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Abstract The problem of observing geocenter motion
from global navigation satellite system (GNSS) solutions
through the network shift approach is addressed from the
perspective of collinearity (or multicollinearity) among the
parameters of a least-squares regression. A collinearity diag-
nosis, based on the notion of variance inflation factor, is there-
fore developed and allows handling several peculiarities of
the GNSS geocenter determination problem. Its application
reveals that the determination of all three components of geo-
center motion with GNSS suffers from serious collinearity
issues, with a comparable level as in the problem of deter-
mining the terrestrial scale simultaneously with the GNSS
satellite phase center offsets. The inability of current GNSS,
as opposed to satellite laser ranging, to properly sense geo-
center motion is mostly explained by the estimation, in the
GNSS case, of epoch-wise station and satellite clock offsets
simultaneously with tropospheric parameters. The empiri-
cal satellite accelerations, as estimated by most Analysis
Centers of the International GNSS Service, slightly amplify
the collinearity of the Z geocenter coordinate, but their role
remains secondary.
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1 Introduction

Geocenter motion is usually defined, with varying sign con-
ventions, as the relative motion between the center of mass
of the total Earth system (CM) and the center of figure
of the solid Earth surface (CF). Its geophysical cause is
the redistribution of masses within the Earth system, from
daily and sub-daily periods (e.g. ocean tides) to secular
time scales (e.g. post-glacial rebound, present-day ice melt-
ing) via seasonal and inter-annual periods (e.g. water mass
exchanges). As Earth satellites orbit around CM, geocen-
ter motion affects the measurements of surface processes
made by geodetic satellites. An accurate determination of
geocenter motion is therefore required for the most demand-
ing geodetic applications. While the tidal part of geocen-
ter motion is part of the IERS Conventions (Petit and
Luzum 2010), the accurate determination of its non-tidal part
remains challenging. We refer the reader to Wu et al. (2012)
for a detailed description of geocenter motion and of its
implications.

There currently exists two conceptual approaches for
monitoring geocenter motion. The first one, often called
network shift approach, or translational approach, relies on
satellite tracking data. Since Earth satellites orbit CM, global
sets of station-satellite range measurements for given peri-
ods (e.g. days, weeks or months) can be used to infer the
tracking station coordinates in theoretically CM-centered
frames. The origin of the International Terrestrial Reference
Frame (ITRF) is obtained through a long-term stacking of
such CM-centered frames derived from Satellite Laser Rang-
ing (SLR) measurements and therefore theoretically follows
CM on the long term. On the other hand, the translations
between quasi-instantaneous CM-centered frames and the
ITRF should reflect the non-secular part of geocenter motion
(Dong et al. 2003; Collilieux et al. 2009).
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The second approach, often called deformation approach,
or degree-1 approach, was first proposed by Blewitt et al.
(2001). It is based on the fact that geocenter motions due to
surface mass redistributions are accompanied by deforma-
tions of the Earth’s crust. Such deformations can be accu-
rately monitored using global networks of GNSS stations,
which allows an indirect observation of geocenter motion.
The deformation approach can however only sense non-
secular geocenter motions induced by surface load variations
and can therefore not help in defining the ITRF origin.

This article entirely focuses on the network shift approach.
As it is the only approach capable of sensing secular geocen-
ter motion, its performance is critical for the observation of
long-term geophysical processes like global sea level rise,
post-glacial rebound or present-day ice melting. Any inac-
curacy in the long-term following of CM by the ITRF origin
does in particular directly translate into errors in the estima-
tion of global sea-level rise by satellite altimetry (Morel and
Willis 2005; Beckley et al. 2007) or by global tide-gauge
records and GPS (Collilieux and Wöppelmann 2011). While
a stability of 0.1 mm/year is aimed for the ITRF origin, exter-
nal evaluations of the origin of ITRF2008 (Altamimi et al.
2011) assessed its stability to a level of 0.5 mm/year (Wu et
al. 2011; Collilieux 2013), or even 0.9 mm/year along the
Z axis (Argus 2012). The performance of the network shift
approach therefore still needs to be improved.

There currently exists three satellite tracking techniques
theoretically capable of sensing geocenter motion through
the network shift approach: SLR, DORIS and GNSS. How-
ever, only one of them, SLR, gives relatively satisfying results
and contributes to the definition of the ITRF origin. DORIS-
derived geocenter time series recently benefited from tremen-
dous improvements, but remain much noisier than SLR-
derived series, especially in the Z component (Gobinddass
et al. 2009a,b). Finally, the GNSS technique, although ben-
efits from the largest satellite constellation and tracking net-
work, has so far not proven able to reliably observe geocenter
motion through the network shift approach.

Collilieux et al. (2011), indeed, analyzed the translation
time series between reprocessed weekly solutions provided
by four Analysis Centers (ACs) of the International GNSS
Service (IGS; Dow et al. 2009) and a preliminary version
of ITRF2008. Significant long-term biases were noted with
respect to the SLR translations, as well as AC-dependent
trends in the Z component. Moreover, the annual signals
present in the X and Z components of the IGS AC translation
time series were in poor agreement with SLR. A frequency
analysis of the IGS AC translation time series finally revealed
that all were contaminated by spurious periodic signals at
harmonics of the GPS draconitic year (351.5 days; Ray et
al. 2008) with amplitudes reaching several millimetres. The
question underlying this article is therefore: Why are current
GNSS, despite their numerous satellites and dense track-

ing networks, unable to reliably observe geocenter motion
through the network shift approach?

This question was recently addressed through orbital per-
turbation considerations by Meindl et al. (2013). The same
question is addressed in this article from the perspective of
collinearity (also known as multicollinearity). Collinearity
in a least-squares regression can be defined as the existence
of quasi-linear dependencies among the parameters. Its con-
sequence is that some linear combinations of parameters are
extremely sensitive to observation and model errors and may
therefore not be reliably inferred from the observations. This
article demonstrates that the inability of GNSS to reliably
observe geocenter motion is precisely due to such a collinear-
ity problem.

Section 2 gives a brief introduction to the least-squares
regression method, to the issue of collinearity among least-
squares parameters and to the notion of variance inflation
factor. The collinearity diagnosis at the basis of the arti-
cle is then presented in its simplest form. In Sect. 3, this
collinearity diagnosis is generalized so as to handle several
peculiarities of the GNSS geocenter determination problem.
A practical method for performing collinearity diagnoses
in global GNSS analyses is then given. Section 4 gives a
concrete example of our generalized collinearity diagnosis,
with its application to the well-known quasi-singular prob-
lem of determining the terrestrial scale simultaneously with
the GNSS satellite phase center offsets. Section 5 describes
in detail the signatures of the geocenter coordinates on satel-
lite tracking observations. Finally, our collinearity diagnosis
is respectively applied in Sects. 6 and 7 to the geocenter
determination with SLR and GNSS.

2 Mathematical background

This section introduces the basic mathematical notions used
throughout the article. After a brief introduction to least-
squares regression and to the issue of collinearity in least-
squares regression, the collinearity diagnosis at the basis of
the article is then presented in its simplest form.

2.1 Least-squares regression

Consider the linear regression model l = Ax + v, where:

– l is a vector of n observations with given covariance
matrix Ql = Pl

−1;
– x a vector of p unknown parameters;
– A = ∂ l/∂x is the so-called design matrix (the i th column

of A will be denoted Ai in the following);
– Ax is the vector of observations predicted by the parame-

ters x (model prediction);
– v is a vector of unknown observational and model errors

(residuals).
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Specifying a weight matrix Pl for the observations corre-
sponds to the choice of a particular metric in the observation
space R

n , i.e. of an inner product 〈l, l ′〉 = lT Pl l ′ and of the
associated norm ‖l‖ =

√
lT Pl l . Let E denote the Hilbert

observation space R
n equipped with this metric. The column

space of the design matrix, Im(A) = {Ax, x ∈ R
p}, is a

subspace of E which spans all possible model predictions. It
will therefore be called the model space.

The objective of a least-squares regression is to minimize
the norm ‖v‖ = ‖l− Ax‖ of the residual vector. It is achieved
when the vector of predicted observations Ax is the orthog-
onal projection of the observation vector l onto the model
space Im(A). This condition leads to the well-known normal
equation:

N x = b (1)

where N = AT Pl A is called the normal matrix and b =
AT Pl l . When A is of full rank, N is invertible and the normal
equation has a unique solution:

x̂ = N−1b = (AT Pl A)−1 AT Pl l (2)

The covariance matrix of the estimated parameters is in this
case the inverse of the normal matrix: Q = N−1. The good-
ness of fit can be measured by the coefficient of determina-
tion:

R2 = ‖Ax̂‖2

‖l‖2 = cos2 θ (3)

where θ is the angle between the observation vector l and the
model space Im(A).

2.2 Conditioning and parameter scaling

When A is of full rank but N is however close to singularity,
small perturbations in the observations may cause relatively
large variations in the estimated parameters: the least-squares
regression is ill conditioned. The closeness of N to singular-
ity can be measured by its condition number κ(N), i.e. the
ratio of its largest to its smallest singular value.

Because N is symmetric, the ideal case κ(N) = 1 is
achieved only when:

N = k I ⇔
{

∀i, N i,i = ‖Ai‖2 = k

∀i 	= j, N i, j = 〈Ai , A j 〉 = 0
(4)

i.e. when the columns of A form an orthogonal basis of the
model space Im(A) and all have the same norm. N can thus be
ill conditioned for two non-exclusive reasons: either because
the columns of A have disparate norms (scaling problem),
or because they are far from being orthogonal to each other
(collinearity problem).

The first possible reason for ill conditioning can be cir-
cumvented by solving for an auxiliary set of scaled parame-

ters x̃ such that x̃i = ‖Ai‖xi = √
N i,i xi . In matrix nota-

tions, x̃ = D̃
−1

x where D̃ denotes the diagonal matrix with
elements D̃i,i = 1/

√
N i,i . This leads to the design matrix

Ã = AD̃ whose columns all have unit norms, and to the
scaled normal equation Ñ x̃ = b̃, where Ñ = D̃N D̃ has the
form of a correlation matrix and b̃ = D̃b.

