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Abstract Transformations between different geodetic ref-
erence frames are often performed such that first the transfor-
mation parameters are determined from control points. If in
the first place we do not know which of the numerous trans-
formation models is appropriate then we can set up a multi-
ple hypotheses test. The paper extends the common method
of testing transformation parameters for significance, to the
case that also constraints for such parameters are tested. This
provides more flexibility when setting up such a test. One
can formulate a general model with a maximum number of
transformation parameters and specialize it by adding con-
straints to those parameters, which need to be tested. The
proper test statistic in a multiple test is shown to be either
the extreme normalized or the extreme studentized Lagrange
multiplier. They are shown to perform superior to the more
intuitive test statistics derived from misclosures. It is shown
how model selection by multiple hypotheses testing relates
to the use of information criteria like AICc and Mallows’ C p,
which are based on an information theoretic approach. Nev-
ertheless, whenever comparable, the results of an exemplary
computation almost coincide.
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1 Introduction

Today, geodetic information is often expressed with respect
to various geodetic reference frames. To convert such infor-
mation (like coordinates of points) from one frame to another,
coordinate transformations are widely needed and applied in
all branches of the modern geodetic profession. Those fields
of application range from satellite navigation (e.g. Zhang et
al 2012) to cadastral surveying (e.g. Deakin 1998, 2007) and
to photogrammetry (e.g. Goktepe and Kocaman 2010). The
most important theoretical and practical problems in these
fields are solved.

Nonetheless, there are many new developments regard-
ing the computation of coordinate transformation parameters
from a set of points with given coordinates in two different
reference frames, known as control points (synonymously
referred to as identical or homologous points):

• There are new results regarding the transformation accu-
racy. Lehmann (2010) analyzes why and under which con-
ditions the accuracy of transformed points is optimal in the
barycenter of the control points.

• Nowadays, the adjustment of transformation parameters
is often computed by robust methods (Kampmann 1996;
Kanani 2000; Carosio et al 2006; Ge et al. 2013). Here, it
is shown that outliers in coordinates of control points are
less influential to the transformation parameters.

• A more recent development is the total least squares
approach (Schaffrin and Felus 2008; Mahboub 2012).
Here, errors are not only assigned to the coordinates of
control points, but also to the elements of the system
matrix. However, based on the example of a planar sim-
ilarity transformation Neitzel (2010) shows that the total
least squares solution can be obtained easily from a rigor-
ous evaluation of the Gauss–Helmert model.
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1118 R. Lehmann

In the following, we restrict ourselves to three-dimensional
(3D) reference frames. In geodesy, we use a variety of
3D transformation models. The most important are (Andrei
2006):

• translation (three parameters)
• rotation (three parameters)
• rotation and translation (six parameters)
• rotation, one scalation and translation (similarity transfor-

mation, seven parameters)
• rotation, two scalations and translation (eight parameters)
• rotation, three scalations and translation (nine parameters)
• affine transformation (12 parameters)

Even more complex transformation models are used
in geodesy, e.g., transformations using thin plate splines
(Donato and Belongie 2002). Alternatively, we find piece-
wise approaches (Lippus 2004), where the region covered
by control points is partitioned. In each partition, the trans-
formation model is computed independently and later the
pieces are glued together into a single transformation.

In this paper, we are concerned with the following prob-
lem: Given a sufficiently large number of control points,
which transformation model should be selected. This prob-
lem belongs to a class of problems, which is often referred
to as model section (Burnham and Anderson 2002). Often a
strong preference for a transformation model can be deduced
from the relationship between the reference frames. For
example, if they are strictly related by a conformal map-
ping then the similarity transformation is a proper choice.
But often there is no such preference, and the proper model
must be selected by means of the control points.

If one model contains some extra parameters with respect
to the other, like rotation and translation versus similarity
transformation, the standard geodetic approach is to test sta-
tistically, if the additional parameters are significant, i.e., if
the estimated values of these parameters are significantly dif-
ferent from zero. This test is often called v test in geodesy
(Teunissen 2000). Such an approach is , e.g., used in Andrei
(2006). In the case of the rotation and translation versus the
similarity transformation the task would be to test if the scale
parameter is significantly different from unity, which can be
done by the v test.

But often this is not possible because one model is set up
with completely different parameters than another. For exam-
ple, the parameters of the spatial affine transformation are
generally not scales and rotation angles. Therefore, a com-
parison to the similarity transformation cannot be done by
testing the significance of some extra parameters. Making the
v test applicable would require (if possible at all) an unnatural
change of parameterization. In other cases, we must select
one out of more than two transformation models.

In our paper, we basically follow the hypothesis testing
approach, but extend it, such that not only parameters them-
selves can be tested, but also constraints on parameters. It
will turn out that this case arises, e.g. in the problem of
transformation model selection. Moreover, it is necessary to
understand that we are performing a multiple hypotheses test,
which adheres to other laws than the classical hypothesis test
(Miller 1981). This is not always properly understood and
leads to misconceptions. For example, the significance test
of the transformation model parameters performed by Ziggah
et al. (2013) should have been such a multiple test.

Other approaches to model selection used in statistics are
based on information criteria (Burnham and Anderson 2002).
The idea is that more complex models can generally fit the
data better, but this may result in overfitting, i.e., unduly com-
plex models partly fit the observation errors. Therefore, pure
goodness of fit is not a valid criterion for model selection, but
a penalty term for model complexity needs to be introduced.
The most important information criteria are

• Akaike information criterion (AIC), see Akaike (1974),
• its alternate version (AICc, which means AIC with a cor-

rection for small data sets),
• Bayesian information criterion (BIC) and
• Mallows’ C p, see Mallows (1973).

Given a set of candidate models for the data, the preferred
model is the one with the minimum AIC or AICc or BIC
value, or the one with C p value approaching the number of
model parameters. The AICc has been used for the transfor-
mation model selection by Felus and Felus (2009) because
it is recommended for small sets of observations. We will
return to this approach in Sect. 8.

