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Abstract Although total least squares has been substan-
tially investigated theoretically and widely applied in practi-
cal applications, almost nothing has been done to simultane-
ously address the estimation of parameters and the errors-in-
variables (EIV) stochastic model. We prove that the variance
components of the EIV stochastic model are not estimable,
if the elements of the random coefficient matrix can be clas-
sified into two or more groups of data of the same accu-
racy. This result of inestimability is surprising as it indicates
that we have no way of gaining any knowledge on such an
EIV stochastic model. We demonstrate that the linear equa-
tions for the estimation of variance components could be
ill-conditioned, if the variance components are theoretically
estimable. Finally, if the variance components are estimable,
we derive the biases of their estimates, which could be sig-
nificantly amplified due to a large condition number.

Keywords Errors-in-variables model · Estimability ·
Nonlinear adjustment · Total least squares · Variance
components

1 Introduction

Errors-in-variables (EIV) models and total least squares
(TLS) have been substantially investigated theoretically for
more than a century (see, e.g., Adcock 1877; Kummell 1879;
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Pearson 1901; Deming 1931, 1934; Gerhold 1969; Golub and
Loan 1980; Huffel and Vandewalle 1991; Markovsky and
Huffel 2007; Schaffrin and Wieser 2008; Xu et al. 2012).
Recently, they have been applied to solve a wide variety of
science and engineering problems (see, e.g., Huffel and Van-
dewalle 1991; Markovsky and Huffel 2007; Schaffrin and
Wieser 2008; Schaffrin and Felus 2009). The TLS method is
designed to optimally estimate the unknown parameters β in
the following (linear or linearized) EIV model:

y = Aβ + ε, (1)

(see, e.g., Seber and Wild 1989; Huffel and Vandewalle
1991), where both y and A are measured with random errors,
collected in an n-dimensional vector ε and an (n ×m) matrix
εA, respectively, β is an m-dimensional deterministic vector
of unknown parameters to be estimated. If A in the EIV model
(1) is deterministically given, then (1) returns to a standard
linear model (see, e.g., Searle 1971).

When TLS is used to estimate the unknown vector β in
(1), one simultaneously considers the stochastic nature of
both measurements y and A instead of treating A as if it
were fixed. However, the sense of TLS optimality has been
interpreted differently, either under the framework of approx-
imation theory or from the point of view of statistical estima-
tion theory. The former may be referred to Golub and Loan
(1980) and the generalized TLS method by Huffel and Van-
dewalle (1989) and Markovsky and Huffel (2007), because
the so-called positive definite matrix of weighting there is not
the inverse of a variance–covariance matrix in the statistical
sense, as pointed out by Schaffrin and Wieser (2008) (see
also Xu et al. 2012). In this paper, we will affirm to interpret
the TLS approach from the statistical point of view. Under
the statistical framework, one often assumes zero means for
both the random errors of y and A in the EIV model (1). The
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variance–covariance matrices of the measured data y and A
are either assumed to be Iσ 2 and Iaσ 2 implicitly (see, e.g.,
Pearson 1901) or W−1

y σ 2 and W−1
a σ 2 explicitly (see, e.g.,

Deming 1931, 1934; Gerhold 1969; Schaffrin and Wieser
2008; Xu et al. 2012), where Ia is an identity matrix with
the dimension corresponding to the vectorized error matrix
of A, both Wy and Wa are the given weight matrices of y
and A, respectively. Here σ 2 is a positive (unknown) scalar,
which is always called the variance of unit weight in the
geodetic literature. In general, y is also assumed to be sto-
chastically independent of A, though such an assumption is
not absolutely necessary.

In practice, we can often encounter problems in physical,
statistical and engineering sciences in which: (i) y and A in
(1) are not necessarily of the same types of measurements. In
this case, it is inappropriate and/or unreasonable to assume
that we know the variance–covariance matrices for y and A
up to an unknown but identical positive scalar σ 2; and (ii)
the elements within each of y and A are not necessarily of
the same types of measurements either. Even if we assume
that y (and/or A) is of the same type of measurements, they
may be measured with instruments of different accuracy. For
problems of this kind, the corresponding stochastic model
should be more appropriately described as follows:

�y =
my∑

i=1

Uiyσ
2
iy, (2a)

�a =
ma∑

i=1

Uiaσ 2
ia, (2b)

where �y and �a are the variance–covariance matrices of
y and vec(A), respectively. Here vec(A) stands for the vec-
torized operation of A (see, e.g., Magnus and Neudecker
1988). All the Uiy and Uia are known and positive semi-
definite. σ 2

iy (i = 1, 2, . . . , my) and σ 2
ia (i = 1, 2, . . . , ma)

are called (unknown) variance components of y and vec(A),
respectively. One may also further consider the correlation
between y and A in the stochastic model (2) (see, e.g., Fang
2011; Snow 2012). Since the inclusion of correlation may not
create additional theoretical difficulty, it will not be further
pursued in this paper.

Although the general EIV model (1) with the stochastic
model (2) should be more appropriate to describe a wide
range of real-life EIV problems, little has ever been done to
simultaneously address the model parameters and the vari-
ance components. Limited related work has been done to esti-
mate both parameters and variance components in spatial and
generalized mixed effects models with measurement errors
using the maximum likelihood and quasi-likelihood methods
(Wang et al. 1998; Li et al. 2009) and the restricted maximum
likelihood and pseudo-likelihood methods (Wang and David-
ian 1996). Since the EIV model (1) is not the starting model of

these publications, these researchers used likelihood-based
methods instead of the TLS principle.

In this paper, we will focus on the weighted TLS estima-
tion of the unknown vector β in the functional EIV model
(1) and the estimation of both the variance components of ε

and εA in the stochastic model (2). Obviously, the stochas-
tic model (2) is significantly different from any conventional
variance component models in the sense that there exist no
direct redundant observations of A for an independent assess-
ment of εA. From this point of view, we are interested in
investigating the following questions: (i) whether the vari-
ance components of (2) can be estimated; (ii) does the esti-
mation of variance components exhibit any special numeri-
cal and/or statistical behavior; and (iii) Wang and Davidian
(1996), Wang et al. (1998) and Li et al. (2009) performed an
asymptotic bias analysis of the so-called naive estimator of
variance components of the measurements y for spatial and
generalized mixed effects models with measurement errors
on the basis of two assumptions: 1) by simply ignoring the
measurement errors of A as if they were known exactly; and
2) by assuming that the number of measurements y tends
to infinity. They did not derive the finite sample biases for
the likelihood-based estimated variance components. Unlike
Wang and Davidian (1996), Wang et al. (1998) and Li et al.
(2009), our emphasis in this paper will be to perform a finite
sample bias analysis for the estimated variance components
in connection with the EIV models (1) and (2) by fully taking
the random errors of A into account.

To answer the questions posed above, we will start with
quadratic forms of the residuals of the measured data y and
A to estimate the variance components. The paper is thus
organized as follows. Section 2 will first reformulate the
EIV model as a nonlinear adjustment problem and use the
weighted TLS method to estimate the parameters β. Dif-
ferent solutions methods will be presented. In Sect. 3, we
will first discuss adapting variance component estimation to
nonlinear models in general and then adapting the minimum
norm quadratic unbiased estimation (MINQUE) method to
the nonlinear EIV model in particular. Two special structures
of variance components will also be discussed. We will show
in Sect. 4 that a certain structure of EIV variance components
that is commonly assumed and often encountered in practice
is not estimable. In other cases, if the variance components
are estimable, the estimation of variance components in the
EIV models (1) and (2) could become unstable. Instability
will then be demonstrated through numerical simulations.
To warrant a high quality and stable estimation of variance
components, regularization may be needed, which deserves a
completely separate paper to discuss and will not be pursued
here any further. Unlike the asymptotic bias analysis by Wang
and Davidian (1996), Wang et al. (1998) and Li et al. (2009),
we will derive the finite sample biases of the estimated vari-
ance components in Sect. 5, provided they are estimable.
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Variance components in errors-in-variables 721

