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Abstract In the field of surveying, mapping and geodesy,
there have been a number of works on the error-in-variable
(EIV) model with constraints, where equality constraints are
imposed on the parameter vector. However, in some cases,
these constraints may be inequalities. The EIV model with
inequality constraints has not been fully investigated. There-
fore, this paper presents an inequality-constrained total least
squares (ICTLS) solution for the EIV model with inequal-
ity constraints (denoted as ICEIV). Employing the pro-
posed ICTLS method, the ICEIV problem is first converted
into an equality-constrained problem by distinguishing the
active constraints through exhaustive searching, and it is then
resolved employing the method of equality-constrained total
least squares (ECTLS). The applicability and feasibility of
the proposed method is illustrated in two examples.

Keywords Errors-in-variables model · Inequality
constraints · Active constraints · Exhaustive searching ·
Total least squares

1 Introduction

The classic least squares (LS) method assumes that the coef-
ficient matrix of the Gauss–Markov model is absolutely error
free. However, when taking the errors in both the observa-
tion vector and the coefficient matrix into account, which
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is referred to as the error-in-variable (EIV) model, the total
least squares (TLS) method is applied. The EIV model is
widely used in geodetic data applications, such as straight-
line fitting and geodetic coordinate transformation. The rea-
son for using the EIV model in geodetic data processing is
that there are various types of random errors due to instrument
errors, human errors and sampling errors in almost all mea-
surements, and these errors contribute to the perturbation of
the coefficient matrices of straight-line fitting and coordinate
transformation models (Davis 1999; Felus 2004; Acar et al.
2006; Akyilmaz 2007; Schaffrin and Wieser 2008; Schaffrin
and Felus 2008).

The TLS method was originally introduced by Adcock
(1878) for univariate problems, in which errors in both depen-
dent and independent variables are considered independent
and the ratio of their variances is assumed to be 1. Kummell
(1879) made the method more general with the assumption
of an arbitrary variance ratio. Their ideas remained largely
unnoticed until 1937, when their work was revived by Koop-
mans (1937) for linear regression analysis of economic time
series, and the ideas were later further extended to clinical
chemistry and related fields by Deming (1943). Since then,
much effort has been made to develop TLS theory and algo-
rithms (e.g., Gerhold 1969; Hawkins 1973; Gleser 1981; Van
Huffel and Vandewalle 1988; Fierro et al. 1997; Schaffrin
et al. 2006; Chang and Titley-Peloquin 2009).

In the field of geodesy, significant achievements have
been made in applying the TLS method (Felus 2004; Acar
et al. 2006; Schaffrin et al. 2006; Akyilmaz 2007; Schaffrin
and Felus 2008; Schaffrin and Wieser 2008; Schaffrin and
Felus 2009). Felus (2004) presented a TLS-based approach
for the trend analysis of a spatial point process. Acar et al.
(2006) proposed a generalized TLS method for analyzing
geodetic deformation by calculating the relationship between
two monitoring networks. Schaffrin et al. (2006) presented
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a TLS adjustment model for straight-line fitting and plane
reconstruction from cloud points. Akyilmaz (2007) proposed
a TLS approach for distinguishing three-dimensional point
displacement in a landslide area using Global Positioning
System (GPS) data. Schaffrin and Felus (2008) and Schaffrin
and Wieser (2008) presented univariate and multivariate TLS
solutions for resolving transformation parameters of affine
and similarity models. The results showed the superiority
of the TLS method over the traditional LS solution in coor-
dinate transformation. Recently, Schaffrin and Felus (2009)
resolved the issues of geodetic resection and surface recon-
struction with both linear and quadratic constraints according
to the principle of TLS.

In the case that there is a priori information on the param-
eters in a TLS model, some constraints should be accounted
for in the model. In recent decades, much attention has been
paid to the constrained TLS problem. Dowling et al. (1992)
proposed a constrained subspace linear predictive frequency
estimation technique. Using the proposed approach, a numer-
ically stable closed-form expression was derived for the solu-
tion of the TLS problem with linear equality constraints.
Felus and Schaffrin (2005) and Schaffrin (2006) presented
the equality-constrained TLS (ECTLS) method for the EIV
model with linear equality constraints (ECEIV). The results
showed that the proposed method can be used to easily
investigate the statistical properties of the estimated value.
Recently, Tong et al. (2011) presented an improved con-
strained weighted TLS method for resolving the EIV model
with constraints by integrating both observation and con-
straint equations under the assumption that the observation
vector and coefficient matrix in the observation equations
and the right-hand-side (RHS) vector and the constraining
matrix in the constraint equations contain errors.

