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Abstract Many geodetic applications require the mini-
mization of a convex objective function subject to some linear
equality and/or inequality constraints. If a system is singular
(e.g., a geodetic network without a defined datum) this results
in a manifold of solutions. Most state-of-the-art algorithms
for inequality constrained optimization (e.g., the Active-Set-
Method or primal-dual Interior-Point-Methods) are either not
able to deal with a rank-deficient objective function or yield
only one of an infinite number of particular solutions. In this
contribution, we develop a framework for the rigorous com-
putation of a general solution of a rank-deficient problem
with inequality constraints. We aim for the computation of a
unique particular solution which fulfills predefined optimal-
ity criteria as well as for an adequate representation of the
homogeneous solution including the constraints. Our theoret-
ical findings are applied in a case study to determine optimal
repetition numbers for a geodetic network to demonstrate the
potential of the proposed framework.

Keywords Inequality constrained least-squares ·
Convex optimization · Rank defect · General solution

1 Introduction

Convex optimization problems frequently arise in geodesy.
No matter if there is a network to design, the gravity field of
the Earth to be estimated or the behavior of a rent index to be
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calculated, in any case a certain target function—e.g., the sum
of squared residuals—has to be minimized or maximized.

1.1 Inequality constrained least-squares problems

For many applications additional knowledge about the para-
meters is given, which can be formulated as inequality con-
straints that have to be strictly fulfilled. Two out of many pos-
sible examples are sign constraints for non-negative quanti-
ties like atmospheric delays in satellite geodesy or a maximal
feasible attenuation in filter design.

In the geodetic and mathematical community, a lot of
effort has been put into developments in the field of con-
vex optimization under inequality constraints mostly focus-
ing on inequality constrained least-squares (ICLS). Schaffrin
et al. (1980) and Koch (1982) formulated ICLS problems to
improve the first and second order design (SOD) of geodetic
networks by transforming the resulting quadratic program-
ming (QP) problem into a linear complementarity problem
(LCP).

In more recent studies, Koch (2006) used object-specific
constraints for a semantic integration of data from a geo-
graphical information system. Peng et al. (2006) introduced
an aggregate constraint method for ICLS problems, combin-
ing all inequality constraints to one complex equality con-
straint. Recently, Roese-Koerner et al. (2012) focused on the
problem of determining a stochastic description of ICLS esti-
mates and the determination of changes through the con-
straints. Also in the method of total least-squares (TLS),
introduction of inequality constraints is a topic of current
research. Zhang et al. (2013) extended the error-in-variables
model by the introduction of inequality constraints. In their
approach, they first identify the active constraints by exhaus-
tive search and subsequently solve an equivalent equality
constrained problem.
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1.2 Unconstrained rank-deficient problems

Solving a rank-deficient normal equation system results in
not one unique but a manifold of solutions. In the uncon-
strained case, a rigorous general solution can easily be
computed using the theory of generalized inverses (Koch
1999, p.48–59). This also includes the computation of a
unique solution via the Moore–Penrose inverse. However,
this is no longer possible in the presence of inequality
constraints. Most state-of-the-art optimization algorithms—
e.g., the Active-Set-Method (Gill et al. 1981, p.167-173) or
primal-dual Interior-Point-Methods (cf. Boyd and Vanden-
berghe 2004, p. 568–571 and p. 609–613)—are either not
able to deal with a rank-deficient objective function or yield
only one of an infinite number of particular solutions.

1.3 Rank deficient ICLS problems

Despite the highly sophisticated estimation theory for rank-
deficient but unconstrained (Sect. 1.2) and inequality con-
strained but well-defined systems (Sect. 1.1), only few pub-
lications have been devoted to singular optimization prob-
lems with inequality constraints. However, in geodesy, these
problems occur on many occasions. Examples are the SOD
of a geodetic network with more weights to be estimated
than entries in the criterion matrix, the adjustment of datum-
free networks or a spline approximation with data gaps and
additional information on the function behavior.

Barrodale and Roberts (1978) presented a modification of
the standard Simplex method for linear programming, which
is able to handle rank-deficient problems. However, extend-
ing it to a QP is not straightforward.

Schaffrin (1981) treated the special case, that in addition to
the linear inequality constraints, all parameters are restricted
to be non-negative. He developed a method to compute a par-
ticular solution through the introduction of slack variables.
However, his approach is only valid for non-negative least-
squares problems.

O’Leary and Rust (1986) developed an approach for
computing confidence regions for ill-posed weighted non-
negative least-squares problems. The inequality x ≥ 0 is
used to truncate the solution space and eliminate the non-
uniqueness of the solution. However, their approach cannot
easily be extended to general linear constraints as it aims to
resolve the manifold, which is not always possible.

