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Abstract Many large-scale GNSS CORS networks have
been deployed around the world to support various com-
mercial and scientific applications. To make use of these
networks for real-time kinematic positioning services, one
of the major challenges is the ambiguity resolution (AR)
over long inter-station baselines in the presence of consid-
erable atmosphere biases. Usually, the widelane ambiguities
are fixed first, followed by the procedure of determination of
the narrowlane ambiguity integers based on the ionosphere-
free model in which the widelane integers are introduced as
known quantities. This paper seeks to improve the AR per-
formance over long baseline through efficient procedures for
improved float solutions and ambiguity fixing. The contri-
bution is threefold: (1) instead of using the ionosphere-free
measurements, the absolute and/or relative ionospheric con-
straints are introduced in the ionosphere-constrained model
to enhance the model strength, thus resulting in the bet-
ter float solutions; (2) the realistic widelane ambiguity pre-
cision is estimated by capturing the multipath effects due
to the observation complexity, leading to improvement of
reliability of widelane AR; (3) for the narrowlane AR, the
partial AR for a subset of ambiguities selected according
to the successively increased elevation is applied. For fix-
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ing the scalar ambiguity, an error probability controllable
rounding method is proposed. The established ionosphere-
constrained model can be efficiently solved based on the
sequential Kalman filter. It can be either reduced to some spe-
cial models simply by adjusting the variances of ionospheric
constraints, or extended with more parameters and con-
straints. The presented methodology is tested over seven
baselines of around 100 km from USA CORS network.
The results show that the new widelane AR scheme can
obtain the 99.4 % successful fixing rate with 0.6 % fail-
ure rate; while the new rounding method of narrowlane AR
can obtain the fix rate of 89 % with failure rate of 0.8 %.
In summary, the AR reliability can be efficiently improved
with rigorous controllable probability of incorrectly fixed
ambiguities.

Keywords Global Navigation Satellite Systems (GNSS) ·
Continuously Operating Reference Stations (CORS) ·
Network RTK · Ambiguity resolution (AR) · Partial
ambiguity resolution · Ionosphere-constrained model ·
Kalman filter

1 Introduction

Since 1990s, the CORS networks have been extensively
established around the world to support high-precision posi-
tioning applications, such as precise farming, machine guid-
ance, crustal deformation monitoring and other geoscience
applications (Bock and Shimada 1989; Chen 1994; Han and
Rizos 1996; Chen et al. 2000; Snay and Soler 2008; Liu
2011).

In current network RTK implementations, the inter-station
distance is typically restricted to around 50 km or shorter
in the lower latitude area mainly due to strong ionospheric
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disturbance (Chen et al. 2001; Wielgosz et al. 2005; Grejner-
Brzezinska et al. 2007). If such density coverage was
extended to the whole China, it would need thousands of
reference stations, representing huge costs for hardware, soft-
ware and on-going operations. Therefore, many researchers
seek to develop new data processing strategies to expand
the network density for the station separation of 100 km or
beyond (Li et al. 2010a; Tang et al. 2010). In most recent
years, an innovative PPP-RTK technology has been exten-
sively studying with carrying forward the successful PPP
applications based on the undifference data processing strate-
gies (Wabbena et al. 2005; Laurichesse et al. 2008; Mervart
et al. 2008; Collins et al. 2008; Li et al. 2010b, 2013c; Teu-
nissen and Odijk 2010; Geng et al. 2011), which has demon-
strated the high-precision positioning results in large-scale
networks. Contrary to the extensive studies on PPP-RTK, the
traditional double-difference-based network RTK research
seems cooling down, which is somehow unfair, since both
undifference and double-difference (DD) data processing are
essentially the different implementation (utilization) of the
network data. The high precision positioning gained both
from fixing DD integer ambiguities. Therefore, it is worth
to further address the traditional network RTK, after all it
has been running in most of network systems. The following
challenges are faced in the research for long baseline network
RTK systems.

Network ambiguity resolution The long inter-station sep-
aration will reduce the spatial correlation of atmospheric
biases such that their DD residuals are still considerable.
These residuals usually have to be further captured by intro-
ducing more parameters. As a consequence, the formulated
model will be very weak, thus hindering the precision of
float ambiguity solutions and then the ambiguity fixing effi-
ciency and reliability. Moreover, the complexity of resid-
ual DD atmospheric effects, especially for the low-elevation
satellites, would likely bias the float solutions if they are not
adequately treated (Chen et al. 2004; Dai et al. 2003; Li et
al. 2013c). To reverse such a situation, more research efforts
are needed to resolve the ambiguities fast and reliably.

Atmosphere correction generation After AR over all base-
lines of the network, the next step is to compute the high-
precision atmospheric corrections in both spatial and tem-
poral high resolutions. Besides, the good modeling strate-
gies are needed to establish the high-precision model of
atmospheric corrections over the network (Fortes et al. 2003;
Zhang and Lachapelle 2001). The interpolated corrections
can then adequately represent the real atmospheric biases
and satisfy the requirement of high-precision RTK users.

Atmosphere correction application The corrections gen-
erated from the network are usually treated as deterministic
quantities without any consideration of their uncertainties in
the user receiver processing. This is obviously questionable
since the corrections computed from network data are noisy

and correlated with each other. Without taking into account
these stochastic characteristics of the corrections, the rover
solutions will be too optimistic.

Of three challenges aforementioned, the reliable AR
would be the most crucial one since the incorrect network
AR would result in the incorrect solutions for all users. The
extensive research efforts have been made to improve the
network AR in the past years (Odijk 2000; Hu et al. 2003; Li
and Teunissen 2011; Odijk et al. 2012). Usually, the widelane
ambiguities are fixed first, with which as known quantities,
followed by the procedure of determination of the narrowlane
ambiguity integers based on the ionosphere-free model.

