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Abstract This paper is devoted to the spherical and spher-
oidal harmonic expansion of the gravitational potential of
the topographic masses in the most rigorous way. Such an
expansion can be used to compute gravimetric topographic
effects for geodetic and geophysical applications. It can also
be used to augment a global gravity model to a much higher
resolution of the gravitational potential of the topography. A
formulation for a spherical harmonic expansion is developed
without the spherical approximation. Then, formulas for the
spheroidal harmonic expansion are derived. For the latter,
Legendre’s functions of the first and second kinds with imag-
inary variable are expanded in Laurent series. They are then
scaled into two real power series of the second eccentricity of
the reference ellipsoid. Using these series, formulas for com-
puting the spheroidal harmonic coefficients are reduced to
surface harmonic analysis. Two numerical examples are pre-
sented. The first is a spherical harmonic expansion to degree
and order 2700 by taking advantage of existing software.
It demonstrates that rigorous spherical harmonic expansion
is possible, but the computed potential on the geoid shows
noticeable error pattern at Polar Regions due to the down-
ward continuation from the bounding sphere to the geoid.
The second numerical example is the spheroidal expansion
to degree and order 180 for the exterior space. The power
series of the second eccentricity of the reference ellipsoid
is truncated at the eighth order leading to omission errors
of 25 nm (RMS) for land areas, with extreme values around
0.5 mm to geoid height. The results show that the ellipsoidal
correction is 1.65 m (RMS) over land areas, with maximum
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value of 13.19 m in the Andes. It shows also that the cor-
rection resembles the topography closely, implying that the
ellipsoidal correction is rich in all frequencies of the grav-
ity field and not only long wavelength as it is commonly
assumed.

Keywords Gravitational potential of topographic masses ·
Spherical and spheroidal harmonic expansion · Spheroidal
harmonic expansion of the reciprocal distance · Harmonic
downward continuation · Ellipsoidal correction to the
topographic potential

1 Introduction

The topographic effects on functionals of the gravity field,
such as the direct and indirect effects, geoid–quasigeoid sep-
aration and gravity gradients, have been traditionally com-
puted using numerical integration. This employed the planar
approximation in earlier days (e.g., Forsberg 1984; Sideris
and Forsberg 1990; Wang and Rapp 1990) and later replaced
it by a more accurate spherical approximation (Martinec
1998; Kuhn 2000; Heck and Seitz 2007; Wild-Pfeiffer 2008).
Numerical integrations of the topographic effects are per-
formed primarily in a limited area, either to achieve compu-
tational efficiency or because the user’s data extent is limited
to their local area. Another drawback of numerical integra-
tion is in the linear approximation used in the computation
of the topographic effects (Moritz 1968), and the difficulty
to account for the contribution of ignored higher order terms.

Alternatively, the topographic effects can be computed
from a high-degree harmonic expansion of the gravitatio-
nal potential of topographic masses (e.g., Novák 2010; Wang
et al. 2010; Balmino et al. 2012). In addition, such an expan-
sion can be used to augment to a global gravity model a much
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higher resolution of the gravitational potential of topographic
masses. The ultra-high frequencies of the gravity field are
difficult to get from gravity observations alone due to data
coverage and sampling rates. Consequently, the accuracy of
gravity modeling could benefit from such an augmentation.
An example of such a useful augmentation is the “Helmerti-
zation” of EGM2008, which is necessary when the full power
of EGM2008 is used as a reference model in the Helmert’s
second condensation method for geoid computation (Wang
et al. 2012). A unique advantage of the harmonic analysis
over numerical integration is the fact that it could be done
globally, once and for all, using a widely accepted digital
elevation model (DEM) such as the Shuttle Radar Topogra-
phy Mission (SRTM) (Slater et al. 2006). What remains for
the user to do for his/her own local area and application is to
synthesize the required quantity using the coefficients of the
harmonic expansion and a synthesis program disseminated
with those coefficients.

Recent topographic expansions were developed using
various approximations, namely the spherical approxima-
tion and a Taylor expansion that retains only a few terms
(cf., Novák 2010; Wang et al. 2012; Balmino et al. 2012).
The goal of this paper is to expand the gravitational potential
of the topographic masses in the most accurate way, avoiding
all approximations.

It is well known that several numerical difficulties arise in
the computation of high-degree spherical harmonic expan-
sions (Holmes and Featherstone 2002; Jekeli et al. 2007;
Fukushima 2012). An additional difficulty, which is often
ignored in these studies, is the downward continuation effect
on ultra-high-degree spherical harmonic series in regions
of high latitude. More specifically, the popular expression
of spherical harmonic series, such as Eq. (1) in Pavlis et
al. (2012) represents a spherical harmonic series expanded
around a bounding sphere of radius a, usually taken as the
semi-major axis of the reference ellipsoid. Because high-
latitude areas, including the Polar Regions, can reach 21 km
below the surface of this sphere, evaluation of the series in
those areas implicitly uses downward continuation. Since the
downward continuation effect increases exponentially with
increasing frequency, errors in the coefficients are ampli-
fied exponentially with the downward continuation. In order
to avoid the upward/downward continuation between the
bounding sphere and the reference ellipsoid, we explore the
spheroidal harmonic expansion of the topography later in this
paper.

Since the gravitational potential of the topographic masses
is needed on the geoid, which is partially inside the topog-
raphy, for computing the indirect effect and the geoid–
quasigeoid separation (e.g., Flury and Rummel 2009), for-
mulas for the interior space are also given in this paper.