The paper is organized as follows: after introducing
transformation equations and constraints for common spa-
tial coordinate transformations we set up a Gauss–Markov
model(GMM) with constraints and solve the model selection
problem by a multiple hypotheses test. Following Lehmann
and Neitzel (2013), it is shown that the proper test statis-
tics for such a test are the extreme normalized or externally
studentized Lagrange multipliers (LMs, also known as cor-
relates in geodesy). We emphasize that the use of normal-
ized LMs as test statistics in geodesy goes back to Teunissen
(1985). In a numerical example, it is shown how these tests
work and how they are superior to more intuitively defined
test statistics. Finally, we comment on the relationship of this
model selection strategy in relation to information criteria,
exemplified for AICc.

2 Transformation equations and constraints

Given a number of points with coordinates in two different
spatial reference frames (known as control points), the prob-
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Transformation model selection 1119

lem is to find a good model for the transformation between
these two frames. The given coordinates may be affected by
random observation errors with known stochastic properties.

We start from the 3D affine transformation, which obeys
the following system of equations:

⎛
⎝

ξb

ηb

ζb

⎞
⎠ =

⎛
⎝

t1
t2
t3

⎞
⎠+

⎛
⎝

t11 t12 t13

t21 t22 t23

t31 t32 t33

⎞
⎠

⎛
⎝

ξa

ηa

ζa

⎞
⎠ =: t+T

⎛
⎝

ξa

ηa

ζa

⎞
⎠

(1)

Here ξa, ηa, ζa denote the coordinates of a point in the
initial reference frame and ξb, ηb, ζb denote the coordi-
nates of the same point in the target reference frame.
This transformation model has 12 transformation parame-
ters t1, t2, t3, t11, . . . , t33. All other relevant models can be
derived therefrom by imposing constraints on these 12 para-
meters as follows:

A nine-parameter transformation is derived by imposing
orthogonality of the rows of T . In other words, the elements
of T need to fulfill the following three constraints (e.g. Andrei
2006, chapter 2):

t11t21 + t12t22 + t13t23 = 0 (2)

t11t31 + t12t32 + t13t33 = 0 (3)

t21t31 + t22t32 + t23t33 = 0 (4)

In this special case, we can express (1) as

⎛
⎝

ξb

ηb

ζb

⎞
⎠ = t +

⎛
⎝

μ1 0 0
0 μ2 0
0 0 μ3

⎞
⎠ R

⎛
⎝

ξa

ηa

ζa

⎞
⎠ (5)

where

μ1 =
√

t2
11 + t2

12 + t2
13

μ2 =
√

t2
21 + t2

22 + t2
23

μ3 =
√

t2
31 + t2

32 + t2
33

are scale factors and R is a rotation matrix (orthogonal matrix
with determinant 1). A way of expressing this transformation
by nine parameters is by t1, t2, t3, μ1, μ2, μ3 and by three
Eulerian rotation angles. Another nine-parameter transfor-
mation can be defined by requiring the columns of T to be
orthogonal, rather than the rows. Here the diagonal matrix of
scale factors and R are interchanged. Both transformations
are essentially different.

An eight-parameter transformation is practically less
important. It is motivated by the fact that horizontal coor-
dinates are sometimes determined by different technologies
than vertical coordinates. Therefore, the scales in horizontal
directions may be equal, i.e., μ1 = μ2, while μ3 is kept as
an independent parameter (e.g. Andrei 2006, chapter 3):

⎛
⎝

ξb

ηb

ζb

⎞
⎠ = t +

⎛
⎝

μ1 0 0
0 μ1 0
0 0 μ3

⎞
⎠ R

⎛
⎝

ξa

ηa

ζa

⎞
⎠ (6)

The specialization from (5) to (6) is equivalent to the con-
straint μ1 = μ2, but since we want to impose this constraint
on the model (1), it must be expressed in terms of the trans-
formation parameters of this model:

t2
11 + t2

12 + t2
13 − t2

21 − t2
22 − t2

23 = 0 (7)

Also in (6), the diagonal matrix of scale factors and R may
be interchanged, yielding a different transformation model
with eight parameters.

The seven-parameter similarity transformation (in geo-
desy also known as spatial Helmert transformation) is
obtained by requiring all scales to be equal, i.e., μ := μ1 =
μ2 = μ3. The system of transformation equations now reads
(e.g. Andrei 2006, section 1.2):

⎛
⎝

ξb

ηb

ζb

⎞
⎠ = t + μR

⎛
⎝

ξa

ηa

ζa

⎞
⎠ (8)

Here μ and R can obviously be interchanged without chang-
ing the transformation. To restrict the eight-parameter trans-
formation (6) to the similarity transformation (8), a further
constraint must be added. There are several equivalent pos-
sibilities, how such a constraint could read. We favor the
following:

t2
31 + t2

32 + t2
33 −

(
t2
11 + t2

12 + t2
13 + t2

21 + t2
22 + t2

23

)/
2 = 0

(9)

The reason is that this constraint makes sense even without
(7): μ3 equals the quadratic mean of μ1 and μ2, or equiva-
lently, μ2

3 equals the mean of μ2
1 and μ2

2. This is instructive
even if μ1 and μ2 are different: a transformation using (9)
without (7) deforms a sphere to an ellipsoid with one axis
length being the quadratic mean of the other two axis lengths.

The spatial rotation and translation is obtained by requir-
ing μ = 1:

⎛
⎝

ξb

ηb

ζb

⎞
⎠ = t + R

⎛
⎝

ξa

ηa

ζa

⎞
⎠ (10)

To restrict the similarity transformation (8) to this transfor-
mation, we favor the following form of the constraint μ = 1:

t2
31 + t2

32 + t2
33 + t2

11 + t2
12 + t2

13 + t2
21 + t2

22 + t2
23 = 3 (11)

The reason is that this constraint makes senses even without
(7) and (9): the quadratic mean of μ1, μ2 and μ3 equals unity,
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or equivalently the mean of μ2
1, μ

2
2 and μ2

3 equals unity. This
is instructive even if μ1, μ2, μ3 are different: a transforma-
tion using (11) without (7) and (9) deforms a sphere to an
ellipsoid such that the space diagonal of the bounding cuboid
preserves length.

