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Abstract In satellite navigation, the key to high precision is
to make use of the carrier-phase measurements. The periodic-
ity of the carrier-phase, however, leads to integer ambiguities.
Often, resolving the full set of ambiguities cannot be accom-
plished for a given reliability constraint. In that case, it can
be useful to resolve a subset of ambiguities. The selection of
the subset should be based not only on the stochastic system
model but also on the actual measurements from the track-
ing loops. This paper presents a solution to the problem of
joint subset selection and ambiguity resolution. The proposed
method can be interpreted as a generalized version of the class
of integer aperture estimators. Two specific realizations of
this new class of estimators are presented, based on different
acceptance tests. Their computation requires only a single
tree search, and can be efficiently implemented, e.g., in the
framework of the well-known LAMBDA method. Numeri-
cal simulations with double difference measurements based
on Galileo E1 signals are used to evaluate the performance
of the introduced estimation schemes under a given reliabil-
ity constraint. The results show a clear gain of partial fixing
in terms of the probability of correct ambiguity resolution,
leading to improved baseline estimates.
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1 Introduction

For satellite-based positioning, two types of measurements
are available at the receiver: the code-based pseudoranges
and the carrier-phases. In order to enable highly precise state
estimates, the carrier-phase measurements are employed,
which are two orders of magnitude less noisy, but ambigu-
ous by an unknown number of complete cycles. Resolving
these unknown ambiguities as integers is known as inte-
ger ambiguity resolution. Successful ambiguity resolution
enables the carrier-phases to act as very precise pseudor-
anges. Classical options for that task are the class of inte-
ger estimators, e.g., bootstrapping [BS, see Blewitt (1989),
Teunissen (2001), also referred to as Babai solution in lattice
theory, Babai (1986)] or integer least squares [ILS, also max-
imum likelihood in the Gaussian case, finds the closest lattice
point, Agrell et al. (2002)]. A very efficient implementation
of the latter principle is given by the Least-squares AMBigu-
ity Decorrelation Adjustment (LAMBDA) (Teunissen 1995).
Within that class, all ambiguities are fixed to integer values,
regardless of the strength of the underlying system model.
This may prevent the state estimates to reach higher qual-
ity, if the fixing is not successful. For that reason, ambiguity
validation is a very important issue. Different tests can be
used to decide, whether or not to accept the integer solution.
Examples are the ratio test (Euler and Schaffrin 1991), the
difference test (Tiberius and De Jonge 1995), the F ratio test
(Frei and Beutler 1990), the W ratio test (Wang et al. 1998),
and the projector test (Han 1997). An overview and evalua-
tion of these tests can be found in Verhagen (2004a,b), Wang
et al. (2000), and Li and Wang (2012).

The class of integer aperture (IA) estimators, introduced in
Teunissen (2003a), provides a general framework for ambi-
guity validation. Each of the mentioned tests can be inter-
preted as a member of this class. For a given, tolerable rate
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of incorrect ambiguity fixing, IA estimators can serve as an
overall estimation and validation process, suitable for scenar-
ios, which require a certain reliability (Verhagen and Teunis-
sen 2006; Teunissen and Verhagen 2009).

For a low predefined rate of wrong fixing, the probability
of fixing the ambiguities at all can be very small. To over-
come this problem, a subset of ambiguities can be fixed to
partially benefit from the low carrier-phase noise level. Dif-
ferent approaches were proposed in the literature. In Teunis-
sen et al. (1999), the set of ambiguities to be fixed is selected
by the BS success rate. This scheme is extended by a posi-
tion domain-based acceptance test in Khanafseh and Pervan
(2010). In Dai et al. (2007), those ambiguities are fixed, which
are equal in the best and second best set of ambiguity esti-
mates, where best is defined in the least-squares sense. The
algorithms in Parkins (2011) and Verhagen et al. (2011) are
iterative procedures, where in each iteration a different sub-
set is chosen. The ILS ambiguity estimates for the chosen
subset are computed and tested for acceptance. The iteration
terminates once a valid solution is found. In Verhagen et al.
(2011) it is shown, that the selection of the subset of ambigu-
ities should be based not only on the stochastic system model
but also on the actual measurements.

In this paper, a new class of algorithms is introduced,
which combines a predefined requirement on the probability
of wrong fixing with partial ambiguity estimation. The dif-
ference w.r.t. Verhagen et al. (2011) is that the new approach
only needs a single tree search. The determination of the sub-
set as well as the search for the ambiguity solution itself is
accomplished jointly in one single search process, thus pro-
viding only slightly increased complexity compared to the
ILS solution. The method can be interpreted as a generalized
form of IA estimators. The key lies in providing separate reli-
ability information for each scalar ambiguity estimate from
an integer estimator, not only for the complete set of ambi-
guities, as is done in IA estimation.

The detection problem in multiple-input multiple-output
(MIMO) communication systems is similar to carrier-phase
ambiguity resolution. The counterpart to the decision feed-
back equalizer (also successive interference cancellation) is
integer BS. The sphere decoder, e.g., Viterbo and Boutros
(1999), is an efficient solution to the maximum-likelihood
detection problem, which corresponds to ILS. Generalized
IA estimation as presented in this paper has some similar-
ities with soft-output sphere decoding (Studer et al. 2008;
Studer and Bölcskei 2010).