In the network RTK processing, the new ambiguities are
introduced from time to time and the unknown ambiguities
have the different cumulative observation time, elevations
and precisions. It is, therefore, impossible to always fix all
ambiguities simultaneously. It is common that the so-called
bootstrapping procedure is employed to successively fix the
ambiguities (Dong and Bock 1989; Blewitt 1989; Dach et
al. 2007). In the bootstrapping processing, a subset of ambi-
guities is selected and fixed with high confidence. In fact,
after initialization, the full ambiguity vector or the selected
ambiguity subset consists of only few or even mostly one
ambiguity. In this case, the rounding method is employed by
checking the ambiguity fraction from its nearest integer and
its variance. If both fraction and variance are smaller than the
user-defined thresholds, it is assumed that this ambiguity can
be fixed with a sufficient confidence. However, in most of the
existing studies, these two thresholds are, to a great extent,
empirically given and invariant in the whole AR processing.
The problem is that when the thresholds are too large, the
fixed ambiguity will be doubtful; when the thresholds are
too small, the efficiency of ambiguity fixing becomes lower,
i.e., the ambiguity that can be confidently fixed is left unfixed.

This paper dedicates to improve the network AR by
strengthening the float solutions and increasing the reliability
of ambiguity fixing. It starts with the widelane AR using the
Melbourne–Wübbena model (Melbourne 1985; Wübbena
1985), whose uncertainty is dominated by the pseudoranges.
In this paper, a new strategy is introduced to capture the influ-
ence of observation complexity on the precision estimation
of widelane ambiguity. With the fixed widelane ambigui-
ties as known quantities, an ionosphere-constrained model
is introduced to solve the narrowlane ambiguities instead of
the ionosphere-free model. As a consequence, the absolute
and/or relative constraints can be imposed on the ionospheric
biases to enhance the AR model strength, thus improving the
float solutions. For the narrowlane AR with the bootstrap-
ping procedure, the partial AR for a subset of ambiguities
selected according to the successively increasing elevations
is performed. For scalar ambiguity fixing, we control the error
probability of incorrect fixing by downscaling the round-
ing region adaptively in terms of its precision. As a result,
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the probability of successful ambiguity fixing is significantly
increased.

The paper is organized as follows. In Sect. 2, the fun-
damental DD observation equations are outlined, followed
by adaptive variance estimation in widelane AR. In Sect. 3,
the ionosphere-constrained model is formulated and the
sequential formulae are derived for the efficient computa-
tions. Moreover, several special models deduced from the
ionosphere-constrained model are discussed. We discuss the
narrowlane AR in Sect. 4, including the partial AR with ambi-
guity subset selected against the successively increased ele-
vations and a new rounding strategy for improving the reli-
ability of scalar ambiguity fixing. The real GPS data from
USA CORS network (Snay and Soler 2008) are processed
in Sect. 5 to demonstrate the performance of the presented
methodology. Finally, some concluding remarks are given in
Sect. 6.

2 Geometry-free and ionosphere-free model
for widelane AR

Considering the ionospheric and tropospheric biases, the DD
phase and code observation equations on frequency j read

φuv
j,k − �uv

k = τ uv
k − μ j ι

uv
k − λ j a

uv
j + εφuv

j,k

puv
j,k − �uv

k = τ uv
k + μ j ι

uv
k + εpuv

j,k
(1)

where the subscripts j and k denote the frequency f j and
epoch number, while the superscripts u and v a pair of satel-
lites. φ and p are the DD phase and code observations in
unit of meter. � is the DD receiver-to-satellite distance com-
puted using the known receiver and satellite coordinates. τ

is the residual DD tropospheric delay after correcting by
using a standard troposphere model, for instance, UNB3
model (Collins and Langley 1997; Kim et al. 2004) along
with Niell’s mapping function (Niell 1996). ι is the DD
ionospheric bias on frequency f1 with μ j = f 2

1 / f 2
j ; λ j is the

phase wavelength and a its associated DD integer ambiguity;
ε is the random noise of normal distribution with zero mean.

2.1 Widelane AR with adaptive variance estimation

Resolution of the so-called widelane ambiguities using spe-
cial linear combination of the L1 and L2 carrier and code
observations has become standard (Mervart et al. 1994).
Many AR strategies resolve firstly the widelane ambiguity,
and the Melbourne–Wübbena model (MW) combination is
extensively applied, proposed independently by Melbourne
(1985) and Wübbena (1985). The float widelane ambiguity
is computed at epoch k as

âuv
w,k = 1

λw

(
f1 puv

1,k + f2 puv
2,k

f1 + f2
− f1φ

uv
1,k − f2φ

uv
2,k

f1 − f2

)
(2)

with widelane wavelength λw = c/( f1 − f2) ≈ 86 cm. The
MW model can be understood as a both geometry-free and
ionosphere-free model since the geometry and ionosphere-
related biases are totally cancelled and the code noise is min-
imized (Mervart et al. 1994). Therefore, it is expected to fix
the widelane ambiguity by rounding its averaged value over
m epochs,

ǎuv
w = [āuv

w

] =
[

m∑
k=1

âuv
w,k

/
m

]
(3)

where [•] denotes the operator of integer rounding. āuv
w is

the averaged float widelane ambiguity over m epochs and
ǎuv
w is its fixed integer. It is assumed that the precisions of

phase and code observations are unique for both frequencies,
respectively, i.e., σ 2

φ ≡ σ 2
φ1

= σ 2
φ2

and σ 2
p ≡ σ 2

p1
= σ 2

p2
.

Then the formal standard deviation of single-epoch widelane
estimate is

σâuv
w

=
√

f 2
1 + f 2

2

f1 + f2
σp +

√
f 2
1 + f 2

2

f1 − f2
σφ (4)

Considering σφ � σp, it follows that σâuv
w

≈ 0.7σp for dual-
frequency GPS. The standard deviation of averaged widelane
estimate āuv

w over m epochs is

σāuv
w

= σâuv
w

/√
m (5)

Denoting the distance of āuv
w to its nearest integer as buv

w =
|āuv

w − ǎuv
w |, the widelane ambiguity fixing is conducted by

checking both buv
w and σāuv

w
. Given the thresholds bm and σm,

one can fix āuv
w to its nearest integer ǎuv

w if

buv
w < bm, and σāuv

w
< σm

From the derivations above, it is clear that σāuv
w

is domi-
nated by σp that varies significantly for the different types
of receivers and the different observation environments, like
multipath (Li et al. 2008, 2011; Geng et al. 2012). This behav-
ior is also recognized in Ge et al. (2005) by post-fitting the
residuals. Therefore, to capture the influence of observation
complexity on the widelane ambiguity precision, we imme-
diately estimate the empirical standard deviation using the
residuals of widelane ambiguities themselves over m epochs.
Assuming that the widelane ambiguity is correctly fixed over
m epochs, the empirical standard deviation of the single-
epoch float widelane ambiguity is estimated as