In terms of condition number, this particular scaling of
the parameters may not be optimal: there may exist other
matrices D in the set Dp of all non-singular p × p diago-
nal matrices such that κ(DN D) < κ(Ñ). Nevertheless, a
theorem by van der Sluis (1969) states that:

κ(Ñ) ≤ p min
D∈Dp

κ(DN D) (5)

i.e. even if the scaling by D̃ is not optimal, it is not far from
being optimal. But the main justification for this particular
scaling is that it isolates the second possible source for ill
conditioning: collinearity.

2.3 Collinearity

When the design matrix A is rank deficient, there exists one
or more linear dependencies among its columns. One or more
linear combinations of the parameters are not observable, i.e.
cannot be inferred from the observations. The normal matrix
N is consequently singular. We will refer to this situation,
well known in geodetic problems, as perfect collinearity.

More subtly, the columns of A may be, not exactly, but
nearly linearly dependent, meaning that some linear combi-
nations of the parameters are only hardly observable. This
situation, namely collinearity, or multicollinearity, translates
into a large condition number for the scaled normal matrix Ñ .
Geometrically, collinearity can be defined as a severe depar-
ture of the basis formed by the columns of Ã from orthogo-
nality (Farrar and Glauber 1967), or as the closeness of this
basis to singularity (Haitovsky 1969).

The harm caused by collinearity to the estimability of spe-
cific linear combinations of parameters is described as fol-
lows by Belsley et al. (1980): “The essential harm due to
collinearity arises from the fact that a collinear relation can
readily result in a situation in which some of the observed sys-
tematic influence of the explanatory variables on the response
variable is swamped by the models random error term—or in
the familiar terminology of electrical engineering, the signal
is swamped by the noise. It is intuitively clear that, under
these circumstances, estimation can be hindered.”

Belsley et al. (1980) (see also Belsley (1991)) also sug-
gest a procedure, based on the singular value decomposition
of Ñ , to identify near dependencies among the columns of
Ã and the parameters involved in them. The application of
Belsley’s procedure to global GNSS solutions would cer-
tainly be rich of lessons. However, because a parameter is
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generally involved, at different levels, in all eigenvectors of
Ñ , Belsley’s procedure does not appear to us as the most
appropriate tool to understand why a specific parameter is
affected by collinearity, i.e. the mechanism that makes this
parameter hardly observable. As the questions underlying
this article are whether and, if so, why the GNSS geocenter
determination is harmed by collinearity, we will thus prefer
another diagnosis involving the notion of variance inflation
factor (VIF).

2.4 Diagnosing the collinearity of a specific parameter

It will be assumed throughout this section that A is of full
rank, so that its columns form a basis of the model space
Im(A).

Signature of a parameter Each column Ai = ∂ l/∂xi of A is
a vector of the model space, which represents the effect on
the observations predicted by the model of a unit variation of
the ith parameter xi . In the following, Ai will be called the
signature of xi on the observations.

Decomposition of Ai Each parameter xi can also be asso-
ciated with a particular hyperplane of the model space.
Let ei = [δi,1, δi,2, . . . , δi,p]T (vector with all zero ele-
ments, except a unit ith element) be the coordinates of xi

in the canonical basis of the parameter space R
p. Let K i

be any p × p − 1 matrix whose columns form a basis of
Ker(eT

i ) = {x ∈ R
p/eT

i x = 0}. One could choose for
instance:

Ki = [e1, . . . , ei−1, ei+1, . . . , ep] (6)

Im(AK i ) is the p − 1 dimensional subspace (hyperplane) of
the model space, which contains the signatures of all para-
meters except xi .

Let us now decompose the signature Ai of xi into the
sum of its orthogonal projection Au

i onto Im(AK i ) and of

Fig. 1 Decomposition of the signature of x3 in a three-parameter prob-
lem. Im(AK 3) is the plane containing A1 and A2. Au

3 is the orthogonal
projection of A3 onto this plane. Ap

3 is the orthogonal projection of A3
onto the line orthogonal to this plane. θ3 is the angle between A3 and
this plane

its orthogonal projection Ap
i onto Im(AK i )

⊥ (Fig. 1). Au
i ,

as it lies in Im(AK i ), is strictly collinear with the signatures
of x1, . . . , xi−1, xi+1, . . . x p. This part of the signature of
xi is consequently indistinguishable from the signatures of
the other parameters. The estimation of xi can therefore only
rely on Ap

i (part of Ai which is orthogonal to each of the sig-
natures of x1, . . . , xi−1, xi+1, . . . x p). In the following, Ap

i
will be called the proper signature of xi . It can be expressed
as:

Ap
i = A Qei

Qi,i
(7)

Equation (7) is a particular case of Eq. (19) introduced in
Sect. 3.1 and proven in Appendix B (Online Resource).

Variance inflation factor Let us associate to each parameter
xi the angle θi between its signature Ai and the hyperplane
Im(AK i ) (Fig. 1). R2

i = cos2 θi is the coefficient of deter-
mination obtained from the regression of Ai on the other
columns of A. The variance inflation factor (VIF) of xi is
defined from the angle θi , or from R2

i , by:

Vi = 1

sin2 θi
= 1

1 − R2
i

(8)

Vi = 1 (θi = π/2; R2
i = 0) means that Ai is orthogonal to

all other columns of A, i.e. xi is uncorrelated with any other
parameter. On the other hand, Vi tends to infinity (θi → 0;
R2

i → 1) when Ai tends to lie in Im(AK i ) and xi tends to
be unobservable. Vi thus measures the degree of collinearity
of xi with all other parameters.

VIFs are a well-established tool for diagnosing whether
the estimation of specific parameters may be harmed by
collinearity (see, e.g., Farrar and Glauber 1967; Belsley et al.
1980; Draper and Smith 1998; Montgomery et al. 2012). The
term “variance inflation factor”, introduced by Marquardt
(1970), derives from the fact that the variance of a parameter
xi obeys the relation:

var(x̂i ) = Qi,i = 1

N i,i
.Vi (9)

The first factor, 1/N i,i , would be the variance of xi if all other
parameters were held fixed. Vi is thus the factor by which the
presence of the other parameters inflates the variance of xi .
Equation (9) can be demonstrated by noting that:

cos θi = 〈Ai , Au
i 〉

‖Ai‖‖Au
i ‖ = 〈Ai , Ai − Ap

i 〉
‖Ai‖‖Ai − Ap

i ‖ (10)

Replacing Ap
i by its expression in Eq. (7) leads to:

cos θi =
√

1 − 1

N i,i Qi,i
(11)

which is equivalent to Eq. (9).
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Let us mention another interpretation of VIFs. Using Eq.
(7), it can be shown that:

Vi = ‖Ai‖2

‖Ap
i ‖2

(12)

The numerator in Eq. (12) is the squared norm of the sig-
nature of xi on the observations, i.e. of the signal on which
the estimation of xi would rely if all other parameters were
held fixed. On the other hand, the denominator in Eq. (12)
is the squared norm of the proper signature of xi , i.e. of the
signal on which the estimation of xi actually relies. Vi thus
measures how the magnitude of the signal on which the esti-
mation of xi relies is reduced because of the estimation of
other parameters.

When analysing VIFs, one inevitably runs into the ques-
tions of what are large and what are small VIFs. Numerical
thresholds are given in the literature, commonly seen val-
ues being 5 and 10 (see, e.g., Montgomery et al. 2012). But
they are essentially arbitrary and probably not suited to prob-
lems with thousands of parameters, like global GNSS analy-
ses. Note, finally, that because of their quotient nature, VIFs
should be considered as varying on a logarithmic scale rather
than on a linear scale.

For the ease of interpretation, numerical VIF values will
always be accompanied, in the rest of the article, by bracketed
percentage values corresponding to:

cos θi = Ri =
√

1 − 1

Vi
(13)

By its nature, this quantity is indeed interpretable in the same
way as a correlation coefficient.

Coordinates of Au
i . When analysing the collinearity of xi

with the other parameters, not only the values of θi , R2
i

and Vi are of interest, but also the coordinates of Au
i

in the basis formed by the columns of A. If xi has a
large VIF (small θi ), Au

i is indeed a linear combination of
A1, . . . , Ai−1, Ai+1, . . . Ap which closely matches Ai . In
other words, the coordinates of Au

i in the basis formed by
the columns of A are the coefficients of a linear combination
of x1, . . . , xi−1, xi+1, . . . x p which is almost indistinguish-
able from xi . The coordinates of Au

i are thus the answer to
the question of why xi may be hardly observable.

According to Eq. (8),

Au
i = Ai − Ap

i = A
(

ei − Qei

Qi,i

)
(14)

so that the coordinates γ i of Au
i in the basis formed by the

columns of A are:

γ i = ei − Qei

Qi,i

= −
[

Q1,i

Qi,i
, . . . ,

Qi−1,i

Qi,i
, 0,

Qi+1,i

Qi,i
, . . . ,

Q p,i

Qi,i

]T

(15)

3 Adaptations to the GNSS geocenter determination
problem

Before the collinearity diagnosis exposed in Sect. 2.4 can be
applied to the GNSS geocenter determination problem, some
adaptations and further developments are first needed due to
several peculiarities of global GNSS analyses.

The first difficulty comes from the fact that geocenter coor-
dinates are usually not estimated as explicit parameters in
GNSS solutions, for they would be fully redundant with sta-
tion coordinates. Geocenter coordinates are rather implicitly
realized through station coordinates. Section 3.1 will there-
fore propose a generalization of the notions introduced in
Sect. 2.4 to such “implicit parameters”.

Secondly, unlike that assumed in the end of Sect. 2, it is
well-known that the design matrix of a global GNSS prob-
lem is not of full rank (perfect collinearity). Rotations of the
terrestrial frame can indeed be compensated by variations of
the Earth orientation parameters (EOPs), so that A has three
orientation singularities. A fourth singularity stems from the
correlation of the UT1-UTC offset with the longitudes of the
orbit ascending nodes. In the presence of such singularities,
straightforwardly computed VIFs would be infinite and use-
less for many parameters (including geocenter coordinates).
Section 3.2 will therefore propose a way of performing mean-
ingful collinearity diagnoses when A is not of full rank.