Fletcher and Johnson (1997) proposed a nullspace method
for ill-conditioned QPs with solely equality constraints: the
aim is to compute the nullspace of the matrix B̄T of equal-
ity constraints. This allows to reformulate a problem with
equality constraints as a problem without constraints. Under
certain conditions, it is now possible to compute a solution
even if the coefficient matrix or the matrix of constraints is ill-
conditioned. This could be applied in an Active-Set-approach

to solve a inequality constrained problem as a sequence of
equality constrained ones. However, as the focus of their
contribution is on ill-conditioned problems and not on rank-
deficient ones, the computation of a general solution is not
discussed.

Dantzig’s simplex method for quadratic programming
(Dantzig 1998, p. 490–498) allows for the computation of a
particular solution in case of a rank-deficient design matrix.
However, no statements about the homogenous solution are
given. This method will be used in our framework to com-
pute the solution in case the manifold is eliminated through
introduction of inequality constraints.

Xu et al. (1999) analyzed the stability of ill-conditioned
linear complementarity problems (LCP) in geodesy, which
could be used to solve an ICLS problem. In case of an unsta-
ble LCP due to an ill-conditioned LCP matrix (a case often
encountered when processing GPS data), they proposed a
regularization of the LCP matrix.

Geiger and Kanzow (2002, p. 362–365) described a Tikh-
onov regularization for ill-conditioned convex optimization
problems.

In the projector theoretical approach of Werner (1990) and
Werner and Yapar (1996), a rigorous computation of the gen-
eral solution of ICLS problems with possibly rank-deficient
matrices A and � is performed using generalized inverses.
First, an ordinary least-squares solution is computed, then
the update to the ICLS solutions is computed in an iterative
approach. As the ICLS solution is obtained by testing arbi-
trary subsets of constraints, this approach is mostly suited for
small-scale problems with few constraints.

1.4 Purpose and organization of this article

In this contribution, a line of thought similar to that of Werner
and Yapar (1996) will be followed. Accordingly, we propose
a two-step approach for a rigorous computation of the gen-
eral solution. In a first step, the constraints are neglected
and a general solution of the unconstrained problem is com-
puted. Subsequently, the constraints are taken into account
and a second optimization problem is solved, depending on
whether there is an intersection of manifold and feasible
region or not.

The proposed approach has four major advantages. First,
it allows for a description of the manifold including the con-
straints as these will be reformulated in terms of a basis for
the nullspace of the design matrix. Second, an additional
optimization step is performed in this nullspace to provide a
particular solution, which fulfills certain optimality criteria.
Third, it is not restricted to small-scale problems. Fourth, the
proposed method detects if the dimension of the manifold
of the unconstrained problem is reduced through the intro-
duction of inequality constraints (up to the case of a unique
solution).
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This contribution is organized as follows: in Sect. 2 the
notation is introduced and basic principles of rank-deficient
problems and of inequality constrained optimization are
reviewed. Section 3 describes the ideas and computations
of our framework for the rigorous computation of general
ICLS solutions. The two simple synthetic examples in Sect. 4
illustrate the application of the framework, while the real-data
SOD problem reveals its capacities for classic geodetic tasks.
Characteristics of our framework as well as future challenges
are pointed out in Sect. 5.

2 Background

2.1 Convex optimization

According to Boyd and Vandenberghe (2004, p. 137), con-
vex optimization is defined as the minimization of a con-
vex objective function over a convex set. A commonly used
objective function in geodesy is the weighted sum of squared
residuals

Φ(v) = vT �−1v, (1)

resulting from the well-known linear Gauss–Markov Model
(GMM)

� + v = Ax. (2)

� is the n × 1 vector of observations, v the n × 1 vector of
residuals, A the n × m design matrix and x the unknown
m × 1 vector of parameters. If the variance–covariance
(VCV) matrix of the observations � = �{L} is positive
(semi)definite, Φ(v) is a convex function. The observations
� are assumed to be a realization of the normally distributed
random vector

L ∼ N (Aξ ,�). (3)

ξ is the vector of true parameters. The weighted least-squares
(WLS) problem can now be formulated as follows

Weighted least- squares problem

objective function: �(x) = vT �−1v …Min

optimization variable: x ∈ IRm

. (4)

A WLS estimate x̃ of the parameters can be computed by
assembling and solving the normal equations

N = AT �−1A, (5a)

n = AT �−1�, (5b)

x̃ = N−1n. (5c)

However, if the column rank of design matrix A is less than
the number of unknown parameters

Rg(A) = r < m, d = m − r, (6)

due to the d linear-dependent columns of A, we are fac-
ing a rank-deficient problem. This results in a likewise rank-
deficient matrix N and an under-determined system of normal
equations

Nx = n, Rg(N) = r < m. (7a)

W.l.o.g. we will assume, that N can be rearranged and
partitioned in a way that the [r × r ] matrix N11 is of full rank
[

N11 N12

N21 N22

] [

x1

x2

]

=
[

n1

n2

]

. (7b)

2.1.1 Solving unconstrained rank-deficient problems

It is well known, that for equation systems of type (7b) there
exists not one unique solution but a manifold. Therefore, the
general solution

x̃(λ) = xP + xhom(λ) (8)

consists of a particular solution xP and a homogenous solu-
tion xhom(λ) which depends on the free parameters contained
in the d × 1 vector λ, which can be chosen arbitrarily.

