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Abstract A sliding window technique is used to create
daily-sampled Gravity Recovery and Climate Experiment
(GRACE) solutions with the same background processing
as the official CSR RL04 monthly series. By estimating
over shorter time spans, more frequent solutions are made
using uncorrelated data, allowing for higher frequency res-
olution in addition to daily sampling. Using these data
sets, high-frequency GRACE errors are computed using two
different techniques: assuming the GRACE high-frequency
signal in a quiet area of the ocean is the true error, and com-
puting the variance of differences between multiple high-
frequency GRACE series from different centers. While the
signal-to-noise ratios prove to be sufficiently high for confi-
dence at annual and lower frequencies, at frequencies above
3 cycles/year the signal-to-noise ratios in the large hydro-
logical basins looked at here are near 1.0. Comparisons with
the GLDAS hydrological model and high frequency GRACE
series developed at other centers confirm CSR GRACE
RL04’s poor ability to accurately and reliably measure hydro-
logical signal above 3–9 cycles/year, due to the low power of
the large-scale hydrological signal typical at those frequen-
cies compared to the GRACE errors.
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1 Introduction

Since the Gravity Recovery and Climate Experiment
(GRACE) was launched in 2002, it has successfully mea-
sured the mean gravitational field of the Earth and its sea-
sonal variations, resulting in time-variable gravity estimates
with accuracies several orders of magnitude better than those
constructed from previous geodetic data (Tapley et al. 2004).
However, with almost no exceptions, studies using GRACE
data have focused on low-frequencies: means, slopes, and
annual signals. Partly, this is because those are the largest
signals in most places and thus the most important. But also,
it is an effect of the product definition and release cycle of
the primary GRACE analysis centers. The Center for Space
Research (CSR) and the GeoForschungsZentrum (GFZ) cre-
ate non-overlapping estimates of the gravity field typically
using 1 month of data. This monthly pattern of solutions,
chosen to contain a sufficiently long series of observations
to produce stable products, means signals with frequencies
above 6 cycles/year cannot be resolved by CSR and GFZ
GRACE products.

In this paper, we use solutions developed with an alterna-
tive processing technique. We apply sliding window filters to
the Release 04 (RL04) CSR data to increase the apparent sam-
pling rate and prevent aliasing at high frequencies. We also
apply windows of differing lengths and relative weights dur-
ing the estimation process. The windows chosen (see Sect. 2)
allow frequencies higher than 6 cycles/year (cpy) to be mea-
sured.

The ability to manufacture signal at a given frequency does
not mean that the signal is meaningful or correct. The higher
frequencies may instead be dominated by error. Two ways
of estimating the high-frequency noise in the GRACE solu-
tions are given here. The first (Sect. 3.1) is an upper-bound
noise estimate determined from the high-frequency signal
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over a quiet part of the ocean. The second (Sect. 3.2) uses
two other high frequency GRACE series (ITG-GRACE03
and the Goddard Space Flight Center 10-day ‘mascon’ solu-
tions) as comparison cases. A measure of the divergence
between the three high-frequency GRACE series marks
a lower-bound on the average errors of the three series.
These error estimates are verified using a hydrological model
(Sect. 4).

Low signal-to-noise ratios (SNR) are found to be com-
mon above 3 cycles/year, so special care must be taken
when drawing conclusions from high-frequency GRACE
series. Though such series can easily be made, the day-to-day
signal differences more often represent noise than true
signal.

2 High-frequency windowed CSR data

CSR RL04 GRACE solutions are averaged products, with
the amount of averaging determined by the number of days
of data used in a single least-squares estimation process. The
simplest way to achieve higher temporal resolution is to use
fewer days in each estimation. Minimally acceptable solu-
tions are possible down to a minimum of about 8 days of data
(for temporally unconstrained solutions of degree/order 60).
At that point, solution quality plummets (global and local
measurements of RMS become unrealistic on an order-of-
magnitude scale) as the number of orbital revolutions falls
below twice the maximum spherical harmonic order (Bonin
2010; Kim 2000). In practical application, the lack of homo-
geneous groundtrack spacing and the presence of data gaps
make it wise to increase the minimum solution length slightly.
In this paper, solutions representing 10, 20, and 30 uniformly
weighted days will be shown, capable of resolving signals
up to 18, 9, and 6 cpy, respectively, without notable loss of
gain.

