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Abstract Current variance models for GPS carrier phases
that take correlation due to tropospheric turbulence into
account are mathematically difficult to handle due to numeri-
cal integrations. In this paper, a new model for temporal cor-
relations of GPS phase measurements based on turbulence
theory is proposed that overcomes this issue. Moreover, we
show that the obtained model belongs to the Mátern covari-
ance family with a smoothness of 5/6 as well as a correla-
tion time between 125–175 s. For this purpose, the concept
of separation distance between two lines-of-sight introduced
by Schön and Brunner (J Geod 1:47–57, 2008a) is extended.
The approximations made are highlighted as well as the tur-
bulence parameters that should be taken into account in our
modeling. Subsequently, fully populated covariance matri-
ces are easily computed and integrated in the weighted least-
squares model. Batch solutions of coordinates are derived to
show the impact of fully populated covariance matrices on
the least-squares adjustments as well as to study the influence
of the smoothness and correlation time. Results for a spe-
cially designed network with weak multipath are presented
by means of the coordinate scatter and the a posteriori coor-
dinate precision. It is shown that the known overestimation of
the coordinate precision is significantly reduced and the coor-
dinate scatter slightly improved in the sub-millimeter level
compared to solutions obtained with diagonal, elevation-
dependent covariance matrices. Even if the variations are
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small, turbulence-based values for the smoothness and cor-
relation time yield best results for the coordinate scatter.
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1 Introduction

The use of diagonal covariance matrices in which tem-
poral correlations between GPS phase measurements are
ignored leads to unreliable positioning results and an over-
estimation of the precision (El-Rabbany 1994; Wang et al.
2002; Satirapod et al. 2003). Being mainly computed with
elevation-dependent models (Euler and Goad 1991), C/N0
models (Hartinger and Brunner 1999; Brunner et al. 1999;
Wieser and Brunner 2000), or SNR models (Luo et al.
2011), diagonal covariance matrices are however easy to
handle in weighted least-squares models since no compu-
tational issue due to matrix inversions occurs (Howind et
al. 1999; Beutler et al. 1987). Leading to fully populated
variance–covariance matrices (VCM), temporal correlations
can depend on receiver type, occur between channels and
observation types (Borre and Tiberius 2000) or come from
multipath (Radovanovic 2001). However, the main tempo-
ral correlations are known to come from the GNSS signal
propagation through the atmosphere, considered as a random
medium.

Up to now, few propositions have been done to specify
time-dependent correlations. El-Rabbany (1994) proposed
an empirical modeling based on the study of autocorrelation
functions of phase residuals which leads to a simple exponen-
tial function with an empirically determined correlation time.
Howind et al. (1999) used the results of El-Rabbany to build
covariance matrices. They principally showed that the coor-
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dinate estimates are not much improved; nevertheless, the a
posteriori accuracy of the least-squares solution is much more
realistic. Wang et al. (2002) and Satirapod et al. (2003) used a
recursive whitening procedure based on residuals. They high-
lighted that the determination of ambiguities was strongly
improved. In the last few years, some authors have also
made used of ARMA processes at the least-squares residuals’
level to study temporal correlations of GPS measurements
(Luo et al. 2012; Wang et al. 2002).

Based on Kolmogorov turbulence theory and the con-
cept of eddies, Schön and Brunner (2008a) developed the
SIGMA-C model. This model, as the Treuhaft and Lanyi
(1987) one, is involving a double integration, making its con-
crete use time consuming. Thus, until yet, there is a lack of
a simple, physically derived and easy to handle model for
temporal GPS phase correlations.

Thanks to the equations of electromagnetic propagation
and geometrical approximations as well as the Kolmogorov
turbulence theory, we develop a new covariance model,
based on the flexible Mátern covariance family. Using the
results of Schön and Brunner (2008a), it is possible to esti-
mate covariances between phase observations for all relevant
cases, i.e.

• a given satellite observed at one station with itself,
• one satellite at one station with another one at the same

station,
• one satellite at a given station with another one at another

station.

Thanks to the specially designed “Seewinkel Network”
(Schön and Brunner 2008b), first promising results, both for
the quadratic deviation of the computed batch coordinates
as well as for the a posteriori variance of the unknowns
validate the feasibility and the utility of taking tempo-
ral correlations into account with the Mátern covariance
family.

The paper is organized as follow: in a first part, a new
way to model GPS phase temporal correlations based on
models using turbulence (Schön and Brunner 2008a) will
be presented. The second part is devoted to the comparison
with other models as well as the study of the model para-
meter dependencies. In a last part, a concrete case based
on the Seewinkel Network, designed to study the effect of
the tropospheric fluctuations on GPS phase signals (Schön
and Brunner 2008b) is presented. The flexibility of the
Mátern family will be highlighted as well as the possibility
to improve in a manageable way the reliability and standard
deviation of least-squares coordinate estimations by taking
temporal correlations into account. Finally, an appendix gives
necessary mathematical background on the Mátern covari-
ance functions.

2 Physical background: atmospheric transmission
and turbulence theory

2.1 Basic concepts—overview

The atmosphere can be considered as a medium varying ran-
domly in time and space (Ishimaru 1997, chapter 17). Thus,
GPS satellite signals that propagate through the atmosphere
have to be described by statistical methods. The troposphere
(a layer between approximatively 0–10 km of altitude) and
the ionosphere (85–500 km of altitude) are the most impor-
tant parts of the atmosphere to be considered for GPS trans-
mission (Wheelon 2001, chapter 2). Frequency-dependent
ionospheric effects due to the ionization by solar radiation can
mainly be canceled via ionosphere-free linear combination.
However, the troposphere being a non-dispersive medium,
whether double differencing neither linear combination of
observations eliminate its refractive effects on GPS phase
measurements.

Turbulence, particularly in the boundary layer between 0–
2 km height, is a fundamental phenomena in the troposphere
and remains an actual research field. As examples, we cite
here the wavelet approach by Khujadze et al. (2013), Farge
(1992) or the large Eddy simulation (2008). From the point
of view of GNSS signals, turbulence causes variations of the
refractive index, that act on phase measurements, causing
tropospheric slant delay fluctuations.

The turbulent troposphere can be modelized as a super-
position of eddies or “swirl of motion” of different sizes,
from the millimeter to the kilometer level depending on the
altitude (Stull 2009; Wheelon 2001; Coulman and Vernin
1991); eddies and the surrounding atmosphere having dif-
ferent refractive indices. Thus, with this model in mind,
we can motivate sources of correlations for GNSS obser-
vations using a geometric optics model: rays that are closer
(temporally or spatially) encounter nearly identical eddies
and are correlated together. Figure 1 proposes a schematic
representation of the troposphere where eddies of differ-
ent size and energy coexist, from small and isotropic in
the boundary layer, the so-called 3D turbulence, to elon-
gated, anisotropic in the loosely called free troposphere
(Stull 2009).

In the boundary layer characterized by a high Reynolds
number, strong turbulence occurs due to the influence of the
Earth and the water vapor content; changes in the refractive
index are rapid and eddies are small and isotropic (Coulman
and Vernin 1991; Hunt and Morrison 2000). The energy cas-
cade ( Kolmogorov 1941) models the transfer and associated
breakdown of eddies at a constant rate. Above the boundary
layer, in the loosely called free atmosphere (H > 1,000 m)
the turbulence is more 2D-like and the validity of the energy
cascade which represents eddies breaking from large to small
scales is questionable (Gage 1979).