Formulation of the spherical harmonic expansion is given
in Sect. 2 and a numerical realization of such an expan-

sion to degree and order 2700 is presented in Sect. 4. The
topographic effect on geoid heights is computed at sea level
to demonstrate the numerical problem caused by downward
continuation from the bounding sphere to the ellipsoid. To
expand the gravitational potential of the topographic masses
rigorously avoiding the above-mentioned downward contin-
uation, the spheroidal harmonic expansion is introduced in
Sect. 3. To facilitate the efficient numerical computation of
spheroidal coefficients, the computation formulas for spher-
oidal harmonic expansion are reduced from solid to surface
harmonic analysis using Laurent’s series of the Legendre
functions. Detailed equations for expanding Legendre’s func-
tions of the first and second kinds in Laurent series are given
in the Appendix. Subsequently, the series are scaled in two
real functions that have the radial component of the spheri-
cal harmonic expansion as their principal term. Higher order
terms (which represent the ellipsoidal correction to the topo-
graphic potential) contain powers of the second eccentricity
of the reference ellipsoid. Section 5 shows a numerical exam-
ple of the spheroidal harmonic expansion to degree and order
180. A discussion and conclusions are given in Sect. 6.

2 The spherical harmonic expansion

The Earth’s surface is defined as the outermost level of the
land and sea. The topography is defined as the land masses
above a reference surface, such as the geoid or the reference
ellipsoid. We use the latter in this paper. The height of the
ocean surface is defined as zero, although the oceans are
considered as mass deficiency areas in isostatic studies. Since
the mass deficiency and isostatic masses can be treated in
the same way as the topographic masses, they can be added
separately (e.g., Novák 2010). In this paper, we only focus
on the topographic masses.

Formulas of the spherical harmonic expansion of the grav-
itational potential of the topographic masses under the spher-
ical approximation and Taylor expansion are abundant in the
literature (e.g. Sjöberg 1977; Rummel et al. 1988; Wang
1997; Novák 2010; Wang et al. 2012). In this section, we
derive formulas for spherical harmonic expansion without
the spherical approximation and the use of a Taylor expan-
sion.

The gravitational potential of the topography, Vt , at any
given point, P , can be expressed in spherical coordinates by
Newton’s integral

Vt (rP , xP ) = G
∫ ∫

σ

rS∫

rE

ρ

l
r2 dr dσ, (1)

where G is Newton’s gravitational constant; rP is the radial
distance to the point P, xP denotes the surface coordinate
pair (θ, λ), where θ is the polar distance, and λ is the
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geocentric longitude, rS and rE are the radial distances to
points on the Earth’s surface S and the reference ellipsoid E ,
respectively; l is the distance between the computation point
P and the integration element:

l =
√

r2 − 2rrP cosψ + r2
P (2)

where ψ is the angular distance between the radius vectors
r and rP ; ρ is the density of the topographic masses and
assumed to be independent of the radial variable r .

Using the spherical harmonic expansion of the reciprocal
distance (Heiskanen and Moritz 1967, p 33), Eq. (1) can be
written separately as

V e
t = G

rP

∞∑
n=0

∫ ∫

σ

ρPn(ψ)

rS∫

rE

(
r

rP

)n

r2 dr dσ (3)

V i
t = G

rP

∞∑
n=0

∫ ∫

σ

ρPn(ψ)

rS∫

rE

(rP

r

)n+1
r2 dr dσ (4)

where Pn is the Legendre polynomials and the subscripts
“e” and “i” denote the potentials of the exterior and inte-
rior spaces. In this paper, we simply define the exterior and
interior spaces as the points just above and just inside the
Earth’s physical surface, respectively. It is well known that
the series in Eq. (3) is convergent at points with radial dis-
tance rp ≥ RB , where RB = max(rS), the radius of the Bril-
louin sphere (Moritz 1980). The convergence of the spherical
harmonic series (3) on the Earth’s surface has been the sub-
ject of an extensive discussion (Moritz 1961; Cook 1967;
Morrison 1969; Levallois 1973; Arnold 1978; Arnorld 1980;
Sjöberg 1977, 1980; Jekeli 1981; Wang 1997). The use of
this series for computations on the Earth’s surface or geoid is
supported by Runge’s theorem (Moritz 1980; Wang 1997).
But, we should keep in mind that the harmonic downward
continuation is an ill-posed problem. The use of Eq. (3) on
the Earth’s surface or sea level is highly unstable at ultra-high
degrees. As mentioned before, the high-frequency errors are
amplified exponentially in this process.

We assume that the density of the topography is a function
of the latitude and longitude only in this study. Thus, the
integrals in (3) and (4) can be evaluated with respect to r
(e.g., Sjöberg 1977). We denote

I e
n (x) =

rS∫

rE

rn+2 dr = 1

n + 3
(rn+3

S − rn+3
E ) (5)

I i
n(x) =

rS∫

rE

r−(n−1) dr

=
⎧⎨
⎩

1
n−2

(
1

rn−2
E

− 1
rn−2

S

)
n �= 2

ln(rS/rE ) n = 2
(6)

The integrands (5) and (6) are functions of the radial dis-
tance of the reference ellipsoid and the Earth’s surface; both
can be computed rigorously by (Torge 1980, p. 52):

rE = N
√

cos2 φ + (1 − e2)2 sin2 φ

rS =
√
(N + h)2 cos2 φ + [(1 − e2)N + h]2 sin2 φ

N = a√
1 − e2 sin2 φ

(7)

where a is the semi major axis of the reference ellipsoid,
N is the radius of curvature of the reference ellipsoid, e is the
first eccentricity of the reference ellipsoid, h is the ellipsoidal
height of the topography, and φ is the geographic (geodetic)
latitude.