σ̂âuv
w

=

√√√√∑m
k=1

(
âuv
w,k − ǎuv

w

)2

m
(6)

Notice that here the use of numerator m is based on the
assumption that the fixed solution ˇauv

w is deemed as a deter-
ministic quantity, which is practically true when its corre-
sponding success rate sufficiently close to 1. Recall that the
purpose of adaptive estimation of σ̂âuv

w
is to reliably fix ǎuv

w .
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However, it seems contradictory that ǎuv
w is involved in the

estimation (6). Bear this in mind and continue further analy-
sis. If ǎuv

w is indeed the correct integer, (6) obviously holds
true. If ǎuv

w is not the correct integer, the integer that should
be used in (6) has an integer bias from ǎuv

w . In such case, the
estimate σ̂auv

w
has already absorbed the effect of this integer

bias and is, of course, larger than the realistic precision. As
a result, this enlarged estimate will be, to a certain extent,
helpful for rejecting the incorrect integer.

The parameters bm and σm also play an important role
in widelane ambiguity fixing. The large thresholds would
derive the high probability of incorrect fixing, whereas the
small values would increase the rejection of correct integers.
In practice, one may conservatively prefer the small values
of bm and σm to control AR reliability, after all the widelane
AR is easy and important for latter narrowlane AR.

3 Ionosphere-constrained model for solving
the narrowlane float solution

3.1 Ionosphere-constrained model

For long baselines, the residual tropospheric biases (after
corrected with a standard model) are usually modeled using
so-called relative zenith troposphere delay (RZTD) parame-
ter with mapping function as (Zhang and Lachapelle 2001;
Hu et al. 2003; Dai et al. 2003),

τ uv
k =

(
1

sin θv
k

− 1

sin θu
k

)
× ξk = cuv

k × ξk (7)

where θu
k and θv

k are the average elevation angles of the two
stations for satellites u and v at epoch k, respectively. ξk is
the RZTD parameter. Inserting (7) into (1) and parameteriz-
ing the DD ionospheric biases, the single-epoch observation
equations read

⎡
⎢⎢⎣

φ1,k
φ2,k
p1,k
p2,k

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ck −μ1 Im λ1 Im

ck −μ2 Im λ2 Im

ck μ1 Im 0
ck μ2 Im 0

⎤
⎥⎥⎦
⎡
⎣ξk

ιk

a

⎤
⎦+

⎡
⎢⎢⎣

εφ1,k

εφ2,k

ε p1,k

ε p2,k

⎤
⎥⎥⎦ (8)

where φ1,k, φ2,k, p1,k, p2,k are dual-frequency DD
phase and code observation vectors corrected by the known
receiver-to-satellite distances, of which φ2,k has been cor-
rected with the formerly fixed widelane ambiguities. ck is the
coefficient vector to RZTD for all DD satellites. ιk is (m ×1)

DD ionosphere parameter vector; a denotes the (m × 1) L1
DD ambiguity vector. Im is the (m × m) identity matrix.

Let us now work out some constraints to enhance the
model strength. Usually, RZTD is assumed to be a first-order
Gauss–Markov process. The corresponding state translation
equation between two consecutive epochs is

ξk = e
− �t

τξ ξk−1 + wξk , σ 2
wξk

= τξ qξ

2

(
1 − e

− 2�t
τξ

)
(9)

where �t is time interval between two consecutive epochs;
τξ and qξ are the correlation time and the spectrum density,
respectively. wξk is the process white noise with variance
σ 2

wξk
. In network RTK, because the sampling interval is very

small relative to τξ (in this study we take �t = 5 s), (9) can
be approximated to a random walk process

ξk = ξk−1 + wξk , σ 2
wξk

= qξ�t (10)

Similar to the tropospheric delay, the state translation equa-
tion can also be set up for ionospheric parameters

ιk = ιk−1 + wιk , Qwιk
= σ 2

wιk
Im = qι�t Im (11)

In addition, the absolute (DD) ionospheric constraints may
be achievable from a deterministic ionospheric model. The
prior ionospheric biases, ι0

k with covariance matrix Qι0k
, can

be applied by a set of pseudo observation equations

ι0
k = ιk + ε0

ιk
, Qι0k

= σ 2
ι0

DT
m Dm (12)

where DT
m = [−em, Im] is the between-satellite single dif-

ference operator with the first satellite as reference. em is the
m-column vector with all elements of 1. In many cases, one
can simply take ι0

k = 0 with baseline length up to 500 km
(Dach et al. 2007). Therefore, at this stage, it is rather crucial
to specify the value of σι0 . If σι0 is too small, the model
strength can, of course, be enhanced significantly, which
however may result in the biased float solution; whereas if it
is too large, the contribution of constraints to enhancing the
model strength is downscaled, which could not be helpful to
improving AR. Although a small bias is theoretically allowed
for successful AR (Li et al. 2013), it gives difficulty for con-
trolling the AR reliability latter. Hence, in practice, one may
conservatively prefer the large value of σι0 to improve the
float solution but without introducing bias.

Note that the relative and absolute ionospheric constraints
will be invalid if the ionosphere-free model is used.

3.2 Sequential solutions of Kalman filter type

To speed up the computations, the sequential solutions of
Kalman filter type will be derived based on the least squares
criterion. To ease programming, the ambiguity parameter is
incorporated in the filter state as well with an extremely small
variance, for instance, σwak

= e−16, to characterize its con-
stant property, namely,

ak = ak−1 + wak , Qwak
= σ 2

wak
Im (13)

Collecting the observation equations (8), the state translation
equations (10), (11) and (13) of ξk, ιk and a, and the pseudo
ionospheric equations (12) yileds
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yk = Ak xk + εk, Qyk
(14a)

xk = �k,k−1xk−1 + wk, Qwk
(14b)

ι0
k = ιk + ε0

ιk
, Qι0k

(14c)

where yk = [φT
1,k, φT

2,k, pT
1,k, pT

2,k

]T
, xk = [ξk, ιT

k , aT
]T

.
Ak is the corresponding design matrix taken from (8).