In addition to changing the length of the averaging win-
dow, one can also change its shape. Estimating with uni-
form weights, as both CSR and GFZ typically do, is equiva-
lent to applying a uniform or boxcar window to the satellite
data. Such windows contain high-frequency artifacts in their
transfer functions (see Fig. 1b), which allow signal at spe-
cific frequencies above the cut-off to propagate through to
the windowed solution. This greatly reduces their value as
averaging functions. Better transfer functions can be made
by weighting the input satellite data by their order in time.
Gaussian windows can be tailored to closely match the low-
frequency spectrum of any uniform window, while greatly
reducing the amplitude of the high-frequency sidelobes. This
gives a cleaner cut-off between low frequencies (desirable)
and high frequencies (averaged through) in the GRACE
solution series, resulting in fewer aliasing problems due to
windowing.
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Fig. 1 20- and 30-day boxcar windows compared to a “20-day”
Gaussian window (15-day FWHM and 30-day length)

Through experimentation, we have determined two rules
of thumb to match the low-frequency spectra of a Gaussian
window with a previously determined boxcar window. Our
chosen parameters for a Gaussian window are total window
length (LGaus) and the full-width at half-maximum (FWHM),
which is the width of the window (in days) at 50 % amplitude.
Given a boxcar window of known length LBox, we find that
to match frequencies below the (non-overlapping) boxcar’s
Nyquist limit, a Gaussian window must have a FWHM given
by:

FWHM ∼ 3
4 LBox. (1)

In addition, to prevent sharp cut-offs at the edge of the
Gaussian window from spoiling the clean high-frequency
behavior of the window, a minimum window length is
required. A rough approximation based on the width of the
window is:

Lminimum
Gaus = 2 FWHM. (2)
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Fig. 2 Impact of windowing on
GRACE’s summed power
spectrum
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Experimentation has shown that increasing the Gaussian
window length beyond twice the FWHM slightly decreases
the window’s gain at high frequencies but has no notable
impact below the Nyquist frequency. Reducing the window
length significantly below this limit results in boxcar-like
high-frequency artifacts in the gain (Bonin 2010). We choose
to use the minimum acceptable Gaussian length (twice the
FWHM) in our experiments.

Using these two simple rules, Gaussian windows were cre-
ated to best match the low-frequency spectra of 10, 20, and
30-day boxcar windows. Figure 1 shows the match for the
20-day case, using a Gaussian with a FWHM of 15 days and
a length of 30 days. The nominal “monthly” 30-day window
used in ordinary GRACE processing is shown for compari-
son. For simplicity, we will call such a window a “20-day”
Gaussian window, where the 20 days represent the window’s
“effective” length, given by the nearest-matching boxcar win-
dow length.

To further reduce aliasing of the high frequencies, we use
a sliding window technique. Solutions were made centered
at each day during 2005–2007 and windowed with the above
Gaussian technique. In places where GRACE data gaps exist
(40 days total, with no more than 3 missing days in a row),
linear interpolation is used between solutions.

The series used here have also been constrained in space
(but not time) using regularization (Save et al. 2012). Only a
weak constraint was used, so the north/south stripes are not
completely removed from each solution. The regularization
was instead designed to reduce their magnitude to an “accept-
able” level, where large seasonal hydrological signals were
made visible through the stripes. As such, post-processing
remains valuable in most non-polar areas. Because of the
different error characteristics of the unregularized solutions,
the amount of constraint differs between the three windowed
series. The regularization was roughly normalized to main-
tain a similar level of visibility of the seasonal hydrology,
relative to the obvious stripes.

Figure 2 shows the power spectrum of the regularized
GRACE results windowed with a 20-day boxcar window and
the best-fitting “20-day” Gaussian window described previ-
ously. The power spectrum is defined as:

S( f ) =
√
√
√
√

nmax
∑

n=0

[ n
∑

m=0

(

A f
nm

)2 +
(

A− f
nm

)2
]

, (3)

where A f
nm is the set of Fourier-transformed amplitudes of

the GRACE time series, at frequency (f ) and spherical har-
monic degree (n) and order (m). The un-transformed set of
complex spherical harmonic coefficients for each solution in
time can be written as:

at
nm = ae(c

t
nm + ist

nm). (4)

The factor ae, the radius of the Earth, is used to convert
into units of geoid height.