Outline: The remainder of the paper is organized as fol-
lows. In Sect. 2, the mathematical description used for global
navigation satellite system (GNSS) parameter estimation is
introduced. A short review of the principles of IA estima-
tion is given. The novel class of generalized IA estimators is
presented in Sect. 3. Two specific realizations of that class

are shown in Sect. 4 along with implementation aspects aim-
ing at low complexity. Numerical results based on simulated
double difference measurements are presented in Sect. 5.

2 GNSS parameter estimation

2.1 System model and estimation strategy

The problem of carrier-phase-based GNSS state estimation,
like positioning, attitude determination, or the estimation of
atmospheric or instrumental delays can be written as a system
of linear(ized) equations in the form

y = Aa+ Bb+ η, (1)

where y ∈ R
q is the measurement vector with undif-

ferenced, single-differenced or double-differenced carrier-
phase and/or pseudorange measurements. The vectors a ∈
Z

n and b ∈ R
p denote the set of unknown integer ambiguities

and the remaining unknown real-valued states, respectively,
and the corresponding matrices A ∈ R

q×n and B ∈ R
q×p

represent the known full rank linear system model. Finally,
η ∈ R

q is an additive Gaussian noise with zero mean and
covariance matrix Qη ∈ R

q×q .
The process of estimating a and b can be divided into three

steps (e.g., Teunissen 1995, 2003a,c). In the first step the fact,
that the entries in a are integer valued, is disregarded, which
leads to the so-called float solutions â and b̂ following from
a linear least-squares adjustment

â =
(

Ā
T

Q−1
y Ā

)−1
Ā

T
Q−1

y y

b̂ =
(

B̄
T

Q−1
y B̄

)−1
B̄

T
Q−1

y y, (2)

with Ā = P⊥B A, B̄ = P⊥A B, and the two orthogonal projection
matrices

P⊥A = Iq − A
(

ATQ−1
y A

)−1
ATQ−1

y

P⊥B = Iq − B
(

BTQ−1
y B

)−1
BTQ−1

y . (3)

The covariance matrix Qy follows from the law of error prop-
agation and system model (1) as Qy = Qη.

In the second step, a non-linear mapping S(·) : Rn �→ R
n

is introduced, which allocates to each float ambiguity vector
â the estimate

ǎ = S
(
â
)
, (4)

which somehow takes the integer nature of the ambiguities
into account. In case S(·) represents an integer estimator like
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BS or ILS, ǎ ∈ Z
n is usually referred to as the fixed solu-

tion. In the following that term will be used regardless of the
structure of S(·).

In the last step the fixed ambiguity estimate ǎ is used to
obtain the fixed estimate for the real-valued parameters b̌
from its conditional estimate

b̌ = b̂ |z∣∣z=ǎ = b̂− Qb̂âQ−1
â

(
â− ǎ

)
, (5)

where Qâ denotes the covariance matrix of â and Qb̂â the

covariance matrix of b̂ and â.
This three-step procedure is motivated by a decomposition

of the cost function

J (α,β) = ‖y− Aα − Bβ‖2
Q−1

y
(6)

of the ILS problem corresponding to (1) (Teunissen 1995;
Hassibi and Boyd 1998). The degree of freedom in the design
of an estimation scheme is given by the choice of the map-
ping function S(·). Three well-known classes of estimators
are: integer estimators, integer equivariant estimators (Teu-
nissen 2003b), and IA estimators. In Sect. 3, a generalized
version of the latter class is introduced. In the remainder of
this paper, only the design of this mapping function S(·) will
be considered. For the sake of simplicity, S(·) will be referred
to as the estimator, although it represents only one of the three
steps of the actual estimation process.

2.2 Integer aperture estimation

In contrast to integer estimators, which necessarily fix all
entries of ǎ to integer values, IA estimators (Teunissen 2003a)
comprise a validation step. This provides for the possibility
to either fix ǎ to an integer vector or to remain with the float
solution ǎ = â, if a fixing is not sufficiently reliable based
on the system model and the actual realization â. Such an
estimator is fully characterized by its pull-in regions Ωz,∀z ∈
Z

n , and given by

S
(
â
) =

∑
z∈Zn

z wz
(
â
)+ â

⎛
⎝1−

∑
z∈Zn

wz
(
â
)
⎞
⎠ (7)

with the binary indicator function

wz(x) =
{

1 if x ∈ Ωz

0 else.
(8)

In order for the IA estimator to be admissible, its character-
izing pull-in regions have to fulfill the following properties:

(i)
⋃

z∈Zn Ωz = Ω

(i i) Ωz ∩Ωu = ∅, ∀z, u ∈ Z
n, z 
= u

(i i i) Ωz = Ω0 + z, ∀z ∈ Z
n .

(9)

Condition (i) defines the aperture space Ω ⊆ R
n , which is

assembled by the pull-in regions Ωz. Condition (i i) ensures
that the pull-in regions do not overlap, which is important
for S(·) to be unique, and condition (i i i) states the trans-
lational invariance of the pull-in regions, i.e., each Ωz is a
shifted version of Ω0. This property makes possible to use
carrier phase measurements from a phase tracking loop with
arbitrary initialization.