εk =
[
εT
φ1,k

, εT
φ2,k

, εT
p1,k

, εT
p2,k

]T
is observation noise vector

and its covariance matrix is Qyk
.�k,k−1 is the state trans-

lation matrix and the identity matrix in this case. wk =[
wξk , wT

ιk
, wT

ak

]T
is the state translation noise vector and

Qwk
= diag(σ 2

wξk
, Qwιk

, σ 2
wak

Im) is its covariance matrix.
The Kalman filter procedure to this equation system can

be divided into two parts. One is a standard Kalman filter pro-
cedure. The other, as an additional step, is to update the solu-
tion from the standard Kalman filter by applying the absolute
ionospheric constraints if available. The sequential solutions
start with the standard Kalman filter (Yang et al. 2001; Yang
and Xu 2003)

x̃k = �k,k−1 x̂k−1 (15a)

Qx̃k
= Qwk

+ �k,k−1 Q x̂k
�T

k,k−1 (15b)

Jk = Q x̃k
AT

k (Ak Q x̃k
AT

k + Qyk
)−1 (15c)

x̂k = x̃k + Jk( yk − Ak x̃k) (15d)

Q x̂k
= (I − Jk Ak) Q x̃k

(15e)

where x̃ denotes the predicted values of unknowns and Qx̃k

is its respective covariance matrix. If the ionospheric con-
straints are available, the additional step is carried out to
update the filter solutions from the standard Kalman filter

x̂k := x̂k + Q x̂k ι̂k
( Q ι̂k

+ Qι0k
)−1(ι0

k − ι̂k) (16a)

Q x̂k
:= Q x̂k

− Q x̂k ι̂k
( Q ι̂k

+ Qι0k
)−1 Q ι̂k x̂k

(16b)

where Q x̂k ι̂k
=

[
QT

ι̂k ξ̂k
, QT

ι̂k
, QT

ι̂k âk

]T
. We denote the

updated solutions using the same symbols as for standard
Kalman filter solutions.

3.3 Special models reduced from ionosphere-constrained
model

Relative to the ionosphere-free model, the advantage of
ionosphere-constrained model is that the constraints can be
now imposed on the ionospheric parameters. Thus the model
strength can, to a certain extent, be enhanced by assigning
σι0 and σwιk

appropriately. We discuss two extreme situations
specified by a different σι0 :

• If the absolute (DD) ionospheric constraints are not avail-
able, i.e., σι0 → ∞, then ( Q ι̂k

+ Qι0k
)−1 → 0. Hence

it does not need to implement (16a) and (16b) anymore,
and only the standard Kalman filter procedure (15a–15e)

is implemented, which is similar to the special case of
ionosphere-free solution in Schaffrin and Bock (1988).

• If the absolute ionospheric constraints are so strong that
they can be deemed as deterministic constraints, i.e.,
σι0 → 0, then (16a) and (16b) become, see e.g., Yang
et al. (2010)

x̂k := x̂k + Q x̂k ι̂k
Q−1

ι̂k
(ι0

k − ι̂k) (17a)

Q x̂k
:= Q x̂k

− Q x̂k ι̂k
Q−1

ι̂k
Q ι̂k x̂k

(17b)

In this case, the ionospheric parameters are actually fixed
to their prior values, namely

ι̂k := ι0
k, Q ι̂k

:= 0

We further discuss two other special cases for our pre-
sented ionosphere-constrained model:

• The ionosphere-free model is formed in terms of the
equivalent theory (Xu et al. 2007; Shen et al. 2009; Li
et al. 2010a) by multiplying a transformation matrix

R =

⎡
⎢⎢⎢⎢⎣

−μ2

μ1 − μ2

μ1

μ1 − μ2
0 0

0
μ1

μ1 + μ2

μ2

μ1 + μ2
0

0 0
−μ2

μ1 − μ2

μ1

μ1 − μ2

⎤
⎥⎥⎥⎥⎦⊗ Im

left to both sides of observation equations (8) without
any influence on the remaining parameter estimation. It
is equivalent to the ionosphere-constrained model with
the extremely large variances for both absolute and rel-
ative constraints. In other words, one can implement
only the standard Kalman filter procedure (15a–15e) with
an extremely large variance of relative ionospheric con-
straints, say, σwι = e16. This model is also known as
ionosphere-float model (Odijk 2003).

• The ionosphere-constrained model can be easily extended
to include more parameters and constraints. For instance,
the multipath parameters can be set up and their con-
straints can be imposed using their solutions on the past
sidereal days.

4 Reliable narrowlane AR with controllable
incorrectness

In the network RTK processing, the new ambiguities will be
frequently introduced from time to time such that some ambi-
guities in the unknown ambiguity vector have been tracked
for a long time but some just few seconds. It is, therefore,
generally impossible to fix all ambiguities simultaneously.
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Commonly a bootstrapping procedure is employed to suc-
cessively fix ambiguities (Dong and Bock 1989; Blewitt
1989; Dach et al. 2007). In this section, a partial AR strat-
egy with ambiguity subset selected based on the successively
increased elevations will be introduced. Moreover, concern-
ing the fact that after initialization, the selected ambiguity
subset consists of only few or even mostly one ambiguity, an
incorrectness controllable rounding strategy will be devel-
oped to improve the rounding reliability.

4.1 Partial AR for ambiguity subset selected
with the successively increased elevations

Let the float ambiguity solution â with covariance matrix
Qââ computed from the Kalman filter system have the fol-
lowing partitions

â =
[

â1

â2

]
, Qââ =

[
Qâ1â1

Qâ1â2

Qâ2â1
Qâ2â2

]
(18)

where the ambiguity vector â1 is assumed to be the subset
that can be reliably fixed. One can then employ the LAMBDA
method (Teunissen 1995) to efficiently work out its optimal
integer solution ǎ1. Following the bootstrapped AR proce-
dure, the remaining ambiguity â2 is corrected by virtue of its
correlation with â1 as

ã2 = â2 − Qâ2â1
Q−1

â1â1
(â1 − ǎ1) (19a)

Qã2ã2
= Qâ2â2

− Qâ2â1
Q−1

â1â1
Qâ1â2

(19b)