Some inequality constraints may have to be adhered to
when there is a priori information on the parameters that
should to be taken into account in a geodetic problem. For
example, the fitted slope or intercept of a straight line should
be within a bound, the estimated variance component should
be positive, deformation is in the downstream direction when
a dam is subject to water pressure in a flood period, and the
height of a GPS antenna is within a limited range when nav-
igating on the surface of water. Several works on the use
of inequality-constrained least squares (ICLS) in geodetic
applications have been reported. Zhu and Santerre (2002)
presented a method for improving GPS ambiguity resolution
using a priori height information as inequality constraints in
the adjustment model. Peng et al. (2006) proposed an ICLS
method for geodetic problems by converting many inequal-
ity constraints into one equality constraint. To our knowl-
edge, there is no significant literature on the EIV model with
inequality constraints (ICEIV). Thus, this paper might be the
first to present a solution to the problem of the EIV model
with inequality constraints by converting the ICEIV model

into the ECEIV model. In this study, we concentrate on the
ICEIV problem, which can be expressed as{

y − e = (A − E)x
Gx ≤ w

(1)

where y is an n × 1 vector of observations, e is an n × 1 vec-
tor of observational error (i.e., e ∼ N (0, σ 2

0 In)), and σ 2
0 is the

variance component. A is an n×m coefficient matrix of input
variables with full column rank (i.e., rk(A) = m < n); E is
the corresponding n × m random error matrix of A, where
the vector of perturbation has zero mean and has a covari-
ance matrix that is equal to the identity up to a scaling factor,
namely the j th column of E (E, j ) ∼ N (0, σ 2

0 Im), with all
errors having the same weight; x is an m × 1 deterministic
vector of unknowns to be estimated; G is a k × m matrix of
fixed coefficients; and w is a k-dimensional constant vector.

The rest of this paper is organized as follows: Follow-
ing the introduction, an inequality-constrained total least
squares (ICTLS) solution to the ICEIV problem is proposed
in Sect. 2. To convert the ICEIV model into the ECEIV
model, an exhaustive search (ES) method is presented to dis-
tinguish active inequality constraints from inactive inequality
constraints. Section 3 illustrates the implementation of the
proposed ICTLS method through two examples. The pro-
posed method is compared with traditional methods, and the
feasibility of the proposed ICTLS method is demonstrated.
Finally, conclusions are presented in Sect. 4.

2 Resolving the ICEIV model

In this section, we put forward an approach to resolve the
ICEIV problem by converting the ICEIV model into the
ECEIV model, which can be solved employing the EC-
TLS method. It should be noted that this contribution con-
siders only linear inequalities. Generally, linear inequality
constraints in (1) can be divided into two groups at the opti-
mum solution: active and inactive constraints (Ueno et al.
2000). With respect to (1), the active constraints refer to
the set of constraints that hold with equality at the optimum
solution, and the inactive constraints are those for which a
strict inequality holds at the optimum solution (Nocedal and
Wright 2006). Therefore, the inequality constraints in (1) can
be written as{

G1x̂ = w1

G2x̂ < w2
(2)

where G1x̂ = w1 is the equivalent of active constraint group
G1x̂ ≤ w1, and G2x̂ < w2 is the inactive constraint group.

The primarily idea of the proposed ICTLS solution to
resolve the ICEIV problem is (1) to distinguish all active
constraints in (2) using an exhaustive searching approach,
(2) to convert the ICEIV model into an ECEIV model that
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includes only active constraints, and (3) to resolve the ECEIV
model employing the ECTLS approach.

2.1 ECTLS approach

Assuming that G1 is an active constraining matrix, the ICEIV
model presented in (1) can be converted into an ECEIV
model:{

y − e = (A − E)x
G1x = w1

(3)

where G1 is an r × m matrix, r is the number of active con-
straints, and w1 is the corresponding r ×1 RHS vector of the
constraint equations. The meanings of the other symbols are
the same as in (1).

Therefore, the model presented in (3) can be resolved by
taking the ECTLS approach proposed by Schaffrin (2006).
It is an Euler–Lagrange approach, and the target function is
written as

Φ = eT e + vec (E)T vec (E) + 2λT (y − Ax + Ex − e)

−2μT (w1 − G1x) (4)

where λ and μ are the n × 1and r × 1 vectors of Lagrange
multipliers respectively, and the “vec” operator stacks one
column of a matrix under another, moving from left to right.