The homogeneous solution can be expressed as

xhom(λ) = Xhom λ, (9)

with the columns of the m × d matrix Xhom being a basis
for the nullspace of A, with

AXhom = 0. (10)

According to Koch (1999, p. 59), the matrix

Xhom =
[

−N−1
11 N12

I

]

(11)

fulfills this requirement.
A particular solution of (7b) can for instance be computed

by applying the symmetric reflexive generalized inverse

N−
RS =

[

N−1
11 0

0 0

]

(12)

(cf. Koch 1999, p.57) resulting in

xP = N−
RS n =

[

N−1
11 n1

0

]

. (13)

Furthermore, the known basis Xhom of the nullspace of A can
be used to compute the Moore–Penrose inverse

N+ =
(

N + XhomXT
hom

)−1

−Xhom

(

XT
homXhomXT

homXhom

)−1
XT

hom (14)

(cf. Koch 1999, p.61).
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For some applications, it is possible to directly state a
basis Xhom for the nullspace of A. This offers the advantage
that the free parameters λ are interpretable. For example, in
the adjustment of a geodetic direction and distance network,
the free parameters represent translation, rotation and scal-
ing of the network and an explicit basis for the nullspace is
known (cf. Meissl 1969). Despite the fact that all choices of
λ will result in a mathematically correct solution, Xu (1997)
pointed out that not all of them are geodetically meaningful.
For example, there may be constraints to the transformation
parameters (e.g., a positive scaling parameter) which we will
address again later.

In addition, one has to bear in mind, that a rank-deficient
design matrix is equivalent to the statement that some quan-
tities are not directly estimable. This does not only influence
the parameter estimation, but also possible further processing
steps like, e.g., hypothesis testing (Xu 1995).

2.1.2 Solving ICLS problems

We assume that the minimization of (1) should be performed
subject to p linear inequality constraints

BT x ≤ b, (15)

with B being the m × p matrix of constraints and b the p × 1
vector containing the corresponding right hand sides. As lin-
ear inequality constraints always form a convex set, the linear
inequality constrained least-squares (ICLS) problem

Inequality constrained least- squares

objective funct.: Φ(x) = vT �−1v …Min

constraints: BT x ≤ b

optim variable: x ∈ IRm

(16)

is a convex optimization problem. More specifically, it is a
quadratic program (QP) as we minimize a quadratic objective
function subject to linear inequality constraints (cf. Gill et al.
1981, p. 76). If the normal equations are well defined (i.e., no
rank defect), there exists a big variety of algorithms to solve
a QP. As there is no direct analytical relationship between
observations and parameters and it is not known beforehand
which inequality constraints will influence the estimation
of parameters, all methods are iterative algorithms. Most of
them can be subdivided into two main classes: Simplex meth-
ods and Interior-Point methods.

Simplex algorithms are tailor-made for linear constrained
problems. The set of constraints is subdivided into active
constraints Ba, ba that hold as equalities and inactive ones
Bi , bi , which hold as strict inequalities

BT
a x = ba, BT

i x < bi . (17)

In an iterative process the active constraints are used to follow
the boundary of the feasible set (i.e., the region where all
constraints are satisfied) to the optimal solution. Examples
for this type of algorithm are the Active-Set method (Gill
et al. 1981, p. 167–173) and Dantzig’s simplex method for
quadratic programming (Dantzig 1998, p. 490–498).

Interior-Point methods are the second main class of solvers
for a QP. They are well suited for but not restricted to the
linear constrained case. The basic idea is to start at a point
inside the feasible region and solve a sequence of simplified
problems converging along a central path towards the opti-
mal solution. Barrier methods and primal-dual methods (cf.
Boyd and Vandenberghe 2004, p. 568–571 and p. 609–613,
respectively) are the most common among the Interior-Point
methods.

Methods to determine the smallest bounding box for the
feasible set and finding an initial feasible point are given in
Xu (2003) and Boyd and Vandenberghe (2004, p. 579–580),
respectively.

3 Rigorous computation of a general solution

Before describing the actual framework, it is instructive to
examine how the introduction of inequalities can change the
original problem and especially the manifold.

3.1 Changes through inequality constraints

We will distinguish two main cases depending on whether
there is an intersection of the feasible region and the mani-
fold of solutions (case 1) or not (case 2). As it is crucial for
understanding the theory our proposed framework is built on,
the differences to the unconstrained case will be described in
some detail.

Figure 1a shows the isolines of the objective function of
the unconstrained, bivariate optimization problem stated in
Sect. 4.1.1. One particular solution is computed using the
Moore–Penrose inverse (14) and depicted as orange cross.
The one-dimensional manifold of solutions is shown as
dashed black line.