2 Parameter estimation

2.1 Reformulation of the EIV models (1) and (2)
as a nonlinear Gauss–Markoff model with variance
components

To investigate the variance component estimation of the func-
tional EIV model (1), we follow Xu et al. (2012) to equiva-
lently rewrite the functional EIV model (1) as the following
nonlinear Gauss–Markoff model:

y = Aβ + ε, (3a)

A = A + εA, (3b)

which can also be equivalently rewritten in vector form as
follows:

y = (βT ⊗ In)a + ε, (4a)

a = a + εa, (4b)

or in an even more compact form:
[

y
a

]
=

[
(βT ⊗ In)a

a

]
+

[
ε

εa

]
, (5)

where A is the expectation of A in the sense that each element
of A is the expectation of the corresponding element of A,
and the elements of εA are the random errors of the observed
matrix A, ⊗ stands for the Kronecker product, In is an (n × n)

identity matrix, a = vec(A), a = vec(A) and εa = vec(εA).
Schaffrin and Snow (2010) reformulated the functional EIV
model (1) as a system of nonlinear Gauss-Helmert condition
equations. It is obvious from (4a) that the expectation of y
is a vector of nonlinear functions of both β and a. In case
that the elements of A are not functionally independent or
that some of its elements are deterministic, we can follow
Xu et al. (2012) to reformulate the functional EIV model (1)
as a partial EIV model.

In the remainder of this paper, we will focus on the non-
linear model (3) or (5). The stochastic model for ε and εa

is the same as formulated in (2), which can be equivalently
represented in one matrix for both the measurements y and
A as follows

� =
[

�y 0
0 �a

]

=

⎡

⎢⎢⎣

my∑
i=1

Uiyσ
2
iy 0

0
ma∑
i=1

Uiaσ 2
ia

⎤

⎥⎥⎦

=
my∑

i=1

[
Uiy 0
0 0

]
σ 2

iy +
ma∑

i=1

[
0 0
0 Uia

]
σ 2

ia

=
my∑

i=1

Uiσ
2
iy +

ma∑

i=1

Uiσ
2
ia

=
my+ma∑

i=1

Uiσ
2
i , (6)

where the matrices Ui corresponding to σ 2
iy and σ 2

ia are given,
respectively, as follows:

Ui =
[

Uiy 0
0 0

]
,

for i = 1, 2, . . . , my and

Ui =
[

0 0
0 Uia

]
,

for i = (1+my), (2+my), . . . , (my +ma). In this paper, we
will assume that both �y and �a are invertible. Nevertheless,
this assumption is not really necessary. For example, if �a

is singular, one can follow Xu et al. (2012) to reformulate
the original EIV model into a partial EIV model, where the
new variance–covariance matrix is only restricted to those
independent random elements of A and becomes invertible.
With the reformulation of (5) and the stochastic model (6), it
has become clear that the EIV model (1) can be identically
treated mathematically as a nonlinear Gauss–Markoff model
with unknown variance components; obviously, this is the
most natural way to handle the estimation of variance com-
ponents in EIV models, since conventional nonlinear estima-
tion theory and methods can be adapted naturally. In other
words, one can now freely use any numerical methods to
solve for the parameter estimate of the nonlinear model and
freely adopt any appropriate methods to estimate the variance
components.

2.2 The weighted TLS estimate of the parameters
without linearization

A procedure of variance component estimation almost
always consists of two iteratively looped steps: one to com-
pute the parameters and the other to compute the vari-
ance components. Given a set of initial values σ 2

0iy (i =
1, 2, . . . , my) and σ 2

0ia (i = 1, 2, . . . , ma) for the unknown
variance components in (2), we can solve the following
weighted TLS minimization problem:

min: S(β, a) = [(βT ⊗ In)a − y]T �−1
0y [(βT ⊗ In)a − y]

+(a − a)T �−1
0a (a − a), (7)

to estimate the parameters β and a, where �0y and �0a

are the initial variance–covariance matrices of y and a, with
the unknown variance components replaced by the corre-
sponding given initial values σ 2

0iy (i = 1, 2, . . . , my) and

σ 2
0ia (i = 1, 2, . . . , ma), respectively.
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Differentiating the objective function S(β, a) of (7) with
respect to β and a yields:

∂S(β, a)

∂β
= 2A

T
�−1

0y (Aβ − y), (8a)

∂S(β, a)

∂a
= 2�−1

0a (a − a)

+2(β ⊗ In)�−1
0y {(βT ⊗ In)a − y}. (8b)

By equating the partial derivatives (8) to zero, we can
obtain the weighted TLS estimates of β and a, which are,

respectively, denoted by β̂ and â (and accordingly Â). They
are given as follows:

β̂ =
[
(Â)T �−1

0y Â
]−1

(Â)T �−1
0y y, (9a)

â = [�−1
0a + β̂(β̂)T ⊗ �−1

0y ]−1[�−1
0a a + β̂ ⊗ (�−1

0a y)]. (9b)

Since the dimension of �0a is much larger than that of
�0y , it is not desirable to directly invert the normal matrix
[�−1

0a + β̂(β̂)T ⊗ �−1
0y ] in (9b). By following the inverse of

a summed matrix (Magnus and Neudecker 1988), we can
rewrite the inverse of this normal matrix:

[�−1
0a + β̂(β̂)T ⊗ �−1

0y ]−1

= �0a − �0a(β̂ ⊗ In)E−1((β̂)T ⊗ In)�0a,

where

E = �0y + ((β̂)T ⊗ In)�0a(β̂ ⊗ In). (9c)

As a result, (9b) can finally be simplified after some technical
derivations as follows

â = a + �0a(β̂ ⊗ In)E−1(y − Aβ̂). (9d)

Obviously, (9d) should be much more efficient to compute â
than (9b), in conjunction with (9a).

The weighted TLS estimates of β and a in (9) are numer-
ically solved iteratively. Such an algorithm is known to be a
variant of the Gauss–Newton method (see, e.g., Dennis and
Schnabel 1996; Xu et al. 2012) and converges linearly. If
both �y and �a are identity matrices of different orders, then
the estimate of β can be elegantly solved as the eigenvector
problem with the least eigenvalue (see, e.g., Pearson 1901;
Golub and Loan 1980); otherwise, alternative algorithms can
be found in, e.g., Huffel and Vandewalle (1991), Markovsky
and Huffel (2007), Schaffrin and Wieser (2008). We should
note that the weighted TLS estimates (9) of β and a depend on
σ 2

0iy (i = 1, 2, . . . , my) and σ 2
0ia (i = 1, 2, . . . , ma). Thus

they should be iteratively solved using the updated set of the
estimated variance components to be described in Sect. 3.

2.3 Alternative iterative solution of the nonlinear
Gauss–Markoff model through linearization

An alternative way to solve the EIV model (5) once it has been
formulated as a nonlinear Gauss–Markoff model is based on
linear approximation to the corresponding nonlinear model;
this linear approximation procedure has been well known and
elegantly documented in the widely accessible mathematical
literature (see, e.g., Marquardt 1963; Bates and Watts 1980;
Seber and Wild 1989; Björck 1996; Dennis and Schnabel
1996; Fletcher 2000). Geodesists may know better the pub-
lication by Pope (1972), which is based on the procedure
of Marquardt (1963). Applying the Taylor expansion to the
nonlinear observation equations (5) at the approximate val-
ues β i and ai of the ith iteration and truncating it up to the
linear approximation, one can obtain the following linearized
observation equations:
[

�y
�a

]
=

[
y − Aiβ i

a − ai

]

≈
[

Ai βT
i ⊗ In

0 Ia

] [
δβ i
δai

]
+

[
ε

εa

]
, (10)

where δβ i = β − β i and δai = a − ai . As a result, the well-
known weighted LS estimate of δβ i and δai can be readily
obtained, which will be denoted by δβ̂ i and δâi , respectively;
these estimates are then used to compute the approximate
values β i+1 = β i + δβ̂ i and ai+1 = ai + δâi for the next
iteration, starting from some initial values β0 and a0. The
iteration will be terminated when |δβ̂s | < e and |δâs | < e
at the sth step of iteration, where e is some predefined very
small positive quantity. Thus, the final weighted LS estimates
are β̂ = βs−1 + δβ̂s and â = as−1 + δâs ; they should
be essentially equal to the corresponding estimates given in
Sect. 2.2.