In practice, since the low-elevation ambiguities are more
probably affected by the observation abnormality (inade-
quately modeled systematic errors), the ambiguity subset â1

is selected based on the successively increased elevations.
The procedure is as follows. We start with checking full AR
with both ratio test and success rate as criteria, namely the
computed ratio and success rate are both satisfied with the
user-defined thresholds. If the full AR is possible, we fix all
ambiguities immediately; otherwise turn to use partial AR.
Let the elevations θ1 < · · · < θ j , we first use the lowest
elevation θ1 to choose the ambiguity subset, denote â1(θ1),
such that the ambiguities whose elevations lower than θ1 are
excluded. We then check whether â1(θ1) can be fixed based
on the same criteria, i.e., both ratio test and success rate.
If yes, we fix it and update the remaining ambiguities with
(19a) and (19b). If not, we further exclude the ambiguities
whose elevations lower than θ2. The newly selected ambi-
guity subset â1(θ2) is again checked for fixing. Repeat this
procedure with successively increased elevations until the
selected ambiguity subset can be successfully fixed or the
ambiguity subset is empty. For the ratio test and success rate
involved in this processing, one can refer to the new version
LAMBDA and Ps-LAMBDA softwares (Verhagen and Li
2012; Verhagen et al. 2013).

4.2 Incorrectness controllable integer rounding

After initialization of network AR, only one ambiguity is, at
most time, involved in the selected ambiguity subset. In this
case, the rounding method is applied for AR. Traditionally,
we round the float ambiguity to its nearest integer if both its
fraction and variance are satisfied with the pre-defined thresh-
olds, bm and σm, which is referred to as the fixed-fraction-
and-variance (FFV) strategy. In FFV strategy, the thresholds
are, to a great extent, empirically given and kept invariant
in the whole processing (Eueler and Goad 1991; Goad and
Yang 1997; Chen et al. 2001; Dach et al. 2007). The problem
is that if the thresholds are too large, the fixed solution will
be doubtful; whereas if they are too small, it will affect the
AR efficiency. To overcome this awkward situation, a new
rounding strategy is proposed to control the probability of
incorrect fixing by adaptively adjusting the rounding inter-
val in terms of the quality of float ambiguity itself. Moreover,
the two extreme situations (i.e., small variance with too large
fraction or too large variance with small fraction) will be spe-
cially taken into account. As a result, the large probability of
successful fixing can be achieved with small incorrectness
rate.

Let the normally distributed scalar ambiguity â has the
true integer a and variance σ 2

â . In terms of integer translation
invariant property of integer admissible estimation (Teunis-
sen 1999), the integer-removed ambiguity â − a, here we
still use â without any confusion, has normal distribution
â ∼ N (0, σ 2

â ) and its probability density function is

fâ(x) = 1√
2πσâ

exp

{
− x2

2σ 2
â

}

Now, the correct integer solution is 0 and all the other integers
are wrong solutions. Therefore, for the standard rounding
method, the success rate is

Ps =
0.5∫

−0.5

fâ(x) dx = 2

(
1

2σâ

)
− 1 (20)

and the probability of incorrect fixing (fail rate) is

Pf =
∑

∀z∈Z\{0}

z+0.5∫
z−0.5

fâ(x) dx = 2 − 2

(
1

2σâ

)
= 1 − Ps

(21)

where

(x) = 1√
2π

x∫
−∞

e−t2/2 dt

If Pf is sufficiently small, â can be fixed to 0. It is observed
from (21) that both the variance σ 2

â and the integral interval
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affect the fail rate Pf . In the standard rounding, the inte-
gral interval is fixed to [−0.5, 0.5], which means that Pf is
dominated only by the variance of float ambiguity. Once the
variance is given, the fail rate is fixed no matter what value
the float ambiguity is.

In terms of the integer aperture estimation (Teunissen
2005), we downscale the integral interval to decrease the fail
rate. Let the downscaled interval as [−r, r ] (0 ≤ r ≤ 0.5),
then the success rate is

Ps =
r∫

−r

fâ(x) dx = 2

(
r

σâ

)
− 1 (22)

and the fail rate is

Pf =
∑

∀z∈Z\{0}

z+r∫
z−r

fâ(x) dx

=
∑

∀z∈Z\{0}

[


(
r + z

σâ

)
− 

(
z − r

σâ

)]
(23)

Obviously, both Ps and Pf become smaller for smaller r .
Although the infinite non-zero integers are involved in com-
puting Pf , it is adequate to consider only several integers
around 0 since the integrals of those integers far from 0 are
so small to be ignored. Let the integers from −i0 to i0 be
considered, we refer to Appendix for what value i0 should
be taken as a function of float ambiguity precision σâ with
very small errors. Obviously, only very few integers are nec-
essary with very small error, see Fig. 8 in Appendix. With
the integer i0, the fail rate (23) can be computed as (Li et al.
2012)

Pf = 2 ×
i0−1∑
z=1

[


(
r + z

σâ

)
− 

(
z − r

σâ

)]
(24)

The fail rate Pf is a function of the rounding radius r and
precision σâ of float ambiguity. With float ambiguity in hand,
one can now control Pf by changing r . In the network AR,
one prefers to control Pf critically, for instance 0.01 % in
this study, since the incorrect AR will result in the wrong
positioning for all users.

As shown in Fig. 1, the solid line depicts the relation
between r and σâ for which the fail rate Pf = 0.01 %. In
principle, any float ambiguity below this line can be rounded
to its integer with fail rate smaller than 0.01 %. However, we
must be aware of two extreme situations:

(i) The first situation is that σâ is very small but â is close
to 0.5 cycle. In practice, the most plausible explanation
for such scenario is some unmodeled error source. For
example, the remaining tropospheric errors after mod-
eling with RZTD and mapping functions could be still
considerable, especially for lower-elevation satellites.
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Fig. 1 The rounding regions with different criteria. The FFV strategy
with the thresholds (rm = 0.4, σm = 0.2) or (rm = 0.2, σm = 0.1);
Thresholds rm = 0.4, σm = 0.3) with the decision function g > 104;
The solid line with Pf = 0.01 % denotes that the float ambiguities are
below this line can be fixed with fail rate smaller than 0.01 %

(ii) The second situation is that â is very close to an inte-
ger but σâ is large. In practice, the large error could be
due to the poor geometry, data outages, high ionospheric
activity, etc. Being close to an integer in this case is just
a coincidence.