Letting c := AT y, N := AT A, μ̄ := μ̂(1+xT x) and ϕ̂ :=(
y − A x̂

)T (
y − Ax̂

)
(1+ x̂T x̂ )−1, then the Euler–Lagrange

necessary condition is achieved, and the nonlinear normal
equations is derived as⎡
⎢⎢⎣

N c GT
1

cT yT y wT
1

G1 w1 ϕ̂Ir

⎤
⎥⎥⎦ .

⎡
⎣ x̂

−1
μ̄

⎤
⎦ =

⎡
⎣ x̄

−1
μ̄

⎤
⎦ .ϕ̂ (5)

The ECTLS algorithm is detailed as follows (Schaffrin
2006):

1. Calculate initial values of x̂ and μ̄ according to

[
x̂(1)

μ̄(1)

]
=

[
N GT

1
G1 0

]−1 [
c
w1

]
(6a)

2. Calculate μ̂ and new x̂ and μ̄ according to

μ̂(i) := μ̄(i)(1 + x̂(i)T
x̂(i)

)−1 (6b)

ϕ̂(i) := (y − Ax̂(i)
)T (y − Ax̂(i)

)(1 + x̂(i)T
x̂(i)

)−1 (6c)
[

x̂(i+1)

μ̄(i)

]
=

[
N GT

1
G1 0

]−1 [
c + x̂(i)

ϕ̂(i)

w1

]
(6d)

3. Repeat Step 2 until ‖x̂( j) − x̂( j−1)‖ < ε (for a given ε)
The variance component σ 2

0 can be estimated from the

value of ϕ̂

σ̂ 2
0 = ϕ̂/(n − m + r) (6e)

where n is the number of observations, m is the number
of unknown parameters, and r is the number of equality
constraints.
The first-order variance–covariance matrix of x̂ is
(Schaffrin 2006)

D(x̂) ≈ σ̂ 2
0

(
N − ϕ̂Im

)−1 N(N − ϕ̂Im)−1 (6f)

2.2 Distinguishing the active constraints

As stated above, the solution to (1) equals that with the objec-
tive function only having active constraints, which is pre-
sented in (3). Therefore, if active inequality constraints in (1)
are distinguished, they can be treated as equality constraints.

With respect to the inequality-constrained LS problem,
there are generally two main classes of algorithms: the active
set method (Gill et al. 1981) and interior point method
(Baldick 2006). In this section, considering that ICTLS
method is more complicated than the ICLS problem, we
introduce an exhaustive search (ES) method to distinguish
active constraints.

The principal idea of the ES method is described as fol-
lows: We first select a number of constraints, and by assuming
that these selected constraints are active, an ECEIV model
is constructed accordingly. If these selected constraints are
distinguished to be active, then the ECTLS estimate will sat-
isfy all the constraints. However, when the selected number
of inequality constraints are j (0 < j ≤ m), we need to
try all possible combinations of the selected inequality con-
straints to find feasible solutions. The main steps of finding
the optimal solution are detailed as follows:

1. Let kk = 0, which means that the active constraint com-
bination set (S) is empty, and the inequality-constraint
combination set (C) includes all possible combinations
of the inequality constraints(the number of combinations
is N (N = ∑n

t=1 Ct
k , k is the number of constraints). Let

i = 1.
2. If i > N (which means that all combinations have been

checked), go to Step 5. Otherwise, select the i th combi-
nation from C .

3. Assume that the selected combination is a combination
of active constraints; since they are now equivalent to
equality constraints, add them to the EIV model. Thus,
we obtain the estimation of x by using ECTLS as dis-
cussed in Sect. 2.1.

4. i = i +1, check whether the estimation satisfies all con-
straints. If it does, kk = kk + 1 and add the chosen set
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Table 1 Measured coordinates
of 16 points Point ID 1 2 3 4 5 6 7 8 9

x −2.17 −1.72 −1.12 −1.03 −1.02 −0.85 −0.63 −0.79 −0.12

y −0.02 −0.10 1.09 0.55 0.52 0.57 0.76 −0.56 0.76

Point ID 10 11 12 13 14 15 16 17

x −0.10 0.44 0.52 0.75 1.01 1.17 1.22 1.83

y −0.79 0.86 0.53 0.13 −0.85 −1.56 −0.62 −2.35

Table 2 Four scenarios of
inequality constraints on the
intercept and slope of the fitted
straight line