From (9) follow three different cases for IA estimation,
which are helpful in order to evaluate the performance of the
estimator:

S
(
â
) =

⎧⎪⎨
⎪⎩

a if â ∈ Ωa (success)

z ∈ Z
n\a if â ∈ Ωz, z 
= a (failure)

â if â /∈ Ω (undecided).

(10)

The probabilities, which correspond to the three events of
(10), follow from integrating the probability density function
of â over the respective sets and are given by the success rate
Ps, the failure rate Pf , and the rate for the undecided event
Pu = 1− Ps − Pf .

In practice, the size and shape of Ω0, which uniquely
define an IA estimator, are often inherently determined by
testing the best integer vector z1 against the second best inte-
ger vector z2, where best is defined in the way of minimizing

z1 = arg min
z∈Zn

∥∥â− z
∥∥2

Q−1
â

. (11)

Different tests of that form were mentioned in Sect. 1. In
Verhagen (2004a) and Li and Wang (2013) it is shown, that
these tests are valid members of the IA class.

3 Generalized integer aperture estimation

As described in the previous section, IA estimators either
fix all entries of ǎ to integer values or completely remain
with the float solution. This property is now relaxed, and it is
rather allowed to fix a subset of ambiguities to integers, while
the estimates for the remaining ambiguities, which cannot be
fixed reliably, remain real valued.

Let the set of indexes of those ambiguities, which are fixed
to integer values by the estimator be defined as

I ⊆ {1, . . . , n} , I ∈ I, (12)

where I denotes the set of all possible index sets I, i.e., the
cardinality of I is given by |I| = 2n (there are two choices
for each ambiguity–fixing or not fixing). The complementary
set Ī ∈ I with

I ∩ Ī = ∅, I ∪ Ī = {1, . . . , n} (13)
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represents the subset of ambiguities, which is not fixed to
integer values.

Each index set I is uniquely coupled with a generalized
aperture region ΩI . The generalized IA estimator is given
by

S
(
â
) =

∑
z∈Zn

diag
i=1,...,n

[
wi,z

(
â
)]

z

+
⎛
⎝In −

∑
z∈Zn

diag
i=1,...,n

[
wi,z

(
â
)]

⎞
⎠ â, (14)

with the binary indicator function

wi,z(x) =
{

1 if x ∈ ΩI,z and i ∈ I
0 else.

(15)

In (15), ΩI,z represents the generalized pull-in region for
the integer vector z ∈ Z

n corresponding to the generalized
aperture space ΩI . Essentially, if â ∈ ΩI,z, all ambiguities
with index i ∈ I are fixed to the i th entry in z, whereas for
the remaining ambiguities with index i ∈ Ī the float solution
of â is kept. Note that the undecided case of Sect. 2, where
S

(
â
) = â, is represented by the index set I = ∅ and the

region Ω∅.
Similar to (9), there are some attributes and desirable prop-

erties the generalized pull-in regions and aperture regions
have to fulfill:

(i)
⋃

z∈Zn ΩI,z = ΩI , ∀I ∈ I

(i i)
⋃

I∈I ΩI = R
n

(i i i) ΩI,z ∩ΩJ ,u = ∅,{∀I,J ∈ I

∀z, u ∈ Z
n

} ∖
(I = J and z = u)

(iv) ΩI,z = ΩI,0 + z, ∀I ∈ I,∀z ∈ Z
n .

(16)

The first property defines the generalized aperture region ΩI
for subset I, which is composed of the generalized pull-
in regions ΩI,z. Condition (i i) demands from the union of
all ΩI to cover the whole R

n , which ensures that S(·) is
defined for every possible value of â. Condition (i i i) guar-
antees that S(·) is uniquely defined. Finally, condition (iv)

states the translational invariance of the generalized pull-in
regions ΩI,z for each possible subset I. As a counterpart to
(i), it is also possible to define

⋃
I∈I

ΩI,z = Ωz, ∀z ∈ Z
n . (17)

Note that Ωz as defined by (17) does not conform with the
definition of Ωz in Sect. 2. With definitions (i i)–(iv) from
(17) it gets clear that Ωz rather describes the pull-in regions

of admissible integer estimators like BS or ILS. In the exam-
ples for generalized IA estimators presented in Sect. 4, Ωz is
equivalent to the ILS pull-in region of z.

For generalized IA estimators, the definition of the events
success, failure, and undecided with their respective rates is
not that clear as in the case of IA estimation. There are now
cases which are partially undecided, and where only a subset
of ambiguities is fixed correctly or incorrectly. The following
three cases are defined1:

Success: â ∈ ΩI,z, I ∈ I\∅, z ∈ Z
n | z(I) = a(I)

Failure: â ∈ ΩI,z, I ∈ I\∅, z ∈ Z
n | z(I) 
= a(I)

Undecided: â ∈ Ω∅.
(18)

That is, whenever all ambiguities with index i ∈ I are fixed
correctly, given that at least one ambiguity is fixed at all, this
event is called success, whereas if only a single ambiguity is
fixed wrongly, the event is called a failure. If no ambiguity
is fixed at all, the event is called undecided. In the practical
design of a generalized IA estimator, the failure rate Pf , i.e.,
the probability of the event failure, is used to construct the
size and shape of the different generalized pull-in regions.