Lastly, a practical difficulty arises from the large num-
ber of parameters in global GNSS problems. A typical daily
GPS solution with 100 stations, 30 satellites, 5-min sam-
pled undifferenced observations and all phase cycle ambigu-
ities fixed indeed includes nearly 41,000 parameters, 92 %
of which are epoch-wise estimated satellite and station clock
offsets. These clock parameters are usually either reduced
from the normal equation, or annihilated by the use of double-
differenced observations, both methods being equivalent
under certain conditions (Appendix F, Online Resource).
The practical question answered in Sect. 3.3 is then: How
can collinearity diagnoses be made without disposing of the
whole normal matrix?

Another question one could legitimately ask is whether the
geocenter determination and the potentially related collinear-
ity issues are equivalent in the undifferenced and double-
differenced processing methods. The answer follows of
course immediately from the equivalence of both meth-
ods themselves. But we will make this equivalence even
clearer with a relationship between “undifferenced VIFs” and
“double-differenced VIFs” (Sect. 3.4).

3.1 Collinearity diagnosis for implicit parameters

The purpose of this section is to generalize the collinearity
diagnosis exposed in Sect. 2.4 to quantities which are, like
geocenter coordinates, not estimated as explicit model para-
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meters, but implicitly realized through the model parameters.
It is again assumed in this section that A and N are of full
rank.

Implicit parameters Let us define an implicit parameter as a
quantity y whose impact of a unit variation on the observa-
tions predicted by the model (signature) is a known vector of
the model space:

Sy = ∂ l
∂y

= Aλ (16)

For instance, in a global GNSS problem, the signature of the
implicit parameter corresponding to the X coordinate of the
geocenter is:

A [1, 0, 0, 1, 0, 0, . . . , 1, 0, 0︸ ︷︷ ︸
station coordinates

, 0, 0, 0, 0, . . . , 0︸ ︷︷ ︸
other parameters

]T (17)

i.e. the impact on the observations predicted by the model of
a unit X translation of the station network. Explicit model
parameters are encompassed by the notion of implicit para-
meter. The signature of xi on the observations predicted by
the model is indeed a known vector of the model space:
∂ l/∂xi = Ai = Aei .

When A is of full rank, a unit variation of an implicit para-
meter y, i.e. a variation δl = Sy = Aλ of the observations,
can be univocally associated with a variation:

δx = N−1 AT Plδl = λ (18)

of the estimated model parameters. λ can thus be interpreted
as the vector of partial derivatives of the explicit model para-
meters with respect to y: λ = ∂x/∂y.

Independence of two implicit parameters Two implicit para-
meters y and z, characterized, respectively by ∂x/∂y = λ

and ∂x/∂z = μ will be said to be independent if λTμ = 0,
i.e. if λ and μ are orthogonal in the parameter space R

p.
Orthogonality in the parameter space may be thought in terms
of degrees of freedom allowed within the model. For exam-
ple, two explicit parameters xi and x j are clearly allowed
to vary independently from each other within the model:
eT

i e j = 0. On the other hand, a quantity like xi + x j cannot
vary independently from xi : eT

i (ei + e j ) 	= 0. More gener-
ally, λTμ = 0 means that the implicit parameters y and z can
vary independently from each other within the model.

Decomposition of Sy Let K y denote any p × p − 1 matrix
whose columns form a basis of Ker(λT). Provided that A is of
full rank, Im(AK y) is a p − 1 dimensional subspace (hyper-
plane) of the model space Im(A) which spans the signatures
of all implicit parameters independent of y. The signature
Sy of y can be decomposed into the sum of its orthogonal
projection Su

y onto Im(AK y) and of its orthogonal projec-
tion Sp

y onto Im(AK y)
⊥. Su

y , as it lies in Im(AK y), can be
exactly reproduced by the signatures of implicit parameters

independent of y, i.e. that are allowed to vary independently
of y within the model. The estimation of y can therefore
only rely on Sp

y , which will be called the proper signature
of y. Appendix B (Online Resource) proves that Sp

y can be
expressed as:

Sp
y = λTλ

λT Qλ
A Qλ (19)

VIF of an implicit parameter Let θy denote the angle
between the signature Sy of y and the hyperplane Im(AK y).
Using Eq. (19), it can be shown that:

cos θy = 〈Sy, Su
y〉

‖Sy‖‖Su
y‖

= 〈Sy, Sy − Sp
y 〉

‖Sy‖‖Sy − Sp
y ‖

=
√

1 − (λTλ)2

(λT Nλ)(λT Qλ)
(20)

One can also show that, if a regression of Sy on the columns
of AK y was made, the obtained coefficient of determination
would be R2

y = cos2 θy .
The variance inflation factor Vy of an implicit parameter

y can be defined from θy or R2
y by:

Vy = 1

sin2 θy
= 1

1 − R2
y

(21)

Inserting Eq. (20) into Eq. (21) leads to a formula from which
Vy can be practically computed when disposing of the normal
matrix N and of its inverse Q:

Vy = (λT Nλ)(λT Qλ)

(λTλ)2
(22)

Replacing λ by ei in the preceding developments leads back
to the equations of Sect. 2.4, which proves that this extension
of VIFs to implicit parameters encompasses usual VIFs.

The interpretation of such generalized VIFs remains the
same. Vy = 1 when Sy is orthogonal to Im(AK y), i.e. when
y is uncorrelated with any other independent implicit para-
meter. On the other hand, Vy tends to infinity when Sy tends
to lie in Im(AK y) and y tends to be unobservable. Note that
Vy is still interpretable as a “variance inflation factor”. No
proof is however given here; further developments would be
needed to properly define the variance of an implicit para-
meter. Let us finally mention that Vy can still be interpreted
as the ratio of the squared norm of the signature of y on
the observations to the squared norm of its proper signature.
Using Eqs. (16) and (19), one can in fact show that:

Vy = ‖Sy‖2

‖Sp
y ‖2

(23)

Coordinates of Su
y Like the coordinates of Au

i in the basis
formed by the columns of A can enlighten why a parameter
xi may be hardly observable, the coordinates of Su

y in this
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basis can similarly explain why an implicit parameter y is
hardly observable. These coordinates can now be interpreted
as μ = ∂x/∂z where z is the implicit parameter independent
of y whose signature Sz = Su

y most closely matches Sy .
According to Eqs. (16) and (19),

Su
y = Sy − Sp

y = A
(

λ − λTλ

λT Qλ
Qλ

)
(24)

so that the coordinates γ y of Su
y in the basis formed by the

columns of A are:

γ y = λ − λTλ

λT Qλ
Qλ (25)

3.2 Collinearity diagnosis in the presence of singularities
and minimal constraints

In many geodetic problems, the design matrix A is not of full
rank, so that the normal matrix N is not invertible. The for-
mulas derived in Sect. 3.1, as they involve the inverse Q of
the normal matrix, are therefore clearly not usable. Another
view of the problem is that, when A is not of full rank, an
implicit parameter y can generally not be univocally associ-
ated with a specific variation of the model parameters. A third
view of the problem is that, because of the singularities of
A, the subspace Im(AK y) defined in Sect. 3.1 is not neces-
sarily a hyperplane of the model space, but can be the model
space Im(A) itself. This section therefore proposes a way
of performing meaningful collinearity diagnoses when A is
not of full rank, and more precisely in the case where mini-
mal constraints are used to supplement the rank deficiencies
of A.

Minimal constraints When A and N have c > 0 singularities,
a well-established practice in geodesy consists in augmenting
the normal equation with minimal constraints. This leads to
a system of the form:

[
N C

CT 0

] [
xc

k

]
=

[
b
0

]
(26)

where

– CT is a c × p full-rank constraint matrix such that
rank[N C] = p;

– k is a vector of c Lagrange multipliers.

In global GNSS problems, the constraint matrix classically
has the form:

CT =
. . . 0 −Zi Yi . . .

. . . Zi 0 −Xi . . .

. . . −Yi Xi 0 . . .

. . . 0 0 0 . . .
︸ ︷︷ ︸

station coordinates

0
0
0
1

︸︷︷︸
UT1-UTC

0 . . . 0
0 . . . 0
0 . . . 0
0 . . . 0
︸ ︷︷ ︸

other parameters

(27)

The first three lines impose that the orientation of the esti-
mated terrestrial frame be the same as that of the a priori
frame (no-net-rotation constraint). The fourth line directly
fixes the UT1-UTC offset to its a priori value.

Blaha (1971) shows that the augmented normal equation
(26) has a unique solution x̂c which minimizes ‖v‖ = ‖l −
Axc‖ under the condition (constraint) that CTxc = 0. He
also proves that the covariance matrix Qc of x̂c is the upper-
left block of the inverse of the augmented normal matrix.
Appendix C (Online Resource) shows that x̂c and Qc can be
expressed as:

x̂c = B(BT N B)−1 BTb (28)

Qc = B(BT N B)−1 BT (29)

where B denotes any p × p − c matrix whose columns form
a basis of Ker(CT).

Note that we use the term “constraints” in the same sense
as Blaha (1971), i.e. as a synonym for “condition equations”.
Another common acceptance of this term refers to the intro-
duction of weighted pseudo-observations, which would lead
to a normal equation of type (N + C PcCT)x = b. Although
this latter method is generally preferred in practice, we adopt
here the condition equation approach for its mathematical
appeal. Condition equations are in fact equivalent to pseudo-
observations with infinite weights.

Implicit parameters Let y be an implicit parameter defined
by its signature Sy = Aλ on the observations. When A is not
of full rank, but minimal constraints are used, y can again be
univocally associated with a specific variation of the model
parameters. According to Eq. (28), a unit variation of y, i.e.
a variation δl = Sy = Aλ of the observations, indeed leads
to a variation:

δxc = B(BT N B)−1 BT AT Plδl

= B(BT N B)−1 BT Nλ (30)

of the estimated parameters. In other words, the partial deriv-
atives λc of the model parameters with respect to y are:

λc = ∂xc

∂y
= B(BT N B)−1 BT Nλ = Qc Nλ (31)

λc is in fact the unique solution of the system:
{

Aλc = Aλ

CTλc = 0
(32)
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It can therefore be interpreted as the unique variation of the
model parameters which is allowed by the constraints and
has the same signature on the observations as y.

The notion of independence between implicit parame-
ters remains unchanged: y and z are independent if the cor-
responding parameter variations λc = ∂xc/∂y and μc =
∂xc/∂z are orthogonal in the parameter space. For a given y
and λc, the set of such μcs is Ker([λc C]T).