3.1.1 Case 1: intersection of manifold and feasible region

This case can be subdivided into three sub-cases. Let case
1a be defined as a problem with only one or more inactive
inequality constraints that are parallel to the solution mani-
fold. As the unconstrained solution already is in the feasible
region, the parallel constraint(s) do not influence the solution
at all.

Case 1b, another possible influence of constraints, is
shown in Fig. 1b. Here, the constraint is not parallel to the
manifold and therefore restricts it. The manifold is still one
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Fig. 1 Isolines of the objective function of the bivariate convex opti-
mization problem, which is stated in Sect. 4.1. The one-dimensional
manifold (i.e., a straight line) is plotted as dashed black line. A partic-
ular solution of the unconstrained case was computed via the Moore–
Penrose inverse and is shown as orange cross. The infeasible region is
shaded and inequalities are plotted as red lines. a Isolines of the objec-

tive function. b Case 1b: manifold and feasible region intersect and
the manifold is restricted by the constraint. c Case 2a: manifold and
feasible region are disjunct, unique solution (green cross). d Case 2b:
manifold and feasible region are disjunct, but there is still a manifold
of solutions due to the active parallel constraint

dimensional. However, due to the constraint, it is no longer
a line but a half-line, since it is now bounded in one direc-
tion but still unbounded in the other one. Introduction of more
constraints can further restrict the manifold to a line segment.

The introduction of constraints can also lead to a decrease
of the dimension of the manifold (case 1c). This is always
the case for equality constraints which are not parallel to
the manifold of solutions. However, same can be true for
inequality constraints. An easy to imagine example is the case
where one equality constraint is expressed by two inequality
constraints.

3.1.2 Case 2: manifold and feasible region are disjunct

In some cases, the introduction of inequality constraints
enables us to determine a unique solution (green cross) of a
rank-deficient optimization problem (case 2a, Fig. 1c). This
is always the case, if the solution of the constrained problem

is not contained in the original manifold and there are no
active parallel constraints.

In case 2b, the influence of a constraint that is parallel to
the manifold of solutions is further examined (cf. Fig. 1d).
It is obvious, that the active inequality constraint (red line)
shifts the one-dimensional manifold but does not constrain
it further. Therefore, there is still a manifold of the same
dimension as in the original problem.

3.1.3 General remarks and outline of the framework

It is important to notice that the direction of the manifold
cannot be changed through the introduction of inequality
constraints. More specifically, a translation (case 2b), a gen-
eral restriction (case 1b) or a dimension reduction (cases 1c
and 2a) of the manifold are possible, but never a rotation. This
leaves us in the comfortable situation, that it is possible to
determine the homogenous solution of an ICLS problem by
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determining the homogenous solution of the corresponding
unconstrained WLS problem and reformulate the constraints
in relation to this manifold. Therefore, our framework con-
sists of the following major parts that will be explained in
detail in the next sections.

To compute a general solution of an ICLS problem (16),
we compute a general solution of the unconstrained WLS
problem and perform a change of variables to reformulate
the constraints in terms of the free variables of the homoge-
nous solution. Next, we determine if there is an intersection
between the manifold of solutions and the feasible region.
In case of an intersection, we determine the shortest solution
vector in the nullspace of the design matrix with respect to
the inequality constraints and reformulate the homogenous
solution and the inequalities accordingly. If there is no inter-
section, we compute a particular solution using Dantzig’s
simplex algorithm for QPs and determine the uniqueness of
the solution by checking for active parallel constraints.

3.2 Transformation of parameters

In order to solve the ICLS problem (16), as a first step, we
compute a general solution of the unconstrained WLS prob-
lem (4) as described in Sect. 2.1.1

x̃WLS(λ) = xWLS
P + xhom(λ). (18)

Afterwards, we perform a change of variables and insert (18)
and (9) in (15) to reformulate the constraints in terms of the
free variables λ at the point of the particular solution

BT
(

xWLS
P + Xhom λ

)

≤ b (19a)

⇐⇒ BT xWLS
P + BT Xhom λ ≤ b. (19b)

With the substitutions

BT
λ :=BT Xhom, (20)

bλ:=b − BT xWLS
P , (21)

(19) reads

BT
λ λ ≤ bλ, (22)

being the desired formulation of the inequality constraints.
If the extended matrix [BT

λ |bλ] has rows, that contain only
zeros, these rows can be deleted from the equation system,
as they belong to inactive inequality constraints which are
parallel to the solution manifold but do not shift the optimal
solution (cf. case 1a in Sect. 3.1.1).

Next, we examine if the constraints (22) form a feasible
set or if they are inconsistent. This can be done by formulat-
ing and solving a feasibility problem (cf. Boyd and Vanden-
berghe 2004, p. 579–580). If the constraints form a feasible
set, there is at least one set of free parameters λi that ful-
fills all constraints. This is equivalent to the statement, that
there is an intersection between the manifold of solutions

and the feasible region of the original ICLS problem, which
is described in Sect. 3.3. If the constraints are inconsistent,
the manifold and the feasible region are disjunct and we will
proceed as described in Sect. 3.4.