We may note that during the iteration, say at the ith itera-
tion, one may compute the following quantities:

[
ε̂i

ε̂ai

]
=

[
y − Aiβ i

a − ai

]
−

[
Ai βT

i ⊗ In

0 Ia

] [
δβ̂ i

δâi

]
. (11)

We must note that ε̂i and ε̂ai are not the residuals of measure-
ments y and a in the least squares sense. Actually, as is well
known (see, e.g., Marquardt 1963; Bates and Watts 1988;
Seber and Wild 1989; Björck 1996; Dennis and Schnabel
1996; Fletcher 2000), when the iteration described above
converges mathematically, then δβ̂s = 0 and δâs = 0. In
other words, when the solutions converge to the weighted
LS estimates β̂ and â, the weighted LS estimates of residuals
are given by

[
ε̂

ε̂a

]
=

[
y − Âβ̂

a − â

]
. (12)

123



Variance components in errors-in-variables 723

Since residuals are almost always denoted using the letter
r in the above widely accessible mathematical and statistical
literature, we will follow them and denote the residuals of y
and a by ry and ra , respectively. Thus, we have

ry = y − Âβ̂ = ε̂, (13a)

ra = a − â = ε̂a . (13b)

3 MINQUE estimation of variance components

For a linear model with a deterministic design matrix A
and the stochastic model (2a), there exist a number of well-
established methods to estimate the variance components
of (2a) such as Helmert method (Helmert 1907; Schaffrin
1983; Grafarend 1985), minimum norm quadratic unbiased
estimation (MINQUE) (Rao 1971a; Rao and Kleffe 1988),
minimum variance quadratic unbiased estimation (see, e.g.,
Rao 1971b; LaMotte 1973; Koch 1999), maximum like-
lihood and marginal/restricted maximum likelihood meth-
ods (see, e.g., Kubik 1966, 1970; Hartley and Rao 1967;
Patterson and Thompson 1975; Koch 1986) as well as the
least squares method of variance components (Pukelsheim
1976; Teunissen and Amiri-Simkooei 2008). The first three
classes of methods are intuitively based on quadratic forms
of measurements to construct an estimator for the variance
components, while the maximum likelihood and marginal
maximum likelihood methods have to assume that the joint
probability distribution of measurements is given. In con-
trast, the least squares method is purely algebraic in nature.
Pukelsheim (1976) used the residuals of measurements to
form the derived linear model with variance components
as the unknown model parameters. The corresponding esti-
mator of variance components is unbiased. After a further
assumption on the fourth moments of measurement errors,
Pukelsheim (1976) proved that the least squares estimator of
variance components is also of minimum variance (see also
Teunissen and Amiri-Simkooei 2008). Pukelsheim and Styan
(1978) further extended the least squares method of variance
component estimation to a multivariate linear model. For
more details on variance component estimation, the reader is
referred to Helmert (1907), Rao and Kleffe (1988), Searle et
al. (1992) and Koch (1999) in the case of linear models, and
Xu et al. (2006) (see also Koch and Kusche 2007; Xu et al.
2007b), Xu (2009) and Eshagh (2010, 2011) in the case of
ill-posed linear models.

In this paper, we will focus on the MINQUE method for
the variance component estimation with the EIV models (1)
and (2). We will not assume any probability distributions
and the fourth moments of the random errors of both y and
A. Although the MINQUE method is reported to possess
almost all good properties of variance component estima-

tion (if estimable) in the linear model such as invariance,
minimum norm, and further the minimum variance under
the extra assumption of normal distributions (see, e.g., Rao
1971b; LaMotte 1973; Pukelsheim and Styan 1978; Rao and
Kleffe 1988; Wulff and Birkes 2005), these nice statistical
properties are not valid anymore here, since the EIV model
(1) is essentially nonlinear. From this point of view, one may
choose to use any method of his/her choice for variance com-
ponent estimation, for two reasons: (i) there exist no superior
methods for variance component estimation in linear models
that are mathematically proved to perform the best in any sit-
uation; and (ii) optimal statistical properties of any variance
component estimation methods established for linear models
are generally not valid for nonlinear models.

3.1 Adapting variance component estimation methods
to nonlinear models

For linear models of the form y = Aβ+ε with a non-random
design matrix A, E(ε) = 0 and E{εεT } = � = ∑p

i=1 Uiσ
2
i ,

most variance component estimation methods lead to a set
of equations Sσ = q to be solved for σ = [σ 2

1 , σ 2
2 , . . . , σ 2

p],
where S and q are functions of the positive (semi-)definite
matrices Ui , the design matrix A and the observations y or
the residual estimates r = y − Aβ̂. In particular, the design
matrix A enters through the projection matrix:

ZA = A(AT �−1
0 A)−1AT �−1

0 = AN−1AT �−1
0 , (14)

on the range (column space) R(A) of A, where N =
AT �−1

0 A and �0 = ∑p
i=1 Uiσ

2
i0 is based on some approx-

imate values σ 2
i0 of σ 2

i . For example, in the case of the
MINQUE method, we have the elements si j of S and those
qi of q as follows:

si j = tr{�−1
0 (I − ZA)Ui�

−1
0 (I − ZA)U j }

= tr{PUi PU j } (15a)

for i, j = 1, 2, . . . , p and,

qi = rT �−1
0 Ui�

−1
0 r, (15b)

for i = 1, 2, . . . , p, where

P = �−1
0 (I − ZA)

= �−1
0 (I − AN−1AT �−1

0 )

= �−1
0 (I − H�−1

0 )

= �−1
0 R, (15c)

with H = AN−1AT and R = I − H�−1
0 . Here tr(·) stands

for the trace of a square matrix.
In the linear case, Aβ̂ = ZAy is the weighted LS estimate

of the observables Aβ. It is the closest point to y from the
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linear subspace R(A). In the case of a nonlinear model y =
f(β) + ε, the least squares solution seeks the estimate β̂

such that f(β̂) = ZM(y) is the closest point to y from the
nonlinear manifold M = {f(β)|β ∈ Rm} ⊂ Rn . In a small
neighborhood of f(β̂), the manifold M is close to the linear
manifold spanned by the rows of the matrix:

A(β̂) = ∂f(β)

∂βT

∣∣∣∣
β=β̂

and the nonlinear projector ZM(y) gives the same value as
ZA(β̂)

, where

ZA(β̂)
= A(β̂){[A(β̂)]T �−1

0 A(β̂)}−1[A(β̂)]T �−1
0 . (16)

This means that a variance component estimation method
can be adapted to a nonlinear model within a local type of
approximation around f(β̂). By simply replacing ZA with
ZA(β̂)

in the equations Sσ = q as well as (y − Aβ̂) with

its nonlinear counterpart r(= y − f(β̂)). It must be strongly
emphasized that the method of linearization used here for
obtaining the least squares solution β̂ and hence the resid-
uals r and A(β̂) is completely irrelevant to the suggested
adaptation. We have already given two alternative methods
in Sects. 2.2 and 2.3.

We should also note that although the matrix S is computed
at the point of β̂, it is mathematically admissible to treat β̂

as some approximate values only to linearize the nonlinear
model, as exactly done, for example, by Marquardt (1963)
and Pope (1972) . In other words, it is appropriate to treat
the matrix S as non-random. Actually, one must clearly dis-
tinguish two basic concepts: numerical solution and statis-
tical evaluation of the solution. From the point of view of
numerical solution, the matrix S is simply a consequence of
linearization to iterate for the solution to a nonlinear model.
One can completely avoid the matrix S using other numeri-
cal methods such as simulated annealing, genetic algorithms
and/or global optimization methods of deterministic type.
On the other hand, to statistically evaluate the accuracy of
the optimal solution, it is totally incorrect to treat the matrix
S as random and then apply the error propagation law to com-
pute the accuracy of the solution; instead, in this case, one
must depend on the differential geometry of the original non-
linear model, as well documented in, for example, Bates and
Watts (1980, 1988) and Seber and Wild (1989) for the error
estimate of the weighted LS solution in nonlinear models.