123



The Mátern covariance family 1063

Fig. 1 Schematic
representation of the
troposphere seen from a satellite
signal (adapted from Wheelon
(2001, p83) based on
measurements of the outer scale)
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An important parameter for tropospheric turbulences is
the structure constant C2

n , which is a kind of measure of the
intensity of turbulence; see for example Nilsson and Haas
(Nilsson and Haas 2010) for a description of how this para-
meter can be evaluated. A typical profile for microwave C2

n in
the troposphere (Wheelon 2001, p68) shows a decrease with
height from approximately 10−14 m−2/3 at 1,000 m altitude
to 10−17 m−2/3 at 7,000 m. However, the values are remain-
ing in a range of 5.10−14−10−15 m−2/3 between 1,000–
3,000 m. Thus and following Wheelon (2001, chapter 2), for
a GPS ray that propagates through the whole atmosphere,
the free troposphere from 1,000 m up to 3,000 m will play
a much more important role than the boundary layer below
1,000 m in creating correlations between phase GPS mea-
surements. The intensity of turbulence is large enough and
at the same time the reorganization is slower than at a lower
altitude making the medium more stable.

This intuitive result can also be explained by consider-
ing the weak fluctuation mathematical approximation (Ishi-
maru 1997, chapter 17). The dielectric constant ε of the
troposphere depends on the position r and time t and is
expressed in a first-order approximation: ε (r, t) = n2 (r, t),
where n is the refractive index. Under this approximation,
the covariance function for phase at a plane x = L can
be expressed by means of a filter function (Ishimaru 1997,
p352):

Cϕ (L , r) = 2π2k2L

∞∫

0

κdκ J0 (κr) fφ (κ)�n (κ), (1)

with J0 the ordinary Bessel function of 0th order, �n (κ)

the 3D power spectrum of refractivity fluctuations for an
homogenous medium independent of the location, κ = 2π

L
the wavenumber, L the scale length and finally k the electro-
magnetic wavenumber. The function

fϕ (κ) = 1 + sin(κ2L/k)

κ2L/k
(2)

can be considered as a filter function of the spectrum (Fig. 2).

Fig. 2 Filter function fϕ (x) versus log (x). For x < 1, the filter func-
tion is having nearly constant values close to 2

The region κ <
√

2π√
λL

is strongly emphasized, meaning that
larger eddies are more affecting the phase measurements than
smaller ones. Since for GNSS signals λ ≈ 20 cm, we will

have
L2

0
λ

≈ 109 >> H , where L0 is the correlation length (in
the free troposphere, i.e. the outer scale length L0 ≈ 6,000 m
for horizontal direction, L0 ≈ 70 m for vertical direction)
and H is approximately the height of the troposphere (5,000–
10,000 m).

The covariance function for phase measurement can be
further simplified to:

C (L , r) = 4π2k2L

∞∫

0

κdκ J0 (κr)�n (κ). (3)

However, a further integration is not possible without knowl-
edge of the power spectrum of the atmospheric fluctuations,
which is a weighting function of the wavenumber κ .

From dimensional analysis, Kolmogorov (1941) has
shown that the energy spectrum of turbulence should follow
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a power law. The related velocity power spectrum as well as
the power spectrum of passive scalars such as temperature
or refractive index (Monin and Yaglom 1975) can be written
as:

�n (κ) = 0.033 C2
n

(κ2
x + κ2

y + κ2
z )11/6 , (4)

where C2
n is the structure constant. C2

n differs for optical
and microwave measurements; microwave being more influ-
enced by water vapor content and optical frequencies by
temperature fluctuations. The vector of 3D wavenumbers is
κ = [ κx κy κz ]T. This model is valid in the inertial range for
homogeneous and isotropic turbulence, where 2π

L0
≤ κ ≤ 2π

l0
with L0, l0 being the outer and inner scale length of turbu-
lence that bounds the inertial range, respectively.

However, this model yields infinite values for some quan-
tities such as the mean square fluctuations of the refractive
index 〈(δn)2〉. As a consequence, the empirical Von Karman
Model is often preferred:

�n (κ) = 0.033 C2
n

(κ2
x + κ2

y + κ2
z + κ2

0 )11/6
, κ0 = 2π

L0
. (5)

Please refer to Voitsekhovich (1995) or Wheelon (2001,
chapter 2) for a presentation of further models such as the
Greenwood model or the exponential model.

Although only developed for the inertial range and
isotropic turbulence, the Von Karman power law model has
shown to be valid beyond these limits, particularly for 2D tur-
bulence (Wheelon 2001; Kraichnan 1974). We will therefore
make use of it.

2.2 Anisotropy, inhomogeneity

Isotropy and homogeneity are the main assumptions of the
Kolmogorov model. However, GNSS phase measurements
are especially affected by the propagation through the free
atmosphere where eddies are mainly elongated. Inhomo-
geneity as well as anisotropy have to be taken into account
in the power spectrum model.

Inhomogeneity
The troposphere can be considered in a first approxima-

tion as a locally inhomogeneous field with smoothly varying
mean characteristics. Inhomogeneity can be expressed by a
product of a slowly varying function which describes the
spectral distribution of turbulent fluctuations for the whole
medium �n,0 (κ) and a term with faster variations C2

n

( r1+r2
2

)
describing the intensity of the fluctuations for the refractive
index in a given region of the medium where r1 and r2 denote
two different position vectors (Tatarskii 1971, p36). Thus, for
different regions separated beyond the outer scale length, the
power spectrum reads:

0zL  

0 0x yL L=

Fig. 3 Elongation of eddy

�n

(
κ,

r1+r2

2

)
= C2

n

(
r1+r2

2

)
�n,0 (κ) . (6)

Anisotropy
As seen in Fig.1, horizontal elongated eddies of the free

atmosphere are impacting the phase measurements. Fol-
lowing Wheelon (2001), the wavenumber spectrum can be
expressed by:

�n(κ) = abc�n

(√
a2κ2

x + b2κ2
y + c2κ2

z

)
, (7)

where a,b,c are stretching factors describing the elongation
of the eddies in the three dimensions, i.e. L0x = aL0, L0y =
bL0, L0z = cL0. L0x = L0y are the horizontal elongations
and L0z the vertical one.

Figure 3 is a schematic representation of an horizon-
tal elongated eddy corresponding to the layered turbulence
above the planetary boundary layer, in the loosely called free
troposphere where the effects of the Earth’s surface friction
on the air motion are becoming negligible. The outer scale
length’s value is between 6,000 and 10,000 m (please refer
to Wheelon 2001, chapter 2 for results of experiments of the
Global Atmospheric Sampling Program). The vertical elon-
gation is 100 times smaller and between 10 and 70 m, the
higher values being measured at an altitude around 1,000 m
(five years campaign New Mexico, Wheelon 2001 p83).

2.3 Taylor’s frozen hypothesis

To access to the temporal covariance of phase measurements
C (t) = 〈ϕ (t) , ϕ (t + τ)〉, τ being a time increment, the
Taylor’s frozen hypothesis (Taylor 1938) is assumed. It pos-
tulates that the phase covariance between two instants sep-
arated by τ is identical to the spatial covariance of phase
measurement at two stations separated by a vector r = uτ ,
where u is the mean wind vector. Thus, the atmosphere is
said to be “frozen” during the measurement, eddies are only
moved by the mean wind u. A value of ‖u‖ = 8 ms-1 seems
relevant (Stull 2009).