3.3 Case 1: intersection of manifold and feasible region

If there is an intersection of manifold and feasible region,
we aim for the determination of a unique particular solution
x̃P , that fulfills certain predefined optimality criteria. This is
assured by formulating a second optimization problem using
an objective function according to the chosen optimality cri-
teria, the constraints derived in (22) and λ as optimization
variable.

Minimizing the length of the original parameter vector
subject to the constraints seems to be a reasonable choice of
the objective function. Therefore, we try to estimate λ in a
way, that

xICLS
P (λ) = xWLS

P + xhom(λ), (23)

has shortest length among all possible particular solutions
that fulfill the constraints. Therefore, we solve the QP

Nullspace optimization problem

objective funct.: ΦN S = xI C L S
P (λ)T xI C L S

P (λ) …Min

constraints: BT
λ λ ≤ bλ

optim variable: λ ∈ IRd

(24)

e.g., via the Active-Set method. As we minimize over the free
parameters λ only, the whole optimization takes place in the
nullspace of the design matrix, ensuring that the manifold of
optimal solutions is not left. Inserting (9) in (23) the objective
function of problem (24) can be written as

ΦNS(λ) =
(

xWLS
P + Xhom λ

)T (

xWLS
P + Xhom λ

)

= λT XT
homXhomλ

+2
(

xWLS
P

)T
Xhomλ +

(

xWLS
P

)T
xWLS

P . (25)

This results in an estimate ˜λ, which is used to determine the
desired optimal particular solution

x̃ICLS
P = xWLS

P + xhom(˜λ). (26)

In case of solely inactive constraints, the resulting solution
will be equivalent to the one obtained via the Moore–Penrose
inverse in the unconstrained case. If the constraints prevent
that the optimal unconstrained solution is reached, our par-
ticular solution will be the one with shortest length of all
solutions that minimize the objective function and fulfill the
constraints.

123



Inequality constraints in rank-deficient systems 421

As the reformulated constraints depend on the chosen par-
ticular solution, we have to adapt them to the new particular
solution using (19). Now, we can combine our results to a
rigorous general solution of the ICLS problem (16)

x̃ICLS(λ) = x̃ICLS
P + xhom(λ), (27a)

BT
λ λ ≤ bλ. (27b)

For an horizontal network, where there is a known basis for
the nullspace of the design matrix (cf. Sect. 2.1.1), Xu (1997)
worked out constraints (like a positive scaling parameter) for
the free parameters to obtain a geodetically meaningful solu-
tion. These constraints can easily be included in our frame-
work by using the known basis of the nullspace as homoge-
neous solution Xhom and expanding the constraints BT

λ and
bλ to the free parameters.

3.4 Case 2: manifold and feasible region are disjunct

If there is no intersection between feasible region and the
manifold of solutions, there either is a unique solution or at
least one active constraint is parallel to the solution manifold,
meaning the solution is still non-unique (cf. Sect. 3.1.2). To
compute a particular solution of problem (16) a Simplex type
QP solver can be used, as discussed in Sect. 2.1.2, resulting
in an arbitrary optimal solution xICLS

P . To decide whether the
solution is unique, we check for active parallel constraints.
If there is at least one, there exists a manifold of solutions,
which is a shifted version of the original one. In this case,
we proceed as described in Sect. 3.3 using xICLS

P instead of
xWLS

P .
If there is a unique solution, it means that the introduction

of constraints has resolved the manifold yielding

x̃ICLS = xICLS
P (28)

as final result.

3.5 Framework

Using the tools described, we devised a framework for the
computation of a rigorous general solution of rank-deficient
ICLS problems, which is shown in Algorithm 1.

The first three lines correspond to the transformation of
parameters and the test for intersection of feasible region and
solution manifold (described in Sect. 3.2). If there is no inter-
section (feasible = false), a particular solution is computed
as described in Sect. 3.4 and a test for parallel constraints is
performed (lines 4–12). If no active constraint is parallel to
the manifold, the computed particular solution is unique and
the algorithm terminates (line 8).

hom

hom

hom

hom

hom

hom

hom

If there is an intersection of the sets (feasible = true) or an
active parallel constraint, we proceed as described in Sect.
3.3 and solve a second optimization problem (lines 13–17).

In lines 2, 10 and 16 a transformation of the constraints is
computed. This is necessary, as the constraints with respect to
the Lagrange multipliers ki depend on the chosen particular
solution. Fortunately, this transformation is a computation-
ally cheap operation.