Decomposition of Sy Let K y,c denote any matrix whose
columns form a basis of Ker([λc C]T). It is proven in
Appendix D (Online Resource) that as long as λ /∈ Ker(A),
Im(AK y,c) is a p−c−1 dimensional subspace (hyperplane)
of the model space. As previously, the signature Sy of y can
then be decomposed into the sum of its orthogonal projec-
tion Su

y,c onto Im(AK y,c) and of its orthogonal projection
Sp

y,c onto Im(AK y,c)
⊥. Su

y,c is indistinguishable from the
signatures of implicit parameters independent of y. The esti-
mation of y can therefore only rely on its proper signature
Sp

y,c. Appendix D (Online Resource) proves that it can be
expressed as:

Sp
y,c = λT

c λc

λT
c Qcλc

A Qcλc (33)

Variance inflation factors When A is not of full rank and
minimal constraints are used, the variance inflation factor of
an implicit parameter y can be defined from the angle θy,c

between its signature and the hyperplane Im(AK y,c) by:

Vy,c = 1

sin2 θy,c
(34)

Using Eq. (33), it can be shown that:

cos θy,c = 〈Sy, Su
y,c〉

‖Sy‖‖Su
y,c‖

= 〈Sy, Sy − Sp
y,c〉

‖Sy‖‖Sy − Sp
y,c‖

=
√

1 − (λT
c λc)2

(λT
c Nλc)(λ

T
c Qcλc)

(35)

This leads to a formula from which Vy,c can be practically
computed when disposing of N and Qc:

Vy,c = (λT
c Nλc)(λ

T
c Qcλc)

(λT
c λc)2

(36)

As previously, Vy,c can be interpreted as the ratio of the
squared norm of the signature of y on the observations to
the squared norm of its proper signature. Using Eq. (33) and
the fact that Aλ = Aλc, one can in fact show that:

Vy = ‖Sy‖2

‖Sp
y,c‖2

(37)

Coordinates of Su
y,c According to Eq. (33), Su

y,c can be
expressed as:

Su
y,c = Sy − Sp

y,c = A
(

λc − λT
c λc

λT
c Qcλc

Qcλc

)
(38)

The vector

γ y,c = λc − λT
c λc

λT
c Qcλc

Qcλc (39)

can be interpreted as ∂xc/∂z where z is the implicit parameter
independent of y whose signature most closely matches Sy .
It can therefore explain why an implicit parameter y may be
hardly observable.

3.3 Practical method for collinearity diagnoses

The expressions of Vy,c and γ y,c given in Sect. 3.2 involve
the full normal matrix N and the full covariance matrix of
the parameters Qc. However, in a standard global undiffer-
enced GNSS analysis, station and satellite clock parameters
are generally reduced, so that neither N nor Qc are fully
computed. A practical way for obtaining Vy,c and γ y,c is
therefore exposed in this section.

Parameter reduction Assume that the vector of parameters
can be split into x = [xT

1 xT
2 ]T where x1 contains parameters

of interest, while x2 contains “nuisance parameters” (e.g.
clock offsets). A constrained normal equation like Eq. (26)
can be block-decomposed into:
⎡

⎣
N11 N12 C1

N21 N22 C2

CT
1 CT

2 0

⎤

⎦

⎡

⎣
x1

x2

k

⎤

⎦ =
⎡

⎣
b1

b2

0

⎤

⎦ (40)

If N22 is invertible, solving Eq. (40) is equivalent to solving
the reduced normal equation:
[

N11 − N12 N−1
22 N21 C1 − N12 N−1

22 C2

CT
1 − CT

2 N−1
22 N21 −CT

2 N−1
22 C2

] [
x1

k

]

=
[

b1 − N12 N−1
22 b2

−CT
2 N−1

22 b2

]
(41)

and “back-solving” x2 by:

x2 = N−1
22 (b2 − N21x1 − C2k) (42)

This reduction method is widely employed in undifferenced
GNSS analyses. It avoids the storage and inversion of the
full normal matrix N . Moreover, since x2 consists of epoch
clock parameters, N22 has a block-diagonal structure which
makes it efficiently invertible.

Computing λc Consider an implicit parameter y defined by
its signature Sy = Aλ on the observations. The first step
in our practical method for diagnosing the collinearity of y
consists in computing the partial derivatives λc = ∂xc/∂y of
the model parameters with respect to y. From Eqs. (28) and
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(31), it is easily seen that λc is the solution of the following
normal equation:
[

N C
CT 0

] [
xc

k

]
=

[
Nλ

0

]
=

[
AT Pl Sy

0

]
(43)

which can be reduced and efficiently solved.

Computing γ y,c Consider the following system:

⎡

⎣
N C λc

CT 0 0
λT

c 0 0

⎤

⎦

⎡

⎣
xc

k
k′

⎤

⎦ =
⎡

⎣
0
0

λT
c λc

⎤

⎦ (44)

Its solution minimizes ‖Axc‖ under the constraint that
CTxc = 0 and the additional condition that λT

c xc = λT
c λc.

This latter condition is equivalent to imposing a unit change
of y with respect to the a priori parameters. On the other
hand, the minimization of ‖Axc‖ means that the observa-
tions predicted by the estimated parameters should stay as
close as possible to the observations predicted by the a pri-
ori parameters. In other words, an artificial unit error in y is
introduced, but the system tries to compensate its impact on
the observations as much as possible.

Appendix E (Online Resource) proves that the solution of
Eq. (44) is λc − γ y,c. The first term, λc represents the artifi-
cially introduced error, while the second term, −γ y,c, is the
best solution found by the system to compensate the impact
of this error on the observations. Equation (44) can also be
reduced and efficiently solved. γ y,c can then be obtained
from its solution.

Computing Vy,c The last remaining step is a practical method
for computing the VIF Vy,c of y. For that purpose, let us
rearrange Eq. (37) into:

Vy,c = ‖Sy‖2

‖Sp
y,c‖2

= ‖Aλc‖2

‖A(λc − γ y,c)‖2 (45)

This last expression shows how to obtain Vy,c from Aλc and
A(λc − γ y,c). In practice, the full design matrix A may not
be available, but Aλc and A(λc − γ y,c) can nevertheless be
computed by evaluating the model function at the set of a
priori parameters x0, at x0 + λc and at x0 + λc − γ y,c.

3.4 Impact of double-differencing on VIFs

It is shown in Appendix F (Online Resource) that, as long
as a maximal set of independent double-differenced obser-
vations is used, the double differencing approach leads to
an identical normal equation as the reduction of clock para-
meters. The use of double-differenced observations rather
than undifferenced observations has therefore no theoretical
impact on the GNSS geocenter determination problem. One
could nevertheless compute VIFs directly from a double-
differenced system and would obtain different values as with

the full undifferenced system. We therefore deem it important
to explain the relationship between such double-differenced
and undifferenced VIFs.

Suppose that a maximal set of independent double-
differenced observations ld is obtained from the undiffer-
enced observations l through the application of an nd × n
differencing operator D: ld = Dl . The weight matrix of the
double-differenced observations:

Pld = Q−1
ld

= (D Ql DT)−1 (46)

induces the norm ‖ld‖d =
√

lT
d Pld ld in the space of double-

differenced observations R
nd . Consider an implicit parameter

y defined by its signature Sy on the undifferenced observa-
tions. The signature of y on the double-differenced observa-
tions is Sy,d = DSy . Appendix G (Online Resource) proves
that the VIFs Vy and Vy,d , obtained, respectively in the undif-
ferenced and in the double-differenced cases are related by:

Vy,d

Vy
= ‖Sy,d‖2

d

‖Sy‖2 (47)

This fraction is also proven to be always smaller than 1.
The left term in Eq. (47) represents a reduction of the

collinearity of y with the other parameters in the double-
differenced case. This reduction naturally stems from the fact
that a double-differenced system has less parameters than an
undifferenced system. On the other hand, the right term in
Eq. (47) represents a loss of sensitivity to y due to double-
differencing the observations. In summary, the formation of
double differences has the apparent advantage of reducing
collinearity among parameters, but this advantage is in fact
totally offset by a reduction of the sensitivity of the observa-
tions.

Equation (47) can in particular be used to quantify the
sensitivity reduction to geocenter coordinates qualitatively
observed by Meindl et al. (2013) when forming double differ-
ences. This sensitivity reduction can equivalently be thought
in terms of collinearity of the geocenter coordinates with
satellite and station clock offsets. In the following, we will
prefer undifferenced observations for their simpler geometric
interpretation and adopt the latter point of view.

4 Application to the GNSS terrestrial scale
determination problem

Because of:

– a high correlation between the terrestrial scale and the
satellite radial phase center offsets (z-PCOs) (Zhu et al.
2003; Cardellach et al. 2007),
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Table 1 Simulation options

Aspect Option

Station network Fictive network of 100 well-distributed
stations

Constellation 24 satellites on 6 orbital planes
a = 26,560 km, e = 0, i = 55◦

Data span 24 h

Observation sampling 5 min

Cutoff angle 10◦

Observation weighting All observations equally weighted

Table 2 List of simulated parameters

Type Number

Station coordinates 3 per station

Zenithal wet delays (ZWDs) 1 per station and hour

Tropospheric gradients 2 per station

Station clock offsets 1 per station and epoch

Satellite initial state vectors 6 per satellite

Satellite empirical accelerations 5 per satellite

Satellite clock offsets 1 per satellite and epoch

Satellite z-PCOs 1 per satellite

EOPs 6

– the fact that pre-launch phase center offset calibrations are
not available for any of the GPS and GLONASS satellites
launched so far,

current GNSS are considered unable to provide terrestrial
scale information and do not contribute to the definition of the
ITRF scale (Altamimi et al. 2011). On the contrary, the IGS
currently relies on the ITRF scale to determine conventional
GPS and GLONASS z-PCOs (Ray et al. 2013; Rebischung
et al. 2012).

The collinearity diagnosis developed in Sect. 3 is applied
in this section to this well-known problem, mainly with an
illustrative purpose. The VIFs obtained for the terrestrial
scale will also serve as references for interpreting the VIFs
obtained in Sect. 7 for the geocenter coordinates.