This approximation performs better as the mean wind
speed increases. In the case of GPS phase covariance at
synoptic scales, the geostrophic wind which blows paral-
lel to the isobar can be chosen (Wheelon 2001, chapter 6).
Thus, the covariance (Eq. 3) can be written as C (τ ) =
4π2k2L

∫∞
0 κdκ J0 (κτu)�n (κ)where it is assumed that the

wind vector does not change with time and position and the
satellite geometry varies slowly with time.
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3 Formulation of the new covariance model

3.1 Formulation of the temporal covariance via spectral
density

Following Wheelon (2001) and using the previous approxi-
mations as well as the von Karman spectrum for the refractiv-
ity fluctuations expressed in stretched coordinates, the spec-
trum of phase measurements Wϕi (ω) can be obtained by
integrating along the lines-of-sight:

Wϕi (ω) = 2.192H
k2C2

n ca−5/3u5/3

sin2 (Eli )

1[
ω2 + (

κ0u
a

)2]4/3 , (8)

where Eli is the elevation of the satellite i , H the tropospheric
deep or height, a = b and cthe horizontal and vertical
stretched parameters for the outer scale length, ω is the angu-
lar frequency and u the wind velocity.

A rational spectral density can be recognized. The consid-
ered process being 1D (only a time dependency), the previous
formula can be reformulated, introducing the dimensionality
D = 1:

Wϕ (ω) = 2.192H
k2C2

n ca−5/3u5/3

sin2(El)

1

[ω2 + α2]5/6+1/2
, (9)

where α = κ0u
a and ν = 5

6

(
ν + D

2 = 4
3 , D = 1

)
. Using the

equivalence of Appendix A (Rasmussen and Williams 2006)
and the Wiener–Khinchin theorem, the covariance is a so-
called Mátern covariance function which reads:

Cϕi (t, t + τ) = 0.7772
k2 HC2

n cκ−5/3
0

sin (Eli (t)) sin (Eli (t + τ))

×
(κ0uτ

a

)5/6
K5/6

(κ0uτ

a

)
, (10)

with a smoothness parameter of ν = 5/6 and a Mátern cor-
relation time 1/α, α = κ0u

a . Equation (10) is a closed for-
mula and thus free of integrals. Moreover, the identification as
Mátern covariance opens up new interpretations (cf. Appen-
dix A). Due to the use of the von Karman power spectrum,
the continuity at the origin is not given. A formulation of the
variance can be found in Wheelon (2001, p164) or using the
limit of the Bessel function (Abramowitz and Segun 1972):

lim
τ−>0

K5/6 (τ ) = 1

2
�

(
5

6

)(
2

τ

) 5
6
(

1 − τ
5
3

�
( 1

6

)
�
( 11

6

) ....
)

yielding

Cϕi (t, t) = 0.782
k2 HC2

n cκ−5/3
0

sin2 (Eli (t))
. (11)

Approximations
Until now, following approximations were made to express

the covariance structure of GPS phase signals propagating
through the turbulent free troposphere:

• No dependency of the structure constant with height is
taken into account. The constant value of 5.10−14 m−2/3

was taken. Following Treuhaft and Lany (1987), for sim-
plification and homogeneity, a constant value should be
enough as proposed by Schön and Brunner (2008a),
Wheelon (2001). If more accuracy is needed, profiles
of the structure constant for microwave could be used
as well as a layered model (Kleijer 2004; Gradinarsky
2002).

• No dependency of the outer scale length with height is
assumed. It is very difficult to access the structure of the
horizontal outer scale length. Range of values between
6,000 and 10,000 m has been experimentally determined
in the free atmosphere, cf. Wheelon (2001).

• Following Wheelon (2001, chapter 4), only the turbu-
lence in the free atmosphere and not in the boundary
layer is taken into account. However, by changing the
outer scale length to L0 = 100−600 m and the value of
H and the structure constant C2

n accordingly, our model
can be extended to the boundary layer. In this case, the
Mátern correlation time is more than 10 times smaller
than for the free atmosphere case.

• The wind speed is taken constant which is a good approx-
imation above 1,000 m under normal meteorological con-
dition; cf. Wheelon (Wheelon 2001, chapter 6) for wind
fluctuations.

• Taylor’s Frozen Hypothesis is assumed. This approxima-
tion should be valid as long as the GPS lines-of-sight are
not too far from each other. Thus, the model for comput-
ing the phase covariance between two different satellites
should be carefully used if the distance between two rays
at approximately H = 1,000−2,000 m is larger than
10 km (the maximal outer scale length in the atmosphere,
Wheelon 2001) since the turbulence at such scales is not
a priori having a Kolmogorov behavior.

• This model assumes a flat atmosphere using a 1
sin(El) map-

ping which is a good approximation for high elevation
angles. However, for lower elevation angles (below 10◦),
more elaborated tropospheric mapping functions should
be used for more accuracy (Böhm and Schuh 2013).

3.2 Dependencies and parameter sensitivity

3.2.1 General remarks

Several tropospheric parameters are involved in the proposed
model. Thus, in a next step, the physical dependencies are
studied, leading to a proposal for modeling the phase corre-
lations between GPS signals of two different satellites.

Four parameters coming from the turbulence theory have
a scaling effect on the variance and covariance: the tro-
pospheric height H, the structure constant C2

n , the vertical
elongation parameter cof the stretched coordinates, and the
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Fig. 4 Covariance (a) and correlation function (b) by varying the outer scale length from 6,000 to 25,000 m. A satellite at low elevation (15◦) was
taken for the simulation as well as c = 0.01, C2

n = 5.10−14 m−2/3, u = 8 ms−1

outer scale length κ0 = 2π
L0

. In addition, both the wind
velocity and the outer scale length are also acting on the
Mátern correlation time (CT) via α = κ0u

a [s−1], which we
reduce to α = κ0u by taking a = 1 and an horizontal
elongation of L0 = 6,000 m. Thus, since a/c = 1/c >

100 can be assumed in the free troposphere, c will be set
to 0.01.

If a geostropic wind value between 8–10 ms−1is taken as
well as an outer scale length of 6,000–10,000 m, the typi-
cal range of values of α should be 0.005−0.01 s−1, i.e. the
correlation time as defined in El-Rabbany (1994) is between
100–200 s.

In the following, the impact of different values of the para-
meter (outer scale length and wind velocity) on the covari-
ance is exemplary studied.

3.2.2 Changing the outer scale length L0

In Fig. 4, the outer scale length parameter was changed from
25 km (very elongated eddies, synoptic scales) to 6 km, which
should be considered as a reference value (Wheelon 2001) for
the GPS temporal phase covariance. For a better comparison,
the same value of the structure constant was used for the three
cases.

A large value of the outer scale length (red 25 km) leads
to a longer Mátern correlation time (CT) and larger values of
the covariance. A standard value of 6 km results in a shorter
Mátern CT as well as smaller covariance. Acting on both
the correlation time and the variance, the outer scale length
determines the behavior of the spectrum at low frequencies.

3.2.3 Changing the wind velocity

In Fig. 5, we changed the wind velocity from 4 to 10 ms−1.
The variance does not depend on this parameter, thus only the
Mátern correlation time 1/α[s] will change. For large values
of the wind speed, the Mátern CT is shorter than for small
values (here 4 ms−1) for which the spectral energy is shifted
at low frequencies. Values between 8 and 10 ms−1 should be
physically most relevant (blue and green line) corresponding
to the approximate value of the geostropic wind (Stull 2009).
Moreover, working under Taylor’s hypothesis, higher values
of the wind speed are preferable.

