,

∂3

∂r3 = − t4

r ′3

(
6
∂

∂t
+ 6t

∂2

∂t2 + t2 ∂
3

∂t3

)
,

∂3

∂r2∂ψ
= − t3

√
1 − u2

r ′2

(
2
∂2

∂t∂u
+ t

∂3

∂t2∂u

)
,

∂3

∂r∂ψ2 = t2

r ′

[
u
∂2

∂t∂u
− (1 − u2)

∂3

∂t∂u2

]
,

∂3

∂ψ3 =
√

1 − u2

[
∂

∂u
+ 3u

∂2

∂u2 − (1 − u2)
∂3

∂u3

]
. (24)

Note that the subscript on the left-hand sides of Eqs. (16)–
(21) represents the respective order of the gravitational ten-
sor which distinguishes the operators of Eqs. (16)–(21) from
those of Eqs. (78)–(81).

Proposition 2 demonstrates that the differential opera-
tors for the third-order gravitational gradients may efficiently
be decomposed into the azimuthal and isotropic parts. The
azimuthal part is represented by trigonometric functions of
multiples of the direct azimuth α. The maximum multiple of
the direct azimuth α corresponds to the order of the gravita-
tional tensor. The isotropic part is defined by the six differ-
ential operators Di

3; i = 1, . . . , 6 that are rotationally sym-
metric about the radial direction, i.e. azimuthally isotropic.
We will refer to such differential operators as isotropic.

Moreover, the inspection of Eq. (15) reveals that for
one group of the gravitational gradients (either HHH, HHV,
HVV or VVV), isotropic differential operators occur repeat-
edly. For example, the four HHH gravitational gradients
are expressed by the isotropic differential operators D1

3 and
D2

3. It may also be seen that some pairs of the differential
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operators, i.e. (Dxxx ,Dyyy), (Dxyy,Dxxy), (Dxzz,Dyzz) and
(Dxxz,Dyyz), are symmetric with respect to the rotation of
the direct azimuth α. The first three pairs are interrelated by
the rotation of π/2, e.g. we get Dyyy by considering α+π/2
for the differential operator Dxxx . The last pair of the differ-
ential operators is rotationally symmetric by rotating α by
angle ±π/2.

The differential operators of Proposition 2 may be sim-
plified for a certain class of isotropic kernels to which they
are applied. The more concise definition is defined by the
following proposition:

Proposition 3 For the isotropic kernels of the series form:

K(t, u) =
∞∑

n=0

tn+1hn Pn,0(u), (25)

with hn being eigenvalues of the isotropic kernels, the differ-
ential operators for the third-order gravitational gradients
may be expressed as:

Dxxx = 1

r ′3
(

cosαD1∗
3 + cos 3αD3∗

3

)
,

Dxxy = − 1

r ′3

(
1

3
sin α D1∗

3 + sin 3αD3∗
3

)
,

Dxxz = 1

r ′3
(
D0∗

3 + cos 2αD2∗
3

)
,

Dxyy = 1

r ′3

(
1

3
cosαD1∗

3 − cos 3αD3∗
3

)
,

Dxyz = − 1

r ′3 sin 2αD2∗
3 , Dxzz = − 4

3r ′3 cosαD1∗
3 ,

Dyyy
3 = − 1

r ′3
(

sin αD1∗
3 − sin 3αD3∗

3

)
,

Dyyz = 1

r ′3
(
D0∗

3 −cos 2αD2∗
3

)
, Dyzz = 4

3r ′3 sin αD1∗
3 ,

Dzzz = − 2

r ′3 D0∗
3 , (26)

where

D0∗
3 = D3

3 = −1

2
D6

3 = t4

2

∂3

∂t3

(
t2.

)
, (27)

D1∗
3 = D1

3 = −3

4
D5

3 = −3t3
√

1 − u2

4

∂3

∂t2∂u

(
t2.

)
, (28)

D2∗
3 = D4

3 = − t2(1 − u2)

2

∂3

∂t∂u2

(
t2.

)
, (29)

D3∗
3 = D2

3 = t3
√
(1 − u2)3

4

∂3

∂u3 . (30)

To prove Proposition 3, the isotropic differential operators
D2

3, D4
3, D5

3 and D6
3 of Eqs. (16)–(21) are rewritten in the

form of Eqs. (27)–(30) that follows from the rules of differ-
entiation. It can be seen that the isotropic differential oper-
ators of Eqs. (27)–(30) have been renamed as indicated by
different numbers in the superscript followed by an asterisk.
The number in the superscript corresponds to the order of

differentiation with respect to u. Note that the symbol (t2.)

under differentiation in Eqs. (27)–(29) stands for multipli-
cation of t2 and the isotropic kernel of Eq. (25). To com-
plete the proof of the proposition, we have to show that
D3