Replacing the radial integrals in (3) and (4) by (5) and (6)
leads to

V e
t (rP , xP ) = G

∞∑
n=0

1

rn+1
P

∫ ∫

σ

ρ I e
n Pn(cosψ) dσ (8)

V i
t (rP , xP ) = G

∞∑
n=0

rn+1
P

∫ ∫

σ

ρ I i
n Pn(cosψ) dσ (9)

Using the decomposition formula (Heiskanen and Moritz
1967, p. 33), the potentials represented by (8) and (9) can be
written in a form for easy use of existing software:

V e
t (rP , xP ) = G M

rP

∞∑
n=0

(
a

rP

)n

×
n∑

m=0

[anm Rnm(xP )+bnm Snm(xP )] (10)

V i
t (rP , xP ) = G M

rP

∞∑
n=0

(rP

a

)n+1

×
n∑

m=0

[cnm Rnm(xP )+dnm Snm(xP )] (11)

where Rnm and Snm are the fully normalized surface spher-
ical harmonic functions, M is the total mass of the Earth,
and the coefficients anm and bnm can be computed by the
following equation:

(
anm

bnm

)
= 1

(2n + 1)M

∫ ∫

σ

ρ
I e
n (x)
an

(
Rnm(x)
Snm(x)

)
dσ

= a3

(2n + 1)(n + 3)M

∫ ∫

σ

ρ
(rE

a

)n+3

×
[(

rS

rE

)n+3

− 1

] (
Rnm

Snm

)
dσ (12)
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The coefficients cnm and dnm (n �= 2) are computed by:
(

cnm

dnm

)
= 1

(2n + 1)M

∫ ∫

σ

ρan+1 I i
n(x)

(
Rnm(x)
Snm(x)

)
dσ

= a3

(2n + 1)(n − 2)M

∫ ∫

σ

ρ

(
a

rE

)n−2

×
[

1 −
(

rE

rS

)n−2
] (

Rnm

Snm

)
dσ (13)

For n = 2, the coefficients are computed by
(

c2m

d2m

)
= a3

5M

∫ ∫

σ

ρ ln
rS

rE

(
Rnm(x)
Snm(x)

)
dσ (14)

The coefficients anm, bnm, cnm and dnm , defined by (12—14),
can be computed using numerical quadrature to the desired
degrees and orders.

3 The spheroidal harmonic expansion

The reference ellipsoid is closer to the Earth’s shape than the
sphere of the mean Earth. Thus, it is useful to expand the grav-
itational potential of the topographic masses in spheroidal
harmonics which are eigenfunctions of the Laplace operator
in space bordered by an ellipsoid of revolution (or spheroid).
The spheroidal coordinates u, ϑ, λ are related to the rectan-
gular coordinates x, y, z by (Heiskanen and Moritz 1967,
p. 40):

x =
√

u2 + E2 sin ϑ cos λ

y =
√

u2 + E2 sin ϑ sin λ

z = u cosϑ (15)

where E2 = a2 − b2 is the linear eccentricity, b is the semi-
minor axis of the reference ellipsoid andϑ is the complement
of the reduced latitudeβ. In spheroidal coordinates, Newton’s
integral reads

Vt = G
∫ ∫

σ

b+h∫

b

ρ

l
dυ, (16)

where h is the increment of the variable u relative to the refer-
ence ellipsoid, which can be approximated by the ellipsoidal
height in numerical computations, dυ is the volume element
given by (ibid., p.41)

dυ = h1h2h3 du dϑ dλ

= (u2 + E2 cos2 ϑ) sin ϑ du dϑ dλ (17)

The spheroidal harmonic expansion of the reciprocal dis-
tance can be found in Hobson (1931), Baranov (2004) and
Pohanka (1999, 2011). For u P > u, it reads

1

l
= i

E

∞∑
n=0

n∑
m=−n

(−1)m
(n − |m|)!
(n + |m|)! Pn|m|

(
i

u

E

)

×Qn|m|
(

i
u P

E

)
Ynm(x)Y ∗

nm(xP ), (18)

and for u P < u it is

1

l
= i

E

∞∑
n=0

n∑
m=−n

(−1)m
(n − |m)!
(n + |m|)! Pn|m|

(
i
u P

E

)

×Qn|m|
(

i
u

E

)
Ynm(x)Y ∗

nm(xP ), (19)

where

Ynm(x) =
√
(2n + 1)

(n − |m|)!
(n + |m|)! Pn|m|(cosϑ)eimλ, (20)

and Y ∗
nm is its conjugate, x denotes the surface variable pair

(ϑ, λ), i = √−1, and Qnm is Legendre’s function of the
second kind.

Our applications require only real-valued spherical har-
monics. The real basis of the surface harmonics is related to
the complex one by

Ynm(x) =

⎧⎪⎪⎨
⎪⎪⎩

1√
2
(Ynm + Y ∗

nm) = Rnm m > 0

Yn0 = Rn0 m = 0

1√
2
(Ynm − Y ∗

nm) = Sn|m| m < 0

(21)

Notice that we have used the same notation for the surface
harmonics in the complex and real form. In the rest of this
paper, we only use the real form.

Substituting the complex surface harmonics in (18) and
(19) with the real basis (21) gives

1

l
= i

E

∞∑
n=0

n∑
m=0

(−1)m
(n − m)!
(n + m)! Pnm

(
i

u

E

)

×Qnm

(
i
u P

E

)
Y nm(x, xP ) u P > u (22)

1

l
= i

E

∞∑
n=0

n∑
m=0

(−1)m
(n − m)!
(n + m)! Pnm

(
i
u P

E

)

×Qnm

(
i

u

E

)
Y nm(x, xP ) u P < u (23)

where

Y nm(x, xP ) = Rnm(x)Rnm(xP )+ Snm(x)Snm(xP ) (24)

To avoid unnecessary imaginary operations, Legendre’s
functions with imaginary variables in the above equations
can be replaced by two real functions pnm and qnm defined
by (65) and (66) in the Appendix. Equations (22) and (23)
are then simplified to
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1

l
= 1

b

∞∑
n=0

1

2n + 1

n∑
m=0

pnm(u)qnm(u P )Y nm(x, xP ) u P > u (25)

1

l
= 1

b

∞∑
n=0

1

2n + 1

n∑
m=0

pnm(u P )qnm(u)Y nm(x, xP ) u P < u (26)

The function pnm and qnm represent the radial components
of the spheroidal expansion and therefore will hereafter be
called “the radial functions”.