4.1 Signature of a terrestrial scale change

Let us consider the implicit parameter y corresponding to a
terrestrial scale change of δs = 1 ppb. The signature of y on
a set of GNSS observations is Sy = Aλ with:

λ = δs [. . . , Xi , Yi , Zi , . . .︸ ︷︷ ︸
station coordinates

, 0, 0, 0, 0, . . . , 0︸ ︷︷ ︸
other parameters

]T (48)

λ corresponds to a change of the geocentric radius (height)
of any station by δr � aEδs � 6.4 mm, where aE denotes

the mean Earth radius. The impact of such a height change
on an observation l made at an elevation angle e is δl =
−δr sin(e) � −aEδs sin(e). The elements of Sy are nothing
but such δls.

4.2 Simulation

Using the options listed in Table 1, a series of observations
(station-satellite ranges) was simulated and a design matrix
including the parameters listed in Table 2 was set up. The
considered satellite empirical accelerations are the five terms
of the Extended CODE Orbit Model (ECOM) (Beutler et al.
1994; Springer 1999) estimated by most of the IGS Analysis
Centers (ACs): D0, Y0, B0, Bc and Bs using the notations of
Rodriguez-Solano et al. (2012). The considered EOPs are the
pole coordinates x p and yp at noon, their rates ẋ p and ẏp, the
UT1-UTC offset at noon and the length-of-day (LOD). Note
that simple mapping functions have been used for ZWDs
(1/sin(e)) and tropospheric gradients (from Chen and Her-
ring 1997). Also note that a zero-mean condition has been
applied at each epoch to all satellite and station clock offsets.

Except satellite z-PCOs, the list of parameters in Table 2 is
the minimal common set of parameters freely estimated by a
majority of IGS ACs. It could in fact be the list of parameters
set up by a slightly sub-standard AC. The collinearity diag-
noses exposed in the following will be based on this particular
sub-standard list of parameters. But note that the estimation
of additional parameters (e.g. satellite velocity pulses, addi-
tional empirical accelerations, but also unfixed phase cycle
ambiguities) by the real ACs can only increase collinearity
issues.

The satellite z-PCOs are usually set up, but tightly con-
strained by the IGS ACs. In the simulations of this section,
they are however freely estimated for the particular purpose
of studying their collinearity with the terrestrial scale.

Except the fictive station network and constellation, the
options listed in Table 1 could also be those used by an IGS
AC. The choice of a perfectly distributed network and con-
stellation was made to avoid perturbing the obtained results
by some “network effect”. But additional simulations with
real network and constellation will also be performed for
comparison in Sect. 4.4. The influence of the cutoff angle
and of the observation weighting will similarly be investi-
gated through additional simulations in Sect. 4.4.

4.3 Collinearity diagnosis

Equation (43) was then solved, leading to λc = ∂xc/∂y, i.e.
the impact of a 1 ppb scale change on the estimated parame-
ters under no-net-rotation constraints. Because a perfectly
distributed station network was used, λc was in fact equal
to λ.
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0 mm
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Fig. 2 Blue opposite of the impact on the observations of a 1 ppb scale
change, plotted as a function of the elevation angle (aEδs sin(e)). Red
sum of the impacts on the observations of the obtained clock, ZWD
and z-PCO mean variations, plotted as a function of the elevation angle(

130.09 + 0.40/ sin e − 137.06
√

1 − a2
E cos2 e/a2

)

Equation (44) was finally solved. A 1 ppb scale change
with respect to the a priori terrestrial frame was imposed
through the additional constraint λT

c xc = λT
c λc. But the sys-

tem compensated it as much as possible through an indepen-
dent variation −γ y,c of the parameters. The obtained para-
meter variation −γ y,c was composed of:

– a mean variation of the satellite z-PCOs by −137.06 mm,
plus small satellite-specific z-PCO variations below
0.23 mm,

– a mean variation of the satellite clock offsets by−25.18 mm
(−83.99 ps), plus small satellite- and epoch-specific vari-
ations below 0.43 mm (1.43 ps),

– a mean variation of the station clock offsets by 104.91 mm,
plus small station- and epoch-specific variations below
0.29 mm,

– a mean variation of the ZWDs by −0.40 mm, plus small
station- and hour-specific variations below 0.11 mm.

The other parameters (station coordinates, tropospheric gra-
dients and satellite orbit parameters) were not significantly
affected.

The obtained mean variation of the satellite and station
clock offsets has the effect of shortening the predicted obser-
vations by −25.18 − 104.91 = −130.09 mm. The impact of
the obtained mean ZWD variation is to shorten any observa-
tion made at an elevation e by −0.40/ sin e mm. Finally,
according to Cardellach et al. (2007), the impact of the
obtained mean z-PCO variation is to lengthen any observa-

tion made at an elevation e by 137.06
√

1 − a2
E cos2 e/a2 mm.

The sum of these three effects is compared in Fig. 2 with the
impact on the observations of the introduced terrestrial scale
change.

Figure 2 shows that the impact of the introduced terrestrial
scale change could be almost perfectly compensated by vari-
ations of independent parameters (clock offsets, ZWDs and
z-PCOs), which indicates a severe collinearity of the terres-

-6 mm -3 mm 0 mm 3 mm 6 mm -0.2 mm 0.0 mm 0.2 mm

Fig. 3 Left signature of a 1 ppb scale change on the observations made
by a particular station, represented as a skyplot. Each dot represents an
element of Sy = Aλc. Right corresponding proper signature. Each dot
represents an element of Sp

y,c = A(λc − γ y,c). Note the different color
scales

trial scale with those parameters. Another view of the same
result is given in Fig. 3, where the signature of a 1 ppb terres-
trial scale change on the observations made by a particular
station is compared to the corresponding proper signature.
There is a reduction by almost two orders of magnitude from
the signature to the proper signature of the terrestrial scale
change, which also points to a severe collinearity issue.

The VIF obtained for the terrestrial scale in this simu-
lation was in fact 3,076.9 (

√
1 − 1/VIF = 99.984 %), far

beyond the commonly seen thresholds of 5 (89.443 %) and
10 (94.868 %).

4.4 Complementary simulations

A second simulation was run with the same options as pre-
viously, except that the satellite z-PCOs were held fixed.
The obtained VIF was 47.2 (98.935 %). When the satel-
lite z-PCOs are not estimated, clock offsets and ZWDs are
much less able to compensate the introduced terrestrial scale
change. The collinearity of the terrestrial scale with the other
parameters is thus greatly reduced.

Another simulation based on a real network of 150 stations
and a real constellation of 30 GPS satellites (both extracted
from a solution provided by ESA for July 11, 2008) was
run, with all other options as described in Sect. 4.2. The
obtained VIF was 3,123.9 (99.984 %), just slightly above the
VIF obtained with a perfectly distributed station network and
constellation. The mechanism described in Sect. 4.3 holds in
fact for any network and constellation. The distribution of
the station network and of the constellation does not seem to
have a significant impact on the collinearity of the terrestrial
scale with the other parameters, as long as satellite z-PCOs
are estimated.

The impacts of the cutoff angle and of the observation
weighting were finally investigated through different simu-
lations. The obtained VIFs are given in Table 3. The collinear-
ity of the terrestrial scale with the other parameters clearly
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Table 3 VIFs obtained for the
terrestrial scale with different
cutoff angles and observation
weighting functions

The other simulation options
were as described in Sect. 4.2

Weighting
function

Cutoff angle

0◦ 5◦ 10◦ 20◦

1 86.0 (99.417 %) 706.2 (99.929 %) 3,076.9 (99.984 %) 46,439.2 (99.999 %)

sin e 316.3 (99.842 %) 1,520.8 (99.967 %) 5,214.1 (99.990 %) 58,784.4 (99.999 %)

sin2 e 1,462.5 (99.966 %) 3,652.0 (99.986 %) 9,622.2 (99.995 %) 79,083.3 (99.999 %)

-10 mm

-5 mm

0 mm

5 mm

10 mm

0 h 6 h 12 h 18 h 24 h

Fig. 4 Signature of a 1 cm Z geocenter shift on simulated observations
made on a GPS-like satellite by the whole station network. Each blue
dot represents an element of Sy . The magenta line is an epoch mean

increases when higher cutoff angles are used. This translates
the fact that the more the signature of the terrestrial scale
change (−aEδs sin(e); blue curve in Fig. 2) is truncated,
the more accurately it can be matched by linear combina-
tions of the partial derivatives of clock offsets, z-PCOs and
ZWDs. Downweighting low elevation observations similarly
increases the collinearity of the terrestrial scale with the other
parameters.

5 Signature of geocenter shifts on station-satellite ranges

As a last preliminary step before investigating the collinear-
ity of the geocenter coordinates with other GNSS parame-
ters, this section describes the signature of geocenter shifts
on station-satellite range observations. The impact of a geo-
center shift along the Z axis is first studied, followed by the
impacts of geocenter shifts along the X and Y axes of the
terrestrial frame.

5.1 Signature of a Z geocenter shift

Consider the implicit parameter y corresponding to a geo-
center shift of δt = 1 cm along the Z axis. The signature of
y on a set of observations is Sy = Aλ with:

λ = [0, 0, δt, . . . , 0, 0, δt︸ ︷︷ ︸
station coordinates

, 0, 0, 0, 0, . . . , 0︸ ︷︷ ︸
other parameters

]T (49)

Fig. 5 Signature of a 1 cm Z geocenter shift on simulated observations
made by five particular stations. An epoch mean signature was first
removed for each satellite

This signature was computed for the particular set of obser-
vations described in Sect. 4.2. It is represented in Fig. 4 from
the point of view of a particular satellite.

The impact of a positive Z geocenter shift is basically to
shorten the observations made when the satellite is in the
Northern hemisphere and to lengthen the observations made
when the satellite is in the Southern hemisphere. That is why,
at first order, the signature of a positive Z geocenter shift fol-
lows the opposite of the satellite Z coordinate. For a circular
orbit, this results in a sinusoid with an amplitude δt sin i ,
where i denotes the inclination of the satellite orbit.

The “width” of the blue sinusoid in Fig. 4 stems from
the fact that, at a given epoch, observations are made on the
same satellite by several stations under different angles, and
are thus differently affected by the geocenter shift. This width
mainly depends on the radius of the satellite orbit, but also
of the employed cutoff angle.