3 = − 1
2D6

3 and D1
3 = − 3

4D5
3. These equalities follow

by applying the isotropic differential operators D1
3, D3

3, D5
3

and D6
3 of Eqs. (16), (18), (20) and (21) to the kernel of

Eq. (25). Note that singular terms of the type u√
1−u2 Pn,m(u)

for m = 1, 2 occur after the application of D1
3 and D3

3. These
can be removed by the following identity (Arfken 1968,
p. 456):

u√
1 − u2

Pn,m(u) = 1

2m

[
(n + m)(n − m + 1)Pn,m−1(u)

+ Pn,m+1(u)
]
. (31)

Proposition 3 illustrates another symmetry of the differ-
ential operators for the third-order gravitational gradients. It
can be seen from Eq. (26) that multiples of the direct azimuth
α and the numbers in the superscripts of the corresponding
isotropic differential operators agree. The simplification of
Proposition 3 is based on the fact that only four isotropic dif-
ferential operators are required compared to the six isotropic
differential operators of Proposition 2. One has to keep in
mind that this holds only if the differential operators act on
the isotropic kernels of the form defined by Eq. (25).

4 Application to the integrals of Newton, Abel-Poisson,
Pizzetti and Hotine

Having the differential operators in hand, we may relate the
third-order gravitational gradients to various parameters of
the Earth’s gravitational field. We now focus on the applica-
tion of the differential operators to the integrals of Newton,
Abel-Poisson, Pizzetti (also known as extended Stokes’s inte-
gral) and Hotine. The first of these transformations relates the
volumetric mass density distribution ρ to the gravitational
potential V by the volume integral, see, e.g. (Kellogg 1929;
Martinec 1998):

V (r,�) = G
∫

�′

∫

r ′
ρ

(
r ′,�′) KN (t, u) r ′ dr ′d�′, (32)

where G stands for the Newtonian gravitational constant.
Note that the first power of r ′ in Eq. (32), as opposed to
the second power usually presented in geodetic literature,
appears due to definition of the Newtonian kernel KN , see
below. The other three surface integral transformations, i.e.
Abel-Poisson (Heiskanen and Moritz 1967), Pizzetti (1911)
and Hotine (1969), indicated by the respective superscripts
P , S and H, may concisely be written as:
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Integral formulas for computing a third-order gravitational tensor 147

T (r,�)

= 1

4π

∫

�′
T j (

R,�′) K j (t, u) d�′, j ∈ {P,S,H}, (33)

where T P = T is the disturbing gravitational potential,
T S = R�g, with �g being the gravity anomaly and T H =
Rδg with δg standing for the gravity disturbance.

The integral kernels for the four integral formulas of
Eqs. (32) and (33) in the closed form read as follows:

KN (t, u) = t

g
, (34)

KP (t, u) = t (1 − t2)

g3 , (35)

KS(t, u) = t + 2t

g
− 3tg − t2u

[
5 + 3 ln

(
1 − tu + g

2

)]
,

(36)

KH(t, u) = 2t

g
− ln

(
t − u + g

1 − u

)
. (37)

These correspond to the infinite series, i.e. the spectral forms:

K j (t, u) =
∞∑

n=0

tn+1h j
n Pn,0(u), j ∈ {N ,P,S,H}, (38)

where the corresponding eigenvalues h j
n are:

hN
n = 1, ∀ n ≥ 0, (39)

hP
n = 2n + 1, ∀ n ≥ 0, (40)

hS
0 = hS

1 = 0, hS
n = 2n + 1

n − 1
, ∀ n ≥ 2, (41)

hH
n = 2n + 1

n + 1
, ∀ n ≥ 0. (42)

The symbol Pn,m(u) stands for the non-normalised Legendre
function of the first kind of degree n and order m.

Mathematical relation between the third-order (disturb-
ing) gravitational gradients and the mass density distribution,
disturbing gravitational potential, gravity anomaly and grav-
ity disturbance is formulated in the following proposition:

Proposition 4 Integral formulas, that relate mass density
distribution to the third-order gravitational gradients, are:

Vμντ (r,�) = G
∫

�′

∫

r ′
ρ

(
r ′,�′) Kμντ,N (t, u) r ′−2 dr ′d�′,

μ, ν, τ ∈ {x, y, z}. (43)

Integral formulas transforming the disturbing gravitational
potential, gravity anomaly and gravity disturbance to the
third-order disturbing gravitational gradients are of the
form:

Tμντ (r,�) = 1

4πR3

∫

�′
T j (

R,�′) Kμντ, j (t,u) d�′,

μ, ν, τ ∈{x, y, z}, j ∈ {P,S,H}.
(44)

The sub-integral kernels Kμντ, j = Dμντ K j ; μ, ν, τ ∈
{x, y, z}; j ∈ {N ,P,S,H} of Eqs. (43) and (44) are defined
as follows:

Kxxx, j = cosα K1∗, j + cos 3αK3∗, j ,

Kxxy, j = −1

3
sin αK1∗, j − sin 3αK3∗, j ,

Kxxz, j = K0∗, j + cos 2αK2∗, j ,

Kxyy, j = 1

3
cosαK1∗, j − cos 3αK3∗, j ,

Kxyz, j = − sin 2αK2∗, j , Kxzz, j = −4

3
cosαK1∗, j

Kyyy, j = − sin αK1∗, j + sin 3αK3∗, j ,

Kyyz, j = K0∗, j − cos 2αK2∗, j , Kyzz, j = 4

3
sin αK1∗, j ,

Kzzz, j = −2K0∗, j , (45)

where the isotropic kernels read:

Ki∗, j (t, u) = Di∗
3 K j (t, u); i ∈ {0, 1, 2, 3}. (46)

Proposition 4 may be proven by the action of the differential
operators of Eq. (26) to Newton’s, Abel-Poisson’s, Pizzetti’s
and Hotine’s integrals, see Eqs. (32) and (33). Application
of the more concise differential operators of Proposition 3 is
permitted because the kernels for these integrals, see Eq. (38),
are of the form of Eq. (25). Note that r ′ = R in Eq. (26) when
these are applied to the integrals of Abel-Poisson, Pizzetti
and Hotine. In total, 40 new integral formulas, of which 28
are independent due to the Laplace differential equation, are
embedded in Eqs. (43) and (44). Obviously, the sub-integral
kernels of Eqs. (45) possess the same properties as we have
already discussed for the third-order differential operators,
see the paragraphs below Propositions 2 and 3.

Connection between the gravitational field quantities of
Eqs. (44)–(46) is depicted in Fig. 2 in terms of a Meissl-
type scheme in the spatial domain. The scheme summarizes
possible applications of Eqs. (44)–(46). The direct problem
(upward continuation) allows for computing disturbing grav-
itational gradients from the disturbing gravitational poten-
tial, gravity anomaly or gravity disturbance. On the other
hand, the disturbing gravitational potential, gravity anomaly
or gravity disturbance are estimated from the disturbing grav-
itational gradients by solving the inverse problem (downward
continuation). Similar scheme may be depicted also for the
volumetric mass density and the gravitational gradients, i.e.
Eqs. (43), (45) and (46), and would provide another extension
of the Meissl scheme in the spatial domain.

Explicit expressions for the isotropic kernels of Eq. (46)
are required for numerical evaluation of the integral formulas
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Fig. 2 Relation between the disturbing gravitational gradients and the
disturbing gravitational potential, gravity anomaly and gravity distur-
bance. The disturbing gravitational gradients at the evaluation point with
spherical coordinates (r, �) are located at the upper level. The symbol

T j (R, �′), j ∈ {P,S,H}, at the lower level substitutes the disturbing
gravitational potential, gravity anomaly and gravity disturbance on the
surface of the mean geocentric sphere of radius R. The corresponding
isotropic kernels are located at the middle level

of Eq. (43) and (44). Their spectral forms are defined in the
next proposition:

Proposition 5 Spectral forms of the isotropic kernels are:

K0∗, j (t, u)= 1

2

∞∑

n=0

tn+4h j
n(n+1)(n+2)(n+3)Pn,0(u), (47)

K1∗, j (t, u) = −3

4

∞∑

n=0

tn+4h j
n(n + 2)(n + 3)Pn,1(u), (48)

K2∗, j (t, u) = −1

2

∞∑

n=0

tn+4h j
n(n + 3)Pn,2(u), (49)

K3∗, j (t, u) = 1

4

∞∑

n=0

tn+4h j
n Pn,3(u). (50)

Looking at the general definition of the isotropic kernels
in Eq. (46), we may prove Proposition 5 by applying the
isotropic differential operators of Eqs. (27)–(30) to Eq. (38).
Proposition 5 demonstrates a very general definition of the
isotropic kernels in the spectral form. Corresponding expres-
sions for j ∈ {N ,P,S,H} may easily be obtained by insert-
ing the eigenvalues of Eqs. (39)–(42) into Eqs. (47)–(50).

The closed (spatial) forms of the isotropic kernels must be
given separately for each of the superscripts i and j . These
are summarized in the next proposition:

Proposition 6 The closed (spatial) forms of the isotropic
kernels are:
(a) for j = N :

K0∗,N (t, u) = 3t4

2g

{
2 + t

g2

[
3(2u − 3t)

+3t (t − u)(4t − 3u)

g2 − 5t2(t − u)3

g4

] }
, (51)

K1∗,N (t, u)

= −9t5
√

1 − u2

4g3

{
4 + t

g2

[
8u − 9t + 5t (t − u)2

g2

] }
,(52)

K2∗,N (t, u) = −15t6(1 − u2)

2g5

[
1 + t (u − t)

g2

]
, (53)

K3∗,N (t, u) = 15t7
√
(1 − u2)3

4g7 , (54)

(b) for j = P :

K0∗,P (t, u) = 3t4

2g

{
2 + t

g2

[
22u − 49t

+3t[(t − u)(54t − 25u)+ 2u2]
g2

−5t2(t − u)2(37t − 25u)

g4

+70t3(t − u)4

g6

]}
, (55)

K1∗,P (t, u)=−9t5
√

1−u2

4g3

{
12+ t

g2

[
64u−87t

+5t (t−u)(29t−23u)

g2 − 70t2(t − u)3

g4

]}
,

(56)