3.3 Extended formulation of the covariance—case two
satellites—one or two stations

We propose to extend the “one satellite-one station” covari-
ance model to the case when the covariance between two
phase measurements of different satellites i and j at differ-
ent stations A and B is needed. The case “two satellites, one
station” is given by taking A = B in the following formula.
Our development is based on the observations that the cor-
relations times of GPS phase measurements are typically 3–
7 min (Schön and Kutterer 2006). During that time, the satel-
lite geometry is only little varying and a decomposition into
a temporary fixed satellite geometry at a time t and temporal
variations seems adequate. Consequently, both temporal and
spatial correlations are taken into account.

At a given height H = 1,000 m (tropospheric height), and
for one epoch when satellite i and j are present, the paths of
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Fig. 5 Covariance functions by varying the wind velocity from 4 to
12 ms−1. c = 0.01, C2

n = 5.10−14 m−2/3, L0 = 6,000 m and a satellite
at low elevation (15◦) were taken for the simulation

Satellite j, station B at t Satellite i, station A at t 

Separation distance d 

Station A Station B 

H=1000m 

Fig. 6 Simplified version of the concept of separation distance at t
(Schön and Brunner 2008a)

satellite i and j are separated by a distance called the “sepa-
ration distance” dt,H=1,000 m which depends on the geome-
try (elevation, azimuth) of the two satellites at a given time
(Schön and Brunner 2008a). The following figure (Fig. 6)
illustrates in a simple way the concept of separation distance.
More details can be found in Schön and Brunner (2008a).

No influence of the wind vector with time on the separation
distance (Schön and Brunner 2007) is here taken into account
since the separation distance is computed at one epoch. A spe-
cial case occurs for separation distance larger than the max-
imum outer scale length of the troposphere (approximately
10 km, Wheelon 2001, p82). Indeed, neither the Kolmogorov
law nor the Taylor’s frozen hypothesis should be applied. For
this particular case, correlations due to tropospheric turbu-
lences can be neglected since the rays are considered too far
away from each other. Thus, the procedure can be summa-
rized as follow:
First step: Compute the separation distance dt,H=1,000 m

Second step: If dt,H=1,000 m < 6,000 m, set L0 = 6,000 m.

If 6,000 m < dt,H=1,000 m < 10,000 m, the outer scale
length is taken to L0 = dt,H=1,000 m. The vertical elonga-
tion is 100 times smaller than the horizontal one (Wheelon
2001, chapter 2). Thus, for high values of the separation dis-
tance, the correlations between microwave phase measure-
ments will come from longer eddies, that appear at higher alti-
tudes in the free troposphere. The structure constant should
be taken accordingly smaller than for the case “one satellite”.
Following the previous mentioned structure constant profile
(Wheelon 2001, chapter 2) we propose to take approximately
the structure constant by a factor 10 lower as for the previous
case C2

n = 5.10−15 m−2/3.
As a consequence, the covariance between two phase mea-

surements of two different satellites (i, j) is given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if d < 6,000 m :〈ϕi
A (t) , ϕ

j
B (t + τ)〉

= . . . 0.7772 k2 HC2
n c

sin(ElA
i (t)) sin(ElB

j (t+τ))

(
2π
L0

)−5/3

(
2πuτ
L0a

)5/6
K5/6

(
2πuτ
L0a

)

if 6,000 < d < 10,000m :〈ϕi
A (t) , ϕ

j
B (t + τ)〉

= . . . 0.7772 k2 HC2
n c

sin(ElA
i (t)) sin(ElB

j (t+τ))

(
2π

dt,H=1,000 m

)−5/3

(
2πuτ

dt,H=1,000 ma

)5/6
K5/6

(
2πuτ

dt,H=1,000 ma

)

if d > 10,000 m :〈ϕi
A (t) , ϕ

j
B (t + τ)〉 = 0

(12)

As previously, the wind speed u is taken to its geostropic
value. For longer observation spans, different time t may be
used.

As the separation distance is replacing the outer scale
length in this new model, the behavior of the covariance
versus time is the same as in Fig. 4. Typical values of the
separation distance at H = 1,000 m depends on the satel-
lite geometry (azimuth and elevation) and are between a few
hundred meters to 10,000 m or more.

The rational spectral density of phase measurements
allowed us to propose a new and simple model for the compu-
tation of GPS phase covariance based on the Mátern covari-
ance family. Inhomogeneity as well as anisotropy and non-
stationarity were taken into account and reflect the physi-
cal effects of the atmosphere on GPS signals. Moreover, by
allowing a great flexibility through the smoothness and the
correlation time parameters which can be changed if needed
and estimated via likelihood estimation (Stein 1999; Hand-
cock and Wallis 1994), such covariance functions are quite
promising for modeling temporal correlations, not only tro-
pospheric correlations as proposed in the paper but also mul-
tipath or receiver-related internal correlations.

Amplitudes fluctuations, which are affected by small
eddies, do not allow the geometrical–optical approximations
valid for microwave signals and diffraction theory has to be
used (Ishimaru 1997, chapter 17). As a consequence, the pro-
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posed model is not adequate for modeling the tropospheric
temporal correlation of amplitude measurements.

3.4 Comparison with other covariance models

Other models for GPS temporal correlations have been pro-
posed in the past such as the exponential model, the Treuhaft
and Lanyi model (1987) or the Schön and Brunner (2008a)
model. In this section, the differences and similarities of these
models are shortly described.

3.4.1 Exponential model

Proposed by El-Rabbany (1994), the exponential model was
concretely used exemplary by Howind et al. (1999) and
Radovanovic (2001) to describe temporal correlations. A
direct link to tropospheric correlations is not explicitly given.
However, it is a special case of the Mátern family with a
smoothness parameter of 1/2 (see Appendix A for more
details). Consequently, this model is close to our proposal
with ν = 5/6 ≈ 0.833. Moreover, the correlation time as
defined by Howind et al. (1999) was taken constant between
100–300 s, empirically chosen by data analysis. In our pro-
posal, the Mátern correlation time, although not directly cor-
responding to the correlation time, varies approximately in
the same range. Moreover, it depends on atmospheric con-
ditions (wind, outer scale length) allowing the computation
of the covariance for phase measurements of two different
satellites.

3.4.2 ARIMA processes

In geodesy (see exemplary Grafarend 1976), the so-called
first autoregressive Markov model is often used to model
correlations. It corresponds to a smoothness parameter of 1,
which is also close to the ν = 5/6 ≈ 0.833 given by turbu-
lence theory. Jansson and Persson (2013) fitted a covariance
function with this smoothness factor of 1 to GPS observa-
tions.

Continuous ARIMA processes have a rational spectral
density (Rasmussen and Williams 2006). Luo et al. (2012)
made use of ARIMA(p, q) procedure to decorrelate least-
squares residuals. They showed that some values of p and
q perform better than others depending on the stations (for
instance on the influence of multipath). Such models are how-
ever empirical and the corresponding covariance functions
are mathematically more complicated to express than the
Mátern one (see exemplary Jones and Vecchia 1993).

3.4.3 Treuhaft and Lany model

Treuhaft and Lany (1987) (TL) proposed a turbulence-based
VCM for tropospheric delays in VLBI. This model is used by

Nilsson and Haas (2010), Pany et al. (2011) or Romero-Wolf
et al. (2012) for simulations or real data analysis of VLBI
measurements.