Equations (25) and (26) look quite different than their
spherical harmonic counterparts (Heiskanen and Moritz
1967, p 33), but they should be very closely related to them.
The difference is characterized by the eccentricity, ε, of the
reference ellipsoid. From the definition of the radial func-
tions (65) and (66), one can see that the principal term of the
radial component in (25) is (u/b)n(b/u P )

n+1/b = un/un+1
P ,

which is exactly the radial component of the spherical har-
monic expansion. It is easy to show that the radial compo-
nent in (26) reduces to the spherical harmonic expansion for
u P < u, or rP < r when ε → 0.

Inserting (25) and (26) into (16), the gravitational poten-
tial of the topographic masses is expanded in spheroidal har-
monic series as follows:

V e(u P , xP ) =
∞∑

n=0

n∑
m=0

qnm(u P )

qnm(b)

×[αnm Rnm(xP )+ βnm Snm(xP )] (27)

V i (u P , xP ) =
∞∑

n=0

n∑
m=0

pnm(u P )

pnm(b)

×[μnm Rnm(xP )+ νnm Snm(xP )] (28)

The division by the constant factors qnm(b) and pnm(b) in
(27) and (28) ensures that, on the ellipsoid, these equations
reduce to

V e(xP ) =
∞∑

n=0

n∑
m=0

[αnm Rnm(xP )+ βnm Snm(xP )]

V i (xP ) =
∞∑

n=0

n∑
m=0

[μnm Rnm(xP )+ νnm Snm(xP )]
(29)

The spheroidal harmonic coefficients are computed by

(
αnm

βnm

)
= pnm(b)

2n + 1
G

∫ ∫

σ

ρ I e
nm(x)

(
Rnm(x)
Snm(x)

)
dσ (30)

(
μnm

vnm

)
= qnm(b)

2n + 1
G

∫ ∫

σ

ρ I i
nm(x)

(
Rnm(x)
Snm(x)

)
dσ (31)

where

I e
nm(x) = 1

b

b+h∫

b

pnm(u)(u
2 + E2 cos2 ϑ) du

I i
nm(x) = 1

b

b+h∫

b

qnm(u)(u
2 + E2 cos2 ϑ) du (32)

dσ = sin ϑ dϑ dλ (33)

Now let us analytically integrate the right side of (32).
We introduce a general integral function for all positive and
negative integers n as

I (n, x)= 1

b

b+h∫

b

(u

b

)n
du =

{ 1
n+1 (x

n+1 − 1) n �= −1

ln x n = −1
(34)

where

x(x) = 1 + h

b
(35)

Using Eqs. (65), (66) and (34), the integrals in (32) can be
expressed in terms of the integral function I as

I e
nm(x) = b2

∞∑
k=0

ε2kcnm
k [I (n − 2k + 2, x)

+ ε2 I (n − 2k, x) cos2 ϑ]
= b2 I (n + 2, x)+ b2

∞∑
k=1

ε2k(cnm
k

+ cnm
k−1 cos2 ϑ)I (n − 2k + 2, x) (36)

I i
nm(x) = b2

∞∑
k=0

(−1)kε2kdnm
k [I (−n − 2k + 1, x)

+ ε2 I (−n − 2k − 1, x) cos2 ϑ]
= b2 I (−n + 1, x)+ b2

∞∑
k=1

(−1)k

×ε2k(dnm
k − dnm

k−1 cos2 ϑ)I (−n − 2k + 1, x) (37)

The zero order terms in (36) and (37) are the same as
the expressions of the spherical harmonic expansion under
the spherical approximation. The rest of the series is purely
due to the eccentricity of the reference ellipsoid, and could be
viewed as the ellipsoidal correction to the topographic poten-
tial. They decrease by the order of ε2 from one term to the
next. This feature provides a significant numerical advantage:
the evaluation of the series in (36) and (37) can be truncated
at a certain order, k, at which the contribution of ignored
terms becomes insignificant or below a specified accuracy
requirement.

To evaluate the spheroidal harmonics in (27) and (28),
accurate and efficient methods for computing the radial func-
tions are sought. The recurrence relation between the radial
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functions for different degrees or orders is given in the
Appendix and can be used for such computations. The radial
function can also be computed using the power series (65)
and (66) to a certain power of the second eccentricity of the
reference ellipsoid.

Note that the radial functions are scaled Legendre’s func-
tions; thus its computation is directly related to the com-
putation of Legendre’s functions of the first and second
kinds. Computation of Legendre’s function of the second
kind has been studied extensively (e.g., Thong 1989; Sona
1995; Gil and Segura 1998; Sebera et al. 2012; Fukushima
2013). The same computation mechanism may be extended
to the radial functions pnm and qnm . In addition, the Lau-
rent series (65) and (66) provide an alternative computation
method.

4 Numerical realization of spherical harmonic
expansion to degree and order 2700

In this section, we expand the gravitational potential of the
topographic masses in spherical harmonics to degree and
order 2700, using formulas developed in Sect. 2. The expan-
sion takes advantage of existing software for spherical har-
monic analysis.

For this practical exercise, a 1′ ×1′ mean orthometric ele-
vation grid was created by averaging the SRTM30′′ Digital
Elevation Model (DEM) (Slater et al. 2006). The spheroidal
height was obtained by adding EGM96 geoid undulation
(Lemoine et al. 1998) to the orthometric height. All 1′ × 1′
oceanic cells are set to zero elevation. The global mean,
RMS and maximum values of the 1′ × 1′ DEM are 376,
933 and 8,550 m, respectively. For each degree, the inte-
grand (5) and (6) are computed at all nodes of the 1′ × 1′
grid using Eq. (7), producing a total of 2700 such grids,
each for the exterior and interior expansions. The coeffi-
cients of the spherical harmonic expansion were obtained by
a harmonic analysis of each grid using numerical quadra-
ture. The derived spherical harmonic spectrum extended
from Nmin = 0 to Nmax = 2700. For this calculation, the
1′ ×1′ DEM was assumed to be equi-angular in geodetic lat-
itude and longitude, where the geodetic coordinates of each
1′ × 1′ cell are referenced to the surface of an ellipsoid of
dimensions:

• Semi-major axis (a) = 6,378,136.3 m
• Semi-minor axis (b) = 6,356,751.55863 m

For the spherical harmonic analysis, each 1′ × 1′ cell was
mapped onto the unit sphere by first taking the geodetic coor-
dinates of each 1′ × 1′ cell [geodetic latitude, longitude and
geodetic height (H = 0m)] and transforming these to geo-
centric latitude, longitude, and radial distance. The geocen-

tric latitudes and longitudes, so computed, are adopted for
the harmonic analysis as the geocentric coordinates on the
unit sphere.