3.2 Adapting the MINQUE method to the EIV model

The MINQUE method for estimation of variance components
was proposed by Rao (1971a) (see also Rao and Kleffe 1988;
Searle et al. 1992) to minimize the Euclidean norm of B in
the quadratic form yT By of measurements in the standard

linear model with a deterministic design/coefficient matrix
A, subject to constraints such as invariance and unbiased-
ness. Since the functional EIV model (4) is nonlinear, the
MINQUE method is not directly applicable to estimate the
variance components in (2), and as a result, does not neces-
sarily possess all its optimal properties in the case of linear
Gauss–Markoff models. From this point of view, the choice
of the MINQUE method in this paper is basically due to its
convenience of using the positive (semi-)definite matrices
Uiy and U ja to naturally construct quadratic forms.

For adapting the MINQUE method to the EIV model (5),
we need only to note that the design matrix in (10) is accord-
ingly given by

A(β̂, â) =
[

Â (β̂)T ⊗ In

0 Ia

]
. (17)

With the linearized EIV model (10) and the stochastic model
(2), we can now adapt the MINQUE method to estimate the
variance components. For brevity of notations, we collect the
variance components of y in (2a) and those of a (or A) in (2b)
into two vectors σy and σa , respectively. The residuals of y
and a from the nonlinear weighted TLS adjustment by ry and
ra have been defined in (13a) and (13b), respectively.

More specifically, we compute all the corresponding
matrices such as N, ZA, P, H and R in (15) with the new
design matrix A(β̂, â) of (17) and denote the corresponding
matrix P of (15c) by:

P =
[

Py Pya

Pay Pa

]
.

As a result, the corresponding MINQUE estimates of σy

and σa are derived by solving the following system of linear
equations:

[
Sy Sya

Say Sa

] [
σ̂y

σ̂a

]
=

[
qy

qa

]
, (18)

where the elements of Sy , Sa and Sya are computed, respec-
tively, by the following equations:

si j
y = tr{PUi PU j }

= tr

{[
Py Pya

Pay Pa

] [
Uiy 0
0 0

] [
Py Pya

Pay Pa

] [
U j y 0

0 0

]}

= tr(PyUiyPyU j y), (19a)

for i, j = 1, 2, . . . , my ,

si j
a = tr{PUi PU j }

= tr

{[
Py Pya

Pay Pa

] [
0 0
0 Uia

] [
Py Pya

Pay Pa

] [
0 0
0 U ja

]}

= tr(PaUiaPaU ja), (19b)
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for i, j = 1, 2, . . . , ma , and

si j
ya = tr{PUi PU j }

= tr

{[
Py Pya

Pay Pa

] [
Uiy 0
0 0

] [
Py Pya

Pay Pa

] [
0 0
0 U ja

]}

= tr(PayUiyPyaU ja), (19c)

for i = 1, 2, . . . , my and j = 1, 2, . . . , ma . The matrices
Py , Pa and Pya are respectively equal to

Py = �−1
0y − �−1

0y Hy�
−1
0y ,

Pa = �−1
0a − �−1

0a Ha�−1
0a ,

and

Pya = −�−1
0y Hya�−1

0a .

The matrices Hay , Ha and Hy have been given in the Appen-
dix. The elements of the two (sub-)vectors qy and qa on the
right hand side of (18) are defined as

qi
y =

[
ry

ra

]T
[

�−1
0y 0
0 �−1

0a

] [
Uiy 0
0 0

] [
�−1

0y 0
0 �−1

0a

] [
ry

ra

]

= rT
y �−1

0y Uiy�
−1
0y ry, (20a)

for i = 1, 2, . . . , my , and

qi
a =

[
ry

ra

]T
[

�−1
0y 0
0 �−1

0a

] [
0 0
0 Uia

] [
�−1

0y 0
0 �−1

0a

] [
ry

ra

]

= rT
a �−1

0a Uia�−1
0a ra, (20b)

for i = 1, 2, . . . , ma .
Substituting (19) and (20) into (18), we can readily obtain

the MINQUE estimates of the variance components σy and
σa :
[

σ̂y

σ̂a

]
=

[
Sy Sya

Say Sa

]−1 [
qy

qa

]
, (21)

if the coefficient matrix of (18) is regular or invertible.
Before closing this subsection, we make four remarks on

the MINQUE estimates of the variance components σy and
σa . (i) Although we have derived the estimates of the vari-
ance components through the linearization of the nonlinear
EIV model, an alternative approach is to directly construct
MINQUE-like quadratic forms with the nonlinear residuals,
expand the nonlinear residuals to the linear approximation,
apply the expectation operators to the quadratic forms with
the linearized residuals and finally derive the equations (18)
by removing the expectation operators, as can be clearly seen
in Sect. 5; (ii) following the method of estimability analysis
by Xu et al. (2007a), the total number of variance compo-
nents σy and σa cannot be larger than (n −m); otherwise, the
coefficient matrix in (18) would not be regular anymore and,
as a result, σy and σa are not estimable; (iii) the MINQUE
estimates of σy and σa are exact only under the assumption

of linear models. Since the original EIV model (1), or equiv-
alently (4), is essentially nonlinear, we can only adapt the
MINQUE method to estimate σy and σa , as given by (21).
Thus, from the theoretical point of view, all the good statis-
tical properties of the MINQUE estimate of variance com-
ponents in the linear model such as invariance, unbiasedness
and minimum variance (in the case of normal distributions)
do not hold anymore in the nonlinear EIV model (4); and (iv)
If the variance components are estimable, one can start with
an initial set of variance components σ 2

0iy (i = 1, 2, . . . , my)

and σ 2
0ia (i = 1, 2, . . . , ma), and then use (18) to compute

the iterative MINQUE estimates of σy and σa numerically,
with the elements of qy and qa given by (20).

3.3 Two special structures of variance components

The first special structure of variance components assumes
only two variance components in (2), one for the measure-
ments y and the other for the measured matrix data a. As a
result, the variance component model (2) can now be rewrit-
ten as follows:

�y = W−1
y σ 2

y , (22a)

�a = W−1
a σ 2

a , (22b)

where Wy and Wa are the weight matrices of y and a, respec-
tively.

With the stochastic structure (22), according to Horn et al.
(1975) and Rao and Kleffe (1988), it is easy to prove that
when the MINQUE estimates of σ 2

y and σ 2
a using (18) con-

verge in association with the linearized observation model
(10), and after some (light) derivations, we must equivalently
have the following simplified equations:

σ̂ 2
y = rT

y Wyry/tr(Ry), (23a)

to estimate the variance component σ 2
y , and

σ̂ 2
a = rT

a Wara/tr(Ra), (23b)

to estimate the variance component σ 2
a . Ry and Ra have been

defined in (49) of the Appendix, except that now the initial
values of σ 2

y and σ 2
a are replaced by σ̂ 2

y and σ̂ 2
a , respectively.

Actually, the two quantities tr(Ry) and tr(Ra) serve as the
degrees of freedom for σ̂ 2

y and σ̂ 2
a , respectively, and are often

called the redundant observational numbers in the geodetic
literature. Since both Ry and Ra contain σ̂ 2

y and σ̂ 2
a , the esti-

mates of variance components as given by (23) have to be
solved iteratively.

The second special structure of variance components
assumes one variance component for the measured matrix
data a only and further assume that the measurements y con-
sist of a number of independent subgroups or different types
of measurements. Then the corresponding variance compo-
nent model (2) can now be rewritten as follows:
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�y =

⎡

⎢⎢⎢⎢⎣

W−1
1 σ 2

1y 0 · · · 0
0 W−1

2 σ 2
2y · · · 0

...
...

. . .
...

0 0 · · · W−1
my

σ 2
my y

⎤

⎥⎥⎥⎥⎦
, (24a)

�a = W−1
a σ 2

a , (24b)

where Wi are the weight matrices of the corresponding
subgroups or types of measurements y, respectively, and
σ 2

iy (i = 1, 2, . . . , my) are the corresponding variance com-
ponents of y.