The covariance between two tropospheric slant delays
t1, t2 reads:

Cϕ (t1, t2)

= 1

sin (El1) sin (El2)

⎛
⎝H2σ 2 − 1

2

H∫

0

H∫

0

dzdz′

×Dn

(∣∣s1 (z)−s2
(
z′)− 〈u〉 �t

∣∣
sin (El)

))
, (13)

where 〈u〉 is the mean wind velocity, s1 and s2 denote the
line-of-sight vectors, σ 2 the variance of the wet refractivity
fluctuations which is assumed independent of s. It can be
expressed by σ 2 = 1

2 Dn (r) as r → ∞, assuming that the
troposphere parameters are completely uncorrelated. Built
on a modified version of the Kolmogorov structure function
for the refractive index, Dn (r) = C2

n
r2/3

1+( r
L )

2/3 , this covari-

ance model leads to a double integral which must be solved
numerically. Furthermore, Eq. (13) is based on the relation
Cϕ(t, t + τ) = 1

2 (Dϕ(∞)−Dϕ(τ )) valid only for a station-
ary process, where Dϕ is the phase structure function com-
puted by directly integrating the modified version of the Kol-
mogorov structure function of the refractive index along the
lines-of-sight. The parameter L , chosen in physically reason-
able range, was taken to 3,000 km, a value at which empirical
structure functions, for VLBI data saturate for large values
of r .

In the TL proposal, neither anisotropy nor inhomogene-
ity was taken into account. Moreover, this model is based
on a double integral which can only be solved numerically,
necessitating a large computational effort.

3.4.4 Schön and Brunner covariance model

Schön and Brunner (2008a) developed a covariance model
based on the time-dependent integrated separation distance
d:

〈ϕi
A (t) , ϕ

j
B (t + τ)〉

= 12

5

0.033

�
(

5
6

)
√

π3κ
−2/3
0 2−1/3

sin ElA
i sin ElB

j

C2
n

H∫

0

H∫

0

(κd
0 )1/3 K1/3(κ

d
0 )dz1dz2

= 21/3

3�
( 2

3

) κ
−2/3
0

sin ElA
i sin ElB

j

C2
n

H∫

0

H∫

0

(κd
0 )1/3 K1/3(κ

d
0 )dz1dz2

(14)

The parameters H, κ0, c are the same as previously described.
Not only the wind velocity but also the wind orientation
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(wind vector) is involved in the computation of the sepa-
ration distance d, and the model can therefore be considered
as a 2D one. A double integrated Mátern kernel with ν = 1

3
is obtained. However, for the case “one satellite” where the
geometries are slowly varying with time, it will lead as in
our previous formulation to a spectral density with a power
law dependence of 4

3 since ν + D
2 = 4

3 with ν = 1
3 , D = 2,

D being the dimensionality (Appendix A). Thus the two for-
mulations (Eqs. 14, 10) are equivalent for the GPS phase
covariance for one satellite.

Schön and Brunner (2008a) proposed a direct integration
for the variance which reads:

〈ϕ2〉 = 12

5

0.033

�
(

5
6

)
√

π3κ
−2/3
0 2−1/3

(sin El)2 C2
n H2

×
{

π21/3

√
3 �

( 2
3

) 2 F3

([
1

2
, 1

]
,

[
2

3
,

3

2
, 2

]
,

z2

4

)

− 27

80
22/3�

(
2

3

)
z2/3

1 F2

([
5

6

]
,

[
11

6
,

7

3

]
,

z2

4

)}
,

(15)

where F denotes the hypergeometric function (Abramowitz
and Segun 1972). The dimensionless argument z is given
by z = pκ0 H

sin El , where the factor p describes the impact of
anisotropy on the variance. For small values of c, the vari-
ance should be replaced using the small argument approach
(Eq. 11)., since the hypergeometric function (Eq. 15) takes
rapidly high values, leading to computational issues by tak-
ing the difference of the two hypergeometric functions.

Schön and Brunner (2008a) computed the separation dis-
tance for a more general case by allowing a time dependency
through the wind vector. As a consequence, this model is
more general than our proposal. However, no dependency
of the outer scale length with the separation distance or of
the structure constant with the outer scale length is pro-
posed. Moreover, for some satellite geometry, the maximum
of covariance is not at the first epoch but “delayed”. Such a
behavior is physically difficult to understand when consid-
ering the rapid reorganization of the troposphere. The cor-
responding covariance matrices may be not positive definite
anymore. Moreover, considering anisotropy for the turbu-
lence parameters of interest (c = 0, 01, L0 = 6,000 m) some
numerical instabilities due to the double integral occur.

Thus our simplification for the case two satellites-one or
two stations, allowing both a rapid computation and a phys-
ical interpretation, should be preferred.

4 Case study

In the following part, the influence of our model on the coor-
dinate estimates in least-squares adjustments as well as the

influence of Mátern parameters (smoothness and Mátern cor-
relation time) will be studied. We aim to validate the physi-
cally derived smoothness factor and Mátern correlation time
presented in Sect. 3.1. Fully populated covariance matrices
are computed with the previous formulas and implemented
in a weighted least-squares model. After a short presentation
of the methodology used, the results for the repeatability as
well as for the quadratic deviation of the batch coordinates
will be discussed.

4.1 Least-squares solution

We use the Seewinkel Network (Schön and Brunner 2008b)
specially designed to study the temporal correlations due to
turbulence on GPS measurements. It consists of six exactly
aligned stations P0, P1, P2, P4, P8, and P16 with separation of
approximately 1, 2, 4, 8, and 16 km, respectively. It was mea-
sured on April, 15th 2003 during 8h (5:45–13:45 GPS time)
using identical equipment, a 1Hz data rate, and a cutoff-angle
of 3◦. Multipath is weak, thus the correlations are assumed
to come principally from tropospheric fluctuations.

The coordinates of the first station P0 were held fixed
and double differences were formed. Ambiguities were pre-
computed. The North, East and Up (N, E, U) components
of P1 and P8, respectively, were estimated for the baseline:
P0P1 (1,000 m) as well as the longer baseline P0P8 (8,000 m).

Since the observations can be assumed to be uncorrelated
after 600s (Schön and Kutterer 2006), the whole observation
period of 8 h is split into nonoverlapping batches of 600s. To
analyze the impact of the stochastic model on the coordinate
repeatability, two sampling rates are used: overall 45 batches
à 20 epochs, 1 epoch = 30 s and 45 batches a 600 epochs,
1epoch = 1 s were computed in a weighted least-squares
adjustment. No tropospheric parameters were estimated and
the CODE reprocessing orbits and clocks were used (Dach et
al. 2009). An apriori standard deviation of 1 mm was assumed
for the L1 carrier phase measurements.

For each batch b, the coordinates are computed:

x̂b=[ Nb Eb Ub ]T = (ATPA)−1ATPy, with P = Q−1
DD,

(16)

QDD is the cofactor matrix of the double difference observa-
tions, thus QDD = MTQM, M is the matrix of the mathemat-
ical correlation (Beutler et al. 1987), Q the positive-definite
cofactor matrix of the undifferenced observations. A is the
design matrix of each batch, y the vector of double differ-
ences.

The diagonal elements of the matrix
�

�apost,b

= �
σ

2

0(A
TPA)−1,

�
σ

2

0 = vTQ−1
DDv

nb−3 (nb number of double differ-

ences for the batch b) are
�
σ

2

b = [ �
σ

2

N ,b
�
σ

2

E,b
�
σ

2

U,b
]T. They
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represent the a posteriori variances of the unknowns. v is the
residual vector of the least-square solution for the batch b.