The pure spatial rotation is derived by additionally requir-
ing that

t1 = 0, t2 = 0, t3 = 0

The pure spatial translation is obtained by requiring R to
be the unit matrix. This could be achieved by additionally
imposing the constraints

t11 = 1, t22 = 1, t33 = 1

(Remember that a rotation matrix with 1,1,1 on the main
diagonal is uniquely determined as the unit matrix). But since
such transformation models are rarely used in geodesy, the
last two sets of constraints will not be used in the sequel.

If we want to decide if the general transformation like
the affine transformation (1) is the correct model or a more
special one like the similarity transformation (8), then we
have to decide, whether the constraints restricting the gen-
erality of (1)–(8) are compatible with the given coordinates
of the control points or not. Due to inevitable observation
errors we can in general not expect the estimated parameters
to fulfill such constraints exactly. But if the constraints show
only small misclosures then we may assume that the special
model is sufficient to represent the relationship between both
reference frames. It remains to be shown how smallness of
misclosures or a similar criterion is to be defined.

3 Gauss–Markov model

The general transformation problem can be formulated as a
non-linear GMM

Y = A(X) − e (12)

where Y is a n-vector of given coordinates of control points
and X is a u-vector of unknown transformation model para-
meters, augmented by some unknown true values of coordi-
nates (see below). A is a known non-linear operator map-
ping from the u-dimensional parameter space to the n-
dimensional observation space. e is an unknown random n-
vector of normally distributed observation errors. The asso-
ciated stochastic model reads:

e ∼ N (0, σ 2 P−1) (13)

P is a known n × n-matrix of weights (weight matrix). σ 2

is the a priori variance factor, which may be either known or
unknown.

It is also customary to formulate coordinate transforma-
tions as a Gauss–Helmert model. But this model can be trans-
formed into the GMM by the simple variable substitution
given in (Koch 1999, p.212). When testing the compatibility
of constraints for parameters, it is better to restrict ourselves
to GMM because then we can immediately use the results
given by Lehmann and Neitzel (2013).

For the 3D affine transformation (1), the non-linear obser-
vation equations associated with a control point having six
observed coordinates read

ξa = ξ true
a − eξa

ηa = ηtrue
a − eηa

ζa = ζ true
a − eζa

ξb = t1 + t11 · ξ true
a + t12 · ηtrue

a + t13 · ζ true
a − eξb

ηb = t2 + t21 · ξ true
a + t22 · ηtrue

a + t23 · ζ true
a − eηb

ζb = t3 + t31 · ξ true
a + t32 · ηtrue

a + t33 · ζ true
a − eζb (14)

Let there be given p control points. Then n = 6p and the
vector of observations reads

Y = (. . . , ξa, ηa, ζa, ξb, ηb, ζb, . . .)
T (15)

Also u = 3p + 12 and the vector of GMM parameters reads

X = (. . . , ξ true
a , ηtrue

a , ζ true
a , . . . , t1, t2, t3, t11, t12, . . . , t32, t33)T

(16)

Note the difference between transformation parameters and
GMM parameters. The latter set also comprises the unknown
true values of coordinates in the initial frame.

A is clearly a non-linear operator here. (The affine trans-
formation model would be immediately linear only if all
ξa, ηa, ζa could be treated as error-free.) In the sequel, we
exclude singular configurations of the control points (like
coplanarity), such that all parameters can be uniquely deter-
mined in the unconstrained GMM.

The m constraints restricting the general transformation
model to the special one can be formulated as

B(X) = b (17)

where B is a generally non-linear operator mapping the
unknown GMM parameter vector X to a known m-vector
b. In fact, due to the non-linearity of the constraints
(2), (3), (4), (7), (9), (11) the operator B related to the affine
transformation problem is non-linear.

If the special transformation does not describe the rela-
tionship between the reference frames correctly then we get
true misclosures

Ŵ := B(X) − b (18)
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After computing an estimate X̂ of the parameters of the
unconstrained GMM we can insert X̂ into the constraints
and come up with estimated misclosures:

Ŵ := B(X̂) − b (19)

Due to inevitable observation errors we get in general Ŵ �= 0
even if W = 0 holds. For example, the misclosures related to
constraints (2), (3), (4) can be interpreted as the sines of the
three shear angles related to the affine transformation.

4 Hypothesis test in the non-linear model

In geodesy, the decision problem on the proper transfor-
mation model is generally posed as a statistical hypoth-
esis test. Opposing the special model represented by the
GMM (12), (13) augmented by constraints (17) to a general
model represented by the unconstrained GMM is equivalent
to opposing the null hypothesis

H0 : W = 0 (20a)

to the alternative hypothesis

HA : W �= 0. (20b)

If H0 is to be rejected then we decide on the general model,
otherwise the special model is used for the transformation
between the given reference frames.

The standard solution of the testing problem in classical
statistics goes as follows (e.g. Tanizaki 2004, p. 49 ff):

1. A test statistic T (Y ) is introduced, which is known to
assume extreme values if H0 does not hold true.

2. Under the condition that H0 holds true, the probability dis-
tribution of T (Y ) is derived, represented by a cumulative
distribution function (CDF) F(T |H0).

3. A probability of type I decision error α (significance level)
is suitably defined (say 0.01 or 0.05 or 0.10).

4. For one-sided tests a critical value c is derived by c =
F−1(1−α|H0) where F−1 denotes the inverse CDF (also
known as quantile function) of T |H0. (For two-sided tests
two critical values are needed, but this case does not show
up in this investigation).

5. The empirical value of the test statistic T (Y ) is computed
from the given observations Y . If T (Y ) > c then H0 must
be rejected, otherwise we fail to reject H0.

In principle, we are free to choose a test statistic. Even heuris-
tic choices like

T (Y ) := ||Ŵ || (21)

with some suitable norm || • || are conceivable. Although the
statistical power (probability of rejection of H0 when it is
false) of such a test might not be optimal or even poor.

Consider for example the problem of opposing the affine
transformation model (1) with the nine-parameter transfor-
mation model (6). Ŵ would be the vector of sines of the shear
angles computed from estimated affine transformation para-
meters t̂11, t̂12, . . . , t̂32, t̂33. A possible test statistic would
be the RMS or maximum absolute value of these estimated
misclosures. In some instances, the misclosure is directly
interpreted as a deviation of a parameter from a fixed value:
Consider for example the problem of opposing the similarity
transformation model (8) with the rotation and translation
model (10). The effective constraint is μ = 1 here, and we
can test if the estimated parameter μ̂ in (8) is significantly dif-
ferent from unity. It is here equivalent to (21) because μ̂ − 1
is nothing but the estimated misclosure (19) of the related
constraint μ = 1.