The comparison in Fig. 2 confirms both the low frequency
match of the Gaussian and 20-day boxcar windows and
the Gaussian’s improvements at frequencies above the 9 cpy
20-day boxcar Nyquist limit. Gaussian windows tailored to
match a 10-day boxcar and a 30-day boxcar were also con-
structed and applied to the 2005–2007 GRACE data for use
in the error testing here.

3 Determination of CSR RL04 high-frequency
error levels

Despite the recent increase in GRACE solutions released at
sub-monthly sampling periods (i.e. Rowlands et al. 2005;
Lemoine et al. 2007; Dahle et al. 2008; Kurtenbach et al.
2009), little analysis has been done to determine the high-
frequency accuracy of those series. Formal covariance sig-
mas exist, but these only tell how well the observed data fits
the final set of spherical harmonics, not how well those har-
monics represent the true gravitational signal. In the past,
most researchers have focused on long-term signals from
GRACE, where it is appropriate to approximate the signal
as the mean, trend, and annual (and maybe semi-annual)
terms, and declare everything else “error”. Wahr et al. (2006),
Strassberg et al. (2007), and Swenson et al. (2008) all use this
method of error estimation. This is sufficient for use with
annual and longer signals, but clearly will not work when
focusing on signals at the monthly and weekly level.
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Fig. 3 Example basins used for averaging. In order of size: Amazon, Sahara, Mississippi, Ganges, Bangladesh, and Illinois

Others (Kurtenbach et al. 2009; Bruinsma et al. 2010; Liu
et al. 2010, etc.) have used a more subtle method of error
estimation, where the GRACE signal in the Sahara desert or
oceanic areas is denoted as pure noise. Because the Sahara
desert and similar areas are expected to have very little signal,
this is perhaps a better approximation, and more suited to the
needs here. Please note, however, that the errors associated
with a basin average are not necessarily those of gridded data.
Cancellation effects of a spatial average will tend to lower
the error estimate of a basin, compared to the estimate of
error within any individual 1◦ × 1◦ grid cell, or the average
of variances of many such cells.

In this section, two separate methods are used to deter-
mine the errors in the Gaussian-sliding-window, regularized
GRACE series at sub-annual frequencies. Both techniques
focus on the errors of basin-wide averages (using the tech-
nique given in Swenson and Wahr 2002), rather than point-
based or global errors. The six basins used as examples are
shown in Fig. 3. The four larger basins are regions known to
be resolvable by GRACE. The two smaller ones are designed
to test GRACE’s ability to retrieve high-frequency signal over
small spatial scales. Note that the Bangladesh basin is a sub-
set of the Ganges basin, as Illinois is of the Mississippi.

The variances of the windowed regularized GRACE
results in each basin are listed in Table 1, for the full sig-
nal and for only those frequencies faster than 3 cpy (period
of 4 months). All basin averages have a 300-km Gaussian
spatial smoothing applied to them, which increases potential
leakage errors in to or out of the basin but reduces north/south
striping as well as spatial cut-off effects from the sharp edges
defining the basin. While the full-signal variabilities dif-
fer greatly between basins, high-frequency variances in all
basins fall between 0.5 and 2 cm of water layer. Recall that the

Table 1 Variance of CSR-GRACE windowed basin averages at all fre-
quencies (300 km smoothing)

Window Amazon Sahara Miss. Ganges Bang. Illinois

For all frequencies

“10-day” 11.04 1.34 3.83 7.31 12.15 4.07

“20-day” 11.46 1.18 3.77 7.73 13.24 4.17

“30-day” 12.13 1.15 3.62 8.14 14.14 4.24

For frequencies above 3 cpy only

“10-day” 1.18 0.79 0.91 1.12 1.76 1.32

“20-day” 0.96 0.58 0.68 0.92 1.65 1.04

“30-day” 0.84 0.47 0.69 0.99 2.55 0.85

Units: cm water layer

regularization has been “normalized” in a rough fashion, to
keep the annual hydrological signal visible above the remain-
ing stripes. This generally results in slightly reduced seasonal
amplitudes for the shorter windows, where the unregularized
solutions contain proportionally more stripes. (This signal
damping effect occurs in any constrained series.) Window
length has a moderate effect on the variance of basin aver-
ages, with shorter-windowed solutions containing more high-
frequency variability due to their lesser averaging qualities.
The remainder of the paper examines whether that greater
variability comes from the determination of more higher fre-
quency signal or more noise.