Following the same rationale as in the derivation of (23),
we can readily obtain the estimates of the variance compo-
nents σ 2

iy (i = 1, 2, . . . , my) and σ 2
a below:

σ̂ 2
iy = rT

iyWi riy/tr(Riy), (25a)

for i = 1, 2, . . . , my , and

σ̂ 2
a = rT

a Wara/tr(Ra), (25b)

where riy and Riy are the residual sub-vectors of ry and the
diagonal submatrices of Ry , corresponding to the ith sub-
group or type of measurements y, respectively.

4 Estimability and stability analysis

From the point of view of parameter estimation, the EIV
model (1) can be equivalently reformulated as a nonlinear
Gauss–Markoff model. However, as far as the variance com-
ponents are concerned, the combination of the functional
model (1) with the stochastic model (2) is very special. Look-
ing at the second part (3b) or (4b) of the EIV models, we
clearly see that the measurements A contribute no direct
redundant measurements to the estimation of the variance
components of A. In this section, we will investigate how
this peculiarity would affect the estimation of variance com-
ponents described in (2a) and (2b). We emphasize that the
following proof of inestimability of variance components, in
association with the EIV model (4) with the stochastic model
(27), depends solely on quadratic forms of the residuals of the
measurements y and A; the proof is independent of methods
used for variance component estimation, though MINQUE
and/or Helmert methods may be formally applied to derive
an estimator of variance components, as is the case in Sect. 3.

4.1 Estimability analysis

For a standard linear model, namely, the linear model (1)
with a deterministic (or non-random) coefficient matrix A,
together with the stochastic model (2a), a linear function
fT σ of the variance components is said to be unbiasedly

estimable, if there exists a quadratic estimator yT By such
that

E(yT By) = fT σ , (26)

where f is a given vector, σ is the vector consisting of all
the variance components of y to be estimated, and B is sym-
metric and should be independent of both β and σ (or �y).
Simply speaking, variance components are estimable, if they
can be uniquely determined from the derived normal equa-
tions for the variance components. In other words, the normal
matrix of the linear equations for the variance components
can be regularly inverted. For more details on the concept of
estimability, the reader is referred to Pincus (1974), Schaffrin
(1983), Rao and Kleffe (1988) and Xu et al. (2007a).

In this section, the question of our concern is whether the
variance components of the EIV model (1) can be uniquely
determined from the given measurements y and A. To start
with an estimability analysis, let us assume a commonly
encountered stochastic structure (2a) for the measurements y
and further assume that the elements at each column of A are
of the same type of measurements with the same accuracy. In
other words, the variance structure for the elements at the jth
column of A can be uniquely represented using one unknown
variance component, i.e., �aj = I σ 2

ja . Accordingly, the sto-
chastic model (2b) for the random matrix A can be rewritten
as follows:

�a =
m∑

i=1

Uiaσ 2
ia = diag(σ 2

ia) ⊗ In, (27)

where Uia is a diagonal block matrix with its ith block being
equal to the identity matrix In , and diag(σ 2

ia) is a diagonal
matrix with its ith diagonal element being equal to σ 2

ia .
Under the assumption of (27) and given a set of initial

values σ 2
0iy (i = 1, 2, . . . , my) and σ 2

0ia (i = 1, 2, . . . , m),
we can obtain

�0a(β̂ ⊗ In) = (diag(σ 2
0ia) ⊗ In)(β̂ ⊗ In) = d0β ⊗ In,

(28a)

where

d0β = diag(σ 2
0ia)β̂ =

⎡

⎢⎢⎢⎣

σ 2
01a β̂1

σ 2
02a β̂2

...

σ 2
0ma β̂m

⎤

⎥⎥⎥⎦ .

Inserting (28a) into (9c) yields

E = �0y + cβIn, (28b)

where

cβ = dT
0β β̂ =

m∑

i=1

σ 2
0ia β̂2

i .
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Substituting (28a) and (28b) into (9d), we can readily
obtain the weighted TLS estimate for each column of A,
which is denoted by âi and given as follows:

âi = ai + σ 2
0ia β̂i E−1(y − Aβ̂) (29)

for i = 1, 2, . . . , m, where âi and ai are the ith columns

of Â and A, respectively. As a result, the residual vector for
each column of A is equal to

ria = −σ 2
0ia β̂i E−1(y − Aβ̂) (30)

for i = 1, 2, . . . , m. It is surprising to see from (30) that all
the residual vectors ria of columns of A are proportional to
the transformed vector E−1(y − Aβ̂). In other words, under
the stochastic models (2a) and (27), the correction vector
to each column of A is proportional to E−1(y − Aβ̂) and its
varying coefficient depends on the initial value of the variance
component and the estimated parameter of the correspond-
ing column elements of A, i.e., σ 2

0ia and β̂i . More precisely
speaking, if we denote the ratios of the corresponding ele-
ments among the residual vectors ria by r1a : r2a : . . . : rma ,
then we have

r1a : r2a : . . . : rma = (σ 2
01a β̂1) : (σ 2

02a β̂2) : . . . : (σ 2
0ma β̂m).

(31)

Since the residual vectors ria of (30) are the starting point
of any variance component estimation, and after taking into
account the following equality:

E(rT
a �−1

0a Uia�−1
0a ra) = E(rT

iaria)/σ 4
0ia,

we have

E(rT
1ar1a/σ 4

01a) : E(rT
2ar2a/σ 4

02a) : . . . : E(rT
marma/σ 4

0ma)

= β2
1 : β2

2 : . . . : β2
m, (32)

up to the second-order approximation of ε and εa . The ratio
(32) is mathematically equivalent to saying that the submatrix
Sa in the system of equations for the variance components is
singular. Thus, we can immediately conclude from (30), (31)
and (32) that the variance components under the combina-
tion of the stochastic models (2a) and (27) are not estimable.
This result of inestimability indicates that we have no way of
gaining any knowledge about such an EIV stochastic model
from the measurements y and A. Our result of inestimability
remains valid even if there are only two unknown variance
components for the elements of A so far as each group of
elements is of the same accuracy. The proof is trivial, since
one can simply add constraints on σ 2

ia (i = 1, 2, . . . , m) in
(27).

If we further assume �y = σ 2
y In , then (29) and (30),

respectively, become

âi = ai + σ 2
0ia β̂i

σ 2
0y + cβ

(y − Aβ̂) (33)

and

ria = − σ 2
0ia β̂i

σ 2
0y + cβ

(y − Aβ̂) (34)

for i = 1, 2, . . . , m. Obviously, the residual vectors (34)
also satisfy the relation of ratios (31).

For the EIV model of regression type, namely,

y = 1β0 + A1β1 + ε, (35)

where y and ε have been defined as in (1), 1 is a column
vector with each element being equal to unity, β0 and β1 are
the scalar and (m × 1) unknown parameters to be estimated,
and the elements of A1 are measured with random errors,
our result of inestimability remains valid, if A1 has the same
stochastic structure as defined by (27) (with a varying num-
ber of variance components σ 2

ia between two and m). The
proof can be completed by following the partial EIV formu-
lation of Xu et al. (2012) and then using the same rationales
as used to prove the inestimability in this section. Since all
the derivations are technical, we will not repeat the proof
here.

4.2 Stability analysis

For arbitrary positive semi-definite matrices Uiy and Uia in
the stochastic models (2a) and (2b), we cannot obtain elegant
inestimability results, as given in the above for the stochastic
model (27). Nevertheless, after taking (9d) into account, we
can rewrite the residuals (13) of the measurements y and a
as follows:

ry = y − Âβ̂, (36a)

ra = −�0a(β̂ ⊗ In)E−1(y − Aβ̂). (36b)

Since Â is essentially the addition of A and its correction
matrix δA which can be directly reconstructed from −ra , i.e.,
vec(δA) = −ra , we can rewrite (36a) as

ry = y − Aβ̂ − δAβ̂. (36c)

Obviously, if δA is small, then both the residual vectors ry

and ra will be dominated by (y − Aβ̂). It is also clear from
(36b) that the (n ×m) residual elements of A are determined
completely through the combination of only the n elements
of (y − Aβ̂), which are further related to the residuals ry of
y. From this point of view, the condition of the coefficient
matrix in (18) for the estimation of variance components may
not be very good.