K2∗,P (t, u) = −15t6(1 − u2)

2g5

{
5 + t

g2

[
17u − 19t

+14t (t − u)2

g2

] }
, (57)

K3∗,P (t, u) = 105t7(1 − t2)
√
(1 − u2)3

4g9 , (58)

(c) for j = S :

K0∗,S (t, u) = 3t4
{

11

g
− g(12 − g)− t2
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−tu

[
31 + 12 ln

(
1 + g − tu

2

)]

+ t

2g3

[
20u − 27t + 3t (t − u)(9t − 7u)

g2

−10t2(t − u)3

g4

]}
, (59)

K1∗,S (t, u) = 9t5
√

1 − u2

4

{
3

[
13 + 4 ln

(
1 + g − tu

2

)

− 4(g + 1)2

g(1 + g − tu)

]

− 1

g3

[
15 + t (19u − 21t)

g2 + 10t2(t − u)2

g4

]}
, (60)

K2∗,S (t, u)= −3t5(1−u2)

2

{
4t

1+g−tu

[
1+ 1

g3

+ (g+1)3

g2(1+g−tu)

]
+ 1

g5

[
13t + 10t2(u−t)

g2

] }
, (61)

K3∗,S (t, u)= 3t7
√
(1−u2)3

4

{
10

g7 + 1

1+g−tu

(
3

g5
+ 1

1+g−tu

)

+ 1

g3(1+g−tu)2

[
4g+3

g
+ 2(g+1)4

1+g−tu

] }
, (62)

(d) for j = H :

K0∗,H(t, u) = t4

2g

{
6 + t

g2

[
30u − 47t

+3t (t − u)(23t − 17u)

g2 − 30t2(t − u)3

g4

]}
(63)

K1∗,H(t, u) = 3t3
√

1 − u2

2

{
1

1 − u
− g + t

g(g + t − u)

− t2

2g3

[

19 + 3t (15u − 17t)

g2 + 30t2(t − u)2

g4

]}
, (64)

K2∗,H(t, u) = t3(1 − u2)

{
1

(1 − u)2
− 1

g2(g + t − u)

×
[

t2

g
+ (g + t)2

g + t − u

]

− 3t3

2g5

[
9 + 10t (u − t)

g2

] }
, (65)

K3∗,H(t, u)= t3
√
(1−u2)3

4

{
30t4

g7 − 2

(1 − u)3
+ 1

g3(g+t−u)

×
[

3t3

g2 + 3t2(g + t)

g(g + t − u)
+ 2(g + t)3

(g + t − u)2

]}

. (66)

Each of Eqs. (51)–(66) may be proven by summing up the
corresponding infinite series representation defined in Propo-
sition 5. We describe details of such a derivation for one of the
isotropic kernels, e.g. K2∗,S . First, the corresponding eigen-
value of Eq. (41) is inserted into Eq. (49) and the degree-
dependent term, i.e. the term hS

n (n + 3), is decomposed
into partial fractions. Second, based on the partial fraction
decomposition in Eq. (92), the original infinite summation is
divided into three separate series. Each of the three series is
defined by closed expressions defined by Eqs. (110), (111)
and (125). Thirdly, making use of the closed expressions and

performing some algebraic operations, we get the isotropic
kernel K2∗,S in closed form, see Eq. (61). Closed forms of the
other isotropic kernels may be obtained by repeating the same
steps. Due to brevity, we left this task for an interested reader
who may find all necessary formulas in Appendices B and C.

Proposition 6 may be complemented by inspecting limits
of the isotropic kernels for some special values of u and
t . We have inspected four special cases that are concisely
summarized in the next proposition:

Proposition 7 Limits of the isotropic kernels Ki∗, j ; i ∈
{0, 1, 2, 3}; j ∈ {N ,P,S,H} are:

(a) for u = 1 and t < 1 :

K0∗,N (t, 1) = 3t4

(1 − t)4
, K0∗,P (t, 1) = 3t4(1 + 7t)

(1 − t)5
,

K0∗,S (t, 1) = 3t5

[
t (38 − 88t + 73t2 − 21t3)

(1 − t)4
−12 ln(1−t)

]

,

K0∗,H(t, 1) = t4(3 + 6t − 4t2 + t3)

(1−t)4
,

K1∗, j (t, 1) = K2∗, j (t, 1)=K3∗, j (t, 1)=0, j ∈ {N ,P,S,H},
(67)

(b) for u = −1 and t < 1 :

K0∗,N (t,−1) = 3t4

(1 + t)4
, K0∗,P (t,−1) = 3t4(1 − 7t)

(1 + t)5
,

K0∗,S (t,−1)=3t5

[
t (38+88t + 73t2 + 21t3)

(1+t)4
+12 ln(1 + t)

]

,

K0∗,H(t,−1) = t4(3 − 6t − 4t2 − t3)

(1 + t)4
,

K1∗, j (t,−1) = K2∗, j (t,−1) = K3∗, j (t,−1) = 0,

j ∈ {N ,P,S,H}, (68)