The mean over all batches is computed leading to:

σ̂i,apost = 1

m

m∑
b=1

σ̂i,b, (17)

where i = {N , E, U } and m is the number of batches.
The quadratic deviation of the coordinates in [mm] reads

δi =
√

1

m

∑m

b=1
�x̂2

i,b, i = {N , E, U } , (18)

�x̂i,b is the parameter deviation for the batch b of the
estimated coordinates N̂ , Ê, Û and the reference values
N0, E0, U0 obtained from static positioning over the whole
8-h observation window.

For all coordinate components, their quadratic deviation
δi is compared to the a posteriori variance σ̂i,apost. The ratio

Ri = σ̂i,apost
δi

is formed. It should be as close as possible to 1,
meaning that no overestimation occurs (Rao and Toutenburg
1999). Both σ̂i,apost and δi are independent of the a priori
variance factor (Kutterer 1999). Thus the cofactor matrices
and not the covariance matrices will be used.

4.2 Methodology

For different cofactor matrices, the three parameters
δi , σ̂i,apost, Ri are determined. We compare our model to
the results given by other smoothness and correlation time
factors as well as to the typically used elevation-dependent
weighting. In the following, we will call:

• EPS model, the elevation depending model with Q = Qε

Qε (i, i) = diag

(
1

sin2 (Eli )

)
with Qε (i, i)

= 1 when Eli = 90◦ (19)

• CORR model. In this case, the global cofactor matrix
before mathematical correlations is given by

Q = (1 − β) Qtemp + βQε, (20)

where 0 ≤ β ≤ 1, called noise factor, is a positive para-
meter depending on the observations noise. Following
Jansson and Persson (2013), β is defined as the ratio
β = nugget

sill of the structure function of the double differ-
ence observations. We found a mean value of β = 0.3
for double differences with low elevation satellites for the
baseline length P0P1 and β = 0.05 for P0P8, meaning
that relatively more high-frequency noise remains in the
time series.

The temporal cofactor matrices Qtemp are computed
thanks to the Mátern covariance functions with a given
smoothness factor and Mátern correlation time and scaled
as Eq. 19. To check the influence of the variation of the
Mátern parameters on the least-squares solutions, they
were varied from 1/6 to 4/3 for the smoothness ν and
[10−3−10−2]s-1 forα(inverse of the Mátern CT), respec-
tively. The case ν = 1/2 corresponds to the exponential
case, while ν = 1 is the AR(1) model (Appendix A).
First values of the cofactor matrices were computed using
the limit of the Bessel function (Abramowitz and Segun
1972) as shown in Eq. 11.
It follows that the two cofactor matrices Q and Qε have
the same diagonal elements. Thus, the temporal cofactor
matrices are not “underweighted” as long as the obser-
vation noise is not close to 1.

Note Other noise effects such as thermal noise (Radovanovic
2001; Schön and Brunner 2008b), are modeled in a first
approximation by adding an elevation-dependent matrix to
the Mátern temporal cofactor matrix Qtemp. A positive quan-
tity added to the diagonal elements of the fully populated
covariance matrix represents measurement errors or the so-
called “nugget” effect in kriging (Cressie 1993). Moreover,
this matrix yields a stabilization of the covariance matri-
ces (Tikhonov et al. 1995). Although exemplary, Williams
et al. (2004) modeled the covariance of GPS observations
by adding a white noise covariance matrix (power spectrum
of 0 corresponding to the identity covariance matrix) and a
flicker noise matrix (e.g. power spectrum with a power law
of −1), we chose not to add an identity matrix but to model
the observations noise as elevation-dependent.

As we do not intend to compare the influence of different
covariance models but only the influence of temporal cor-
relations that gives an optimal quadratic deviation, the case
where Q = I which leads to poorer coordinate scatter and
ratio than elevation-dependent models was not analyzed here.

4.3 Building the fully populated covariance matrices

Without loss of generality, we assume a satellite-by-satellite
ordering scheme of the undifferenced GPS carrier phase
observations. As a consequence, for one station A, the covari-
ance matrix is built as follow:

Ci, j
A =

⎡
⎢⎢⎢⎣

σ
j1

i1 σ
j2

i1 σ
j3

i1 ... σ
ju

i1

σ
j1

i2 σ
j2

i2 σ
j3

i2 σ
ju

i2
. . . . . .

σ
j1

ik σ
ju

ik

⎤
⎥⎥⎥⎦

where σ in
ik is the covariance between the satellite i at epoch k

and satellite i at epoch n. The size of the covariance matrices
for two different satellites is depending on the size of the
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Fig. 7 a Example of the structure of the covariance matrix CA for one station (log covariance values were plotted for more readability) and b the
corresponding skyplot

elevation vectors: here for satellite i: k epochs and for satellite
j: u epochs. It follows that the covariance matrix for the first
station is given by:

C=
A

⎡
⎢⎢⎢⎣

C1,1
A C1,2

A C1,3
A . . . C1,n

A
C2,2

A C2,3
A C2,n

A
. . . C3,3

A
Cn,n

A

⎤
⎥⎥⎥⎦

CA is a symmetric positive-definite covariance matrix. The
diagonal blocks Ci, j

A of CA are also symmetric but not exactly
Toeplitz due to the small non-stationarity of the model. For
two stations, the global covariance matrix reads:

�temp=
[

CA CA,B

CA,B CB

]
and Qtemp = γ�temp,

γ being computed so that Qtemp(El = 90◦)
= 1 (cofactor matrix).

Figure 7a shows an example of the structure of such a
covariance matrix and Fig. 7b the corresponding skyplot.
The smoothness parameter were taken to ν = 5/6 and the
inverse of the Mátern correlation time is α = 0.006 s−1.

Figure 7a highlights that the fully populated covariance
matrices have a block diagonal structure; each sub matrices
showing globally a “Toeplitz” like form. This property could
be used in future to accelerate the inversion algorithm (Meu-
rant 1992). The computation of such fully populated covari-
ance matrices—one per batch—took only a few second for
the whole observation time and is faster than the Schön and
Brunner or Treuhaft and Lany model as no integration must
be performed.

4.4 Results

In the following plots, black stars correspond to results with
Qε called the EPS model, whereas blue or green circles are
obtained with the fully populated cofactor matrices Q called
CORR.

4.4.1 Baseline P0P1 of 1,000 m

Varying the smoothness factor
Figure 8 shows the ratio Ri (b) as well as the quadratic

deviation (a) of the batch coordinates when changing the
value of the smoothness parameter ν from 1/6 to 3/2 by
keeping α constant, α = 0.006 s−1. This value corresponds
to a physical relevant Mátern correlation time by taking
L0 = 6000m and u = 8−10 ms−1 (see also Schön and
Brunner 2008a). We plotted the results for two different val-
ues of the noise factor: β = 0.3 (blue circle) and β = 0
(green circle, no observation noise). Since the EPS model
(black stars) does not depend on the smoothness factor, the
results are not varying with ν and are only plotted for an
easier visual comparison.

For the CORR model, the ratio Ri is close to 1 for nearly
all values of ν by taking β = 0.3. The case β = 0 gives a
ratio Ri >> 1. As expected, the EPS model is showing an
overestimation of the precision, i.e. the standard deviation is
smaller than the coordinate scatter.