4 Two exemplary generalized integer aperture
estimators

In the previous section, the theoretical principles of general-
ized IA estimation were introduced along with the properties,
which an admissible estimator of that class has to fulfill. Now,
the question arises, how to actually construct the shape and
size of the generalized pull-in regions. In accordance with
Teunissen and Verhagen (2009) and Verhagen and Teunissen
(2013), a predefined value for the failure rate Pf is given and
the pull-in regions have to be defined such that this failure
rate is not exceeded.

From the first step of the three step estimation framework
in Sect. 2 the float ambiguity solution â is given. It is Gaussian
distributed with deterministic, but unknown mean value a
and known covariance matrix Qâ. The likelihood function for
estimating the ambiguity vector a based on the realization â
is thus given by

L
(
â; z) = 1√

(2π)n
∣∣Qâ

∣∣ exp

(
−1

2

∥∥â− z
∥∥2

Q−1
â

)
, z ∈ Z

n .

(19)

In the following, two generalized IA estimation schemes are
presented. The first one is based on log-likelihood ratios
(LLRs), a well-known tool for soft decisions in iterative algo-
rithms for communication systems (see, e.g., Hagenauer et

1 z(I) addresses all entries of z with index i ∈ I.
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al. 1996), while the second one is based on the ratio of log-
likelihood values (RLLs) for each single ambiguity. These
two approaches turn out to correspond to a generalized ver-
sion of the distance test and ratio test mentioned in Sect. 1.

4.1 LLR-based generalized integer aperture estimation

For each single ambiguity in the vector a the computation
of reliability information in form of a LLR is required. The
LLR for the i th ambiguity is defined as

li
(
â
) = log

L
(
â; z1

)

L
(
â; z̄i

) , i = 1, . . . , n, (20)

where z1 ∈ Z
n denotes the integer vector, which maximizes

the likelihood function (19)

z1 = arg max
z∈Zn

L
(
â; z) , (21)

i.e, z1 denotes the ILS ambiguity solution, which does not
depend on the index i . The so-called counter-hypothesis z̄i

follows from the maximization problem

z̄i = arg max
z∈Z̄i

L
(
â; z) , (22)

where the set Z̄i is defined as (z(i) refers to the i th element
of z)

Z̄i =
{
z ∈ Z

n | z(i) 
= z1,(i)
}
. (23)

From (23), the chosen term counter-hypothesis should
become clear: it is sought for the best possible integer vec-
tor (in terms of maximizing the likelihood function, i.e., the
vector closest to the float solution â), which differs in the
i th ambiguity from the overall best integer vector z1. In con-
trast to the unique z1, the counter-hypotheses z̄i can of course
be different for each ambiguity. Combining (19), (20), (21),
(22), (23), and considering the monotonicity of the logarithm,
the problem of computing the LLR values reads

2li
(
â
) = min

z∈Z̄i

∥∥â− z
∥∥2

Q−1
â
− min

z∈Zn

∥∥â− z
∥∥2

Q−1
â

. (24)

According to (24), a first problem of LLR-based generalized
IA estimation is to efficiently determine the ILS ambiguity
solution, the counter-hypotheses for all n ambiguities, and
the respective weighted squared distances. This is further
discussed in Sect. 4.3.

Once the n LLR values li
(
â
)
, i = 1, . . . , n, are deter-

mined, the index set I for the generalized pull-in regions is
defined as

I = {
i = 1, . . . , n | li

(
â
) ≥ lth

}
, (25)

where lth ≥ 0 is a predefined scalar threshold. From (14) and
(15) follow the mapping of the float ambiguity vector â to the
generalized IA ambiguity estimates. The size and shape of
the generalized aperture regions ΩI are inherently defined by
(24) and (25), whereas the generalized pull-in regions ΩI,z
are defined as

ΩI,z = {x ∈ R
n | li (x) ≥ lth, ∀i ∈ I

and li (x) < lth, ∀i ∈ Ī
and z = arg max

z′∈Zn
L

(
x; z′)}. (26)

That is, all ambiguities i , which fulfill the requirement of the
LLR value li

(
â
)

to be greater or equal as lth, are fixed to the
ILS solution.

One way to choose the threshold lth is to use a fixed value
based on empirical studies, which is often proposed in the
literature for IA acceptance tests [a summary of proposed
values can be found in Li and Wang (2012)]. Preferably, lth
is chosen such that a fixed value for the resulting failure rate
Pf is achieved. This is possible, as the threshold lth defines the
size (and, to some extend, also the shape) of the generalized
pull-in regions. The failure rate is monotonically decreasing
with increasing threshold lth [see definition of failure in (18)
and combine with (25)]. Following the latter approach, lth is
determined for the actual system model through a combina-
tion of Monte-Carlo simulations and a bisection method. An
initial interval for lth, chosen sufficiently large to contain the
sought for value, is iteratively divided in half by evaluating
the (approximate) failure rate based on the simulations for
lth chosen as the center of the interval. Contrary to the LLR-
based IA estimator, the success rate Ps of the LLR-based
generalized IA estimator is not necessarily decreasing with
increasing threshold lth.

It is to prove that the so-defined generalized pull-in regions
ΩI,z form an admissible generalized IA estimator as defined
by (16).

Proof From (17), with the three conditions of (26), and
li (·) : Rn �→ R, i = 1, . . . , n, Ωz is the ILS pull-in region.