With slight anticipation over Sect. 7, let us mention that
the epoch mean signature shown in magenta in Fig. 4 can be
strictly compensated by variations of the satellite clock off-
sets and is therefore unobservable in a standard GNSS analy-
sis. The determination of the Z geocenter coordinate with
GNSS can consequently only rely on the difference between
its signature and this epoch mean signature (i.e. on the signal
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Fig. 6 Signature of a 1 cm X geocenter shift on simulated observations
made on a GPS-like satellite. Each blue dot represents an element of
Sy . The magenta line is an epoch mean

Fig. 7 Signature of a 1 cm X geocenter shift on simulated observations
made by seven particular stations. An epoch mean signature was first
removed for each satellite

around the magenta line in Fig. 4). This second-order signa-
ture is represented in Fig. 5 from the points of view of five
particular stations.

5.2 Signatures of X and Y geocenter shifts

Similarly, the impact of a positive X geocenter shift is to
shorten the observations made on satellites in the positive X
hemisphere and to lengthen the observations made on satel-
lites in the negative X hemisphere. At first order, the signature
of a positive X geocenter shift on the observations of a par-
ticular satellite thus follows the opposite of the satellite X
coordinate in the terrestrial frame. For a circular orbit, this
results in the product of two sinusoids, one at the satellite
revolution period and the other at the Earth rotation period.
The signature of a 1 cm X geocenter shift on the set of obser-
vations described in Sect. 4.2 is represented in Fig. 6 from
the point of view of a particular satellite.

As for the Z component, the epoch mean signature shown
in magenta in Fig. 6 can be strictly compensated by variations

Table 4 List of simulated parameters

Type Number

Station coordinates 3 per station

Satellite initial state vectors 6 per satellite

Satellite empirical accelerations 5 per satellite

EOPs 6

of the satellite clock offsets and is therefore unobservable
in a standard GNSS analysis. The determination of the X
component of the geocenter with GNSS can consequently
only rely on the difference between its signature and this
epoch mean signature (i.e. on the signal around the magenta
line in Fig. 6). This second-order signature is represented in
Fig. 7 from the points of view of seven particular stations.

The signature of a Y geocenter shift on station-satellite
ranges is similar in all respects to the signature of an X geo-
center shift.

6 SLR interlude

The collinearity diagnosis developed in Sect. 3 is applied
in this section to the SLR geocenter determination problem.
This interlude will help in understanding why the SLR tech-
nique is much more able to retrieve geocenter motions than
GNSS.

6.1 Simulation

A series of station-satellite range observations was simulated
with the options listed in Table 1, except that a constellation
of two LAGEOS-like satellites (a = 12,200 km, e = 0,
i1 = 110◦, i2 = 53◦) was used. A design matrix was set up,
including the parameters listed in Table 4. The considered
empirical accelerations were constant along-track acceler-
ations and once-per-revolution periodic accelerations in the
along-track and cross-track directions: S0, Sc, Ss , Wc and Ws

in the notations of Rodriguez-Solano et al. (2012). The main
differences with the GNSS case is that neither clock offsets
nor tropospheric parameters needed to be set up.

The choice of a perfectly distributed network of 100 sta-
tions providing observations at a 5 min rate is rather unreal-
istic for an SLR simulation. But like in the GNSS case, this
choice avoids perturbing the obtained results by some net-
work effect. This will also facilitate the comparison with the
GNSS results obtained in Sect. 7.

The choice of a 24 h data span is also questionable, as
7 day data batches are usually processed in SLR. 24 h data
batches were used for comparison with GNSS. But the results
of additional simulations using 7 day data batches will also
be presented in Sects. 6.2 and 6.3.
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Fig. 8 Blue signature of a 1 cm X geocenter shift on simulated obser-
vations made on a LAGEOS-like satellite. Each blue dot represents an
element of Sy . Green corresponding proper signature. Each green dot
is an element of Sp

y,c

6.2 Collinearity diagnosis of the X and Y geocenter
coordinates

The implicit parameter corresponding to a 1 cm X geocenter
shift was then considered, and Eq. (44) was solved. Con-
cretely, a 1 cm X geocenter shift was imposed with respect
to the a priori parameters. But the impact of this shift on the
observations was compensated as much as possible through
independent parameter variations. The VIF thus obtained for
the X geocenter coordinate was 1.8 (67.068 %), which clearly
indicates the absence of collinearity issues. This result is
illustrated in Fig. 8, where the signature of the introduced
X geocenter shift on the observations made on a particular
satellite is compared to the corresponding proper signature.
Both have similar magnitudes, meaning that the introduced X
geocenter shift could hardly be compensated by independent
parameter variations.

The same experience was repeated for the Y geocen-
ter coordinate. An even lower VIF of 1.2 (42.698 %) was
obtained. Additional simulations were carried out using a 7
day data batch. The obtained VIFs were respectively 1.04
(20.359 %) and 1.04 (19.078 %) for the X and Y geocenter
coordinates. In conclusion, the determination of the X and Y
geocenter coordinates with SLR does manifestly not suffer
from collinearity issues.

6.3 Collinearity diagnosis of the Z geocenter coordinate

For the Z coordinate of the geocenter and a 24 h data batch,
a larger VIF of 9.0 (94.285 %) was obtained. This result is
illustrated in Fig. 9: the proper signature of the introduced
Z geocenter shift is clearly smaller than its signature. The
first-order sinusoidal signal could in particular be absorbed
by independent parameter variations.

The examination of those independent parameter varia-
tions, i.e. −γ y,c, revealed that the most affected parameters
were the satellite initial state vectors. We therefore investi-
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Fig. 9 Blue signature of a 1 cm Z geocenter shift on simulated obser-
vations made on a LAGEOS-like satellite. Each blue dot represents an
element of Sy . Green corresponding proper signature. Each green dot
is an element of Sp

y,c

gated how variations of the satellite initial state vectors could
have absorbed the first-order sinusoidal signature of the intro-
duced Z geocenter shift. It is easily seen that this first-order
signal can be compensated by a periodic variation of the orbit
radius with:

– an amplitude of δt sin i ,
– its maximum when the satellite reaches the southernmost

point of its orbit,
– its minimum when the satellite reaches the northernmost

point of its orbit.

Starting from a circular orbit, such a periodic variation of the
orbit radius can in fact simply be obtained through a slight
“ellipticization”. Let us arbitrarily place the perigee of the
starting circular orbit at ω = π/2 (i.e. at its northernmost
point) and consider the perturbed orbit with an eccentricity
δe = δt sin i/a. The radial difference between both orbits is,
at first order in δe:

δr = −aδe cos ν = −δt sin i cos ν (50)

It clearly meets the requirements listed above.
In summary, the first-order signature of a Z geocenter shift

can be compensated, in case of circular orbits, by variations of
the satellite osculating elements, or equivalently by variations
of their initial state vectors. The parameter variation −γ y,c
obtained from our simulation was indeed corresponding to
such ellipticizations of both LAGEOS orbits. It is worth men-
tioning that this problem is not restricted to circular orbits.
Appendix H (Online Resource) shows that the first-order sig-
nature of a Z geocenter shift can similarly be compensated
by variations of the satellite osculating elements in case of
elliptical orbits.

The same experience was repeated with a 7 day data batch.
The VIF obtained for the Z geocenter coordinate was 8.6
(93.988 %), only slightly lower than for the 24 h case. The
collinearity of the Z geocenter coordinate with the satellite
osculating elements explained above holds in fact for any
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data batch and orbital arc lengths. In addition to the uneven
distribution of the SLR network, this slight collinearity issue
may partly explain why the Z component of the SLR-derived
geocenter motion is of lower quality than its X and Y com-
ponents (see, e.g., Fig. 4 in Altamimi et al. 2011).

7 Collinearity diagnosis of the GNSS geocenter
determination

The collinearity diagnosis developed in Sect. 3 is eventually
applied in this section to the GNSS geocenter determination
problem.

7.1 Collinearity diagnosis of the X and Y geocenter
coordinates

A series of observations was simulated using the options
listed in Table 1, and a design matrix including the parameters
listed in Table 2 except satellite z-PCOs was set up. The
implicit parameter corresponding to a 1 cm X geocenter shift
was considered and Eq. (44) was solved. The obtained VIF
was 2,367.5 (99.979 %). As illustrated from the point of view
of a satellite in Fig. 10 and from the point of view of a station
in Fig. 11, the proper signature of the X geocenter coordinate
is indeed smaller than its signature by almost two orders of
magnitude.

The independent parameter variations −γ y,c by which
the introduced X geocenter shift was almost completely
absorbed was then examined. As anticipated in Sect. 5, the
epoch mean signature of the introduced geocenter shift on
the observations of each satellite (magenta line in Fig. 6)
was absorbed by the respective satellite clock offsets. As
one could have expected, the second-order signatures rep-
resented in Fig. 7 were absorbed to a great extent by the
station-related parameters (positions, clock offsets, ZWDs
and tropospheric gradients). On the other hand, neither the
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Fig. 10 Blue signature of a 1 cm X geocenter shift on simulated obser-
vations made on a GPS-like satellite. Each blue dot represents an ele-
ment of Sy . Green corresponding proper signature. Each green dot is
an element of Sp

y,c

satellite initial state vectors nor the empirical accelerations
were substantially affected.

Figure 12 illustrates the part of −γ y,c corresponding to
station coordinate variations, i.e. the distortion of the station
network obtained in response to the introduction of the X geo-
center shift. The distortion pattern visible in Fig. 12 resem-
bles the deformation pattern associated with a degree 1, order
1 surface load (fitting a degree 1, order 1 load deformation
pattern to the network distortion shown in Fig. 12 leads to
a coefficient of determination of 94.5 %). This resemblance
explains the significant correlation observed by Blewitt (per-
sonal communication, 2012) in the solutions of various IGS
ACs between the X component of their origins and the defor-
mation pattern associated with a degree 1, order 1 surface
load.

The same experience was repeated for the Y coordinate
of the geocenter. The obtained VIF was 2,359.8 (99.979 %).
The independent parameter variations obtained in response
to the introduction of the Y geocenter shift are similar to those
obtained for the X coordinate of the geocenter. In particular,

-10 mm 0 mm 10 mm -0.2 mm 0.0 mm 0.2 mm

Fig. 11 Left signature of a 1 cm X geocenter shift on the observations
made by a particular station, represented as a skyplot. Each dot repre-
sents an element of Sy . Right corresponding proper signature. Each dot
represents an element of Sp

y,c. Note the different color scales

Fig. 12 Station coordinate variations obtained in response to the intro-
duction of a 1 cm X geocenter shift. The horizontal variations are rep-
resented by the black arrows; the vertical variations by the color dots
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the obtained network distortion pattern resembles the defor-
mation pattern associated with a degree 1, order −1 surface
load.