These two extreme situations are actually the curses for
reliable AR, and the wise choice is to leave the ambiguity
float. To avoid the wrong ambiguity fixing in these awkward
situations, Dong and Bock (1989) introduced a so-called
‘taper’ function T , see also Blewitt (1989). In this study,
the taper function is generalized as

T (r, σâ |rm, σm)

=
⎧⎨
⎩

0 if r ≥ rm or σâ ≥ σm(
1 − r

rm

)(
1 − σâ

σm

)
otherwise

(25)

where rm ≤ 0.5 and σm are two thresholds applied to
exclude the two extreme situations above. It is obvious that
0 ≤ T < 1. Besides controlling the fail rate with excluding
two extreme situations, it is expected in practice to maximize
the success rate. Therefore, a decision function g is defined

g(r, σâ |rm, σm) = T (r, σâ |rm, σm) × Ps(r, σâ)

Pf (r, σâ)
(26)

Once the thresholds, rm and σm used for excluding two
extreme situations, are specified, g will be a function of r
and σâ . One can now determine a rounding region (precisely
speaking it is not rounding anymore) by specifying a thresh-
old for g. For instance, rm = 0.4, σm = 0.3 and g = 104

are taken in this study based on the extensive experiments,
where g = 104 is related to the failure rate of 0.01 %. The
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corresponding rounding region is shown in Fig. 1. It is clear
from Fig. 1 that this region is a subset of the region with
Pf = 0.01 %. In other words, the float ambiguity in this
region can be reliably fixed with fail rate smaller than 0.01 %
and also abnormality excluded.

Denoting bâ as the fraction of float ambiguity from its
nearest integer, we describe the implementation of above
procedure. The rounding interval r is first determined by
(26) with g = 104 and σâ of float ambiguity. If bâ < r , we
accept its rounding solution. However, the determination of
r is complicated and takes time since the Eq. (26) is nonlin-
ear. As an alternative, we can conduct this implementation
as follows. One can first simply take r = bâ and compute
the success rate and fail rate with (22) and (24), respectively.
Here the integer i0 is taken from Fig. 8. Then the decision
function is computed by (25) and (26). If the value of deci-
sion function is larger than g = 104, the integer rounding
solution can be accepted.

5 Experiment and analysis

5.1 Experiment setup

Eight daily dual-frequency GPS datasets with sample interval
of 5 s were downloaded from USA CORS network (Snay
and Soler 2008). The layout of eight stations is shown in
Fig. 2. From these eight stations, seven independent baselines
are formed with the baseline length of around 100 km, as
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Fig. 2 The layout of eight stations from USA CORS network used for
the experiment

presented in Table 1. The observation types include C1, P2,
L1 and L2. The proposed methodology was implemented
in “TJNRTK” software that is a self-developed software in
Tongji University for the network RTK processing and its
relevant engineering and scientific applications.

In the data processing, the cut-off elevation is set to 7◦ and
the elevation-dependent stochastic model

σ = a0 + a1e− θ
10◦

is applied for the undifferenced measurements with a0 =
2 mm, a1 = 4 mm for phase and a0 = 20 cm, a1 = 40 cm for
code. These parameters are obtained based on the evaluation
of GPS stochastic characteristics in terms of Li et al. (2008).
In the Kalman filter, we take qξ = 3 cm2/h, qι = 5 cm2/h
and σι0 = 15 cm with ι0 = 0. (Tralli and Lichten 1990; Dod-
son et al. 1996; Liu and Lachapelle 2002; Odijk 2000; Schaf-
frin and Bock 1988). Although the data is post-processed, the
processing is completely analogous to the real-time process-
ing, namely, the data loading and all computations are imple-
mented epoch by epoch.

5.2 Result of widelane AR

First of all, we demonstrate the proposed widelane AR
with adaptive variance estimation. The minimal elevation
for widelane AR is set to 10◦. In other words, we execute
the widelane ambiguity fixing when its corresponding eleva-
tion is higher than 10◦. The convergence procedure of wide-
lane ambiguity fixing is illustrated in Fig. 3. At beginning
with very few epoch, the estimated precision with (6) is very
poor and instable. With more data cumulated, the precision
estimate becomes more and more stable and tight to bound
the float widelane ambiguity. If the thresholds are taken as
σm = 0.1 and bm = 0.2, one can then fix widelane ambiguity
once it touches the red line. Note that the satellite elevations
in this example are around 10◦. That could be a reason why
a slow convergence is received in this example.

The fast widelane AR is examined for the different eleva-
tions with different thresholds. With correctly fixed widelane
ambiguities based on all data as references, we reinitialize
the processing every 10 min. In each reinitialization com-
putation, we implement our widelane AR. Compared with
the reference widelane ambiguities, the empirical successful
fixing rate and unfix rate are defined as

Table 1 The seven baselines
formed by eight stations from
USA CORS network

B1–2 B1–5 B6–8 B5–8 B4–8 B6–3 B6–7

Station 1 MOBT MOBT MOEL MOGF MONE MOEL MOEL

Station 2 MOWW MOGF MOBU MOBU MOBU MOOC MOCL

Length (km) 90.30 103.78 70.48 112.20 88.37 101.32 101.53
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Psf = # correctly fixed ambiguities

# total (correctly and wrongly) fixed ambiguities

and

Pu = # unfixed ambiguities

#total (fixed and unfixed) ambiguities

The successful fixing rate Psf was defined in Teunissen and
Verhagen (2007) to show the benefit of integer aperture esti-
mation. With Psf and Pu, one can computed the empirical
success rate Ps and failure rate Pf as

Ps = Psf × (1 − Pu)

Pf = 1 − Ps − Pu
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Fig. 3 Convergence procedure of widelane ambiguity fixing with
adaptive variance estimation (the satellite elevations in this period are
around 10◦). The blue solid line indicates the computed float wide-
lane ambiguity while the other two green dash lines indicate its upper
and lower bounds, i.e., the float widelane ambiguity plus and minus its
precision estimate. All of them are the functions of number of epochs

Here the non-italic subscripts used for variables to empha-
size that their empirical (not theoretical) values. All of these
statistics can be as indicators to show the AR performance.
The successful fixing rates, unfix rates and failure rates of
widelane AR are shown in Table 2 for the different eleva-
tion intervals. The result reveals that: (1) The successful fix-
ing rate becomes larger while the unfix rate and failure rate
smaller when the elevation increases. (2) With more critical
(smaller) thresholds, the more ambiguities will be rejected
without fixing, thus resulting in the larger unfix rate; But as
a trade-off once the ambiguities satisfied with these smaller
thresholds, they can be fixed more reliably with higher suc-
cessful fixing rate and smaller failure rate. (3) The AR of
low elevations is more sensitive to the varied thresholds than
that of high elevations. The reason is that the high-elevation
ambiguities can be solved very well with a few epochs such
that they can be already satisfied with the most critical thresh-
olds. This result suggests that one should use the conservative
(critical) thresholds for widelane AR since the critical thresh-
olds can hardly affect the high-elevation AR but efficiently
control the reliability of low-elevation AR.