3.1 Open-ocean estimate of errors

The first method of high-frequency error determination rec-
ognizes that the expected satellite measurement errors of
GRACE are almost independent of longitude (see Figure 2 of
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Fig. 4 The RMS of the “20-day” windowed GRACE signal. The white
square in the southern Pacific denotes the central location of the open-
ocean test area. Units are cm of water height. (Values outside the color
range are shown in white.)

Wahr et al. 2006 or Figure 5.6 of Bonin 2010). Such measure-
ment errors include both the random noise associated with
the “formal sigmas” attached to each GRACE solution and
the dominant correlated errors which show up as north–south
“stripes”. If only these errors exist, GRACE basin errors will
be relatively constant across the globe as long as changes in
latitude are recognized and the shape and size of the basin
remain constant. In reality, additional errors due to leakage
and inaccuracies in the background models also exist. These
are neglected in this estimate, as we are focused on the satel-
lite measurement noises instead, but they are significant in
some areas.

For a first estimate of the GRACE measurement errors, a
region of ocean off the coast of Chile is assumed to contain
no true signal above 3 cpy, only noise. This place was chosen
since it was far from land (where leakage would be more
significant) and at a latitude close to that of most of the six
test basins used here (except the Amazon basin). Near this
region, the 1◦×1◦ RMS of the “20-day” Gaussian-windowed
GRACE series is 0.5–1.0 cm of water height (Fig. 4a), and
0.6–0.8 cm if only the high-frequency portion is considered
(Fig. 4b). Results from the Sahara desert are similar to those
shown here, but potentially corrupting hydrologic sources
are closer and might introduce significant leakage errors.

We compute the open-ocean error bars for each region
shown in Fig. 3, using the following process. First, the

Fig. 5 Schematic of the open-ocean error estimation technique, using
Bangladesh as an example

basin outline is placed at the center of the test region (at
33◦S, 255◦E) and a basin average computed from GRACE.
The standard deviation of the highpass-filtered ( f > 3 cpy)
series is computed. The basin is then translated 5◦ in each
compass direction (the white regions in Fig. 5) and the stan-
dard deviation of the GRACE series recomputed at those
locations, resulting in eight additional measurements of var-
iability in the ocean (though for large basins, the translation
results in overlapping measurement sites and thus correlated
variances). The average of the nine measurements is taken
as the variability of a basin in the middle of this quiet ocean
area. This averaging process has little effect on basins the size
of the Amazon or Ganges, but larger effects on small basins
where individual stripes may greatly affect the basin’s signal.
(A visually evident local stripe caused the 2–3 cm difference
in the last strong peak of Fig. 5’s ’eastern basin’, relative to
the other two basins, for example.) We interpret this quiet
ocean variability as the GRACE uncertainty in a basin of the
chosen shape and size.

Latitude will have an effect on the accuracy of this error
estimate. The closer the true basin is to being located at 33◦S
north or south latitude, the more exact this will be. Figure 4b
suggests that the latitude effect will be small, however, for
basins between about 15◦−45◦ north or south latitude. As
all of our basins except the Amazon fall within this range,
we choose not to apply an explicit latitude ratio. Based on
Fig. 4b, we would expect the errors in the Amazon to be larger
than we estimate due to this latitude effect. It is difficult to
say how much larger, though, since much of the variability
of Fig. 4b is caused by short-scale features, which tend to
cancel out in a basin average.

We use the average open-ocean variance as a one-sigma
error bar of the GRACE basin averages. Because this method
defines all signal in the test region above 3 cpy as noise, it
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Table 2 GRACE high-frequency measurement error variances
(excluding leakage)