(c) for u = 1 and t = 1 :
K1∗,N (1, 1) = K3∗,N (1, 1) = K0∗,P (1, 1) = K1∗,P (1, 1)

= K2∗,P (1, 1) = K1∗,S(1, 1) = K3∗,S(1, 1)

= K1∗,H(1, 1) = K3∗,H(1, 1) = ∞,

K0∗,N (1, 1) = K2∗,N (1, 1) = K0∗,S(1, 1)

= K2∗,S(1, 1) = K0∗,H(1, 1) = K2∗,H(1, 1) = −∞,

K3∗,P (1, 1) = 0, (69)

(d) for u = −1 and t = 1 :

K0∗,N (1,−1) = 3

16
, K0∗,P (1,−1) = − 9

16
,

K0∗,S(1,−1) = 165

4
+ 36 ln 2, K0∗,H(1,−1) = −1

2
,

K1∗, j (1,−1) = K2∗, j (1,−1) = K3∗, j (1,−1) = 0,

j ∈ {N ,P,S,H}. (70)
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Proposition 7 may be proven by finding the limits directly or
by making use of the L’Hospital rule. Equations (67)–(70)
reveal that the isotropic kernels are bounded for t < 1. On
the other hand, the isotropic kernels are unbounded for t = 1
except for K3∗,P .

5 Investigation of the sub-integral kernels

To get an insight into the integral transformations of Propo-
sition 4, we have further investigated properties of the

sub-integral kernels Kμντ, j ; μ, ν, τ ∈ {x, y, z}; j ∈
{N ,P,S,H}. The sub-integral kernels have been evaluated
for two different scenarios: (1) assuming R = 6,371 km and
r = 6,621 km, and (2) R = r = 6,371 km. In the first
case, the constant height of 250 km above the mean geocen-
tric sphere approximating the geoid is considered. Thus, it
may correspond to altitude of an Earth-orbiting satellite that
would eventually observe the third-order gravitational gradi-
ents, e.g. such as the proposed mission OPTIMA (Brieden et
al. 2010). The second case corresponds to a terrestrial sys-
tem for observing the third-order gravitational gradients, e.g.

Fig. 3 Behaviour of the
sub-integral kernels: a Kxxx,S ,
b Kxxz,S , c Kxyy,S , d Kxyz,S ,
e Kxzz,S , f Kzzz,S in the spatial
domain α ∈ [0◦, 360◦],
ψ ∈ [0◦, 7◦]. The kernels were
evaluated for R = 6,371 km and
r = 6,621 km. Values of the
direct azimuth α are indicated
along the circumference of each
of the polar plots. The spherical
distance ψ is measured from the
centre of the polar plots
(indicated by the dashed
concentric circles). Black lines
inside the plots indicate zero
crossings of the sub-integral
kernels
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Fig. 4 Behaviour of the
sub-integral kernels: a Kxxx,S ,
b Kxxz,S , c Kxyy,S , d Kxyz,S ,
e Kxzz,S , f Kzzz,S in the spatial
domain α ∈ [0◦, 360◦],
ψ ∈ [0.3◦, 7◦]. The kernels
were evaluated for
R = r = 6,371 km. Values of
the direct azimuth α are
indicated along the
circumference of each of the
polar plots. The spherical
distance ψ is measured from the
centre of the polar plots
(indicated by the dashed
concentric circles). Black lines
inside the plots indicate zero
crossings of the sub-integral
kernels
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as proposed by the Dulkyn project (http://www.dulkyn.ru/,
Balakin et al. 1997).

Figure 3 illustrates the sub-integral kernels Kxxx,S ,
Kxxz,S , Kxyy,S , Kxyz,S , Kxzz,S and Kzzz,S for the first sce-
nario. The kernels are depicted as functions of the direct
azimuthα (indicated by the values along the circumference of
each plot) and spherical distance ψ (indicated by the dashed
concentric circles). Figures are restricted to the limited spher-
ical domain bounded by α ∈ [0◦, 360◦] and ψ ∈ [0◦, 7◦].

Among all 40 sub-integral kernels, only six of them are
sufficient to demonstrate their spatial properties due to two
reasons: First, the sub-integral kernels Kμντ, j ; μ, ν, τ ∈

{x, y, z} behave similarly when mutually comparing between
each j ∈ {N ,P,S,H}. One could also observe that magni-
tudes of the sub-integral kernels for j ∈ {N ,S,H} are of the
same order. On the other hand, these are two orders lower as
compared to the sub-integral kernels for j = P . Among the
four values of j , we have opted to further investigate those for
j = S. Second, for a particular value of j , the sub-integral
kernels posses azimuthal symmetries as mentioned in Sect. 3
below Proposition 2. It holds that the pairs of sub-integral ker-
nels (Kxxx, j ,Kyyy, j ), (Kxyy, j ,Kxxy, j ) and (Kxzz, j ,Kyzz, j )