With property (i), condition (i i) is automatically fulfilled,
as I covers all possible states of I, and, therefore, all possible
float solutions in R

n .
With ΩI,z ∩ ΩJ ,u = (ΩI ∩Ωz) ∩

(
ΩJ ∩Ωu

)
, Ωz ∩

Ωu = ∅, if z 
= u (ILS pull-in regions do not overlap), and
ΩI ∩ΩJ = ∅, if I 
= J and lth ≥ 0, (iii) follows.

Finally, let z1 and z̄i denote the ILS solution and counter-
hypothesis of (24), then the problem li

(
â+ u

)
,∀u ∈ Z

n , has
the ILS solution z′1 = z1+u due to the translational invariance
of the ILS pull-in regions, and counter-hypothesis z̄′i = z̄i+u,
due to the regularity of the integer grid. Accordingly, a shift
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Fig. 1 Shape of generalized aperture regions based on LLRs for the
two-dimensional case. All â that fall in Ω{1,2}, are fixed to the respective
integer vector z, for all â in Ω{1}/Ω{2}, only the first/second component
is fixed, while the float solution is kept if â falls in Ω{}

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Fig. 2 The regions of the three events success, failure, and undecided
as defined in (18) based on LLRs for the two-dimensional case

of â by an arbitrary integer vector u leaves the LLRs invariant,
i.e., I stays invariant, and thus with (26) ΩI,z+u = ΩI,z +
u,∀u ∈ Z

n , which concludes the proof. ��
In Fig. 1, the four generalized aperture regions for the two-

dimensional case are illustrated. The shape of the Gaussian
distribution of â is characterized by the hexagonal ILS pull-in
regions. The aperture region Ω{1,2} is equivalent to the aper-
ture region of the classical IA estimator. The two generalized
aperture regions Ω{1} and Ω{2} are characterized by cover-
ing the area around the respective integer axes, where the
statistical properties of the float solution are still considered.

The regions of the three events success, failure, and unde-
cided as defined in (18) are illustrated in Fig. 2 for a two-
dimensional example. The region, for which the (partial) fix-
ing is called successful, is now not only the hexagon Ω{1,2},a
but also the generalized pull in regions along the a(1) axis,
where only ǎ(1) is fixed correctly, and along a(2), where ǎ(2)

is fixed correctly. The failure region is characterized by at
least one wrongly fixed ambiguity.

4.2 RLL-based generalized integer aperture estimation

Instead of using the LLRs for constructing a generalized IA
estimator, the RLLs can be used alternatively. The RLL for
the i th ambiguity is defined as

r ′i
(
â
) = log L

(
â; z1

)

log L
(
â; z̄i

) , i = 1, . . . , n, (27)

where z1 ∈ Z
n again denotes the ILS solution, which maxi-

mizes the likelihood function (19), cf. (21), and z̄i ∈ Z̄i the
counter-hypothesis, cf. (22), (23).

The problem of computing the ratio values can be rewritten
as

r ′i
(
â
) =

maxz∈Zn

(
− 1

2

∥∥â− z
∥∥2

Q−1
â

)
− c

maxz∈Z̄i

(
− 1

2

∥∥â− z
∥∥2

Q−1
â

)
− c

, (28)

where c denotes the constant term resulting from the normal-
ization factor of the Gaussian distribution. A different version
of the ratio is used in the following, i.e., this constant term c
is discarded, which causes slightly different ratio values:

ri
(
â
) =

minz∈Zn
∥∥â− z

∥∥2
Q−1

â

minz∈Z̄i

∥∥â− z
∥∥2

Q−1
â

. (29)

Again, this problem reduces to efficiently determine the ILS
solution and the counter-hypothesis for each ambiguity with
the respective weighted squared distances to the float solu-
tion â. The index set I, which defines in which generalized
aperture region the float solution falls, is defined by

I = {
i = 1, . . . , n | ri

(
â
) ≤ rth

}
, (30)

with 0 < rth ≤ 1 a predefined threshold. For the generalized
pull-in region ΩI,z follows

ΩI,z = {x ∈ R
n | ri (x) ≤ rth, ∀i ∈ I

and ri (x) > rth, ∀i ∈ Ī
and z = arg max

z′∈Zn
L

(
x; z′)}. (31)

The proof that the so-defined generalized IA estimator is
admissible follows the proof in 4.1. Figures 3 and 4 show
the generalized pull-in regions of the RLL-based general-
ized IA estimator and the regions for the events success, fail-
ure, and undecided, respectively (cf. Figs. 1, 2). The borders
of the different generalized aperture regions are defined by
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Fig. 3 Shape of generalized aperture regions based on RLLs for the
two-dimensional case, cf. Fig. 1
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Fig. 4 The regions of the three events success, failure, and undecided
as defined in (18) based on RLLs for the two-dimensional case

intersecting ellipsoids [see Verhagen and Teunissen (2006)].
Compared to the LLR-based scheme, the curvature of the
ellipsoids mainly affects the result toward the boundaries of
the ILS pull-in regions, especially for rather restrictive val-
ues of rth, which leads to the gaps of Ω{1} and Ω{2} in the
given example. For ratio values ri (â) as defined in (29), the
failure rate Pf is increasing with rth, which allows for the
fixed failure rate approach. Again, this does not hold for the
success rate Ps as it would for the RLL-based classical IA
estimator.