In geodesy, we most often apply the likelihood ratio (LR)
test (e.g. Tanizaki 2004, p. 54 ff). The rationale of the LR test
is provided by the famous Neyman–Pearson lemma (1933),
which demonstrates that under various assumptions such a
test has the highest power among all competitors. It is often
applied even if we cannot exactly or only approximately
make these assumptions in practice because we know that
the power is still larger than for rival tests (Teunissen 2000;
Kargoll 2012).

Moreover, we can oppose the general model to a set
of special models in parallel. This is equivalent to oppos-
ing H0 in (20a) to a set of multiple alternative hypothe-
ses HA1, HA2, . . . , HAm . Each of them proposes that only
a subset of constraints is violated, or equivalently, a sub-
set of elements of W is non-zero. In this way, we come up
with a multiple hypotheses test. It is performed by testing
H0 vs. HA1, H0 vs. HA2, . . . , H0 vs. HAm , and H0 is rejected
if and only if it is rejected in any of the m tests. However,
theses tests are not performed with quantile probability α,
but α/m. The rationale for this is that the producers’ risk
must be portioned to m alternative hypotheses. Nonetheless,
this treatment is fully valid only if the m test statistics are
statistically independent, which is often violated. Lehmann
(2012) shows how to improve this in the case of geodetic
outlier detection. A recommendable textbook on this topic is
(Miller 1981).

Consider for example the case that we want to test if

• H0 : the rotation and translation (10) is the correct model
or

• HA1 : the similarity transformation model (8) or
• HA2 : the eight-parameter transformation model (6) or
• HA3 : the nine-parameter transformation model (5) or
• HA4 : the affine transformation model (1).
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We set up the observation equations of the affine transfor-
mation and augment the resulting GMM by the constraints
(2), (3), (4), (7), (9), (11). HA1 is then the hypothesis that (11)
is in conflict with the observations and the rest of the con-
straints. HA2 is then the hypothesis that (9) and (11) are in
conflict with the observations and (2), (3), (4), (7). HA3 is now
the hypothesis that (7), (9), (11) are in conflict with the obser-
vations and (2), (3), (4) and finally HA4 is the hypothesis that
all six constraints are in conflict with the observations (i.e.,
they produce true misclosures W �= 0).

5 Linearization

In general non-linear models the desired CDF F(T |H0) can-
not be analytically derived. Not even the CDF of X̂ can be
analytically derived here. A numerical technique for deriving
such distributions is the Monte Carlo method, but it is often
computationally costly.

The family of normal distributions enjoys the famous
property of constituting a family of stable distributions, i.e.,
linear combinations of normal random variables are also nor-
mally distributed. Therefore, in a linear model, where A,B

are linear operators, the distributions of X̂ , Ŵ etc. are known
to be normal too. However, if the non-linear model is some-
how close to a linear model, then the relevant distributions are
still somehow close to normal. (Otherwise the representation
of the solution by the estimate X̂ and possibly a covariance
matrix associated with it would be meaningless).

The common procedure in this case is to introduce approx-
imate parameters X0, e.g. by solving 12 selected affine trans-
formation equations neglecting observation errors. Then we
get with x := X − X0, y := Y − A(X0), b := b − B(X0)

the linearized GMM

y = Ax − e (22)

with linearized constraints

BTx = b (23)

A and BT denote the Jacobian matrices of A and B at
X0. Transposition of B is introduced here to come close to
the standard geodetic notation, also used by Lehmann and
Neitzel (2013).

The linearized true misclosures now read

w := BTx − b (24)

In a 3D affine transformation it is customary to use

X0 := (. . . , ξa, ηa, ζa, . . . , t0
1 , t0

2 , t0
3 , t0

11, t0
12, . . . , t0

32, t0
33)

T

(25)

where t0
1 , t0

2 , t0
3 , t0

11, t0
12, . . . , t0

32, t0
33 are computed from four

selected control points (not coplanar).
The resulting linearized observation equations (14) and

linearized constraints (2), (3), (4), (7), (9), (11) in the form of
(22), (23) are built of:

y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

0
0
0

ξb − t0
1 − t0

11 · ξa − t0
12 · ηa − t0

13 · ζa

ξb − t0
2 − t0

21 · ξa − t0
22 · ηa − t0

23 · ζa

ξb − t0
3 − t0

31 · ξa − t0
32 · ηa − t0

33 · ζa
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(26)

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

· · · 1 0 0 · · · 0 0 0 0 0 0 0 0 0 0 0 0

· · · 0 1 0 · · · 0 0 0 0 0 0 0 0 0 0 0 0

· · · 0 0 1 · · · 0 0 0 0 0 0 0 0 0 0 0 0

· · · t0
11 t0

12 t0
13 · · · 1 0 0 ξa ηa ζa 0 0 0 0 0 0

· · · t0
21 t0

22 t0
23 · · · 0 1 0 0 0 0 ξa ηa ζa 0 0 0

· · · t0
31 t0

32 t0
33 · · · 0 0 1 0 0 0 0 0 0 ξa ηa ζa

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(27)

b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−t0
11t0

21 − t0
12t0

22 − t0
13t0

23

−t0
11t0

31 − t0
12t0

32 − t0
13t0

33

−t0
21t0

31 − t0
22t0

32 − t0
23t0

33

(t0
21)

2 + (t0
22)

2 + (t0
23)

2 − (t0
11)

2 − (t0
12)

2 − (t0
13)

2

((t0
11)

2 + (t0
12)

2 + (t0
13)

2 + (t0
21)

2 + (t0
22)

2 + (t0
23)

2)/2 − (t0
31)

2 − (t0
32)

2 − (t0
33)

2

3 − (t0
11)

2 − (t0
12)

2 − (t0
13)

2 − (t0
21)

2 − (t0
22)

2 − (t0
23)

2 − (t0
31)

2 − (t0
32)

2 − (t0
33)

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(28)
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BT =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 t0
21 t0