Two other simulations were run using a real network of
150 stations and a real constellation of 30 GPS satellites (both
extracted from a solution provided by ESA for July 11, 2008).
The obtained VIFs were, respectively, 2,016.4 (99.975 %)
and 2,270.2 (99.978 %) for the X and Y coordinates of the
geocenter. Although slightly lower, they are of the same order
as the VIFs obtained with perfectly distributed network and
constellation.

In conclusion, the X and Y coordinates of the geocenter
are hardly observable in a standard GNSS analysis. Their
epoch mean signatures are indeed indistinguishable from the
satellite clock parameters, while their second-order signa-
tures are highly collinear with all station-related parameters.
The determination of the X and Y geocenter coordinates with
GNSS can therefore only rely on tiny third-order signals (a
few tenths of millimeters for 1 cm geocenter shifts). Note that
the VIFs obtained for the X and Y geocenter coordinates are
roughly of the same order as the VIF obtained in Sect. 4.3
for the terrestrial scale.

7.2 Collinearity diagnosis of the Z geocenter coordinate

Using a fictive network of 100 stations and a fictive constella-
tion of 24 satellites, a VIF of 3,147.5 (99.984 %) was obtained
for the Z coordinate of the geocenter. Using a real network of
150 stations and a real constellation of 30 GPS satellites, the
obtained VIF was 3,538.4 (99.986 %). The examination of
−γ y,c revealed that both the clock offsets (as for the X and
Y geocenter coordinates) and the initial state vector of each
satellite (as in the SLR case) “combined their strengths” to
absorb the main part of the signature of the introduced Z geo-
center shift. As for the X and Y coordinates, the remaining
second-order signature was largely absorbed by variations of
the station-related parameters, leaving a proper signature of

only a few tenths of millimeters. The network distortion pat-
tern obtained in response to the introduction of the Z geocen-
ter shift resembles the deformation pattern associated with a
degree 1, order 0 surface load.

As will be shown in Sect. 7.4, the larger VIFs of the Z
geocenter coordinate compared to those of the X and Y geo-
center coordinates stem from a particular role played by the
ECOM parameters. The VIFs obtained for the Z geocenter
coordinate are of the same order as those obtained in Sect. 4.3
for the terrestrial scale. This concretely means that current
GNSS should be considered as unable to provide information
about the Z component of geocenter motion as they are to
provide terrestrial scale information apart from conventional
satellite z-PCOs.

7.3 Influence of the cutoff angle and of the observation
weighting

For completeness, the VIFs of the three geocenter coordi-
nates have been computed for different cutoff angles and
observation weighting functions. Results are summarized in
Table 5. As for the terrestrial scale, using higher cutoff angles
or downweighting low-elevation observations has the effect
of increasing collinearity issues.

7.4 Role of the empirical accelerations

Meindl et al. (2013), on the basis of orbital perturbation con-
siderations, concluded that the estimation of the ECOM D0

parameters (constant accelerations in the Sun-satellite direc-
tions) was an important limiting factor in the determination
of the Z geocenter coordinate with GNSS. To investigate
the role effectively played by the ECOM parameters in the
collinearity of the Z geocenter coordinate, a series of simula-
tions was run in which different subsets of ECOM parameters
were estimated. The results are summarized in Table 6.

Table 5 VIFs obtained for the three geocenter coordinates with different cutoff angles and observation weighting functions

Weighting function Cutoff angle

0◦ 5◦ 10◦ 20◦

1 X : 451.8 (99.889 %) X : 1,070.1 (99.953 %) X : 2,367.5 (99.979 %) X : 12,475.9 (99.996 %)

Y : 452.4 (99.889 %) Y : 1,073.4 (99.953 %) Y : 2,359.8 (99.979 %) Y : 12,494.0 (99.996 %)

Z : 929.8 (99.946 %) Z : 1,661.7 (99.970 %) Z : 3,147.5 (99.984 %) Z : 13,799.2 (99.996 %)

sin e X : 656.5 (99.924 %) X : 1,277.3 (99.961 %) X : 2,658.6 (99.981 %) X : 13,585.8 (99.996 %)

Y : 655.3 (99.924 %) Y : 1,283.1 (99.961 %) Y : 2,653.4 (99.981 %) Y : 13,599.3 (99.996 %)

Z : 1,300.9 (99.962 %) Z : 2,008.0 (99.975 %) Z : 3,570.5 (99.986 %) Z : 15,035.1 (99.997 %)

sin2 e X : 1,128.7 (99.956 %) X : 1,950.6 (99.974 %) X : 3,604.9 (99.986 %) X : 16,211.1 (99.997 %)

Y : 1,126.2 (99.956 %) Y : 1,959.1 (99.974 %) Y : 3,598.4 (99.986 %) Y : 16,219.0 (99.997 %)

Z : 2,016.1 (99.975 %) Z : 2,921.4 (99.983 %) Z : 4,794.7 (99.990 %) Z : 18,004.7 (99.997 %)

The other simulation options were as described in Sect. 4.2, except that satellite z-PCOs were not estimated
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Table 6 VIFs obtained for the Z coordinate of the geocenter when
estimating different subsets of ECOM parameters

ECOM parameters VIF
√

1 − 1/VIF (%)

None 2,549.1 99.980

D0 2,550.7 99.980

Y0 2,549.3 99.980

B0 2,553.2 99.980

Bc, Bs 2,603.0 99.981

D0, Bc, Bs 3,137.9 99.984

D0, Y0, B0, Bc, Bs 3,147.5 99.984

The other simulation options were as described in Sect. 4.2, except that
satellite z-PCOs were not estimated

Table 7 VIFs obtained for the Z coordinate of the geocenter when
estimating different subsets of ECOM parameters and using the
GLONASS-like constellation described in the text

ECOM parameters VIF
√

1 − 1/VIF (%)

None 2,568.5 99.981

D0 2,799.4 99.982

Y0 2,569.4 99.981

B0 2,578.8 99.981

Bc, Bs 2,608.7 99.981

D0, Bc, Bs 4,756.7 99.989

D0, Y0, B0, Bc, Bs 4,782.5 99.990

The other simulation options were as described in Sect. 4.2, except that
satellite z-PCOs were not estimated

The purpose here was to assess the individual and com-
bined contributions of the five usually estimated ECOM para-
meters to the collinearity of the Z geocenter coordinate. It
is clear that, when individually estimated, each of these five
parameters, in particular D0, has no significant impact. When
the five parameters are simultaneously estimated, the VIF
of the Z geocenter coordinate increases from about 2,550
(99.980 %) to 3,147.5 (99.984 %). This increase can in fact
be quasi-fully explained by the simultaneous estimation of
three of the five parameters: D0, Bc and Bs. It is nevertheless
relatively minor (remember that VIFs should be considered
as varying on a logarithmic scale). That is why we assert
that the ECOM parameters do not play a predominant role in
the problem of determining the Z geocenter coordinate with
GNSS.

The results in Table 6 were however obtained with a par-
ticular configuration of the orbital planes with respect to the
Sun. The βs angles (elevations of the Sun above the orbital
planes) were in this case ranging from −30◦ to 68◦. To con-
firm the above conclusion, we ran another series of simula-
tions using a configuration considered by Meindl et al. (2013)
as a worst case scenario. A constellation of 24 GLONASS-
like satellites (a = 25, 520 km, e = 0, i = 65◦) on three
orbital planes was used. The βs angles were respectively 87◦,

Table 8 VIFs obtained for the three geocenter coordinates when esti-
mating different subsets of GNSS-specific parameters

GNSS parameters Axis VIF
√

1 − 1/VIF (%)

None X 1.0 16.238

Y 1.0 16.512

Z 33.4 98.490

ECOM X 4.0 86.522

Y 4.0 86.497

Z 44.5 98.870

Tropo X 2.4 76.107

Y 2.4 76.082

Z 36.4 98.617

Clocks X 677.8 99.926

Y 681.3 99.927

Z 768.4 99.935

ECOM, tropo X 6.5 92.043

Y 6.6 92.067

Z 55.9 99.101

ECOM, clocks X 719.7 99.931

Y 720.7 99.931

Z 1,301.6 99.962

Tropo, clocks X 2,308.5 99.978

Y 2,300.3 99.978

Z 2,549.1 99.980

ECOM, tropo, clocks X 2,367.5 99.979

Y 2,359.8 99.979

Z 3,147.5 99.984

The other simulation options were as described in Sect. 4.2, except that
satellite z-PCOs were not estimated

−15◦ and −15◦ for the three orbital planes. Results are sum-
marized in Table 7. The VIF of the Z geocenter coordinate
is this time approximately doubled when estimating the five
ECOM parameters. As previously, this collinearity increase
can be explained by the simultaneous estimation of only three
ECOM parameters: D0, Bc and Bs. But this increase by a
factor 2 in a worst case scenario remains a secondary issue.
Also, note that estimating only the D0 parameters causes a
marginal increase of collinearity.

A last experiment was carried out to consolidate our view.
The parameters estimated in GNSS analyses, but not in SLR
analyses were grouped into three categories:

– the five usually estimated ECOM parameters (“ECOM”
in Table 8),

– tropospheric parameters (ZWDs and tropospheric gradi-
ents; “tropo” in Table 8),

– station and satellite clock offsets (“clocks” in Table 8).
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Different simulations were run to assess the individual and
combined contributions of these parameter categories to the
collinearity of the three geocenter coordinates. The obtained
VIFs are summarized in Table 8.