4.3 Low complexity tree search formulation

The problems of finding the ILS ambiguity solution and the
n counter-hypotheses for the computation of the ratio val-
ues li

(
â
)

in (24) and ri
(
â
)

in (29) are addressed. With the
Cholesky decomposition of the inverse covariance matrix
Q−1

â = GTG, with G ∈ R
n×n a right upper triangular matrix,

the weighted squared distances can be expressed in the recur-
sive form

d (z) = ∥∥â− z
∥∥2

Q−1
â
=

n∑
i=1

⎛
⎝

n∑
j=i

G(i, j)
(
â( j) − z( j)

)
⎞
⎠

2

=
n∑

i=1

ei (z(n), . . . , z(i)). (32)

The computation of the expression in the parentheses for the
i th element depends only on all elements z( j) with j ≥ i
(G(i, j) = 0,∀ j < i). Starting with level i = n, the partial
squared distance di

(
z(n), . . . , z(i)

)
can be expressed as

di
(
z(n), . . . , z(i)

) = di+1
(
z(n), . . . , z(i+1)

)

+ ei (z(n), . . . , z(i)), (33)

with initial value dn+1 = 0 and d1(z) = d(z). With all
distance increments ei (·) being non-negative, solving prob-
lems (24) and (29) can be considered tree search problems.
Nodes of the search tree correspond to partial distances di (·)
and branches, which correspond to different values for the
respective ambiguity, to distance increments ei (·). The tree
is restrained to nodes within a radius χ2 around â. The search
is performed depth first following the Schnorr-Euchner strat-
egy, i.e., smallest distance increments ei (·) first (Schnorr and
Euchner 1994).

Two basic questions arise from that formulation: How to
choose an efficient tree traversal strategy, and how to deter-
mine the search radius χ2 around the float solution â, such
that the number of integer grid points within that radius χ2

is as small as possible.

4.3.1 Tree traversal strategies

There are two fundamentally different strategies on how to
search the tree corresponding to (32) for solving problems
(24) and (29). The first possibility is to perform a repeated
tree search. Thereby, the tree is first searched for the integer
candidate z with the smallest weighted squared distance d(z)
(which is the ILS solution z1). After z1 has been found, n addi-
tional search runs are performed for all counter-hypotheses
z̄i . The restriction to the set Z̄i is equivalent to blocking all
branches, which correspond to z1,(i) of the ILS solution.

Obviously, such a repeated search implies a high compu-
tational burden, which can be considerably decreased by the
single tree search approach, which guarantees that each node
of the tree is at most visited once. This approach is based on
the administration of a list, which stores the best candidates
for the ILS estimate and all counter-hypotheses found so far.
Whenever a leaf z of the tree is reached, following cases have
to be distinguished:

1. d(z) < d(z1): An improved candidate for the ILS solu-
tion is found, i.e., update z̄i ← z1,∀i | z1,(i) 
= z(i), and
z1 ← z.

123



486 A. Brack, C. Günther

Fig. 5 The fundamental relation between the squared distance of ILS
solution and float solution d(z1), the given ratio thresholds lth and rth,
and the radius χ2 of the search ellipse is illustrated. For the RLL-based

approach, lth is replaced by d(z1)
(

1
rth
− 1

)

2. d(z) > d(z1): Check, if counter-hypotheses have to be
updated, i.e., z̄i ← z,∀i | z(i) 
= z1,(i) and d(z) < d(z̄i ).

All distances d(z̄i ), i = 1, . . . , n, and d(z1) are initialized
with infinity. A similar strategy has been developed in the
context of MIMO detection in Studer and Bölcskei (2010)
and Jaldén and Ottersten (2005).

4.3.2 Setting the search radius

Only the single tree search strategy is considered. If it was
just to find the ILS solution z1, the goal would be to determine
the radius χ2 of the search space such that exactly one candi-
date lies within that radius—the ILS solution itself. However,
as not only the ILS solution z1 has to be found, but also n
counter-hypotheses z̄i , i = 1, . . . , n, a larger value for χ2

has to be considered.
Actually, it is not really necessary to compute the true

ratios li (â) or ri (â) for all ambiguities i = 1, . . . , n, as it is
only decisive, if the ratio li (â) ≥ lth or ri (â) ≤ rth, respec-
tively [cf. (25) and (30)]. As a consequence, if no counter-
hypothesis z̄i is found within the search space with radius

χ2 = d(z1)+ lth and χ2 = d(z1)

rth
(34)

for the LLR- and RLL-based approach, respectively, it auto-
matically follows

li (â) ≥ lth and ri (â) ≤ rth. (35)

The unknown value d(z1) can be upper bounded by d(zBS),
with zBS the easily computable BS ambiguity estimate (also
simple, component-wise rounding of â is a viable option). An
illustration for setting the size of the search space is provided
in Fig. 5.

The complexity of the tree search can be further minimized
by optimized tree pruning, i.e., by shrinking the search space,
when a new candidate for z1 has been found, or as soon as a
valid counter-hypothesis z̄i has been found ∀i = 1, . . . , n.