The time-to-first-fix (TTFF), defined as the number of
epochs needed for successful AR, is further examined for
widelane AR in different elevation intervals. The result is
shown in Fig. 4. In general, the smaller TTFFs are assigned
to the larger elevations and thresholds. However the TTFF
difference is very marginal when the elevation is higher than
30◦.

Some comments are given before completing this sec-
tion. First, we emphasize that the FFV rounding strategy was
applied for widelane AR with different thresholds. Although,
the AR results are shown here for different thresholds, we
recommend using the critical thresholds, σm = 0.1 and
bm = 0.2, to improve the AR reliability because the widelane

Table 2 Empirical successful fixing rate (Psf ), unfix rate (Pu) and failure rate (Pf ) percentages of widelane AR for different elevation intervals
with different thresholds

cycle <20◦ 20◦ ∼ 30◦ 30◦ ∼ 40◦ 40◦ ∼ 50◦ 50◦ ∼ 60◦ >60◦ 10◦ ∼ 90◦

Psf σm = 0.1, bm = 0.2 97.18 99.47 99.62 99.82 100.00 100.00 99.35

σm = 0.1, bm = 0.3 95.32 98.84 98.87 99.46 100.00 99.77 98.71

σm = 0.2, bm = 0.2 94.74 99.08 98.86 99.64 100.00 99.53 98.64

σm = 0.2, bm = 0.3 91.52 97.95 97.94 99.11 100.00 99.07 97.60

Pu σm = 0.1, bm = 0.2 15.05 3.48 1.13 1.93 1.19 0.24 3.84

σm = 0.1, bm = 0.3 10.28 0.77 0.00 1.24 0.72 0.00 2.17

σm = 0.2, bm = 0.2 13.44 2.56 0.94 0.71 0.97 0.00 3.10

σm = 0.2, bm = 0.3 9.48 0.38 0.00 0.18 0.24 0.00 1.71

Pf σm = 0.1, bm = 0.2 2.40 0.51 0.38 0.18 0.00 0.00 0.58

σm = 0.1, bm = 0.3 4.20 1.15 1.13 0.53 0.00 0.23 1.21

σm = 0.2, bm = 0.2 4.55 0.90 1.13 0.36 0.00 0.47 1.23

σm = 0.2, bm = 0.3 7.68 2.04 2.06 0.89 0.00 0.93 2.27
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AR is easier. Of course one can easily apply the new rounding
strategy to further improve the widelane AR, especially for
lower-elevation ambiguities, which is, however, not shown
in this paper.

5.3 Result of narrowlane AR

In TJNRTK software, after widelane ambiguities solved, the
float solutions of narrowlane ambiguities are computed in a
multi-baseline mode, while the ambiguity fixing processing
is in a baseline-by-baseline mode. We first study the per-
formance of presented partial AR with the ambiguity subset
selected by successively increasing elevations, see Sect. 4.1.
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Fig. 4 TTFFs of widelane AR as a function of elevation intervals

In this study, the elevations for ambiguity subset selection are
from 15◦ to 60◦ every 5◦. The partial AR starts with check-
ing the fixing possibility of the ambiguity subset with all
ambiguity elevations higher than 15◦. If this ambiguity sub-
set cannot be fixed, we go to the next iteration for checking
the fixing possibility of a reduced ambiguity subset where
all ambiguity elevations are higher than 20◦. Continue this
procedure until the selected ambiguity subset is successfully
fixed or empty.

The ratio values and the corresponding number of fixed
ambiguities are shown in Fig. 5 for all partial AR compu-
tations except the cases of only scalar ambiguity, for which
see the latter performance of improved rounding method.
Both the success rate and ratio test are applied for vali-
dating the AR correctness. The bootstrapped success rate,
the best lower bound of integer least squares success rate
(Verhagen et al. 2013), is computed and compared with the
user-defined threshold P0 = 99.99 %. The fixed-failure-rate
ratio test (FF-RT) is applied by employing the new version of
the LAMBDA software (Li et al. 2013a). Different from the
ratio defined as the squared norm of the best integer solution
divided by the squared norm of the second best one in the
new version of LAMBDA software, its reciprocal is used in
this paper such that all ratio results are larger than 1.

In general, the critical value of FF-RT is smaller for
the float solution with the larger success rate and/or higher
dimension. Since we first apply the success rate threshold
P0 = 99.99 %, the float solutions that need the further ratio
test always have the critical values of almost 1. Furthermore
such critical values hold true only for the assumption that
the underlying model indeed captures all systematic errors

Fig. 5 The ratio values (top)
and the corresponding number
of fixed ambiguities (bottom) for
all partial AR computations. For
each partial AR computation, its
total number of ambiguities is
shown as well
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Fig. 6 TTFFs of narrowlane
AR as a function of time (top)
for all seven baselines and its
corresponding histogram
(bottom-left) and cumulative
distribution function
(bottom-right)
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completely, i.e., no any bias exists in the float solution (Ver-
hagen and Teunissen 2013). This ideal assumption is practi-
cally impossible. To practically improve the AR reliability,
we take the critical ratio values conservatively with respect to
different ambiguity dimensions as 2 for 2-dimension, 1.5 for
3/4-dimension, 1.3 for 5 to 7-dimension and 1.2 for higher
than 7-dimension. Hence the ratio values of partial AR are
all larger than at least 1.2 as shown on the top of Fig. 5.
Most of them are within 10, but some are even several tens
to hundred. The number of fixed ambiguities together with
the corresponding total number of ambiguities, as shown in
the bottom of Fig. 5, are very fluctuant adaptively to the
underlying AR model strength. In other words, the partial
AR can flexibly fix the subset of ambiguities that can be reli-
ably fixed. As a consequence, the AR efficiency and then the
RTK availability are improved.