The topographic effect on geoid height is computed by

N e
t (xP ) = G M

γ rE

2700∑
n=0

(
a

rE

)n

×
n∑

m=0

[anm Rnm(xP )+bnm Snm(xP )] (38)

N i
t (xP ) = G M

γ rE

2700∑
n=0

(rE

a

)n+1

×
n∑

m=0

[cnm Rnm(xP )+dnm Snm(xP )] (39)

where γ is the normal gravity on the ellipsoid, N e
t and

N i
t are the contributions of the topographic potential for

the exterior and interior spaces, respectively. The radial
distance of the reference ellipsoid rE is computed using
Eq. (7).

The topographic effect of Eq. (39) is computed and plotted
in Fig. 1.

Figure 1 shows that the topographic effect on the geoid is
directly related to the topographic height. Even if the topog-
raphy is set to zero over the oceans, the topographic effect
is non-zero because the gravity is a long-range force. The
minimum occurs in the Pacific Ocean at the furthest point
from topographic masses. The topographic effect is roughly
one order of magnitude smaller than the topographic eleva-
tions, which agrees with the rule of thumb about the relation-
ship between the topographic height and its effect on geoid
height.

The topographic effect of Eq. (38) represents the effect of
the topography on the geoid height due to the downward con-
tinued topographic potential. This effect is similar to Fig. 1
and it is not plotted here. Instead, the difference between the
topographic effects represented by (38) and (39) is plotted in
Fig. 2.

The difference is of the order of h2 and is the so-called
analytical downward continuation error by Sjöberg (1977)
and Wang (1997). Figure 2 shows unpleasant track patterns
at high latitudes which reach decimeters. It is believed that
this is caused by errors in coefficients at high degree and
orders which are amplified by the downward continuation of
the exterior potential from the bounding sphere to the ellip-
soid. Notice that the downward continuation is represented
by the factor (a/rE )

n in Eq. (38). The factor changes from
1 at the equator (rE = a) to 104 at the poles (rE = b) at
degree 2700. In other words, the coefficients of degree 2700
are multiplied by 1 at the equator, but by several thousand
at high-latitude areas. This numerical feature affects com-
putations in two ways: first, it affects the computations of
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Fig. 1 Topographic effect on
geoid height (max. degree 2700)

Fig. 2 Difference between
topographic effects on geoid
height (downward continued
potential–true potential)

the coefficients. The factor (rE/a)n+3 in Eq. (12) decreases
rapidly from one to zero from the equator to the poles when
n is large. This implies that the high-degree coefficients are
dominated by the contribution from lower latitude regions
and that high-latitude areas have little input. Secondly, this
effect is reversed in the use of a coefficients model to compute
the gravity field on the Earth’s surface or the ellipsoid: the
factor (a/rE )

n increases very fast at higher latitudes for large
n. The larger the degree n, the less stable the computation
becomes.

Notice that under the spherical approximation, the height
attenuation factor,(a/rE )

n , becomes one. Thus, high-degree
spherical harmonic models under the spherical approxima-
tion (e.g., Novák 2010; Wang et al. 2010) do not suf-
fer from the presence of this height attenuation term.
Because of this approximation, the resulting coefficients can-
not be directly augmented to global gravity models such
as EGM2008. To avoid the spherical approximation, and
the upward/downward continuation between the bounding
sphere and the ellipsoid, the spheroidal harmonic expansion
provides a better alternative.

5 Numerical example of spheroidal expansion to degree
and order 180

To demonstrate the feasibility of the spheroidal expansion
of the topographic potential, we expand the potential of the
topographic masses for the exterior space to degree and order
180. The zero order term is identical to the spherical harmonic
expansion under the spherical approximation. The higher
order terms are caused by the eccentricity of the reference
ellipsoid. Therefore, we hereafter refer to their sum as “the
ellipsoidal correction”.

To compute spheroidal harmonic coefficients, the inte-
grand I e

nm needs to be computed globally for each degree
n and order m; it involves computations of the coeffi-
cients cnm

k and the infinite power series of ε2. The coef-
ficients cnm

k are computed using the recurrence relations
(54–56).

To verify the correctness of the formulation of the radial
function, pnm(b) is computed using the first 20 terms of (65)
and the recurrence relation (71) and (72). The results show
that both methods agree almost perfectly up to degree 30.
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Fig. 3 pnm(b) computed using the backward recursion and the first 20
terms of the Laurent series. Both curves lay on top of each other

Then the recursion starts diverging afterwards. We find that
the recursive computation of pnm over n is stable. The diver-
gence happens in the recursion over large m due to accumu-
lation of the round-off errors. The latter are multiplied by a
factor of 2n in each iteration in the computation of pnn . We
solve this problem using a backward recursion instead. In
other words, we start the recursion from the initial values of
pnn(b) and pn,n−1(b), and compute pnm with decreasing n
and m.

Using the definitions of Pnm(z) in Eqs. (43) and (65), it is
easy to show that

pnn(u) =
(

u2

b2 + ε2
)n/2

(40)

pn,n−1(u) = u√
u2 + E2

pnn(u) (41)

On the ellipsoid, we obtain the initial values

pnn(b)=(1+ε2)n/2 =(a/b)n, pn,n−1(b)=(a/b)n−1 (42)

Using (42) as initial values, the backward recursion com-
putation of pnm(b) is stable. Figure 3 shows the degree vari-
ances computed using the backward recursion and a truncated
Laurent series at order 20.