4.3.3 Integer decorrelation/lattice reduction

A substantial complexity reduction is to be expected through
the use of a prior integer decorrelation Z ∈ Z

n×n , such as
the iterative transformation of the LAMBDA method in Teu-
nissen (1995) or the LLL lattice reduction in Lenstra et al.
(1982). The decorrelation possibly comprises a sorting of the
float ambiguity estimates according to their precision, which
allows for removing large parts of the search tree, if the search
is started with the most precise estimates. Such a transfor-
mation does not change the weighted squared distances

d(z) = ∥∥â− z
∥∥2

Q−1
â
= ∥∥Zâ− z′

∥∥2
Q−1

Zâ
, ∀z ∈ Z

n, (36)

with Z any unimodular matrix (Z invertible and Z−1 ∈ Z
n×n),

z′ = Zz, and QZâ = ZQâZT. Therefore, the results of the
LLR- and RLL-based IA estimators, which only depend on
the two closest integer vectors (e.g., Verhagen 2004a), are
not affected by the use of Z.

The situation for generalized IA estimation is quite dif-
ferent. The result of the estimator completely changes, if
the counter-hypotheses z̄i , i = 1, . . . , n, are found for the
transformed ambiguities Zâ instead for the original ambi-
guities â. In case the original space is used, the search can
still be done in the decorrelated space with low complexity.
Each integer candidate, which is found in the search, has
to be back-transformed before building up the list of can-
didates for the counter-hypotheses of the single tree search
approach.

The preferable strategy is to compute the estimates after
decorrelating as far as possible. In the original space of ambi-
guities it is not unlikely that the best candidate z1 and the
second-best candidate differ in many or even all entries,
which causes equal LLR or RLL values for many ambigui-
ties. This reduces the advantage of the generalized IA scheme
compared to conventional IA estimation.

4.4 Conditioning

If the failure rate is chosen sufficiently small, the preci-
sion of the estimate of the real-valued parameter vector b
can be further increased by conditioning the ambiguity esti-
mates with indexes Ī, which are not fixed to integers, on the
fixed ambiguities, instead of just keeping the float solution
â(Ī):

ǎ(Ī) = â(Ī) |z
∣∣
z=ǎ(I)

= â(Ī) − Qâ,(Ī,I)Q
−1
â,(I,I)

(
â(I) − ǎ(I)

)
. (37)

This additional step is primarily recommended before the
back-transformation from the decorrelated space to the orig-
inal space via Z−1, i.e., if the counter-hypotheses are found
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for the decorrelated ambiguities. Otherwise, the estimates
â(Ī) can be treated as additional entries of b̂ in (5).

5 Numerical results

The results are based on simulated single epoch, single fre-
quency pseudorange and carrier-phase measurements for two
receivers located in Munich. Galileo E1 signals with a fron-
tend bandwidth of 20 MHz are used. The strength of the sys-
tem model is varied by choosing a subset of k satellites out
of the 11 visible satellites as seen by the receivers (Fig. 6).
The noise of the undifferenced measurements is assumed
as additive white Gaussian noise with standard deviations
σρ and σϕ for pseudorange and carrier-phase measurements,
respectively. In the system model (1), y contains k−1 double
difference pseudorange and k − 1 double difference carrier-
phase measurements. The k − 1 double difference ambigui-
ties are stacked in a, and b is the three-dimensional baseline
vector. The differencing removes all receiver- and satellite-
dependent biases. Atmospheric delays are assumed to be suf-
ficiently suppressed because of a short baseline. The noise
vector η is Gaussian distributed, where the covariance matrix
Qη follows from the diagonal covariance matrix of the undif-
ferenced measurements through the double difference opera-
tor. Table 1 summarizes the simulation parameters and states
the failure rates of ILS for the six given satellite selections.
For each scenario, 2 · 106 random samples are drawn.

For the practical use of classical and generalized IA esti-
mators with a fixed failure rate, the corresponding success
rate is an important measure. The success rates Ps as a func-
tion of the failure rate Pf are shown in Fig. 7 for k = 6, k = 7,
and k = 8 (scenario 81) satellites. For generalized IA esti-
mation, the counter-hypotheses are found in the decorrelated
space of integers using the Z transformation of the LAMBDA
method. For all three scenarios, and both for LLR- and RLL-
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Fig. 6 Skyplot of Galileo constellation as used in the simulations

Table 1 System parameters for 11 visible satellites, the subscripts for
k = 8 refer to different satellite geometries

Location Munich: Lat., Long. 48.15◦, 11.57◦

Number of sat. k (w/o PRN) ILS failure rate

6 (2, 16, 18, 21, 27) 37.52 %

7 (2, 16, 18, 21) 14.62 %

81 (2, 16, 21) 3.52 %

82 (16, 20, 21) 1.26 %

83 (1, 2, 17) 0.58 %

9 (16, 21) 0.21 %

Wavelength λ (Galileo E1) 19.03 cm

Noise of undiff. measurements

Pseudorange: σρ 11.13 cm

Carrier-phase: σϕ 0.5 cm

based estimation, the gain of the novel schemes compared to
classical IA estimation is remarkable. This is in particular the
case for low values of the failure rate, which is the desired
operating point. As already described, Fig. 7 confirms that the
success rate of generalized IA estimators does not necessar-
ily decrease with decreasing failure rate. The results indicate
that the LLR-based generalized IA scheme is more powerful
than the RLL-based scheme.