With a noise factor β = 0.3 and for the value of inter-
est ν = 5/6, the Up and East component have a smaller
quadratic deviation with the CORR model (but only at
the sub-millimeter level), whereas the N component devi-
ation giving a not significantly higher than the EPS model
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Fig. 8 Mean coordinate scatter δi (a) and ratio Ri (b) of the batch
solutions are plotted for the N , E and U component versus smoothness
factor ν for α = 0.006s−1. The values δi (ν = 3/2) are higher than the

other cases and not plotted for more readability. Green circles represent
the CORR model with β = 0, blue circles β = 0.3 and stars the EPS
model. c Zoom of a. d Zoom of b. Short baseline P0P1 (1,000 m)

(1.45 mm with EPS or 1.5 mm with CORR for ν = 5/6).
Higher values of the noise factor will lead to coordinate scat-
ters that are comparable with the EPS model. The value of
β = 0.3 gives the lowest quadratic deviation together with
ratios of 1, which is coherent with the definition β = nugget

sill of
the structure function of the double differenced observations
for the Seewinkel Network.

We can note moreover that the model with ν = 5/6 is
nearly equivalently performing than ν = 1/2 (exponen-
tial model); ν = 1 (AR(1) model) giving a lightly and
not significant higher standard deviation for the E and N
component. However, it should be noticed that the exponen-
tial model is giving a ratio Ri smaller than 1 for a com-
parable quadratic deviation, provided that the correlation

length is taken accordingly. Thus, we should prefer the tur-
bulence value of the smoothness parameter ν = 5/6 which
seems more reliable. Moreover, the physical interpretation is
easier and allows an accurate estimation of the correlation
time.

Varying the correlation time
In Fig. 9a, b, we varied the parameter α = κ0u

a for ν = 5/6.
It can be seen that value in the range [6e−3, 1e−2] s−1 are giv-
ing ratio close to 1 for β = 0.3 as well as a lower quadratic
deviation compared to the EPS model and the CORR model
with β = 0. High values of α, i.e. small temporal correla-
tions are leading asymptotically to the same result as the EPS
model.
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Fig. 9 Mean coordinate scatter δi (a) and ratio Ri (b) of the batch solu-
tions are plotted for the N , E and U component versus α for ν = 5/6.
The values δi (ν = 3/2) are higher than the other cases and not plot-

ted for more readability. Green circles represent the CORR model with
β = 0, blue circles β = 0.3 and stars the EPS model. c Zoom of a. d
Zoom of b. Short baseline P0P1 (1,000 m)

From the study of the least-squares results (Ri and δi ) for
the baseline length 1,000 m, the values of ν = 5/6 and α =
0, 006s−1 seems to give accurate and relevant results. These
values are coherent with values found by El-Rabbany (1994),
Radovanovic (2001) or more recently Jansson and Persson
(2013). It should be highlighted however that the differences
between the different models are not very important as long
as the Mátern parameters are taken in a reasonable interval.

1 s data rate
The results for the short baseline P0P1 at high data rate

(1 s) were also estimated with 45 batches à 600 epochs.

As before, the values of the smoothness parameters were
changed as well as the value of the correlation time. It was
found that the ratio Ri is close to 1 for ν = 5/6. However, in
this case, the noise factor was taken to 0.5, a slightly higher
value as for the 30 s data rate. The coordinate scatter δi is
smaller than those obtained with the EPS model, particularly
for the Up and East components, although only in the sub-
millimeter range. Once more, it was shown that varying the
smoothness parameter in a reasonable range does not influ-
ence the results significantly.

The conclusions are the same as for the 30s rate: taking
temporal correlations into account principally influence the
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Fig. 10 Mean coordinate scatter δi (a) and ratio Ri (b) of the batch solution are plotted for the N , E and U component versus α for ν = 5/6.
Green circles represent the C O R R model with β = 0.05, blue circles β = 0.3 and stars the EPS model. Long baseline P0P8 (8,000 m)

Fig. 11 Mean coordinate scatter δi (a) and ratio Ri (b) of the batch solution are plotted for the N , E and U component versus ν for α = 0.006s−1.
Green circles represent the CORR model with β = 0.05, blue circles β = 0.3 and stars the EPS model. Long baseline P0P8 (8,000 m)

a posteriori variance. The spatial repartition of the parame-
ter deviation (scatter) is not changing much as long as the
Mátern parameters are not too far from 1. However, the a
posteriori precision is more relevant and more accurate than
with elevation-dependent diagonal covariance matrices.

4.4.2 Baseline P0P8 of 8,000m

The same analysis was performed for the baseline P0P8
(8,000 m) with the same methodology. For a long baseline,
other noise processes interact and the correlations are not
only due to tropospheric fluctuations. Thus, in this part, we
aim to show the impact of changing the Mátern covariance

parameters α, ν on the least-squares adjustments. The results
are presented in Figs. 11 and 10. As for the previous base-
line P0P1, the value of the smoothness parameter (Fig. 11)
ν = 5/6 gives good results in term of ratio Ri and quadratic
deviation δi which is smaller than with the EPS model. It
should be mentioned that the noise factor of 0.05 gives the
best results and not β = 0.3 as previously for the short base-
line. It would mean that the nugget effect is close to 0, thus
the cofactor of the observation noise is much smaller than for
the short baseline of the Seewinkel Network.

The value of ν = 1 provides lower values of δi , however
with a light underestimation of the precision since Ri > 1.
This is in agreement with the intuitive results that double
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Fig. 12 a 8 h (30,000 s) of double differences for the 1,000 m baseline P0P1 and b 8 h (30,000 s) double differences for the 8,000 m baseline
P0P8. Each satellite pair is color coded, the sampling rate is 30 s

differences from long baseline (Fig. 12b) are less smooth
(Fig. 12a) than for shorter baseline since not all effects are
canceled by double differencing, like, i.g. ionospheric propa-
gation effects. This difference in term of standard deviation is
however not very important (sub-millimeter level) and should
be carefully interpreted by analyzing at the same time the val-
ues of Ri . This effect will be studied in the future for longer
baselines.

Figure 10 presents the results of the least-squares adjust-
ment when α is varied. As for the variation of the smoothness
factor, β should be set close to 0. The value of α = 0.006 s−1

gives at the same time an improved coordinate scatter com-
pared with the EPS model as well as a ratio of 1 for all three
components. Smaller values of α (0.002−0.004 s−1) gives
also small values of δi , however, as with higher values of ν,
with Ri >> 1.

The improvement of the CORR model withβ = 0.05, ν =
5/6, α = 0.006 s−1 is at the millimeter level for all three
components in comparison with the EPS model, the ratio
being at the same time more than 3 times better than with the
standard model which remains a great improvement.

5 Conclusion

Temporal correlations of GNSS phase measurements due to
tropospheric fluctuations are not taken in consideration in
the currently used weighted least-squares models. The result
is an overestimation of the a posteriori precision by up to a
factor 10. Results of the Kolmogorov turbulence theory were
used to develop a new and simplified model for the temporal

correlations thanks to the Mátern covariance family which
best suits to model both the temporal correlations for one
satellite and for two satellites observed at one or two sep-
arated stations. The concepts of separation distance as well
as inhomogeneity and anisotropy were taken in considera-
tion. Using Taylor’s frozen hypothesis, it was shown that a
smoothness parameter of 5/6 as well as a Mátern correlation
time between 125 and 200 s, in accordance with previous
studies, should correctly model temporal correlations due to
the tropospheric propagation. Moreover, it was stressed that
all other parameters such as the structure constant, the depth
or height of the troposphere as well as the vertical elongated
parameter or the outer scale length should be carefully cho-
sen.