22 t0
23 t0

11 t0
12 t0

13 0 0 0
0 · · · 0 t0

31 t0
32 t0

33 0 0 0 t0
11 t0

12 t0
13

0 · · · 0 0 0 0 t0
31 t0

32 t0
33 t0

21 t0
22 t0

23
0 · · · 0 2t0

11 2t0
12 2t0

13 −2t0
21 −2t0

22 −2t0
23 0 0 0

0 · · · 0 −t0
11 −t0

12 −t0
13 −t0

21 −t0
22 −t0

23 2t0
31 2t0

32 2t0
33

0 · · · 0 2t0
11 2t0

12 2t0
13 2t0

21 2t0
22 2t0

23 2t0
31 2t0

32 2t0
33

⎞
⎟⎟⎟⎟⎟⎟⎠

(29)

6 Hypothesis test in the linearized model

The problem is now to identify constraints which in the lin-
earized GMM with constraints are in conflict with the obser-
vations and the rest of the constraints, indicating that the
transformation model is too special. The standard approach
is to test, if all constraints are in conflict with the observa-
tions. The hypotheses to be tested here, read

H0 : w = 0 versus HA : w �= 0 (30)

In the case developed in the last section this would mean
to discriminate between the two models of the rotation and
translation (H0 is true) and of the affine transformation (HA

is true).
As Lehmann and Neitzel (2013) have shown, it is possible

to identify also conflicting subsets of constraints. If e.g. only
the last three constraints (7), (9), (11) are conflicting then the
nine-parameter transformation would be the transformation
model of choice. This is equivalent to eliminating the con-
flicting constraints. Since we have more than two options
how to build subsets of constraints, this requires a multiple
test.

The most appealing layout of such a multiple test would
be to test if an individual constraint is in conflict with the
observations and the rest of the constraints. The drawback is
that eliminating one of the first five constraints, the resulting
transformation does not have a name in geodesy. However,
this does not mean that it is excluded to apply such a trans-
formation practically.

Since a priori we do not know which of the considered six
constraints is the best candidate for elimination, we need to
test the compatibility of all individual constraints in parallel.
Following Lehmann and Neitzel (2013) the test statistic of
such a test derived from the classical likelihood ratio is

• either the extreme normalized Lagrange multiplier (LM)

T ′′
5 = max

i=1,...,m

∣∣∣∣∣
k̂′

i

σk̂′
i k̂′

i

∣∣∣∣∣ (31)

• or the extreme externally studentized Lagrange multiplier
(LM)

T ′′
6 = max

i=1,...,m

∣∣∣∣∣∣
k̂′

i

σ̂ ′′
k̂′

i k̂′
i

∣∣∣∣∣∣
(32)

T ′′
5 should be used if the a priori variance factor σ 2 is known

and T ′′
6 should be used otherwise. For convenience, the nota-

tion of (Lehmann and Neitzel 2013, eqs. 5.13, 5.14, 5.75,
5.76) is adopted here as follows: k̂′

i denotes the estimate of the
LM related to the i th constraint, when solving the fully con-
strained GMM, σk̂′

i k̂′
i

denotes the standard deviation of this

value using the a priori variance factor σ 2 and σ̂ ′′
k̂′

i k̂′
i

denotes

the standard deviation of k̂′
i using an estimate σ̂ ′′2

i of σ 2. This
estimate denotes the common best quadratic unbiased esti-
mate, but in the semi-constrained GMM. This means that for
computing the estimate σ̂ ′′2

i of σ 2 the i th constraint must be
dropped.

From (Lehmann and Neitzel 2013, eqs. 5.53-5.56) the fol-
lowing distributional results can be adopted:

k̂′
i

σk̂′
i k̂′

i

|H0 ∼ N (0, 1) (33a)

k̂′
i

σk̂′
i k̂′

i

|HA ∼ N (λi , 1) (33b)

k̂′
i

σ̂ ′′
k̂′

i k̂′
i

|H0 ∼ t (n − u + m − 1) (34a)

k̂′
i

σ̂ ′′
k̂′

i k̂′
i

|HA ∼ t ′(n − u + m − 1, λi ) (34b)

Here t ( f ) and t ′( f, λ) denote the central and non-central
Student’s t distribution with f degrees of freedom and non-
centrality parameter λ. Both in (33b) and (34b) the non-
centrality parameter λi reads

λi =
wi

√qk̂′
i k̂′

i

σ
=

wiσk̂′
i k̂′

i

σ 2 (35)

Practically, the true misclosure wi in the i th constraint is
unknown, and perhaps also the a priori variance factor σ 2.
The cofactor qk̂′

i k̂′
i

of k̂′
i is always known.
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After choosing a probability of type I error α, a critical
value must be taken from either of the distributions (33a)
or (34a), but with quantile probability α/m in both cases,
because the actual test statistics in the multiple test are the
extreme LMs T ′′

5 or T ′′
6 (see Sect. 4). If the critical value is

exceeded by the related test statistic T ′′
5 in (31) or T ′′

6 in (32)
then we are inclined to reject H0 : w = 0. This means here
that the rotation and translation transformation model is not
adequate. We should now drop the constraint, at which the
maximum in (31) or (32) is attained.

Not unlike the common practice in geodesy when dealing
with extreme normalized or studentized residuals in outlier
detection, it is possible to iterate the procedure, until no fur-
ther conflicting constraint can be identified.

7 Example: 3D transformation based on six control
points

7.1 Null hypothesis is true

We illustrate and investigate the procedure in a setup of six
control points forming a flattened octahedron, see Table 1
and Fig. 1. The height h of the octahedron will be varied.

The true transformation parameters are defined as zero
except t11 = t22 = t33 = μtrue. This means that the simi-
larity transformation model (8) is the proper model, except
when μtrue = 1. In this case, the rotation and transla-
tion transformation model (10) is adequate. This setup has
n = 2∗3∗6 = 36 observations. (The frames could also have
been rotated or translated with respect to each other without
changing the subsequent results because the constraints for
“no rotation” and “no translation” are not tested in this sec-
tion).

A priori we assume not to know which transformation
model is adequate. Therefore we use the affine transforma-
tion model (1) with u = 3 ∗ 6 + 12 = 30 model parame-
ters and try to specialize it by applying m = 6 constraints
(2), (3), (4), (7), (9), (11) as derived above. This yields a total
redundancy of n − u + m = 12.