Figure 3 shows very good agreement of the computa-
tion methods using the backward recursion and the first
20 terms of the Laurent series. However, some differences
do exist. By limiting the upper bound of k in (65), the
truncation error is introduced. We use the value computed
from the recursion as the true value, the truncation error
is then the difference between the true value and the one
computed from the truncated Laurent series. The truncation
errors are plotted in Fig. 4. In order to get the most signifi-
cant digits, quadruple-precision floating-point is used in the
computations.

Figure 4 shows that the errors increase monotonically
with degree. If only 4 terms are taken into account, the
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Fig. 4 The truncation error in computation of the Laurent series at
k = 4, 8, 20, 50 and 100

error reaches 105, an order of magnitude smaller than
the value of the function. For some unknown reason, the
error increases suddenly at degree 600, if only 20 terms
are taken in the account. If the first 50–100 terms of the
Laurent series are considered, the errors are below 10−20

even at degree 2700, which is sufficient for all practi-
cal applications. Notice that the Laurent series have infi-
nite terms when m is an odd number. Figure 4 shows
that only the lower-order terms have meaningful value, and
it is safe to truncate the series (36) at the eighth order,
which contains ε16, for an expansion to degree and order
180.

Figure 5 shows the ellipsoidal correction to geoid heights.
It shows clearly that the ellipsoidal correction is larger
in rough mountains, such as the Himalayas and Andes.
The maximum correction reaches 13.19 m in Andes (lati-
tude −27.25◦ and longitude 291.5◦); the minimum value of
−2.1 m is located at latitude 6.75◦ and longitude 285.75◦.
Overall, the RMS value of the ellipsoidal correction is 1.65 m
for land areas, which is significant for gravity field determi-
nation.

The ellipsoidal correction (Fig. 5) resembles the topogra-
phy closely, implying that it is rich in all wavelengths, not
only in the long wavelengths. This fact does not agree with
the common assumption that the ellipsoidal correction is only
associated with long wavelengths.

Since the series in Eq. (36) is truncated at k = 8, we
also compute the omission errors (Fig. 6), which are caused
by omitting higher terms. Note that the unit is in 10−9 m,
or nm.

This figure shows that the omission errors occur mostly at
lower latitudes. The extreme values of the omission error are
of the order of 0.5 mm, and the RMS value is merely 25 nm
for land areas only. These negligible omission errors imply
that the first eight terms of (36) are sufficient for any practical
accuracy requirement.
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Fig. 5 Ellipsoidal correction
(to ε16) to geoid height (max.
degree = 180)

Fig. 6 Omission error
(contribution of terms above
ε16, max. degree = 180)

6 Conclusions and discussion

This paper is devoted to the rigorous spherical and spher-
oidal harmonic expansion of the gravitational potential of
the topographic masses. The spherical harmonic expansion
is well documented in the literature. It continues to undergo
various approximations, e.g., the approximation of the geoid
by a sphere of the mean Earth (the spherical approxima-
tion), and a truncated Taylor expansion is used for the Earth’s
topography. We show that the rigorous spherical harmonic
expansion can be accomplished by modifying existing sur-
face harmonic analysis software. The bounding sphere is
the surface on which the spherical harmonic analysis is
computed. This sphere was also used in the conversion of
EGM2008 spheroidal harmonic coefficients to spherical har-
monic coefficients (Pavlis et al. 2012). Since areas of high
latitudes are far below this sphere, the downward continu-
ation is implicitly used in evaluating the coefficients of the
expansion. The higher the latitude and the harmonic degree,
the more are existing high-frequency errors magnified in the
evaluation of the harmonic coefficients. Consequently, it is

difficult to compute the high frequencies of the gravity field
accurately. A spherical harmonic expansion to degree and
order 2700 shows this problem clearly.

Theoretically, spherical and spheroidal harmonic expres-
sions of the gravitational potential of the topographic masses
are equivalent. The transformation between the coefficients
of these two kinds of expansions for the exterior space
is given by Hotine (1969) and Jekeli (1988). Notice that
the up/downward continuation from the bounding sphere
to the reference ellipsoid is used in these transformations.
On the other hand, spheroidal harmonic expansion avoids
the upward/downward continuation between the bounding
sphere and the reference ellipsoid. Without those continu-
ations, numerical evaluations should not be prone to errors
in high-degree coefficients. This is very important for har-
monic expansions of ultra-high degrees and orders. Favoring
the spheroidal over spherical harmonic expansion is merely
due to numerical computation stability at ultra-high degrees
and orders.

The difficulty in the use of the spheroidal harmonic series
in practice is due to the computation of Legendre’s functions

123



918 Y. M. Wang, X. Yang

of the first and second kinds. Efforts on computation meth-
ods and software have been made, e.g., Thong (1989), Sona
(1995), Gil and Segura (1998), Sebera et al. (2012) and
Fukushima (2013). To expand the topographic potential into
spheroidal harmonics, not only the computation of Legen-
dre’s functions, but also their integration over the vertical
variable, are required. Thus, Legendre’s functions are scaled
into two Laurent series pnm and qnm . The Laurent series
are power series of the second eccentricity of the reference
ellipsoid, and have the principal terms (u/b)n and (b/u)n+1,
similar to its spherical counterparts. Using the Laurent series
and under the assumption of only lateral change in density,
computations of spheroidal coefficients are reduced to sur-
face harmonic analysis.