In a case study, we used the data of the Seewinkel Network,
specially designed for research on the effect of tropospheric
fluctuations on GPS phase measurements, with weak mul-
tipath. Fully populated cofactor matrices were computed
and compared with diagonal matrices of type 1

sin2(El)
which

are widely used in current processing softwares. To model
other noise effects, an elevation-dependent diagonal matrix
was added to the temporal cofactor matrices. It was shown
that for the short baseline, fully populated cofactor matrices
improves the quadratic deviation of the coordinates at the
sub-millimeter level for short baseline and at the millimeter
level for long baseline) compared with elevation dependant
models. However, the a posteriori precision is more reliable
than with diagonal matrices, i.e. no overestimation occurs.
The results were similar for longer baseline (8,000 m) as
well as for higher data rate (1 s), although for long baseline
a higher smoothness factor than 5/6 could be taken in con-
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sideration. The new model leads globally to a slightly better
and physically more relevant results in terms of quadratic
deviation of the coordinates and a posteriori variance of the
unknowns than the exponential and AR(1) model. Thus the
proposed formula with a smoothness factor of ν = 5/6 is
promising, particularly for short baselines. As no double inte-
grations are performed such as in other models (Treuhaft and
Lany, Schön and Brunner) the computational time remains
manageable. Some simplifications due to the Toeplitz like
form of the covariance matrices could moreover lead to a
faster implementation.

Modeling temporal correlations with the turbulence theory
and Mátern cofactor function has lead to improved results in
the least-squares solution, being at the same time technically
feasible. In a next work, the impact on ambiguity resolutions
will be shown as well as the influence of outliers on the para-
meters. Depending on the baseline length the choosing of the
Mátern parameters could be moreover studied by minimum
likelihood estimation.
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Appendix: The Mátern covariance functions

A short introduction to the Mátern covariance family, also
called Whittle Mátern covariance family, von Karman model
(oceanography), Markov processes (geodesy) or autoregres-
sive models (meteorology) is presented here, giving the prin-
cipal features, vocabulary as well as dependencies. More
details can be exemplarily found in Stein (1999), Mátern
(1960), Guttorp and Gneiting (2005), Grafarend and Awange
(2012). Mátern covariance functions have been concretely
used by Handcock and Wallis (1994) to model meteorologi-
cal fields. Fuentes (2002) also derived a non stationary family
for the determination of air quality models.

A 2D autoregressive continuous process AR(1) called
Z (x, y) can be described by the stochastic differential equa-
tion:
(

∂

∂x2

2

+ ∂

∂y2

2

− α2
)

Z (x, y) = ε (x, y) , (21)

where ε (x, y) is white noise and α a constant. The corre-
sponding spectral density is given by

W (ω) ∝ 1

(ω2 + α2)2 , (22)

with ω2 = ω2
1 + ω2

2 for the 2D case (Whittle 1954). The sta-
tionary covariance between two points x, x′ for this process
is:

C(x, x′) = C (r) = (αr) K1 (αr) , (23)

where K1 is the modified Bessel function of 1st order,
r = ∥∥x − x′∥∥ for the isotropic case (‖.‖ being the norm
of the vector). Whittle (1954) presented such a covariance
function as a “natural spatial covariance” for the 2D case,
as the exponential-based covariance functions are for one-
dimensional processes.

Mátern (1960) used Whittle’s result and derived for any
dimension d a family of covariance functions based on an
isotropic spectral density:

W (ω) = 2ν−1φ � (ν + d/2) α2ν

πd/2(ω2 + α2)ν+d/2 , (24)

where ω2 = ω2
1 + ω2

2 + ... + ω2
d is the angular frequency,

� the Gamma function (Abramowitz and Segun 1972) and
ν > 0, α > 0, φ > 0 are constant parameters, d the dimen-
sion. The corresponding Mátern class of covariance functions
is positive definite and reads:

C (r) = φ (αr)ν Kν (αr) . (25)

The parameter ν can be seen as a measure of the differ-
entiability of the field (Stein 1999) thus “its smoothness”.
The constant α indicates how the correlations decay with
increasing distance. Its inverse is usually called the correla-
tion length in Kriging.

Smoothness parameter ν

Figure 13 highlights the influence of the smoothness para-
meter ν and the correlation length by simulating a random
field/time series corresponding to the covariance function
(Cressie 1993) using the eigenvalue decomposition of the
corresponding Toeplitz covariance matrix (Vennebusch et al.
2010). The same random vector was used for each simulation.

The smoothness parameter ν was varied from 1/6 to 3. As
ν increases, the time series are becoming less noisy for high
frequency, the long periodic variations are predominating.
The variance is decreasing with the smoothness parameter.

Correlation time
Figure 14 shows the influence of the parameter α. It was

varied from 0.25 to 1 by keeping ν constant to 1 to simulate
short and long correlation times.

Using the previous parametrization of the Mátern covari-
ance family, the variance is not varying with the correlation
time. The simulations of time series (Fig. 14b) highlight that
changes of the correlation time are not acting on the smooth-
ness of the field.

Other parametrizations
In the literature, further formulation of these covariance

family functions are given (Handcock and Wallis 1994)
where the parameter ρ, ρ > 0 is nearly independent of ν:
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Fig. 13 a Covariance function (Màtern family) with α = 1 by varying ν and b corresponding time series. The x axis was discretized of 200 equally
spaced points. c Corresponding correlation function

C (r) = 21−ν

� (ν)

(√
2νr

ρ

)ν

Kν

(√
2νr

ρ

)
,

with a spectral density of the form:

W (ω) = 2dπd/2� (ν + d/2) (2ν)ν

� (ν) ρ2ν

(
2ν

ρ2 + ω2
)−(ν+d/2)

.

This parametrization is said to be more stable when estimat-
ing the parameters ν, α with the maximum likelihood method
(Stein 1999). We made use of it to develop our model for GPS
phase correlations.

Shkarofsky (1968) presented a more general form of the
Mátern model by introducing a shape parameter δ > 0. The
corresponding correlation function reads:

C (r) = 1

δν Kν (δ)

(
r2

L2 + δ2
)ν/2

Kν

⎛
⎝
√

r2

L2 + δ2

⎞
⎠ .

Thus with δ = 0, the Mátern family is obtained.
If is half-integer, the covariance can be expressed in term

of a product of an exponential and a polynomial of order
p (Rasmussen and Williams 2006): for ν = 1/2, the expo-
nential model is obtained whereas for ν = 3/2, C (r) =(

1 +
√

3r
ρ

)
e−

√
3r
ρ , which corresponds to a Markov process

of second order and for ν = 5/2, a Markov process of third
order.

Advantage of the Mátern family
The advantages of the Mátern covariance functions’ fam-

ily for spatial interpolation are multiple, as developed in Stein
(1999). Its flexibility to model the smoothness of physical
processes (thus the rate of decay of the spectral density at high
frequencies) is particularly useful, as well as the possibility to
include non-stationarity or anisotropy (Fuentes 2002; Spöck
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Fig. 14 a Covariance function (Mátern family) with ν = 1 by varying α and b the corresponding time series. The x axis was discretized of 200
equally spaced points

and Pilz 2008). The degree of smoothness can be estimated
a priori or being fixed in advance and the number of parame-
ters to manage stays reasonable. The exponential (ν = 1

2 ) and
Gaussian case (ν = ∞) are two particular cases of this fam-
ily although the last one that represents an infinitely differen-
tiable field is concretely rarely found (Stein 1999; Handcock
and Wallis 1994).
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