Scenario I II III IV

Constraints −1 ≤ a ≤ 0 −0.3 ≤ b ≤ 0 0 ≤ a ≤ 0.1 0 ≤ a ≤ 0.1,
−0.3 ≤ b ≤ 0

Number of active constraints (r ′) 0 1 1 2

Table 3 Distinguished active
constraints and estimated
parameters of the fitted straight
line in the four scenarios

Scenario I II III IV

Distinguished active constraints None b ≥ −0.3 a ≥ 0 b ≥ −0.3, a ≥ 0

Number of the distinguished active constraints (r) 0 1 1 2

Slope (b) −0.726 −0.300 −0.698 −0.300

Intercept (a) −0.302 −0.240 0.000 0.000

of active inequality constraints to S, then go to Step 2. If
not, goto Step 2.

5. If kk == 0, which means that all constraints are inac-
tive, then the TLS estimation of x is exactly what we
need, get the TLS estimation as in Golub and VanLoan
(1980). If kk == 1, namely S includes only one element
which is the only feasible solution to problem (1), then
this element is the ICTLS solution we are searching for.
If kk > 1, we search for a solution with the minimum
variance component within S.

3 Case study

In this section, two examples are taken to test the proposed
ICTLS solution to the ICEIV model. The first example is
a simulated straight-line fitting problem under the assump-
tion of knowing in advance the activeness of each constraint.
The purpose of this example is to check if the ES method
can distinguish the active constraints. The second example
is the analysis of the dataset of Peng et al. (2006) using the
ICEIV model. In this example, the number of the inequality
constraints is 11, and the target of this example is to exam-
ine whether the ES method is feasible when the number of
inequality constraints increases to 11.

3.1 Straight-line fitting

In this example, a total of 16 pairs of coordinates were mea-
sured (Table 1).

From these measured coordinates, the intercept (a) and
slope (b) of the fitted straight line can be estimated using
TLS without constraints as −0.302 and −0.726, respectively.
From the coefficients of the fitted straight line estimated using
the TLS method, we designed four scenarios of inequality
constraints on the intercept and slope in the same straight-line
fitting problem. In addition, the activeness of each constraint
was known in advance. Table 2 shows the designed four sce-
narios of inequality constraints on the intercept and slope of
the fitted straight line. From the table, we see that, in scenario
I, the constraint is −1 ≤ a ≤ 0, and the estimation of the
intercept based on TLS satisfies the interval constraints. As a
result, the designed number of active constraints (r ′) should
be zero. In scenario II, the added constraints is −0.3 ≤ b ≤ 0,
in which b ≤ 0 is inactive while b ≥ −0.3 is active. Thus, r ′
should be one. Scenario III was designed similarly.

Table 3 presents the result for the fitted straight line in the
four scenarios using our proposed ICTLS method. The table
gives the distinguished active constraints, the number of dis-
tinguished active constraints, and the estimated parameters
of the fitted straight line.

Table 3 shows that both the number of distinguished active
constraints and the corresponding active constraints obtained
using our proposed ICTLS method are consistent with the
designed values. In scenario I, there are no distinguished
active constraints, and the result of the estimated coefficients
of the fitted straight line is the same as that using the TLS
solution without any constraint. In scenario II, there is one
distinguished active constraint, which is the designed num-
ber of active constraints. The distinguished active constraint
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Table 4 Data from Peng et al. (2006)

A y

0.9501 0.7620 0.6153 0.4057 0.0578

0.2311 0.4564 0.7919 0.9354 0.3528

0.6068 0.0185 0.9218 0.9169 0.8131

0.4859 0.8214 0.7382 0.4102 0.0098

0.8912 0.4447 0.1762 0.8936 0.1388

G w

0.2027 0.2721 0.7467 0.4659 0.5251

0.1987 0.1988 0.4450 0.4186 0.2026

0.6037 0.0152 0.9318 0.8462 0.6721

−0.1 ≤ xi ≤ 2.0, i = 1, 2, 3, 4

is b ≥ −0.3, which is consistent with our expectation, and
the estimate of the unknown slope (b) satisfies the inequality
constraints −0.3 ≤ b ≤ 0. Similar results are obtained in
scenario III. In scenario IV, we cannot be sure from only the
TLS estimation and inequality constraints that there are two
active constraints in advance. The reason is that the active-
ness of the constraints on slope (b) may affect the activeness
of the constraints on intercept (a) or vice versa. However,
we can refer to the ICTLS estimation for scenarios II and III
in Table 3, and we know that there are two active constraints.
Therefore, in scenario IV, the number of the distinguished
active constraints equals the designed number, the distin-
guished active constraint is consistent with our expectation,
and the estimates of both intercept (a) and slope (b) satisfy
the inequality constraints. Therefore, it is concluded that in
the straight-line fitting example, the ES method distinguishes
correctly the active constraints and the ICTLS estimates can
satisfy all constraints.