Table 1 True coordinates of control points used in Sect. 7 (flattened
octahedron)

ξ true
a ηtrue

a ζ true
a

A 0 0 0

B 0 100 0

C 100 100 0

D 100 0 0

E 71 71 −h/2

F 71 71 h/2

Fig. 1 Configuration of control points used in Sect. 7 (flattened octa-
hedron)

Let us start with the case μtrue = 1. Here H0 : w = 0
is true and should be rejected by the multiple test only with
probability α.

Observations (14) are generated in two different ways, by
adding pseudo-random noise according to (13) with P = I
(identity weight matrix), both with σ 2 = 10−4 and with
σ 2 = 10−2. From this we compute the test statistics (31), (32)
and compare them with their critical values, deciding if H0

must be rejected or not. In a Monte Carlo approach, we repeat
this procedure 106 times and compute the relative frequency
of H0 rejected. This value is expected to be equal to α because
in this simulation we tacitly know that H0 is in fact true. The
results are given in Table 2. It is seen that relative frequencies
for normalized LM are a little bit smaller than expected, for
studentized LM a little bit larger.

There are three potential causes why these relative fre-
quencies are perhaps not exactly equal to α:

1. 106 repetitions are not enough. This cause can be ruled
out by re-starting the procedure with different pseudo-
random numbers and comparing the results. If the rela-
tive frequencies differ from α in the same way then 106

repetitions are enough, otherwise the number must be
increased.

2. The original model is non-linear, and consequently the
distributional results (33a)–(34b) are at best approxi-
mately valid. This cause can be ruled out by re-computing
with larger σ 2, which makes the non-linearity worse.
If the relative frequency now differs substantially more
from α then the linearization is to blame. This can also
be done in the reverse direction.

3. When computing the critical values of (31) or (32), the
simple portioning of α onto the m constraints using α/m
as significance level is only valid if all k̂′

i are statistically
independent. This is at best approximately true.

Although the results in Table 2 have been computed with
two different σ 2 and at this opportunity also with different
pseudo-random numbers, the deviation from α is practically
the same. This proves that cause three produces the observed
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Table 2 Various values of the relative frequency of H0 rejected, when it is true

Significance level α Critical value h = 10 h = 100
For T ′′

5 from (33a) with α/6 Ratio of rejected H0 σ 2 = 10−4, σ 2 = 10−2 Ratio of rejected H0 σ 2 = 10−4, σ 2 = 10−2

0.01 3.19 0.008 0.009 0.010 0.009

0.02 2.98 0.017 0.017 0.019 0.019

0.05 2.69 0.043 0.043 0.049 0.048

0.10 2.45 0.084 0.083 0.095 0.094

Significance level α Critical value h = 10 h = 100
For T ′′

6 from (34a) with α/6 Ratio of rejected H0 σ 2 = 10−4, σ 2 = 10−6 Ratio of rejected H0 σ 2 = 10−4, σ 2 = 10−6

0.01 3.80 0.012 0.013 0.013 0.013

0.02 3.48 0.023 0.024 0.027 0.026

0.05 3.06 0.055 0.057 0.064 0.063

0.10 2.73 0.107 0.108 0.123 0.122

effect. However, at least in this small-scale example, the devi-
ations from α seem to be tolerable.

7.2 Null hypothesis is false

Next, we consider the case that H0 is false. The test should
now reject H0. The ability to reject H0 when it is false, is
known as the power of the test. The power � is usually
smaller, when H0 is only slightly violated (small true mis-
closure w) and larger otherwise. This relationship is called
the power function of the test �(w).

More specifically, �(w) equals the probability that H0

is rejected by the test as a function of the true misclosure
w. It is computed from the CDF of T |HA, see (33b), (34b).
Software packages with implemented quantile function of the
non-central Student’s t distribution in (34b) are less widely
spread. In MATLAB, we find the function nctinv.

In our simulation study, we are in the position to imple-
ment a true misclosure into the model. As a test we implement
μtrue

1 = μtrue
2 = μtrue

3 = μtrue �= 1, i.e., a true misclosure
w6 = 3(μtrue)2 − 3 �= 0. All other constraints remain valid.
As a test statistic we again use only the extreme normalized
and externally studentized LMs, i.e., we assume not to know
which constraint is violated.

The results in terms of the two power functions are given
in Fig. 2. We restrict ourselves to σ 2 = 10−4 here and to
μtrue > 1, i.e., w6 > 0, because �(w) does not change when
w changes sign. Firstly, we observe that the power increases
with the significance level α. This is the typical behavior
because a higher α means that H0 is more often rejected and
therefore less often falsely accepted. Secondly, we observe
that the power increases with the magnitude of the true mis-
closure |w6|. This is also expected because a more distinct
separation between H0 and HA makes type II decision errors
(failures to reject a false H0) less probable. stop The dif-

ference between the power of the test statistics (31), (32) is
clearly seen. The normalized LMs require σ 2 to be known. If
σ 2 is unknown then we must resort to studentized LMs with
a significant loss of test power. The reason for this is a typical
smearing effect: If constraint (11) is in effect, the inconsistent
scales between both coordinate frames are partly interpreted
as observation errors, increasing the estimated residuals. In
this way, the variance factor σ 2 is mostly overestimated by
(σ̂ ′′)2. This makes σ̂ ′′

k̂′
i k̂′

i
in (32) too large. Consequently, T ′′

6

becomes too small, such that it does not exceed its critical
value as often as T ′′

5 does.
Finally, we see nearly no effect in the power of T ′′

5 and T ′′
6 ,

when changing h, and in this way changing the conditioning
of the normal system of the GMM. (Note that for h = 0 the
system is singular due to a coplanarity of all control points).