are interrelated by the azimuthal rotation of π/2. For exam-
ple, one has to rotate the polar plot of the sub-integral kernel
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Fig. 5 Behaviour of the
sub-integral kernels: a Kxxx,P ,
b Kxxz,P , c Kxyz,P , d Kzzz,P in
the spatial domain
α ∈ [0◦, 360◦], ψ ∈ [0.3◦, 7◦].
The kernels were evaluated for
R = r = 6, 371 km. Values of
the direct azimuth α are
indicated along the
circumference of each of the
polar plots. The spherical
distance ψ is measured from the
centre of the polar plots
(indicated by the dashed
concentric circles). Black lines
inside the plots indicate zero
crossings of the sub-integral
kernels
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Kxxx, j by π/2 counterclockwise to obtain Kyyy, j . More-
over, the pair of sub-integral kernels (Kxxz, j ,Kyyz, j ) is
azimuthally symmetric by rotating α by ±π/2.

Figure 3 reveals several interesting properties of the sub-
integral kernels. It can be seen that the kernel Kzzz,S is
isotropic, while the others posses corresponding azimuthal
dependencies. Obviously, the kernels reach maxima or min-
ima in a close neighbourhood of the evaluation point (located
in the centre of the polar plots) and decay with the increas-
ing spherical distance. One may also observe that the mag-
nitude of the sub-integral kernels Kxxx,S , Kxyy,S , Kxyz,S
and Kxzz,S equals zero at the evaluation point. On the other
hand, the sub-integral kernels Kxxz,S and Kzzz,S reach their
extreme values at the evaluation point.

On the surface of the mean geocentric sphere, i.e. for the
second scenario with R = r = 6,371 km, we have to dis-
tinguish between two different cases of the sub-integral ker-
nels. The kernels for j ∈ {N ,S,H} degenerate into those
illustrated by Fig. 4. Note that only the sub-integral kernels
for j = S are depicted. Moreover, we restrict to the spatial
domain bounded by α ∈ [0◦, 360◦] and ψ ∈ [0.3◦, 7◦] due
to the singularity at the evaluation point. For handling the
singular behaviour in practical calculations see, e.g. (Klees
1996; Klees and Lehmann 1998). The omitted domain, for
which it holds α ∈ [0◦, 360◦] and ψ ∈ [0◦, 0.3◦), is indi-

cated by the grey dots located in the centre of each polar plot.
We also note that the magnitude of the sub-integral kernels
exceeds the maximum and minimum values of the colour
bar scale. Therefore, one may see white and black colours in
the polar plots revealing strong increase and decrease of the
sub-integral kernels. Similar to the first scenario depicted in
Fig. 3, it is obvious from Fig. 4 that only the kernel Kzzz,S is
isotropic, while the other kernels have also azimuthal depen-
dencies. The kernels Kxxx,S , Kxyy,S and Kxzz,S reach higher
magnitudes for larger values of the spherical distance as com-
pared to Kxxz,S , Kxyz,S and Kzzz,S . In particular, this is seen
for ψ ∈ [1◦, 3◦].

The second case of the sub-integral kernels is represented
for j = P . On the mean geocentric sphere, the isotropic
kernel K3∗,P = 0 for −1 ≤ u ≤ 1 that may be proven by
inserting t = 1 into Eq. (58). Considering this in Eq. (45) of
Proposition 4, we get Kxxx,P = 3 Kxyy,P = −3/4 Kxzz,P
revealing another symmetry of the sub-integral kernels. Con-
sequently, only four sub-integral kernels, which are depicted
in Fig. 5, are sufficient to illustrate their complete spatial
behaviour for j = P . In correspondence with Figs. 3 and
4, we observe in Fig. 5 the isotropic behaviour of the kernel
Kzzz,P and the azimuthal dependence for Kxxx,P , Kxxz,P
andKxyz,P . The kernelsKxxz,P ,Kxyz,P andKzzz,P are more
significant compared to Kxxx,S , especially for ψ ∈ [1◦, 2◦].
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6 Conclusions

A new mathematical model for evaluation of the third-order
(disturbing) gravitational gradients is formulated in this arti-
cle. Required differential operators in the spherical local
north-oriented frame were derived first, see Sect. 3. The
operators were subsequently applied to integral equations
of Newton, Abel-Poisson, Pizzetti and Hotine that link the
volumetric mass density, disturbing gravitational potential,
gravity anomaly and gravity disturbance with the (disturbing)
gravitational potential. The new integral equations can then
be used for transformations between third-order (disturbing)
gravitational gradients and the volumetric mass density, dis-
turbing gravitational potential, gravity anomaly and gravity
disturbance, respectively; see Proposition 4. Spatial proper-
ties of the new integral kernels were then studied in Sect. 5,
where several plots illustrating their characteristic features
and properties are shown.