To demonstrate the feasibility of the spheroidal expan-
sion, the potential of the topography for the exterior space is
expanded to degree and order 180. Since the zero-order term
is identical to the spherical harmonic expansion under the
spherical approximation, only the ellipsoidal correction to
the topographic potential is shown. In the computations, the
series (36) is truncated at the eighth order and the omission
error is negligible (RMS value of 25 nm with the extreme
value of 0.5 mm). The ellipsoidal correction reaches 13.19 m
in the Andes, and the RMS value is 1.65 m for land areas.
The results show that the ellipsoidal correction resembles
the topography closely. This suggests that the correction is
rich in all frequencies of the gravity field, not only at long
wavelengths as it is commonly assumed.

In the numerical examples we used a constant density of
the topography. The formulas developed in this paper were
derived under the assumption that the density is independent
of the height and changes only laterally. In practical applica-
tions, the topography has been categorized in various terrain
types, such as sediments, ice cap/snow coverage, lakes and
oceans (Lemoine et al. 1998; Pavlis et al. 2012). Each terrain
type has its own density specification, generally a constant.
Thus they can be expanded into spherical/spheroidal harmon-
ics separately, and added together. Another way to treat the
different terrain type is to compute the average density for
every vertical column, so that the density of the topography
is reduced to a laterally changing function. The formulation
in this paper can then be applied.

This paper serves as the first step in the application of
spheroidal harmonic expansion to the Earth’s topographic
potential. Spheroidal expansions to ultra-high degrees and
orders are under development and software for the spher-
oidal harmonic synthesis, similar to the spherical harmonic
synthesis, will become publicly available after those models
are completed and tested.
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Appendix

Integrating Legendre’s functions of the first and second
kinds, Pnm and Qnm , over variable u can reduce the spher-
oidal harmonic expansion into two-dimensional surface har-
monic analysis. To accomplish this, Legendre’s functions are
expanded in Laurent series and then scaled into two real func-
tions as follows.

The Legendre function Pnm of the complex variable z =
i u

E is defined as (Hobson 1931, p. 91)

Pnm(z) = 1

2nn! (z
2 − 1)m/2

dn+m

dzn+m
(z2 − 1)n (43)

Expanding (z2 − 1)n into a binominal series, then differ-
entiating it n + m times, we obtain

Pnm(z) = 1

2nn! (z
2−1)m/2

dn+m

dzn+m (z
2 − 1)n

= 1

2nn! (z
2−1)m/2

r∑
l=0

(−1)lCl
n
(2n − 2l)!

(n − m − 2l)! zn−m−2l

(44)

where r = (n − m)/2 or r = (n − m − 1)/2 whichever is an
integer, and Cl

n is the binominal coefficient given by

Cl
n = n!

l!(n − l)! (45)

Using the binominal expansion

(z2 − 1)m/2 = zm
(

1 − 1

z2

)m/2

= zm
∞∑

k=0

(−1)kCk
m/2z−2k

(46)

where

Ck
m/2 =

m
2

(m
2 − 1

) (m
2 − 2

) · · · (m
2 − k + 1

)
k! , (47)

gives

Pnm(z) = 1

2nn!
∞∑

k=0

(−1)kCk
m/2zm−2k

r∑
l=0

(−1)l Cl
n
(2n − 2l)!

(n − m − 2l)! zn−m−2l

= 1

2nn!
∞∑

k=0

r∑
l=0

(−1)l+kCk
m/2Cl

n
(2n − 2l)!

(n − m − 2l)!
(n − m)!
(2n)! zn−2k−2l

(48)

Note that the power of z is independent of m. This reflects
the fact that the reference ellipsoid is a spheroid and the func-
tion Pnm(z) is independent of the longitude. The summation
over k is infinite when m is odd. For even values of m, the
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binominal coefficient Ck
m/2 becomes zero after k = m/2,

thus the summation over k is only to k = m/2.
In order to apply the Cauchy theorem for multiplication

of two infinite series, we can define the coefficients above r
as zeros and extend the upper limit of the summation over l
to infinity. Then Eq. (48) can be abbreviated as

Pnm(z) = knm

∞∑
k=0

(−1)kcnm
k zn−2k (49)

where

knm = (2n)!
2nn!(n − m)! , (50)

and cnm
k is the Cauchy product defined as

cnm
k =

k∑
l=t

cnm
k,l (51)

cnm
k,l = Cl

m/2Ck−l
n

(n − m)!
(2n)!

[2n − 2(k − l)]!
[n − m − 2(k − l)]! (52)

The summation of the Cauchy product generally starts
from zero while the summation in (51) starts from t defined
as

t = k − r ≥ 0 (53)

since the coefficients below t in (51) are zeros.
As mentioned above, the binominal coefficient Cl

m/2 is
zero for l ≥ t > m/2 and even values of m. In this situation
the coefficient cnm

k,l becomes zero and the infinite series in
(49) is reduced to finite.

The coefficient cnm
k,l satisfies the following recurrence rela-

tionship:

cnm
k,l+1

= (m − 2l)(k − l)(2n − 2k + 2l + 1)

(l + 1)(n − m − 2k + 2l + 1)(n − m − 2k + 2l + 2)
cnm

k,l

(54)

cnm
k+1,l = (n − m − 2k + 2l − 1)(n − m − 2k + 2l)

2(k − l + 1)(2n − 2k + 2l − 1)
cnm

k,l

(55)

The initial value (54) can be computed using the following
recurrence relation:

cnm
0,0 = 1

cnm
k,0 = n!(n − m)!

(2n)!
(2n − 2k)!

k!(n − k)!(n − m − 2k)!
cnm

k+1,0 = (n − m − 2k − 1)(n − m − 2k)

2(k + 1)(2n − 2k − 1)
cnm

k,0

(56)

The Legendre function Qnm can be expressed in a hyper-
geometric series as (Hobson 1931, p. 108):

Qnm(z) = jnm(z
2 − 1)m/2

1

zn+m+1

×F

(
n + m + 2

2
,

n + m + 1

2
; n + 3

2
; 1

z2

)

= jnm(z
2 − 1)m/2

1

zn+m+1

∞∑
l=0

fl
1

z2l

= jnm
1

zn+1

∞∑
k=0

∞∑
l=0

(−1)kCk
m/2 fl

1

z2k+2l
(57)

where

jnm = (−1)m
2nn!(n + m)!
(2n + 1)! (58)

fl =
( n+m+2

2

)
l

( n+m+3
2

)
l

( 2n+3
2 )l l!