7.3 Using the extreme normalized misclosure as a test
statistic

Test statistics must not be restricted to likelihood ratios,
but could perhaps be defined by plausibility reasoning. See
(21) and discussion below. Not uncommon in practical geo-
desy, such a test statistic could be the extreme normalized
or studentized estimated misclosure. In this subsection, the
extreme normalized estimated misclosure

Tw := max
i=1,...,m

∣∣∣∣
ŵi

σŵi ŵi

∣∣∣∣ (36)

is defined as test statistics and will be considered as a substi-
tute for T ′′

5 in (31). Tw uses the estimated misclosures ŵi of
the unconstrained solution, which is the affine transforma-
tion model (14). A large value of such a test statistic would
also indicate an incompatibility of the constraint, for which
the maximum in (36) is attained. The critical values of Tw

are the same as of T ′′
5 and can be taken from Table 2.
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Fig. 2 Power functions related to the test statistics (31), (32), (36) for the example of Sect. 7

The resulting power functions are displayed in Fig. 2 and
must be compared to that of the test statistic T ′′

5 , where σ 2

has also been used. We see a similar behavior, but recognize
a great loss of power, when h is small, i.e., for nearly ill-
conditioned normal systems. Here, the misclosure is subject
to a smearing effect: incompatible scales of the coordinate
frames produce large magnitudes of misclosures not primar-
ily in ŵ6, but the effect also smears over to other misclosures,
such that Tw often falls below the critical value.

7.4 Identification of the conflicting constraints

If the test statistic exceeds the critical value, then we are
inclined to reject H0. This means that the model of rotation
and translation is too special for the description of the rela-
tionship between the control points. The next step would be
to identify the constraint in conflict with the observations and
the rest of the constraints. We can only hope that this is the

constraint, for which the maximum in (31), (32) or (36) is
attained. Now, we investigate if this is true.

Firstly, note that in this respect there is no difference
between normalized and studentized LMs (and also not
between normalized and studentized misclosures, although
the latter values have not been used here). The reason is that
these values differ only in the way that σ̂ ′′

k̂′
i k̂′

i
is computed with

the estimated variance factor σ̂ 2, while for σk̂′
i k̂′

i
the known

value σ 2 is used. Therefore, normalized and studentized val-
ues are proportional to each other and the maxima in (31)
and (32) are attained at the same index i . Consequently, stu-
dentized values are disregarded below.

We use the computation of the last section for h = 30
only. The relative frequencies, how often the maxima of (31)
and (36) are attained at a certain constraint, are displayed
in Fig. 3, regardless of their value, i.e., if they exceed any
critical value or not. In this way, the investigation becomes
independent of α. We expect those maxima to be attained
mostly at i = 6, which is the index of the violated constraint
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Fig. 3 Relative frequencies of rejection of a constraint, for which the maximum in (31), left subplot, and (36), right subplot, is attained. Note that
the curves for constraints 1–4 are practically overlapping

(11). If this violation is only weak, i.e., 1 < μtrue < 1.0001
here, then these maxima are not attained primarily at i = 6.
But unsurprisingly, the stronger (11) is violated, the more
often the maxima are attained at i = 6. At a value of μtrue at
which H0 is almost certainly rejected (μtrue > 1.0004), we
almost certainly accept the correct HA.

Comparing left and right part of Fig. reffg3 we see that for
LMs we get the correct result more often than for misclosures,
which confirms that LMs are the superior test statistics. For
T ′′

5 the maximum in (31) is oftentimes attained at i = 5,
such that the constraint (9) is sometimes wrongly identified
as conflicting. For misclosures we find wrong identifications
in all five other constraints.

8 The use of information criteria

8.1 Comparison to Akaike information criterion

As an alternative to transformation model selection by
hypothesis testing we employ the AICc information crite-
rion as proposed by Felus and Felus (2009). It is defined as
(Burnham and Anderson 2002)

AI Cc = n · log(WSSR) + 2(u − m)n

n − u + m − 1
(37)

where as before n, m and u are the number of observations,
constraints and GMM parameters, respectively, and WSSR
is the weighted sum of squared residuals in the GMM. The
first summand measures goodness of fit and the second is
a penalty term for model complexity. The model with the
smallest AICc must be selected. Note that the standard for-
mulae for AIC and AICc do not involve constraints. But it
is clear that the number of constraints m must be subtracted

from the number of parameters u to get the number of effec-
tive parameters u − m as a measure of model complexity.

We apply this criterion to the example of Sect. 7. Note
that AICc and similar criteria do not use a possibly known
variance factor σ 2. Therefore, we can fairly compare AICc
only to T ′′

6 in (32). In the following, we restrict ourselves to
AICc computed for

• the rotation and translation model, i.e., m = 6, denoted as
AI Cc(0)

• all six transformation models with m = 5, denoted as
AI Cc(1) . . . AI Cc(6), and

• the eight-parameter transformation model, i.e., m = 4,
denoted as AI Cc(7), as an example of an, in any case,
overfitting model.

First of all, if μtrue = 1 then the rotation and translation is the
proper model, and we expect AI Cc(0) < AI Cc(i), i > 0
to show this. In the range of 10 < h < 100 this happens
with a relative frequency of 0.94, . . . , 0.95. This can be seen
in Fig. 4 for h = 30. It means that the AICc effectively
relates to a significance level α ≈ 0.05 (although it is of
course not a hypothesis test). If μtrue �= 1 then we expect
that AI Cc(6) falls below AI Cc(0). For each model we dis-
play the relative frequency of selection according to AICc
in Fig. 4 together with the relative frequency of selection
according to the hypothesis test based on T ′′

6 in (32). By
T ′′

6 (0), T ′′
6 (1) . . . T ′′

6 (6) we mean the relative frequencies of
selection of the rotation and translation model and the six
models with m = 5, respectively, analogous to the notation
of AICc. First of all, it is striking how close the correspond-
ing curves in Fig. 4 are. Thus, AICc almost coincides with
T ′′

6 at a significance level α = 0.05. The small difference is
in favor of T ′′

6 . (Remember that here T ′′
6 (6) selects the appro-

priate model.) In compliance with the results of Sect. 7.3, the
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Fig. 4 Relative frequencies of selection of a model according to the
AICc (37) [solid curves] and the hypothesis test based on extreme stu-
dentized LMs T ′′

6 (32) with significance level α = 0.05 [dotted curves]

almost only other model with m = 5 selected here is the
model without constraint (9). It is wrongly selected here, but
this happens only in rare cases.