Window Amazon Sahara Miss. Ganges Bang. Illinois

Open-ocean errors

“10-day” 1.05 1.08 1.23 1.22 1.50 1.50

“20-day” 0.80 0.85 0.88 0.94 1.21 1.20

“30-day” 0.63 0.68 0.68 0.75 0.97 0.98

Multi-series errors

“10-day” 0.76 0.58 0.75 0.76 1.36 1.09

“20-day” 0.69 0.50 0.66 0.71 1.32 0.99

“30-day” 0.66 0.47 0.65 0.71 1.31 0.98

Units: cm water layer

is an upper-bound estimation of the satellite measurement
errors. However, the total errors actually seen in each basin
will be the sum of these measurement errors and errors from
leakage in to and out of the basin. Leakage effects are not
uniform across the globe, but will instead be dependent on
the magnitude, shape, and time-variability of the geophysi-
cal signal in nearby regions, and can be quite large. Leakage
error is not included in the estimates of this section, as it
cannot be measured by any technique which geographically
moves the basin. In regions with significant leakage errors
(i.e. small basins near large external signals), the approxi-
mate measurement errors here may thus understate the total
errors. Temporal aliasing, due to imprecision in the back-
ground models may also influence this approximation of
errors. In addition, 3 years of GRACE data is not long enough
to rule out unusually large errors or ocean signals from bias-
ing the error results. These uncertainties may cause an over-
or under-statement of the true errors and are one reason we
also choose to make a second error approximation using a
different method.

The open-ocean error variability based on the high-fre-
quency ( f > 3 cpy) oceanic signal is shown for six basins
in the top part of Table 2. Shorter windows produce 24–45 %
more error variability than longer ones, due to their greater
high-frequency gain. (This is despite the regularization’s
tendency to remove more signal from the shorter, noisier
windows.) Typical one-sigma error levels found from the
open-ocean technique are 0.7–1.2 cm of water height.

3.2 Divergence of alternative high-frequency
GRACE series

A second method of high-frequency error determination
uses several different GRACE series, created by different
centers using different processing techniques. One is the
regularized, 300-km smoothed, Gaussian-windowed CSR
series described previously. The others are the University

of Bonn’s ITG-GRACE03 and the Goddard Space Flight
Center’s Mascon solutions. These series are based on the
same raw GRACE data. It is assumed (perhaps incorrectly)
that similarities imply true signal, while divergence surely
means uncertainty.

ITG-GRACE03 is a spline-based spherical harmonic field
to degree 40, created by the Universität Bonn’s Institut für
Geodäsie und Geoinformation (Mayer-Gürr et al. 2009). To
create solutions centered on any day they use quadratic spher-
ical harmonic splines as basis functions in time. To approx-
imate a solution occurring between nodes, data from three
nodes spaced a total of 30 days apart are required. A degree
autocorrelation for frequencies above 3 cpy shows that points
less than 24 days from each other remain correlated due to
overlapping data, making ITG’s cutoff behavior most like a
24-day boxcar (Bonin 2010). The ITG-GRACE03 solutions
are constrained in space and time during the estimation pro-
cess such that they contain no power above degree 40 and
minimal power above order 30. This results in a constrained
series which needs no post-processing, so neither smoothing
nor destriping has been applied. The ITG-GRACE03 data set
ends in April 2007, so only the 2005–2006 portion is used
here.

The second set of high-frequency comparison GRACE
data comes from the Goddard Space Flight Center (GSFC)
(Rowlands et al. 2005). Their non-overlapping solutions are
released every 10 days. Rather than report their results in
terms of spherical harmonics, they use “mass concentration
blocks” or “mascons”, are 4◦ × 4◦ regions on the continents
only. GSFC’s estimation scheme uses only local KBR data
and no GPS during the final solution of each mascon block.
They apply a simultaneous temporal and spatial constraint
to their mascon series, keeping mascon blocks neighboring
in time or space more similar than they would otherwise be.
While global comparisons are impossible, the mascon tech-
nique lends itself well to basin averaging. The mascon cells
are subdivided into 1◦ × 1◦ bins, to fit the basin mask reso-
lution. A spatially weighted average of the Mascon data over
the desired region gives a result comparable to a spherical-
harmonic-based basin average. No post-processing is applied
to this constrained data series.