In this case, even if the variance components of the sto-
chastic models (2a) and (2b) are theoretically estimable, we
would like to know whether they can be accurately estimated.
A proper measure to describe this aspect of estimation prop-
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erty is the stability of the estimated variance components
or, more precisely, the condition number of the coefficient
matrix of the linear equations (18). Actually, if there exist
zero eigenvalues for the coefficient matrix of (18), then the
variance components are not estimable. Obviously, the con-
dition number can be computed as soon as the functional EIV
model (1) and its corresponding stochastic models (2a) and
(2b) are given. To give the reader an impression of stability,
we will simulate some examples and show their condition
numbers in this section.

In fact, before we start the research on this topic, we have
in mind an application of the methods developed in this paper
to the Atlantic sea surface temperature data reported first by
Mann and Emanuel (2006) and used by Schaffrin and Wieser
(2008). With the above estimability analysis, it becomes clear
now that we cannot gain the knowledge on the stochastic
nature of this data set, since a reasonable assumption for data
of this type would be the stochastic model (27). Examples
of this type include dam deformation analysis, for example.
Thus, instead, we will use problems of this type with only
two model parameters β1 and β2 to demonstrate the stability
of the linear equations (18).

More specifically, simulated examples can be represented
by the following equations

yi = ai1β1 + ai2β2 + εi , (i = 1, 2, . . . , n). (37)

We assume three variance components, namely, one for yi ,
one for ai1 and one for ai2. The number of measurements y is
set to 120. For each experiment, we randomly generate two
true values for the parameters β1 and β2 from the interval
[−5.0, 5.0] and those for ai1 and ai2 are from [0.1, 100.0].
Although the stochastic model (27) has been known to be not
estimable, we will use this simulated example to numerically
demonstrate the inestimability. For this purpose, we use the
uniform distribution over [0.1, 1.0] to generate the weights
for yi and assume the stochastic model �ai = Inσ 2

ia(i =
1, 2) for the random elements of each column of A. Applying
the MINQUE method to the simulated example, we obtain the
following system of equations for estimation of the variance
components σ 2

y , σ 2
1a and σ 2

2a , namely,

⎡

⎣
33.900162 0.725844 3.113569

0.725844 3.935471 16.881530
3.113569 16.881530 72.414734

⎤

⎦

⎡

⎢⎢⎣

σ̂ 2
y

σ̂ 2
1a

σ̂ 2
2a

⎤

⎥⎥⎦

=
⎡

⎣
184.037631
926.564864

3974.577300

⎤

⎦. (38)

It is easy to show that the coefficient matrix of (38),
denoted by S, is numerically singular, with the three eigen-
values being equal to 0.000000, 33.660731 and 76.589635,
respectively. The elements of its last two rows of S, together

with the last two elements of the constant vector on the right
hand side of (38), satisfy the following relationship:

S(3, 1)

S(2, 1)
= S(3, 2)

S(2, 2)
= S(3, 3)

S(2, 3)
= 3974.577300

926.564864
= 4.28958.

Now we will use non-identity weight matrices for ai1

and ai2 to show the instability aspect of variance compo-
nent estimations in the EIV model (1). The weight matrices
for yi , ai1 and ai2 are assumed to be diagonal and generated
using uniform distributions. More specifically, the weights
for yi are drawn from [0.1, 1.0] and those for ai1 and ai2

are from [0.1, 100.0]. The experiment is randomly repeated
200 times. Since we may have no prior knowledge on the
values of variance components, we get the first set of 200
condition numbers by setting initial values of variance com-
ponents to unity. For the purpose of comparison, we also use
the first iteration result of the componentwise positive vari-
ance estimators (25) to get a set of better approximate values
for the variance components and then compute the 200 con-
dition numbers for the coefficient matrix of the linear equa-
tions (18). These two sets of condition numbers in logarithm
with different approximate values of variance components
are shown in Fig. 1, with the blue solid line corresponding
to the first set of approximate values and the dotted red line
to the second set of approximate values. It is clear from the
blue solid line of this figure that the coefficient matrix of (18)
can often be ill-conditioned, but if very good approximate
values of the variance components are available, the condi-
tion of the coefficient matrix can be significantly improved.
Nevertheless, the coefficient matrix can still become more
ill-conditioned from time to time. We should like to warn,
however, that a small condition number may not automati-

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

indices of experiments

co
n

d
it

io
n

 n
u

m
b

er
s 

(l
o

g
)

Fig. 1 Condition numbers of the coefficient matrix from the MINQUE
estimation of variance components with two different sets of approxi-
mate variance components
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cally mean a good estimation of variance components, since

all the residuals of y and A are determined either by (y−Âβ̂)

or (y − Aβ̂).

5 Bias analysis

The weighted TLS estimate of β in the EIV model (1) is a
solution to a nonlinear system of equations, as can be seen in
Sect. 2.2 and from various different algorithms to solve TLS
problems (see, e.g., Pearson 1901; Gerhold 1969; Golub and
Loan 1980; Huffel and Vandewalle 1991; Markovsky and
Huffel 2007; Schaffrin and Wieser 2008; Fang 2011; Xu et al.
2012), even if the stochastic model for both y and A is exactly
given without any unknown variance and/or covariance para-
meters. In fact, the reformulated EIV model (4) is a non-
linear adjustment/regression model with peculiar features.
Bates and Watts (1980) developed geometrical measures to
diagnose the nonlinearity of a nonlinear regression model;
applications in geodesy and geophysics can be found, e.g., in
Teunissen (1989b). For a general nonlinear regression model,
statistical consequences of model nonlinearity have been sub-
stantially investigated. Approximate confidence regions and
the bias of the nonlinear LS estimate of β were worked out
for a general nonlinear regression model by Beale (1960) and
Box (1971), respectively. Clarke (1980) derived the first and
second moments of the nonlinear LS estimate of β. For some
more details on nonlinear regression, the reader can refer to,
e.g., Ratkowsky (1983) and Seber and Wild (1989). The first
and second moments of the nonlinear LS estimate can also be
found in the geodetic literature (see, e.g., Teunissen 1989a).
Xu et al. (2012) applied the theory and methods by Beale
(1960) and Box (1971) to investigate the statistical aspects
of parameter estimation in the nonlinear EIV model (4).

However, nothing has been done to analyze finite sam-
ple statistical aspects of variance component estimation in
a nonlinear regression/adjustment model, to our best knowl-
edge. Wang and Davidian (1996), Wang et al. (1998) and Li
et al. (2009) derived an asymptotic bias analysis of the naive
estimator of variance components of y. Nevertheless, these
authors ignored the effect of measurement errors of A and
assumed that the number of measurements y was infinite. In
this paper, we will directly follow the weighted TLS method
to handle the EIV model (1) and carry out the finite sample
bias analysis. Following the same rationale as in Xu et al.
(2012), we know that the estimates of variance components,
as derived in Sect. 3, cannot be unbiased. We will analyze
the local biases of the approximate MINQUE estimates (21)
of variance components σy and σa , if they are estimable. In
the remainder of this section, we will assume: (i) that both
y and A are normally distributed, and (ii) that y and A are
statistically independent.

By saying that an estimator of variance components is
locally unbiased, we follow the standard definition in the lit-
erature of variance component estimation (see, e.g., Rao and
Kleffe 1988; Koch 1999) to mean that the estimator is unbi-
ased under a given set of initial values of the variance com-
ponents. To derive the biases of the approximate MINQUE
variance components σy and σa , we apply the expectation
operator to (21):

E

{[
σ̂y

σ̂a

]}
=

[
Sy Sya

Say Sa

]−1

E

{[
qy

qa

]}
(39)

if the coefficient matrix is invertible, where the elements of qy

and qa are given by (20a) and (20b), respectively. To proceed
to analyze the biases of the estimated variance components
under the given initial values σ 2

0iy (i = 1, 2, . . . , my) and

σ 2
0ia (i = 1, 2, . . . , ma), we will have to focus on the two

quadratic forms qi
y of (20a) and qi

a of (20b), which further
depend on the residuals ry of (13a) and ra of (13b), respec-
tively. Obviously, in the case of a linear model, the MINQUE
estimates of variance components are also unbiased (Rao and
Kleffe 1988).