It is interesting to note that not only the model selections
show equal frequencies in Fig. 4, but also coincide very well.
For example, for μtrue = 1.0004 the relative frequency of
coincident model selections, may be right or wrong, is 0.985.
Here, we have restricted ourselves to h = 30 because the
same figure for h = 10 or h = 100 would be nearly indistin-
guishable from Fig. 4.

Summarizing, we can say that model selection by AICc
is very much the same as by extreme studentized LMs T ′′

6
with significance level α = 0.05 here. This is appreciated
by users uncertain about the choice of any α, because AICc
does not require such a choice. Also no critical value must
be computed. This is welcome, if the distribution of the test
statistic is analytically intractable or unknown. On the other
hand, if for example a user wants to have the model with less
parameters supported more than AICc does, then she/he can-
not simply choose a smaller α. Possibly, another information
criterion like BIC can be employed.

8.2 Comparison to Mallows’ C p

Another common information criterion is Mallows’ C p (Mal-
lows 1973). So far it is less popular in geodesy, at least under
this name, but has been employed e.g. by Mahboub (2014).
It is derived from an advanced statistic as

C p = WSSR

σ 2 − (n − 2(u − m)) = WSSR

σ 2 − (n − 2p) (38)

with notation as in (37). In the same way as for AIC and
AICc, the standard formula for C p does not involve con-

straints. But it is clear that the number of constraints m must
be subtracted from the number of parameters u to get the
number of effective parameters u − m, for which often the
symbol p = u − m is used. The expectation of C p is known
to be equal to p, possibly plus a positive bias term due to
lack of fit. Therefore, the model with the smallest value of
C p, which is somehow close to p, is selected.

Unlike AIC and AICc, Mallows’ C p is also able to use
σ 2, should it be known. Therefore it is interesting to com-
pare it to T ′′

5 in (31). We repeat the computations of the
last subsection, coming up with C p(0), . . ., C p(7) instead
of AI Cc(0), . . ., AI Cc(7) and T ′′

5 (0), . . . , T ′′
5 (6) instead of

T ′′
6 (0), . . . , T ′′

6 (6).
To start with, we naively base the model selection on Mal-

lows’ C p in such a way that each time the model with C p

closest to p is selected. The results are disappointing: For
μtrue = 1 Mallows’ C p selects the correct model only with
a relative frequency of 0.06. Instead the overfitting eight-
parameter transformation model is wrongly selected most
often. The reason is that in any case the values of C p scatter
perfectly around p, but the overfitting models show smaller
scattering, such that there is a bigger chance to get a value of
C p closer to p. For μtrue = 1.0004 Mallows’ C p most often
selects the correct model, but by far not as often as the other
methods.

This shows that it is crucial not to select the model “with
C p closest to p”, as done before, but “with the smallest value
of C p, which is somehow close to p”. We must therefore
define a permissible interval of values close to p. The disad-
vantage is that it may happen that none of the values of C p

falls into this interval. Some investigation using the numeri-
cal example at hand shows that the interval [p − 7, p + 7] is
optimal. It is the smallest interval, which ensures that with a
relative frequency of 0.95 at least one C p is permissible. It
is therefore used below.

The results are displayed in Fig. 5. While model selection
based on T ′′

5 shows almost the same, but slightly superior
results as on T ′′

6 (compare with Fig. 4), the results with Mal-
lows’ C p are worse. For μtrue = 1 Mallows’ C p selects
the correct model only with a relative frequency of 0.87
(curve C p(0) in Fig. 5). This is much better than in the naïve
approach, but not as good as for the other methods. The lat-
ter also applies to the cases with μtrue > 1: For example, for
μtrue = 1.0004 Mallows’ C p selects the correct model only
in one out of two cases (curve C p(6) in Fig. 5). In one out of
three cases constraint (9) is wrongly identified as conflicting
(curve C p(5) in Fig. 5). This shows that Mallows’ C p is not a
good alternative to multiple hypotheses testing. One reason
could be that here p = u − m is not varying much, only
from 24 to 26. Therefore, Mallows’ C p may be tried again in
cases where in one system all coordinates of control points
are considered as error-free quantities, such that p = u − m
shows a stronger relative variation, here from 6 to 8.
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Fig. 5 Relative frequencies of selection of a model according to Mal-
lows’ C p (38) [solid curves] and the hypothesis test based on extreme
normalized LMs T ′′

5 (31) with significance level α = 0.05 [dotted
curves]

9 Conclusions

In geodesy, we oftentimes need to transform points between
two different coordinate frames. We are routinely faced with
the situation that we do not know which transformation model
should be selected. It is good tradition in geodesy to base such
a decision on a statistical hypothesis test. If we consider more
than two models then the test must be a multiple hypotheses
test.

It is often not possible to simply test the significance of
parameters because all considered models may have a dif-
ferent set of parameters. For example, there is no natural
implementation of a scale parameter into the spatial affine
transformation. Therefore, it is better to start with a gen-
eral transformation model and try to specialize it by adding
constraints. The compatibility of those constraints needs to
be tested. Such a test can be intuitively based on the esti-
mated misclosures of the constraints in the unconstrained
model. From (Lehmann and Neitzel 2013) we know that bet-
ter test statistics should be based on the Lagrange multipliers
(LMs, also known as correlates in geodesy) of the constrained
solution. They should assume the form of either the extreme
normalized or the extreme externally studentized LM. The
second test statistic comes into effect if the a priori variance
factor is unknown.

We worked out an example of a 3D coordinate transfor-
mation based on six control points. Here it is shown that
the LM-based test statistics have more statistical power than
those based on the estimated misclosures. This advantage
is most drastic if the configuration of the control points is
poor. Moreover, in a multiple test the test statistics based on
LMs more often identify the correct alternative model. They
can be recommended, not only to problems with transfor-

mations, but to all geodetic adjustment problems posed as a
GMM with constraints.

For transformation model selection, the AICc and Mal-
lows’ C p are considered as an alternative to the multiple
hypotheses test. It turns out that in the exemplary case the
AICc almost always select the same model as the extreme
externally studentized LM does. This is remarkable because
the theoretical background is different. Mallows’ C p was also
successfully applied, but here the results are inferior to the
other methods. This may be due to the fact that there is only
a small difference in the number of parameters of the models
to be selected.
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