One may ask the question: why not directly compute a par-
ticular ICLS solution via Dantzig’s algorithm as performed
in line 6 of the framework? We intentionally decided to first
compute an unconstrained general solution and to check for
set intersection in order to achieve optimal runtime behavior.
This is because solving the original quadratic program is the
most expansive operation performed within this framework.
If feasible set and manifold intersect, we can avoid solv-
ing the original problem directly. Instead a general uncon-
strained solution is computed and an optimization problem
with respect to the free parameters λi is solved. Computation-
ally this is a lot cheaper, as the dimension reduces from an m-
dimensional problem to a d-dimensional problem. The num-
ber m of parameters is usually a lot bigger than the dimension
d of the rank defect. Hence, computations become faster.

4 Applications

The presented framework for the rigorous computation of
a general solution of an ICLS problem was applied to two
scenarios: a small two-dimensional synthetic example and
the second order design (SOD) of a geodetic network.

We chose the small synthetic example, because of its sim-
plicity which allows to concentrate on details of the presented
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framework and the matter, that it is possible to explicitly draw
the objective function of a two-dimensional problem.

The second example—the task of estimating optimal rep-
etition numbers in an underdetermined system—is used to
underline the potential of the framework for classical geo-
detic application using real data.

4.1 2D synthetic example with 1D manifold

The first example is the task of estimating the two summands
of a weighted sum

�i + vi = x1 + 2x2 (29)

in a Gauss–Markov model. We assume each observation to
follow a normal distribution with a standard deviation of one
and state that all observations are independent and identi-
cally distributed. Therefore, the VCV matrix � is an identity
matrix. It should be noted that this is done for reasons of
simplicity only, as the proposed framework is able to handle
the case of correlated observations, too.

The resulting two-dimensional system clearly has a rank
defect of one, as it is solely possible to estimate one summand
depending on the other one.

� + v =

⎡

⎢

⎢

⎢

⎢

⎣

1 2
1 2
1 2
1 2
1 2

⎤

⎥

⎥

⎥

⎥

⎦

[

x1

x2

]

= Ax. (30)

Obviously, both columns of the design matrix A are linear
dependent. Given the following synthetic observations

�T = [

23.2 16.4 12.9 8.2 13.7
]

, (31)

we will demonstrate the computation of the unconstrained
ordinary least-squares (OLS) solution in Sect. 4.1.1, as this
is identical to the first steps of our framework. Next, we will
introduce two different sets of constraints to cover case 1
where manifold and feasible region intersect (Sect. 4.1.2) as
well as case 2, in which there is no such intersection (Sect.
4.1.3). The isolines of the objective function are shown in
Fig. 1a.

4.1.1 Unconstrained OLS solution

The elements of the normal equations read

N = AT A =
[

5 10
10 20

]

, n = AT � =
[

74.40
148.80

]

. (32)

Inserting (13) and (11) in (8) the general solution reads

x(λ) =
[

14.88
0

]

+
[−2

1

]

λ = xP + Xhomλ. (33)

As expected, there is no unique optimal solution but a man-
ifold, which is expressed by an arbitrary particular solution
x̂P and a solution Xhom of the homogenous system. The man-
ifold is represented by the dashed black line in Fig. 1a for the
arbitrarily chosen interval 2.44 ≤ λ ≤ 7.44.

4.1.2 Case 1: restriction of the manifold

Introduction of the constraints

x1 ≤ 2, x2 ≤ 7 (34a)

⇐⇒
[

1 0
0 1

]

x ≤
[

2
7

]

(34b)

⇐⇒ BT x ≤ b (34c)

restricts the manifold as can be seen in Fig. 2. Transforming
the constraints in the point x̂P of the particular solution with
respect to the free parameter λ according to (19) yields

−2λ ≤ −12.88, λ ≤ 7 (35a)

⇐⇒
[−2

1

]

λ ≤
[−12.88

7.00

]

(35b)

⇐⇒ BT
λ λ ≤ bλ. (35c)

Now, a feasibility problem is solved to determine if a fea-
sible solution exists or if the constraints are contradictory.
For this trivial example one can easily find a solution that
fulfills all constraints, e.g., λ = 7. Therefore, we compute an
estimate˜λ by solving

0 2 4 6 8 10
0

2

4

6

8

10

x
1

x 2

200

400

600

800

1000

1200

Fig. 2 Isolines of the objective function of the synthetic example, case
1. The manifold is plotted as dashed black line, a particular solution of
the unconstrained case (obtained via the Moore–Penrose Inverse) is
shown as orange cross. The infeasible region is shaded and inequalities
are plotted as red lines. The ICLS solution with shortest length is shown
as green cross
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2D synthetic example: Nullspace optimization

objective funct.: (xP + Xhomλ)T (xP + Xhomλ) …Min

constraints:
[−2

1

]

λ ≤
[−12.88

7.00

]

optim variable: λ ∈ IR

.