(59)

The Pochhammer symbol (n)l in (59) is defined as

(n)l =
{

1 l = 0
n(n + 1) · · · (n + l − 1) l > 0

(60)

It is easy to show that the coefficient fl satisfies the fol-
lowing recurrence relation:

f0 = 1

fl+1 = (n + m + 2l + 2)(n + m + 2l + 1)

2(l + 1)(2n + 2l + 3)
fl (61)

Equation (61) is useful for computing the coefficient fl to
lth term of the hypergeometric series.

Using the Cauchy product, (57) can be written as

Qnm(z) = jnm
1

zn+1

∞∑
k=0

dnm
k

1

z2k
(62)

where

dnm
k =

k∑
l=0

(−1)lCl
m/2 fk−l =

k∑
l=0

dnm
k,l (63)

The coefficient dnm
k,l satisfies the following recurrence rela-

tion:

dnm
k,0 = fk

dnm
k,l+1

= − (m−2l)(k − l)(2n+2k−2l + 1)

(l+1)(n+m+2k − 2l)(n + m + 2k − 2l − 1)
dnm

k,l

(64)

The coefficient fk can be computed using the recurrence
relation (61). Since dnm

k,0 never becomes zero for every k, the
series in (63) is an infinite series.
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Now we substitute z = i u
E in (49) and (62), and introduce

two real functions by scaling the Legendre functions Pnm and
Qnm in such a way that the series are power series of ε2:

pnm(u) = 1

inknm
εn Pnm

(
i

u

E

)
=

∞∑
k=0

ε2kcnm
k

(u

b

)n−2k
(65)

qnm(u) = in+1

jnmεn+1 Qnm

(
i

u

E

)

=
∞∑

k=0

(−1)kε2kdnm
k ×

(
b

u

)n+2k+1

(66)

where ε = E/b, the second eccentricity of the reference
ellipsoid.

On the ellipsoid, the radial functions are reduced to

pnm(b) =
∞∑

k=0

ε2kcnm
k = 1 + O(ε2) (67)

qnm(b) =
∞∑

k=0

(−1)kε2kdnm
k = 1 + O(ε2) (68)

where O(ε2) denotes terms with powers of ε2.
The radial functions are scaled Legendre’s functions, thus

they should satisfy the recurrence relations of Legendre’s
functions. For different n, the recurrence relations of Legen-
dre’s functions are (Hobson 1931, p. 290)
⎧⎪⎪⎨
⎪⎪⎩

(2n + 1)z Pnm(z)− (n − m + 1)Pn+1,m(z)
−(n + m)Pn−1,m(z) = 0
(2n + 1)zQnm(u)− (n − m + 1)Qn+1,m(u)
−(n + m)Qn−1,m(u) = 0

(69)

For different m:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pn,m+2(z)+ 2(m + 1) z√
z2−1

Pn,m+1(z)

−(n − m)(n + m + 1)Pnm(z) = 0
Qn,m+2(z)+ 2(m + 1) z√

z2−1
Qn,m+1(z)

−(n − m)(n + m + 1)Qnm(z) = 0

(70)

Using the relationship between the Legendre functions
Pnm and Qnm , we obtain the recurrence relation of the radial
functions for different n:⎧⎪⎨
⎪⎩

u
b pnm(u)− pn+1,m(u)+ ε2 n2−m2

4n2−1
pn−1,m(u) = 0

u
b qnm(u)+ (n+m+1)(n−m+1)

(2n+1)(2n+3) ε2qn+1,m(u)
−qn−1,m(u) = 0

(71)

For different m, the recurrence relation is given by
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pn,m+2(u)+ 2(m+1)
n−m−1

u√
u2+E2 pn,m+1(u)

− n+m+1
n−m−1 pnm(u) = 0

qn,m+2(u)− 2(m+1)
n+m+2

u√
u2+E2 qn,m+1(u)

− n−m
n+m+2 qnm(u) = 0

(72)

Based on (71), one can see that the function pnm can
be computed in forward recurrence. However, it is dif-

ficult to do the same for qn+1,m since the computation
of the latter involves the difference of similar quantities
(qn−1,m − (u/b)qnm) divided by the small number ε2, which
is unstable numerically. This agrees with Gil and Segura’s
(1998) assessment, and they use backward recurrence rela-
tion to compute Qnm . The quantity qn+1,m can be computed
in the same way.

The initial values of pnm and qnm to degree and order 1 are
needed for the above recurrence computation and are shown
in the rest of this Appendix. Degree and order 2 are included
also and can be used for the verification of the recurrence
relations.

Using the definition of Pnm (44) and pnm (67), we get

P00(u) = 1, P10(u) = u

b
,

P11(u) = 1

b

√
u2 + E2, P20(u) =

(u

b

)2 + ε2

3
,

P21(u) = u

b2

√
u2 + E2, P22(u) = 1

b2 (u
2 + E2).

(73)

The close form of Qnm to degree and order 4 can be found
in (Suschowk 1959). Using the definition of qnm in (66), we
list the function to degree and order 2 as follows:

q00(u) = 1

ε
τR , q10(u) = − 3

ε2

( u

E
τR − 1

)
,

q11(u) = 3

2κε2

(
κ2τR − u

E

)
, q20(u)= 15

4ε3

[(
1+3

u2

E2

)
τR −3

u

E

]
,

q21(u) = − 5

2κε3

(
3

u

E
κ2τR − 3

u2

E2 − 2

)
,

q22(u) = 5

8κ2ε3

(
3κ4τR − 3

u3

E3 − 5
u

E

)
. (74)

where

κ =
√

u2 + E2

E
, τR = tan−1 E

u
(75)
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