Note that the last subfigure has a different scale. This is
caused by the strength of the system model, which excludes
failure rates of Pf ≥ 3.52 % for the considered schemes.

However, for choosing an estimation scheme, the success
rate is not the decisive quantity, but rather the precision of
the estimate of b. If all ambiguities are fixed correctly, this
precision is driven by the highly precise carrier-phase mea-
surements. Hence, also the average number of fixed ambigu-
ities is a criterion. For generalized IA estimation this num-
ber is given by E [|I|], for IA estimation by n(Ps + Pf). In
Table 2, these numbers are presented for a fixed failure rate
of Pf = 0.1 %. Table 2 also indicates a slight advantage of
the LLR-based generalized IA scheme over the RLL-based
scheme, and a clear gain compared to IA estimation.

Finally, Figs. 8, 9, 10 show the complementary cumulative
distribution function of the norm of the baseline error

Pe = Pr
(
‖b̃− b‖22 ≥ e

)
, (38)

where b̃ is either the float solution b̂, or b̌ from ILS, IA or gen-
eralized IA estimation. For a fixed failure rate of Pf = 0.1 %,
it is aimed at minimizing this tail distribution function. The
most interesting cases – for the given failure rate – are the
ones with k = 8 satellites and ILS failure rates between
3.52 % and 0.58 %. For k < 8 and k > 8, the fixed failure
rate of Pf = 0.1 % would have to be adapted in order to
account for the strength of the system model to see a clear
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Fig. 7 Success rates as a function of the failure rate for generalized IA estimators (GIA) and IA estimators, based on both LLR and RLL values.
The three subfigures represent from left to right k = 6, k = 7, and k = 8 (scenario 81) satellites

Table 2 Average number of fixed double difference ambiguities, failure
rate Pf = 0.1 %

Scenario GIA LLR GIA RLL IA LLR IA RLL

6, n = 5 0.99 0.23 0.09 0.09

7, n = 6 3.39 2.32 0.86 0.69

81, n = 7 6.54 6.17 4.76 4.04

82, n = 7 6.88 6.83 6.40 6.30

83, n = 7 6.96 6.96 6.83 6.82

9, n = 8 7.99 7.99 7.97 7.97

distinction of the (generalized) IA estimators compared to
the float and ILS solution, respectively. Figure 8 shows that
the probability Pe of the ILS solution drops very soon due to
the relatively high probability of correct fixing, but there is
also a high error floor for e ≥ 1 m. Compared to ILS, the two
IA estimators are characterized by higher values of Pe for
very small errors e, but show much better performance for
large errors e ≥ 1 m. Generalized IA estimation outperforms
classical IA estimation practically over the whole error range.
Thereby, the gain of the LLR-based scheme is roughly one
order of magnitude for 0.3 m ≤ e ≤ 1 m, while the RLL-
based scheme still shows a gain of roughly half a order of
magnitude. All in all, the LLR-based schemes clearly out-
perform the RLL-based schemes for a wide range of errors.
Yet, for e ≥ 1.25 m, RLL starts to show better performance.

With increasing strength of the underlying system model,
i.e., with decreasing ILS failure rate (1.26 % for Fig. 9
and 0.58 % for Fig. 10), some interesting effects can be
observed. As Fig. 7 and Table 2 already indicate, the dif-
ferences between IA and GIA schemes get smaller, but are
still present, albeit for a smaller error range. Compared to
Fig. 8, the RLL-based schemes show better performance for
stronger system models, which is practically equal to the
performance of the LLR-based schemes for scenario 83 in
Fig. 10.

0 0.5 1 1.5
10

−6

10
−4

10
−2

10
0

Fig. 8 The probability of the norm of the baseline error to exceed e for
generalized IA (GIA) and IA estimators, for k = 8 satellites (scenario
81) and fixed failure rate Pf = 0.1 %
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Fig. 9 Corresponding to Fig. 8 for scenario 82; k = 8 satellites; failure
rate Pf = 0.1 %

123



Generalized integer aperture estimation 489

0 0.5 1 1.5
10

−6

10
−4

10
−2

10
0

Fig. 10 Corresponding to Fig. 8 for scenario 83; k = 8 satellites;
failure rate Pf = 0.1 %

6 Conclusion

A new class of integer ambiguity estimators was introduced,
which extends the concept of IA estimation to partial ambigu-
ity fixing. After a general definition of this class, two specific,
low-complexity realizations were provided. Both of them are
capable of the fixed failure rate approach. The performance
gain compared to IA estimation for a predefined failure rate
was examined through numerical simulations. So far, the
threshold values for selecting the subset of ambiguities to be
fixed with the given failure rate constraint were determined
based on Monte-Carlo simulations. For a practical implemen-
tation, the use of a look-up table as proposed in Verhagen and
Teunissen (2013) for IA estimation is a promising tool.

The two realizations of GIA estimators as presented in this
paper can be quite easily integrated in the popular LAMBDA
method. After the threshold value lth or rth has been deter-
mined, the search radius follows from (34). The search algo-
rithm of the LAMBDA method (see De Jonge and Tiberius
1996) has to be modified in the way that not the best inte-
ger candidates are stored, but rather the list of candidates as
described in 4.3.1. From this list and the acceptance tests (25)
or (30) follow the final ambiguity estimates.
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