The resulting value˜λ = 6.44 is used to compute the shortest
solution vector that fulfills all constraints

x̃ICLS
P = xP + Xhom˜λ =

[

2.00
6.44

]

(36)

(green cross in Fig. 2). Considering the changed particular
solution, we transform the constraints again and achieve as
final result

x̃ = x̃ICLS
P + xO L S

hom (λ) =
[

2.00
6.44

]

+ λ

[−2
1

]

(37a)

subject to

[−2
1

]

λ ≤
[

0
0.56

]

. (37b)

Due to the introduction of inequality constraints the manifold
is no longer a line, but a line segment. The constraint x1 ≤ 2
prevents that the ICLS solution is identical to the solution
obtained via the pseudoinverse. This can also be seen in the
final solution (37), as there is one value on the right hand
side of the transformed constraints, that is zero, meaning that
the constraint is active. As the absolute value of the second
transformed constraint is small, it can be concluded, that the
manifold is only a small line segment, which is also depicted
in Fig. 2.

4.1.3 Case 2: unique solution

This section deals with the same synthetic example as
described in Sect. 4.1.1, but the second constraint is nar-
rowed to demonstrate the case, in which the introduction
of inequality constraints resolves the manifold and yields a
unique solution. Let the constraints be

x1 ≤ 2, x2 ≤ 2 (38a)

⇐⇒
[

1 0
0 1

]

x ≤
[

2
2

]

(38b)

⇐⇒ BT x ≤ b. (38c)

This setup is depicted in Fig. 1c. The constraint transforma-
tion yields

−2λ ≤ −12.88, λ ≤ 2 (39a)

⇐⇒
[−2

1

]

λ ≤
[−12.88

2.00

]

� (39b)

⇐⇒ BT
λ λ ≤ bλ. (39c)

These new constraints (39b) are contradictory as—due
to constraint 2—the maximal feasible value of λ is 2,
which is not enough to satisfy the first inequality. Therefore,
one particular solution x̂P of the original problem and the
corresponding Lagrange multipliers k are computed using
Dantzig’s simplex algorithm for QPs, resulting in

xICLS
P =

[

2.00
2.00

]

, k =
[

88.80
177.60

]

. (40)

As there is no active constraint that is parallel to the man-
ifold of solutions, the introduction of inequality constraints
resolves the manifold and the computed particular solution
is unique

x̃ICLS = xICLS
P =

[

2.00
2.00

]

. (41)

This can be geometrically verified, considering Fig. 1c,
where x̃I C L S is shown as green cross.

4.2 Second order design (SOD) of a geodetic network

The second application is the design of a geodetic network.
This is a classic optimization task in geodesy, which received
a lot of attention in the past (cf. Grafarend and Sansò 1985)
and still is a topic of ongoing research (cf. Dalmolin and
Oliveira 2011).

We focused on the SOD of a direction and distance net-
work as there it is most likely for a rank defect to appear.
However, the same methodology can be applied for the SOD
of a GNSS network, too. See e.g., Yetkin et al. (2011) for an
approach to determine an optimal set of GPS baselines in an
horizontal network.

4.2.1 Problem description

Aim of the SOD of an existing geodetic direction and/or dis-
tance network is to determine optimal observation weights
pi in order to develop an observation plan, that fulfills some
predefined optimality criteria. Usually, one tries to design a
network in a way that the estimated coordinates are of a simi-
lar accuracy and have only small correlations. Variances and
covariances can be described via the cofactor matrix Q{ ˜X }
of the estimated parameters. Therefore, a link to the matrix
of observation weights P can be established as

AT PA = Q{ ˜X }−1. (42)

Q{ ˜X } can be replaced by a target cofactor matrix. This cri-
terion matrix Qx contains the specification of an optimal
cofactor matrix (e.g., uncorrelatedness and similar variances)
which serves as observations. Classic choices for the crite-
rion matrix are either an identity matrix or a matrix of Taylor–
Karman type (cf. Grafarend and Schaffrin 1979). Using the
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Khatri–Rao product � (42) can be rewritten in matrix vector
notation

(AT � AT )p != qinv. (43)

The vectors p and qinv contain the entries of P and Q−1
x ,

respectively. Next, our L2-norm objective function can be
formulated as

Φ(p) =
(

(AT � AT )p − qinv

)T (

(AT � AT )p − qinv

)

= (Mp − qinv)
T (Mp − qinv) , M:=AT � AT .

(44)

Qx is a symmetric m×m matrix and all m(m+1)
2 elements of its

upper right triangle can be used as observations. If the number
n of weights pi that should be determined is less or equal to
this length of qinv, the weights can be estimated using a stan-
dard GMM. However, in practice it often occurs, that there
are more weights to be estimated than entries of the criterion
matrix given. Especially, if we have to deal with small net-
works or with larger networks with many fixed coordinates.
In these cases, the system is underdetermined resulting in a
rank-deficient normal equation matrix.