5.1 Expanding the residuals ry and ra in terms of ε and εa

We now expand the residuals ry and ra of (13) at the true
values of β and a and truncate the Taylor’s expansions up to
the second-order approximation of ε and εa . In other words,
all the terms of expansion with the third- and higher-order
partial derivatives are neglected. As a result, we have
[

ry

ra

]
=

[
y − Âβ̂

a − â

]

= ε ya − F(β, a)φ − 1

2
JKε ya, (40a)

where

ε ya =
[

ε

εa

]
, (40b)

F(β, a) = F =
[

A (βT ⊗ In)

0 Ia

]
, (40c)

φ = Kε ya + qβa, (40d)

K = N−1FT �−1, (40e)

J = {G1Kε ya, G2Kε ya, . . . , GnKε ya, 0, . . . , 0}T , (40f)

and the matrices Gi of the second partial derivatives from
the first nonlinear observation equations (4a) can be readily
written as follows:

Gi = ∂2 yi

∂

[
β

a

]
∂(βT , aT )

=
[

0 (Im ⊗ ei )

(Im ⊗ eT
i ) 0

]
(40g)
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for i = 1, 2, . . . n. Here ei = (0, . . . 0, 1, 0, . . . , 0) is an
n-dimensional natural row vector, i.e., all the elements of ei

are equal to zero, except for the ith element being equal to
unity. Except for the first n terms with non-zero values, all
the remaining terms of J are equal to zero. The reason is this:
because the expectation functions of a in (4b) are linear with
respect to a and have nothing to do with β, the corresponding
second partial derivatives with respect to a and β are all equal
to zero. We should note that when expanding the residuals ry

and ra of (13), one should not represent their Taylor’s expan-
sions first up to the second-order approximation in terms of
the estimated errors of β and a and then use the second-order
approximations of these errors φ in (40d) to derive the final
truncated expansion (40a); otherwise, one will end up with
an expansion of the residuals ry and ra , which correctly uses
the second-order partial derivatives with respect to ε and εa

but incorrectly contains the third- and fourth-order terms of
ε and εa , as is the case of Box (1971).

5.2 Expectations of the quadratic forms qy and qa

To compute the expectations of qy and qa in (20), we insert
the second-order truncated residuals (40a) into the quadratic
forms (20a) and (20b) and apply the expectation operator to
both of them, respectively. In the case of (20a), under the
assumption of normal distribution, we have

E(qi
y) = E(rT

y �−1
0y Uiy�

−1
0y ry)

= E
{(

ε − Hy�
−1
0y ε − Hya�−1

0a εa − dy
)T

×�−1
0y Uiy�

−1
0y

(
ε − Hy�

−1
0y ε − Hya�−1

0a εa − dy
)}

= E
{(

ε − Hy�
−1
0y ε − Hya�−1

0a εa
)T

�−1
0y Uiy�

−1
0y

×(
ε − Hy�

−1
0y ε − Hya�−1

0a εa
)} + ui

yσ

= E
{(

ε − Hy�
−1
0y ε

)T
�−1

0y Uiy�
−1
0y

(
ε − Hy�

−1
0y ε

)}

+E
{(

Hya�−1
0a εa

)T
�−1

0y Uiy�
−1
0y Hya�−1

0a εa

}

+ui
yσ

= tr{PyUiyPy�y}
+tr

{
�−1

0a Hay�
−1
0y Uiy�

−1
0y Hya�−1

0a �a

}
+ ui

yσ

= si
yσ y + si

yaσ a + ui
yσ (41a)

for i = 1, 2, . . . , my , where

ui
yσ = E

{
dT

y �−1
0y Uiy�

−1
0y dy

}

= tr
{
�−1

0y Uiy�
−1
0y E(dydT

y )
}
, (41b)

dy = Fyqβa + 1

2
JyKε ya, (41c)

Fy = [A, (βT ⊗ In)], and Jy is the column vector of dimen-
sion n, corresponding to the first n none zero elements of J
in (40f), and si

y and si
ya are the ith row vector of Sy and Sya

in Eq. (21), respectively.
Following the approach of bias analysis by Box (1971)

(see also Xu and Shimada 2000), we can further write the
quadratic term qβa in (40d) as follows

qβa = −1

2
KJKε ya + QCT (�−1 − �−1H�−1)ε ya, (42)

where the matrix C is the first-order correction to the matrix
F(β̂, â) expanded at the point of (β, a) and is given by

C =
[

Cy

Ca

]
.

Ca = 0, since the measurements a are not functions of β,
and the submatrix Cy is equal to

Cy = [C1
yKε ya, C2

yKε ya, . . . , C(n+1)m
y Kε ya].

Here, the first m submatrices Ci
y (i = 1, 2, . . . , m) and the

remaining (n × m) submatrices C j
y {i = (m + 1), (m +

2), . . . , (n + 1)m} correspond to β and a, respectively, and
are computed as follows:

Ci
y = ∂2y

∂βi∂(β, a)T
= [0, (eT

i ⊗ In)]

for i = 1, 2, . . . , m, and

Cm+ j
y = ∂2y

∂a j∂(β, a)T
= [(Im ⊗ In)e j , 0]

for j = 1, 2, . . . , (n × m).
To compute ui

σ of (41b), we first need to compute the
expectation of dydT

y , namely,

E(dydT
y ) = E(FyqβaqT

βaFT
y ) + 1

2
E(FyqβaεT

yaKT JT
y )

+ 1

2
E(JyKε yaqT

βaFT
y )

+ 1

4
E(JyKε yaεT

yaKT JT
y )

= Dy1 + Dy2 + Dy3 + Dy4, (43)

where

Dy1 = E(FyqβaqT
βaFT

y ),

Dy2 = 1

2
E(FyqβaεT

yaKT JT
y ),

Dy3 = DT
y2,

Dy4 = 1

4
E(JyKε yaεT

yaKT JT
y ).

Because both ε and εa have been assumed to be normally
distributed with zero mean and to be statistically indepen-
dent, we can use statistical results of quadratic forms (Searle
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1971) and obtain, after some technical derivations and keep-
ing in mind that (I − �−1H)�−1F = 0, the expectations of
the four matrices Dy1, Dy2, Dy3 and Dy4 of (43) as follows:

Dy1 = E(FyqβaqT
βaFT

y )

= Fy E(qβaqT
βa)FT

y

= 1

4
FyKMqKT FT

y , (44a)

Dy2 = −1

4
AQβA

T
�−1

y M j y

−1

4
(βT ⊗ In)QaβA

T
�−1

y M j y, (44b)

Dy4 = 1

4
M j y, (44c)

Mq is given by

Mq =
[

M j y 0
0 0

]
, (44d)

which is a square matrix with the dimension equal to the total
number of elements of β and A, and M j y is an (n × n) matrix
with its element given by

M j y(i, j)= tr(Gi QG j Q), for i, j =1, 2, . . . , n. (44e)

Finally, by inserting (43) and (44) into (41b), we can compute
each element of ui

σ (i = 1, 2, . . . , n).
In the similar manner to (41a), we compute the expectation

E(qi
a) of the ith element of qa as follows:

E(qi
a) = E(rT

a �−1
0a Uia�−1

0a ra)