The new mathematical formulas extend the theoretical
apparatus of geodesy, i.e. the well-known Meissl scheme
of physical geodesy, and reveal important properties of
the third-order gravitational tensor. They may be exploited
in future geophysical studies, continuation of gravitational
field quantities and analysing the gradiometric-geodynamic
boundary value problem.
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Appendix A: Differential operators for the second-order
gravitational gradients

In Sect. 3, we construct the differential operators for the
third-order (disturbing) gravitational gradients. For this pur-
pose, we exploit also the differential operators for the second-
order gravitational gradients. The six second-order differen-
tial operators in terms of angular spherical geocentric coor-
dinates (r,�) read as follows (Reed 1973; Koop 1993):

Dxx = 1

r

(
∂

∂r
+ 1

r

∂2

∂ϕ2

)
, (71)

Dxy = − 1

r2 cosϕ

(
tan ϕ

∂

∂λ
+ ∂2

∂ϕ∂λ

)
, (72)

Dxz = −1

r

(
1

r

∂

∂ϕ
− ∂2

∂r∂ϕ

)
, (73)

Dyy = 1

r

(
∂

∂r
− tan ϕ

r

∂

∂ϕ
+ 1

r cos2 ϕ

∂2

∂λ2

)
, (74)

Dyz = 1

r cosϕ

(
1

r

∂

∂λ
− ∂2

∂r∂λ

)
, (75)

Dzz = ∂2

∂r2 . (76)

Alternatively, the second-order differential operators of
Eqs. (71)–(76) may be expressed in terms of the spherical
polar coordinates (r, ψ, α), see, e.g. (Wolf 2007; Šprlák et
al. 2014):

Dxx = D1
2 + cos 2αD2

2, Dxy = − sin 2αD2
2,

Dxz = cosαD3
2, Dyy = D1

2 − cos 2αD2
2,

Dyz = − sin αD3
2, Dzz = D4

2, (77)

where

D1
2 = 1

r

[
∂

∂r
+ 1

2r

(
∂2

∂ψ2 + cotψ
∂

∂ψ

)]
, (78)

D2
2 = 1

2r2

(
∂2

∂ψ2 − cotψ
∂

∂ψ

)
, (79)

D3
2 = 1

r

(
1

r

∂

∂ψ
− ∂2

∂r ∂ψ

)
, (80)

D4
2 = ∂2

∂r2 . (81)

Note that the subscript in Eqs. (78)–(81) refers to the order
of the gravitational gradients.

Appendix B: Explicit decomposition of degree-dependent
terms

To arrive at the new isotropic kernels Ki∗, j ; i ∈ {0, 1, 2, 3};
j ∈ {N ,P,S,H} in the closed form, see Sect. 4, an explicit
decomposition of some degree-dependent terms is required.
Such a decomposition is completely defined by the following
equations:

hN
n (n + 1)(n + 2)(n + 3) = 6 + 11n + 6n2 + n3, (82)

hN
n (n + 2)(n + 3) = 6 + 5n + n2, (83)

hN
n (n + 3) = 3 + n, (84)

hN
n =1, (85)

hP
n (n+1)(n+2)(n+3)=6+23n+28n2+13n3+2n4, (86)

hP
n (n + 2)(n + 3) = 6 + 17n + 11n2 + 2n3, (87)

hP
n (n + 3) = 3 + 7n + 2n2, (88)

hP
n = 1 + 2n, (89)

hS
n (n + 1)(n + 2)(n + 3)

= 72

n − 1
+ 66 + 43n + 15n2 + 2n3, (90)

hS
n (n + 2)(n + 3) = 36

n − 1
+ 30 + 13n + 2n2, (91)

hS
n (n + 3) = 12

n − 1
+ 9 + 2n, (92)
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hS
n = 3

n − 1
+ 2, (93)

hH
n (n + 1)(n + 2)(n + 3) = 6 + 17n + 11n2 + 2n3, (94)

hH
n (n + 2)(n + 3) = − 2

n + 1
+ 8 + 9n + 2n2, (95)

hH
n (n + 3) = − 2

n + 1
+ 5 + 2n, (96)

hH
n = − 1

n + 1
+ 2. (97)

Note that the symbols h j
n ; j ∈ {N ,P,S,H} stand for the

eigenvalues of the Newton, Abel-Poisson, Pizzetti and Hotine
kernels. These are defined by Eqs. (39)–(42).

Appendix C: Sums of infinite series

To derive the new isotropic kernels Ki∗, j ; i ∈ {0, 1, 2, 3};
j ∈ {N ,P,S,H} in closed form, see Sect. 4, we also need
closed form expressions for some infinite series. Complete
set of these summation rules reads as follows:

S1(t, u)=
∞∑

n=0

tn+4 1

n + 1
Pn,0(u)= t3 ln

(
g + t−u

1−u

)
, (98)

S2(t, u) =
∞∑

n=0

tn+4 Pn,0(u) = t4

g
, (99)

S3(t, u) =
∞∑

n=0

tn+4n Pn,0(u) = t5(u − t)

g3 , (100)

S4(t, u) =
∞∑

n=0

tn+4n2 Pn,0(u)

= t5

g3

[
u − 2t + 3t (t − u)2

g2

]
, (101)