The GNSS parameter category with the largest individual
impact is the clock offset category: a hypothetic GNSS that
could dispense with the estimation of clock offsets would
most certainly allow an accurate determination of geocenter
motion. The combination of clock offsets with tropospheric
parameters has a devastating effect. It concretely makes
the second-order signatures shown in Figs. 5 and 7 quasi-
unobservable. In case of the Z geocenter coordinate, esti-
mating the five ECOM parameters has an additional, but rela-
tively small impact. That is why we consider that the inability
of GNSS, as opposed to SLR, to properly sense the Z compo-
nent of geocenter motion is mostly due to the simultaneous
estimation of clock offsets and tropospheric parameters. For
the X and Y components of geocenter motion, this inabil-
ity is quasi-entirely due to the simultaneous estimation of
clock offsets and tropospheric parameters. This conclusion
contradicts the one drawn by Meindl et al. (2013) according
to whom the inability of GNSS, as opposed to SLR, to prop-
erly sense the Z component of geocenter motion stems from
the correlation between the Z geocenter coordinate and the
ECOM D0 parameters.

8 Discussion

This section discusses a number of questions related to the
results obtained in Sect. 7:

– Why did Meindl et al. (2013) come to a different conclu-
sion (Sect. 8.1)?

– Why are GLONASS-derived geocenter time series of
much lower quality than GPS-derived geocenter time
series (Sect. 8.2)?

– Which paths can be considered toward a reliable observa-
tion of geocenter motion with GNSS (Sect. 8.3)?

8.1 Comments to Meindl et al. (2013)

The main argument of Meindl et al. (2013) relies on exper-
iments that are similar in essence to our simulations. They
compared two series of GNSS solutions obtained with and
without constraining the Z geocenter coordinate, i.e. with
and without introducing artificial δz geocenter shifts. And
they observed that the variations of the estimated D0 para-
meters in response to the introduction of δz geocenter shifts
were approximately obeying:

δz = −
∑P

k=1 δDk
0 sin βk

s

n2 cos i
(51)

where

– P denotes the number of orbital planes,
– δDk

0 is the mean variation of the D0 parameters observed
for the satellites of plane k,

– βk
s is the elevation of the Sun above the orbital plane k,

– n denotes the mean motion of the satellites.

Meindl et al. (2013) justify Eq. (51) by the fact that a variation
δD0 has the effect, among others, of translating the orbit of a
satellite by δD0 sin βs/(n2 cos i) along the Z axis. From Eq.
(51), they conclude that the geocenter differences δz between
their two solution series are “explained by the differences of
the [D0] parameters in both solution series”.

We were however unable to reproduce Meindl et al.
(2013)’s result. We introduced for example 1 cm Z geocenter
shifts into two simulated solutions that were only differing by
the employed cutoff angles (0◦ in the first, 10◦ in the second).
The obtained right-hand sides of Eq. (51) were respectively
2.3 and 5.3 mm, both far from 1 cm, and also very differ-
ent from each other. Repeating the same experiment with 1
year of real daily solutions provided by ESA led to right-
hand sides that were rather constant (mean 4.6 mm, standard
deviation 1.0 mm), but again far from 1 cm. We therefore
think that Eq. (51) does probably only hold for the particular
analysis settings used by Meindl et al. (2013).

In fact, the point where the reasoning of Meindl et al.
(2013) fails is that their δz geocenter differences are not
explained by the δD0 variations. On the contrary, these δD0

variations are only one particular consequence of the intro-
duction of the δz geocenter shifts. Introducing an artificial Z
geocenter shift into a solution admittedly induces variations
of the D0 parameters. But all other parameter categories are
affected as well. With given analysis settings, formulas like
Eq. (51) could in fact be derived for any parameter category
like, e.g., tropospheric gradients. But each would only give
a partial view of the problem.

8.2 Lower quality of GLONASS-derived geocenter time
series

The Z component of the GLONASS-derived geocenter time
series studied by Meindl et al. (2013) is clearly of much lower
quality than the corresponding GPS-derived time series. It
contains in particular a strong artificial periodic signal with
an amplitude of about 20 cm and its extrema when the angle
βs reaches extremal values for one of the three GLONASS
orbital planes. Meindl et al. (2013) attribute this lower quality
to the facts that GLONASS satellites are spread over only
three orbital planes (against 6 for GPS) and that the angle βs

can reach values up to almost 90◦ for GLONASS (against
about 80◦ for GPS).
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But the lower quality of GLONASS-derived geocenter
time series might have a different explanation. Accord-
ing to Meindl (2011), less than 50 % of the phase cycle
ambiguities could indeed be fixed to integer values in their
GLONASS analysis (against 90 % for GPS). Unfixed ambi-
guities thus constitute a large set of additional parameters in
the GLONASS case, which may have seriously increased the
collinearity of the Z geocenter coordinate. No dedicated sim-
ulations were carried out in our study to assess the impact of
estimating unfixed ambiguities on the VIF of the Z geocen-
ter coordinate. But ambiguity parameters (i.e. constants per
pass of each satellite over each station) would likely signifi-
cantly help in masking the second-order geocenter signatures
shown in Fig. 5.

Also, note that the impact of fixing ambiguities on the
GPS geocenter determination had been studied by Springer
(2000). His figure 5.7 (b) shows the impact of fixing ambi-
guities on the Z component of the geocenter motion derived
from GPS solutions. In the early part of the graph, when GPS
ambiguities were not fixed, a strong artificial periodic signal
with an amplitude of about 20 cm is visible, like in Meindl
et al. (2013)’s GLONASS series.

8.3 Perspectives

The collinearity diagnosis made in Sect. 7 explains why the
time series of translations derived from the IGS AC weekly
solutions are far from reflecting a realistic geocenter motion.
To paraphrase Belsley et al. (1980), the extreme collinearity
of the three geocenter coordinates indeed results in a situa-
tion in which the systematic influence of geocenter motion
on GNSS observations is swamped by the observation and
modeling errors.

A different problem is to know what the IGS AC transla-
tion time series do actually reflect, i.e. what are the modeling
deficiencies which contaminate the GNSS geocenter motion
estimates. From the fact that the IGS AC translation time
series contain strong spurious signals at harmonics of the
GPS draconitic year, and from various experiments showing
that changes in orbit modeling have significant impacts on
GPS-derived geocenter motion (Springer 2000; Hugentobler
and Marel 2006; Rodriguez-Solano et al. 2011), it seems clear
that orbit modeling deficiencies are a major source of geocen-
ter contamination. But other modeling aspects of the GNSS
observations are also known to have serious impacts on GPS-
derived geocenter motion, like the modeling of higher-order
ionospheric effects (Petrie et al. 2010; Garcia-Fernandez et
al. 2012).

Two paths can consequently be considered in view of a
reliable observation of geocenter motion with GNSS: the
reduction of collinearity issues and the reduction of mod-
eling deficiencies. With the current state of collinearity, the
latter solution would probably require immense progress in

the modeling of orbit dynamics as well as in other modeling
aspects. Remembering that the determination of a 1 cm geo-
center offset relies on a signal of a few tenths of millimetres,
it seems unlikely that modeling progresses alone will allow
a reliable observation of geocenter motion with GNSS in the
near term.

The other alternative is the reduction of collinearity issues,
i.e. a reduction of the number of parameters to estimate. Bear-
ing in mind that the most problematic parameter categories
are clock offsets and tropospheric parameters, two paths can
again be considered. The first one would be an improvement
of global meteorological models up to a point where GNSS
analyses could dispense with the estimation of tropospheric
parameters, which also seems unfeasible in the near term.

The last remaining prospect is the modeling of station
and/or satellite clocks by other means than epoch-wise off-
sets. The modeling of satellite clocks is especially attractive.
If the time evolution of satellite clock offsets could be tightly
constrained, then the epoch mean signatures of geocenter
shifts (magenta lines in Figs. 4 and 6) could indeed become
observable. The whole question is then to know how many
satellites should carry stable clocks and how stable these
clocks should be. This question will be the topic of a future
study.

9 Summary

A collinearity diagnosis was developed, based on a general-
ization of the notion of variance inflation factor. It allows to
assess and explain the collinearity of any explicit or implicit
parameter in the presence of singularities supplemented by
minimal constraints. Such a diagnosis can be practically per-
formed by solving the constrained least-squares system (44):
a unit error in the considered parameter is artificially intro-
duced, but the impact of this error on the observations is
compensated as much as possible by independent parameter
variations.

This collinearity diagnosis was applied in Sect. 6 to the
SLR geocenter determination problem. It revealed that the
determination of the X and Y geocenter coordinates with
SLR does not suffer from any collinearity issue. On the other
hand, the epoch mean signature of a Z geocenter shift was
shown to be absorbable by variations of the satellite initial
state vectors. The Z geocenter coordinate thus has a VIF of
the order of 9 in our simulated SLR analyses. In addition
to the uneven distribution of the SLR network, this slight
collinearity issue may partly explain why the Z component
of the SLR-derived geocenter motion is of lower quality than
its X and Y components.

In Sect. 7, the developed collinearity diagnosis was
applied to the GNSS geocenter determination problem. A
minimalist set of GNSS parameters was considered. With
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reasonable cutoff angles and observation weighting func-
tions, the VIFs obtained for the Z geocenter coordinate are at
the same level, or larger than those obtained for the terrestrial
scale in Sect. 4. Current GNSS should therefore be consid-
ered as unable to provide information about the Z component
of geocenter motion as they are to provide terrestrial scale
information apart from conventional satellite z-PCOs. The
VIFs of the X and Y geocenter coordinates are smaller, but
of the same order. It can be concluded without much exag-
gerating that current GNSS are insensitive to any component
of geocenter motion.

Among the parameters considered in this study, two spe-
cific categories quasi-fully explain the insensivity of GNSS to
the X and Y geocenter coordinates: epoch-wise clock offsets
and tropospheric parameters. These two parameter categories
also explain most of the insensivity of GNSS to the Z geo-
center coordinate, which is in addition slightly amplified by
the simultaneous estimation of three ECOM parameters: D0,
Bc and Bs. We therefore assert that the inability of GNSS, as
opposed to SLR, to properly sense geocenter motion, includ-
ing its Z component, is due to the simultaneous estimation
of clock offsets and tropospheric parameters.

The possible paths toward a reliable observation of geo-
center motion with GNSS were considered in Sect. 8.3.
As sufficient progress in any of these paths can hardly be
expected soon, the ultimate conclusion of this article is that
GNSS will likely not become able to complement SLR for
geocenter determination with the network shift approach in
a reasonably near future. The IGS might consequently con-
sider abandoning the idea of providing GNSS geocenter esti-
mates in favour of adopting a conventional a priori geocenter
motion model.
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