= E
{(

εa − Ha�−1
0a εa − Hay�

−1
0y ε

)T
�−1

0a Uia�−1
0a

(
εa

−Ha�−1
0a εa − Hay�

−1
0y ε

)} + ui
aσ

= E
{(

εa − Ha�−1
0a εa

)T
�−1

0a Uia�−1
0a

(
εa

−Ha�−1
0a εa

)}

+E
{(

Hay�
−1
0y ε

)T
�−1

0a Uia�−1
0a Hay�

−1
0y ε

}
+ ui

aσ

= tr{PaUiaPa�a}
+tr

{
�−1

0y Hya�−1
0a Uia�−1

0a Hay�
−1
0y �y

}

+ui
aσ

= si
ayσ y + si

aσ a + ui
aσ (45a)

for i = 1, 2, . . . , ma , where Fa = [0, Ia] and ui
aσ is given

by

ui
aσ = E{(Faqβa)T Faqβa}

= 1

4
tr

{[
0 0
0 �−1

0a Uia�−1
0a

]
KMqKT

}
. (45b)

5.3 Biases of the estimated variance components

By collecting the expectation of qy in (41a) and that of qa in
(45a) together and writing them in matrix form, we have

E

{
qy

qa

}
=

[
Sy Sya

Say Sa

] [
σ y

σ a

]
+

[
uyσ

uaσ

]
, (46)

where the elements of both uyσ and uaσ have been derived
and given by (41b) and (45b), respectively. It is now imme-
diately clear that the approximate MINQUE estimate (21) of
the variance components is biased. The biases of σ̂y and σ̂a ,
denoted, respectively, by byσ and baσ , are given as follows:

[
byσ

baσ

]
= E

{
σ̂y

σ̂a

}
−

[
σ y

σ a

]

=
[

Sy Sya

Say Sa

]−1

E

{
qy

qa

}
−

[
σ y

σ a

]

=
[

Sy Sya

Say Sa

]−1 [
uyσ

uaσ

]
, (47)

if the coefficient matrix is invertible. Obviously, if this coef-
ficient matrix is ill-conditioned, the condition number will
be very large, as shown in Fig. 1, and as a result, the biases of
the estimated variance components can become significantly
large.

We should like to remark that the values ui
yσ in (41b) and

ui
aσ in (45b) are always positive. As a result, all the biases of

the componentwise positive estimators of variance compo-
nents, as discussed in Sect. 3.3, are obviously positive as well.
In other words, the approximate MINQUE (componentwise
positive) estimators of variance components always statisti-
cally produce larger values for all the variance components.
While the asymptotic biases of the naive estimator for the
variance components of y are due to the fact that the ran-
dom errors of A are ignored in the construction of such an
estimator (Wang and Davidian 1996; Wang et al. 1998; Li
et al. 2009), the finite sample bias analysis of variance com-
ponents in this paper is valid for both the variance compo-
nents of y and A and shows that the source of biases comes
from the induced-model nonlinearity of the random errors
of A. Finally, we would like to note that the biases of the
estimated variance components will result in incorrect deter-
mination of weights of the measurements. As a consequence,
the variance–covariance matrices of the weighted TLS esti-
mates of β and a will be affected, the extent of which will
depend on the sizes of the biases of the estimated variance
components. If the biases of the estimated variance compo-
nents are significantly amplified due to instability, the corre-
sponding weight matrices of the measurements will simply
be erroneous and the formal variance–covariance matrices of
the weighted TLS estimates β̂ and â cannot properly reflect
their corresponding accuracy any more.
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6 Concluding remarks

Total least squares has been substantially developed for more
than one century and found a wide variety of applications,
either from the point of view of approximation (see, e.g.,
Golub and Loan 1980; Huffel and Vandewalle 1991) or from
the statistical point of view (see, e.g., Pearson 1901; Dem-
ing 1931, 1934; Schaffrin and Wieser 2008; Xu et al. 2012).
Very often, one assumes that the variance–covariance matri-
ces of y and A are given, or at least, are given up to an
unknown variance of unit weight. In practice, however, we
have to solve problems in physical, statistical and engineer-
ing sciences in which both y and A in (1) are not necessarily
of the same types of measurements. As a result, we have to
simultaneously estimate the EIV model parameters β and the
variance components in the EIV stochastic models. We have
proved that the variance components in the EIV stochastic
models are not estimable, if all the elements of A are ran-
dom without any functional constraints and can be classified
into, at least, two groups of data of the same accuracy. The
same is true for the EIV model of regression type (35). This
result of inestimability statistically implies that we cannot
do anything to gain any knowledge on such EIV stochas-
tic models. From this point of view, to gain knowledge on
the EIV stochastic models, one will have to directly collect
repeated measurements and/or alike of the elements of A for
such a stochastic model. Otherwise, if the variance compo-
nents are estimable, we have derived the MINQUE estimates
of the variance components in EIV models. For block-wise
Uiy and Uia , we have also derived the componentwise pos-
itive estimates of the variance components. The estimation
of variance components in the EIV model may be unstable,
however, as confirmed by the simulated numerical exam-
ples. Finally, we have worked out the finite sample biases of
the variance components, if they are estimable. As a result
of equation instability, the biases of the estimated variance
components could be significantly amplified due to a large
condition number.
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7 Appendix: the matrices required for the MINQUE
estimation of variance components

To apply the MINQUE method to estimate the variance com-
ponents of (2) in association with the linearized EIV model

(10), with the design matrix A(β̂, â) in (17), we have to
preparatorily compute the normal, the projection and other
necessary matrices. We should note that all these matrices,
including any quantity computed with these matrices, depend
on the estimates β̂ and â. For conciseness of notations, we
will not write down such dependence without confusion. By
definition, the normal matrix, denoted by N, is given as fol-
lows:

N =
[

(Â)T 0
(β̂ ⊗ In) Ia

] [
�−1

0y 0
0 �−1

0a

][
Â (β̂)T ⊗ In

0 Ia

]

=
⎡

⎣ (Â)T �−1
0y Â (β̂)T ⊗ (Â)T �−1

0y

β̂ ⊗ (�−1
0y Â) �−1

0a + β̂(β̂)T ⊗ �−1
0y

⎤

⎦

=
[

Nβ Nβa

Naβ Na

]
. (48a)

The inverse of the normal matrix N with the four blocks is
symbolically represented by the matrix Q, namely,

Q = N−1 =
[

Qβ Qβa

Qaβ Qa

]
, (48b)

with the size of each of the blocks Qβ , Qβa , Qaβ and Qa

corresponding to that of Nβ , Nβa , Naβ and Na , respectively.
To compute the projection matrix, we first compute the

following H matrix:

H =
[

Â (β̂)T ⊗ In

0 Ia

] [
Qβ Qβa

Qaβ Qa

][
(Â)T 0
(β̂ ⊗ In) Ia

]

=
[

Hy Hya

Hay Ha

]
, (48c)

or explicitly by

Hy = ÂQβ(Â)T + ÂQβa(β̂ ⊗ In) + (β̂)T ⊗ InQaβ(Â)T

+(β̂)T ⊗ InQa(β̂ ⊗ In),

Hya = ÂQβa + (β̂)T ⊗ InQa,

Hay = HT
ya = Qaβ(Â)T + Qa(β̂ ⊗ In),

Ha = Qa .

With (14) in mind, the projection matrix in a linear model
is defined by R = Z⊥

A = Iya − ZA, where Iya is an identity
matrix with the dimension of sizes y and A. As a result, we
can finally obtain the projection matrix as follows:

R = Iya − H�−1
0

=
[

In 0
0 Ia

]
− H

[
�−1

0y 0
0 �−1

0a

]

=
[

In − Hy�
−1
0y −Hya�−1

0a

−Hay�
−1
0y Ia − Ha�−1

0a

]

=
[

Ry Rya

Ray Ra

]
. (49)
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Finally, the matrix P in Sect. 3.2 is given as follows:

P = �−1
0 R

=
[

�−1
0y 0
0 �−1

0a

] [
In − Hy�

−1
0y −Hya�−1

0a

−Hay�
−1
0y Ia − Ha�−1

0a

]

=
[

�−1
0y − �−1

0y Hy�
−1
0y −�−1

0y Hya�−1
0a

−�−1
0a Hay�

−1
0y �−1

0a − �−1
0a Ha�−1

0a

]

=
[

Py Pya

Pay Pa

]
. (50)
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