S5(t, u) =
∞∑

n=0

tn+4n3 Pn,0(u) = t5

g3

[
u − 4t

+9t (t − u)(2t − u)

g2 − 15t2(t − u)3

g4

]
, (102)

S6(t, u) =
∞∑

n=0

tn+4n4 Pn,0(u)

= t5

g3

[
u − 8t + 12t (t − u)(7t − u)+ 9tu2

g2

−90t2(t − u)2(2t − u)

g4 + 105t3(t − u)4

g6

]
, (103)

S7(t, u) =
∞∑

n=1

tn+4 1

n + 1
Pn,1(u)

= t3
√

1 − u2

[
1

1 − u
− g + t

g(g + t − u)

]
, (104)

S8(t, u) =
∞∑

n=1

tn+4 Pn,1(u) = t5
√

1 − u2

g3 , (105)

S9(t, u) =
∞∑

n=1

tn+4n Pn,1(u)

= t5
√

1 − u2

g3

[
1 + 3t (u − t)

g2

]
, (106)

S10(t, u) =
∞∑

n=1

tn+4n2 Pn,1(u)

= t5
√

1 − u2

g3

[
1 + 3t (3u − 4t)

g2 + 15t2(t − u)2

g4

]
, (107)

S11(t, u) =
∞∑

n=1

tn+4n3 Pn,1(u)

= t5
√

1 − u2

g3

[
1 + 3t (7u − 13t)

g2

+45t2(t − u)(3t − 2u)

g4 − 105t3(t − u)3

g6

]
, (108)

S12(t, u) =
∞∑

n=2

tn+4 1

n + 1
Pn,2(u)

= t3(1 − u2)

[
1

(1 − u)2
− t2

g3(g + t − u)

− (g + t)2

g2(g + t − u)2

]
, (109)

S13(t, u) =
∞∑

n=2

tn+4 Pn,2(u) = 3t6(1 − u2)

g5
, (110)

S14(t, u) =
∞∑

n=2

tn+4n Pn,2(u)

= 3t6(1 − u2)

g5

[
2 + 5t (u − t)

g2

]
, (111)

S15(t, u) =
∞∑

n=2

tn+4n2 Pn,2(u) = 3t6(1 − u2)

g5

[
4

+5t (5u − 6t)

g2 + 35t2(t − u)2

g4

]
, (112)

S16(t, u) =
∞∑

n=3

tn+4 1

n + 1
Pn,3(u)

= t3
√
(1 − u2)3

[
2

(1 − u)3
− 3t3

g5(g + t − u)

− 3t2(g + t)

g4(g + t − u)2
− 2(g + t)3

g3(g + t − u)3

]
, (113)

S17(t, u) =
∞∑

n=3

tn+4 Pn,3(u) = 15t7
√
(1 − u2)3

g7 , (114)
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S18(t, u) =
∞∑

n=3

tn+4n Pn,3(u)

= 15t7
√
(1 − u2)3

g7

[
3 + 7t (u − t)

g2

]
, (115)

S19(t, u) =
∞∑

n=2

tn+4 1

n − 1
Pn,0(u)

= t4
[

1 − g − tu − tu ln

(
1 + g − tu

2

)]
, (116)

S20(t, u) =
∞∑

n=2

tn+4 Pn,0(u) = S2(t, u)− t4(1 + tu), (117)

S21(t, u) =
∞∑

n=2

tn+4n Pn,0(u) = S3(t, u)− t5u, (118)

S22(t, u) =
∞∑

n=2

tn+4n2 Pn,0(u) = S4(t, u)− t5u, (119)

S23(t, u) =
∞∑

n=2

tn+4n3 Pn,0(u) = S5(t, u)− t5u, (120)

S24(t, u) =
∞∑

n=2

tn+4 1

n − 1
Pn,1(u)

= t5
√

1 − u2

[
(g + 1)2

g(1 + g − tu)
− 2

− ln

(
1 + g − tu

2

)]
, (121)

S25(t, u) =
∞∑

n=2

tn+4 Pn,1(u) = S8(t, u)− t5
√

1 − u2,(122)

S26(t, u) =
∞∑

n=2

tn+4n Pn,1(u) = S9(t, u)− t5
√

1 − u2,

(123)

S27(t, u) =
∞∑

n=2

tn+4n2 Pn,1(u) = S10(t, u)− t5
√

1 − u2,

(124)

S28(t, u) =
∞∑

n=2

tn+4 1

n − 1
Pn,2(u)

= t6(1 − u2)

1 + g − tu

[
1 + 1

g3 + (g + 1)3

g2(1 + g − tu)

]
,

(125)

S29(t, u) =
∞∑

n=3

tn+4 1

n − 1
Pn,3(u)

= t7
√
(1 − u2)3

1 + g − tu

[
3

g5
+ 1

1 + g − tu

+ 4g + 3

g4(1 + g − tu)
+ 2(g + 1)4

g3(1 + g − tu)2

]
. (126)

Note that some of the summation rules may be found, e.g. in
(Pick et al. 1973; Moritz 1980; Martinec 2003; Šprlák and
Novák 2014).
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