Figure 6 shows the TTFFs of narrowlane AR for all base-
lines. Intuitively, the TTFF results are quite similar for all
baselines because of the similar observation environment at
the same time. With all TTFFs, we statistically work out its
histogram and cumulative function. The result shows that
80 % ambiguities can be fixed within 80 epochs and further
improved to 90 % within 110 epochs. All ambiguities can be
fixed within 160 epochs.

As aforementioned, the rounding method will be applied
for fixing a scalar ambiguity. Four rounding schemes are
designed and compared, of which two schemes are the
widely-used FFV strategies with the thresholds (bm =
0.2, σm = 0.1) and (bm = 0.4, σm = 0.2); one is the
rounding with purely controlled fail rate Pf = 0.01 %;

and the other one is the proposed incorrectness controllable
rounding. Their corresponding rounding regions are shown
in Fig. 1. As theoretically analyzed before, the disadvantage
of the FFV strategy is the difficulty of choosing thresholds.
Too larger thresholds will derive the large fix rate but large
failure rate as well, whereas too small thresholds can indeed
control the fail rate, but will derive the small fix rate thus
hindering the fixing efficiency. This theoretical analysis is
indeed observed from Fig. 7 where the empirical fix rate is
defined as the ratio of the number of fixed ambiguities divided
by the total ambiguities, while the empirical failure rate as
the ratio of the number of wrongly fixed ambiguities divided
by number of fixed ambiguities.

For FFV with (bm = 0.2, σm = 0.1), the fail-rate is
even 0, but the fix rate is too low around 30 %, which is of
course unacceptable in real applications. However the FFV
with (bm = 0.4, σm = 0.2) can achieve as large as 93 %
fix rate but its failure rate is as large as 1.6 %. This is not
acceptable either for network AR, since the wrong AR will
lead to the wrong solutions for all users. For the rounding
with Pf = 0.01 %, the fix rate is largest (97 %) but its fail-
ure rate is largest as well (2.6 %). In principle, the computed
failure rate should be consistent with Pf = 0.01 %. This
discrepancy would be due to the inadequately modeled sys-
tematic errors, mostly corresponding to the two extreme situ-
ations aforementioned. That is the motivation of developing
the new rounding strategy. For the new rounding method, the
fix rate is slightly reduced to 89 % but the fail-rate is reduced
to 0.8 %. The discrepancy of this fail-rate with the theoretical
one would be attributed to the misspecification of stochas-
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Fig. 7 The empirical fix rate
(left) and failure rate (right) of
all baselines for different
rounding schemes
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Table 3 Empirical fix rate of narrowlane AR

B1–2 B1–5 B6–8 B5–8 B4–8 B6–3 B6–7

>15◦ 89.71 87.46 87.89 88.01 85.01 89.93 87.92

>20◦ 98.61 95.69 97.05 97.11 93.84 98.18 95.22

tic model. Therefore, the new rounding method is promising
with jointly considering the fixing efficiency and reliability.

Finally, combing the results of partial AR and rounding,
the overall fix rate of narrowlane AR is shown in Table 3 for
all baselines. In general, the high fix rate of narrowlane AR
is obtained from the presented AR strategies. The fix rate is
88 % for fixing the ambiguities with elevations larger than
15◦, which can be improved to about 96.5 % for fixing the
ambiguities with elevations larger than 20◦. One may notice
in some of existing literatures, for instance, Tang et al. (2010);
Chen et al. (2004), that the higher fix rate results would be
obtained either for short/medium baselines or for long base-
lines with loosely controllable failure rate (lower reliability).

6 Concluding remarks

This paper contributed to improve the long baseline network
RTK ambiguity resolution through the efficient procedures
for improved float solutions and ambiguity fixing.

The ionosphere-constrained model was introduced instead
of the traditional ionosphere-free model, such that the addi-
tional ionospheric constraints can be imposed to enhance the
model strength and then improve the float solutions. The pre-
sented ionosphere-constrained model is flexible and can be
easily either reduced to special models or extended with more
parameters and constraints.

An adaptive variance estimation procedure was pro-
posed to capture the influence of observation complex-
ity on the reliable widelane AR. For the narrowlane AR,
we advised to first apply the partial AR with ambiguity
subset selected according to the successively increasing
elevations. Moreover an incorrectness-controllable round-
ing method was introduced for the scalar ambiguity fix-
ing.

The experiment results revealed that the new methodology
generally works very well and the ambiguity fix rate is high.
The presented partial AR is very flexible. It can start AR
immediately once a subset of ambiguities can be reliably
fixed, consequently improving the AR efficiency and RTK
availability. The new rounding method is promising since it
can control the failure rate rigorously. Comparing with the
purely failure rate controllable rounding, the new rounding
can reduce the failure rate significantly with very slight fix
rate decrease.
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7 Appendix

The infinite sum over all non-zero integers is involved for
computing Pf , c.f., (23). It is, therefore, required to disregard
the integers that give ignorable contribution to Pf . Due to the
symmetry of fâ(x) with respect to 0, the analysis is based on
only the positive integers. Obvious we have the inequality

i+r∫
i−r

fâ(x) dx >

j+r∫
j−r

fâ(x) dx (27)

for any integers i < j . It is reasonable to ignore the proba-
bilities of the integers larger than i0 if

∑
i∈Z,i≥i0

[


(
r +i

σâ

)
−

(
i −r

σâ

)]
<

∑
i∈Z,i≥i0

[


(
0.5+i

σâ

)

− 

(
i − 0.5

σâ

)]
= 1 − 

(
i0 − 0.5

σâ

)
< μ (28)

where μ is an extremely small value. Figure 8 shows the
solved i0 as a function of σâ for different μ. It generally
needs to take several integers into accounts.
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Fig. 8 The number of integers taken into account for computing the fail
rate Pf as a function of the float ambiguity precision σâ with different
errors μ
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