There is a direct relationship between repetition number
ni and the corresponding weight

pi = ni
σ 2

0

σ 2
�i

. (45)

σ 2
0 is the variance factor and σ 2

�i
the variance of observation

�i . As negative or huge repetition numbers cannot be real-
ized, box constraints are applied to the weights to ensure that
they are nonnegative and do not exceed a certain maximal
repetition number

pi ≥ 0 ⇐⇒ −Ip ≤ 0 (46)

pi ≤ nmax
σ 2

0

σ 2
�i

⇐⇒ diag (�) p ≤ nmaxσ0en . (47)

The operator diag (�) extracts all diagonal elements of
matrix � and preserves its original dimension. en is a vec-
tor of length n, that contains only ones. The corresponding
optimization problem reads

Example: Second Order Design

objective funct.: (Mp − qinv)
T (Mp − qinv) …Min

constraints:
[ −I

diag (�)

]

p ≤
[

0
nmaxσ0en

]

optim variable: p ∈ IRn

.

Naturally, computation of individual weights for each
observation does not yield a final result of the network opti-
mization process. This is, because it is not viable in practice
to measure some directions from one standpoint more often

than others. Therefore, the estimation of individual weights
usually presents the first step of a three-step approach. In a
second step, measurements with little impact are identified
and eliminated. Finally, in the third step, group weights—
e.g., for all observations from one standpoint—are estimated
(cf. Müller 1985). However, we focused on the first step only,
because it is most likely for a rank defect to appear there.

4.2.2 Results

We have applied the framework described in Sect. 3.5 to
determine optimal weights for a horizontal network located
in the “Messdorfer Feld” in Bonn. The network consists
of 3 fixed datum points (black triangles) and 8 new points
(black dots), whose coordinates should be estimated (cf.
Fig. 3). All points are located within sight distance from
each other, so that directions and distances between all pairs
of points could be measured theoretically. A criterion matrix
of Taylor–Karman type (cf. Grafarend and Schaffrin 1979) is
chosen, resulting in the target error ellipses plotted in green.
The dimensions of the network yield in 16(16+1)

2 = 136
entries of the criterion matrix, which serve as observations
and 162 weights to be estimated, resulting from the 162 pos-
sible direction or distance measurements. A tachymeter with
an accuracy of

σdir = 0.4 mgon, (48)

σdist = 1 mm + 1 ppm (49)

shall be used. σdir is the assumed accuracy of a direction
measurement and σdist the assumed accuracy of a distance
measurement.

The network shown in Fig. 3 has been designed using
the quantities stated above, assuming an arbitrary chosen
maximum repetition number of 50 and applying the pre-
sented framework. Since this approach approximates the
inverse of the criterion matrix instead of the criterion matrix
itself, a factor was computed and used to rescale p to
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Fig. 3 SOD of a geodetic network with 3 fixed points (black triangles)
and 8 new points (black dots). Distance measurements are shown as
dashed lines and direction measurements as solid lines. Green ellipses
depict the optimal error ellipses which are approximated by the red ones
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prevent over-optimization (proposed in Müller 1985). The
red error ellipses indicate values of the resulting cofactor
matrix Q{ ˜X }.

As a result of the optimization procedure a total of 146
measurements should be performed (118 direction measure-
ments, dashed lines, and 28 distance measurements, solid
lines). No measurement should be repeated more than 5
times. Furthermore, the introduction of inequalities resolves
the rank defect resulting in a unique solution. As expected, the
resulting error ellipses of points in the center of the network
are more circle-like than those of the ones on the borders.

5 Summary and conclusion

A framework for the rigorous computation of a general solu-
tion of rank-deficient ICLS problems was developed. Within
this framework, it is possible to compute a unique particular
solution which has shortest length of all vectors of the solu-
tion manifold. If there is an intersection of the feasible region
and the manifold of solution, this particular solution is iden-
tical to the one computed via the Moore–Penrose inverse.

Besides a description of the manifold of solutions, the
inequality constraints are reformulated in terms of the free
parameters of the optimization problem to quantify their
influence on the manifold. It can be determined, how and if
the introduction of inequality constraints reduce the dimen-
sion of the manifold culminating in the case of a unique
optimal solution.

The order of computations within the framework is chosen
in a way to avoid a direct computation of a particular solution
of the original ICLS problem if possible, to reduce the com-
putational demand. Instead, if manifold and feasible region
intersect, the original inequality constrained problem is split
up into an unconstrained problem in the original parameter
space and a feasibility and an optimization problem, both in
a vector space of lower dimensions. Therefore, the presented
framework is not restricted to small-scale problems as the
approach by Werner and Yapar (1996).

In this contribution, the minimization of the length of the
parameter vector was chosen as second optimality condi-
tion for the particular solution. However, this is an arbitrary
choice. One could also minimize a different norm which
suites a special problem. Potential choices include the L1-
norm of the parameter vector to obtain sparse solutions for
bigger problems or the L∞-norm to minimize the maximal
error.

In addition, the handling of ill-posed problems has not
been addressed, yet. In this case, it is more difficult to deter-
mine the vector space in which the minimization has to take
place. This question was left out intentionally and shall be
addressed in the future. Both issues have to be examined and
will be in the focus of future work.
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