3.2 Example of data from Peng et al. (2006)

In this example, we used the dataset from Peng et al. (2006),
presented as Table 4. In the table, A is the elements of the
coefficient matrix, and y is the elements of the observation
vector. At the same time, there are three inequality constraints
as shown in matrix G and w, and eight constraints on the
domain of xi .

Peng et al. (2006) used the ICLS method to estimate the
unknown variable:

{
y − e = Ax
Gx ≤ w

(9)

However, our goal is to determine the unknown variable
x using the proposed ICTLS method (10) for model (1).

Table 5 Proposed ICTLS estimation and the ICLS estimation

Parameters x̂ICTLS x̂ICLS1 x̂ICLS2
a x̂ICLS3

a

x1 −0.1000 −0.1000 −0.1000 −0.1000

x2 −0.1000 −0.1000 −0.1000 −0.1000

x3 0.1685 0.2152 0.2152 0.2137

x4 0.3998 0.3502 0.3502 0.3518

a Solution reported by Peng et al. (2006)

In Table 4, there are 11 inequality constraints (k), and the
constraint equations for −0.1 ≤ x1 ≤ 2.0 can be written as(

1 0 0 0
−1 0 0 0

)
x ≤

(
2.0

−0.1

)
(10)

Similar equations can also be written for x2, x3 and x4.
Employing the ES method, three inequality constraints

were distinguished as active constraints:

G1 =
⎡
⎣ 0.1987 0.1988 0.4450 0.4186

−1 0 0 0
0 −1 0 0

⎤
⎦

The ICTLS estimation, denotes as x̂ICTLS is given in
Table 5. Substituting x̂ICTLS into Gx̂ − w, we obtained the
vector (−0.2606 0 −0.2386 −2.1000 0 −2.1000 0 −1.8314
−0.2685 −1.6002 −0.3998)T . The inequality domain con-
straints are obviously satisfied. Table 5 compares the pro-
posed ICTLS estimation and the ICLS estimation. In the
table, x̂ICLS1 is the results obtained using the Lemke algo-
rithm (Murty 1988) according to the principle of LS, and the
Lemke algorithm distinguished the same three active con-
straints that were distinguished using the ICTLS. Addition-
ally, the ICLS estimations of Peng et al. (2006) employing a
simplex algorithm and aggregate function method are listed
as x̂ICLS2 and x̂ICLS3, respectively.

Table 5 shows that the estimations of x1 and x2 obtained
using the four methods (ICTLS, ICLS1, ICLS2 and ICLS3)
are the same. This could be due to the active domain con-
straints on the two parameters. The table also shows that
the eight constraints on the domain are all satisfied, and the
three ICLS estimations are very close or even identical (see
x̂ICLS1 and x̂ICLS2in Table 5). Finally, it is seen that the dif-
ferences between ICTLS and ICLS estimations for x3 and x4

are notable. When substituting x̂ICLS1,x̂ICLS2 and x̂ICLS3 into
Gx̂−w, we obtain vectors with all the elements non-positive,
which tells us that all four estimations satisfy the inequality
constraints defined by the matrix G and vector w.

4 Conclusion

In this contribution, we proposed an ICEIV model that
meets the demand of handing the EIV model with inequality
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constraints. We presented an ICTLS solution for the ICEIV
model. By distinguishing active constraints employing the
ES approach, the ICEIV model was converted to an ECEIV
model, which can be dealt with by employing ECTLS.

The method was implemented in two examples. The first
example was a simulated straight-line fitting problem under
the assumption of knowing in advance the activeness of each
constraint. The result showed that the ES method can dis-
tinguish correctly the active constraints and the ICTLS esti-
mates can satisfy all the constraints. The second example
was an ICEIV problem with the number of the inequality
constraints increased to 11, and the elapsed time was endur-
able. The feasibility of the proposed method was thus dem-
onstrated in the three examples.

We did not discuss the statistic properties of the estimation
which will be our further interest.
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