The frequency-based similarities and differences of the
three centers’ GRACE series can be better understood
through their coherence spectra. If the phase difference of
two series is constant at a given frequency, then their coher-
ence at that frequency will be one. Series have coherences
near zero at frequencies where they are uncorrelated or ran-
dom. Figure 6 shows the basin average coherence of CSR,
ITG, and the Mascons in pairs, using only every tenth CSR
and ITG solution to match the 10-day spacing of the Mascons.
The 90 % confidence level for the “20-day” Gaussian case,
based on a Monte Carlo simulation, is at a coherence of 0.30,
while the 95 % confidence level is at a coherence of 0.37.
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Fig. 6 Coherence spectra of
GRACE series over six
hydrological basins. Dashed
horizontal lines represent the 90
and 95 % confidence levels

These values have been marked with a dashed line on all
coherence plots. Coherence between any pair is very high
at the lowest frequencies, but drops sharply between 3 and
9 cpy. (Above 15 cpy and especially at much higher frequen-
cies, coherency often increases. This is not necessarily a
sign that the signals are similar at high frequencies, but
rather that the small size of the signal (see Fig. 9) makes
the technique used to smooth the periodograms more signif-
icant than the actual signal, when measuring coherence. The
transfer function of the smoothing is identical for any input,
resulting in meaningless high coherences when the power of

the input signals is very low. Since longer windows repress
more high-frequency signal, coherences made using the
“30-day” Gaussian-windowed GRACE series approach 1.0
faster than those shown here, while the opposite is true
of the “10-day” windowed version. The coherences at
lower frequencies, where significant signal power exists, are
unchanged.)

The source of the satellite and instrument errors must be
identical between the three GRACE series. However, those
noises may be convoluted differently based on the differ-
ent centers’ processing schemes and choice of background
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models. In places where the three series disagree, at least two
of the three must be wrong. We define multi-series error bars
as the variance of the three series’ basin averages away from
their ensemble mean at each time, as given by:

Error =
[

1

(3 − 1)T

T
∑

t=1

x̄ ITG(t)2

+x̄Mascon(t)2 + x̄CSR(t)2
]1/2

. (5)

Here, T represents the total period of time considered. The
denominator of (3 − 1) is used to account for Bessel’s cor-
rection around 3 series. For each series (ITG, Mascon, and
CSR), x̄∗(t) represents a mean-removed version, defined by:

x̄∗(t) = x∗(t) − 1

3

[

x ITG(t) + xMascon(t) + xCSR(t)
]

. (6)

Because the Mascon data exist only every 10 days, the
other two types of GRACE series are reduced to contain
only solutions centered at the same points (i.e. every tenth
solution).

The divergence between the three GRACE series means
error, but convergence does not guarantee a true signal, as
systematic errors in modelling, techniques, and raw data
could be consistent between the series. We chose three series
created using very different processing methods to reduce the
number of occasions when similarity exists because of con-
sistent errors. Nonetheless, this method is likely to understate
the true measurement errors, due to correlations between the
series noises. We anticipate mistakes caused by differences
in signal leakage between the series to be small, since the
series are all filtered to similar spatial scales and defined
across regions neighboring each basin. Thus, leakage effects
should be similar in all cases and not add to this error mea-
surement.

The bottom half of Table 2 lists the 1-sigma error bars
found from these multi-series comparisons, which vary by
basin. (See Bonin 2010 for the different solutions’ basin
average time series themselves.) Shorter windowings cause
larger errors, but the effect is slight since the ITG and Mascon
series use constant windowings. Typical one-sigma error lev-
els found from the multi-series technique are 0.5–1.3 cm of
water height.

3.3 Signal-to-noise ratios

The SNR over a region is a measure of the quality of the
GRACE signal there. If the signal is the variance of the win-
dowed CSR basin average and the errors are the one-sigma
estimates discussed previously, the GRACE SNR can be esti-
mated as:

SNRbasin = var(GRACE basin average)

var(errors)
. (7)

Table 3 Signal-to-noise ratios for all frequencies

Window Amazon Sahara Miss. Ganges Bang. Illinois

Open-ocean errors

“10-day” 10.51 1.24 3.11 5.99 8.10 2.71

“20-day” 14.39 1.39 4.28 8.22 10.94 3.45

“30-day” 19.25 1.69 5.32 10.85 14.58 4.33

Multi-series errors

“10-day” 14.54 2.31 5.13 9.63 8.94 3.73

“20-day” 16.71 2.34 5.71 10.89 10.01 4.20

“30-day” 18.35 2.46 5.57 11.46 10.79 4.33

Table 4 Signal-to-noise ratios for frequencies >3 cpy

Window Amazon Sahara Miss. Ganges Bang. Illinois

Open-ocean errors

“10-day” 1.13 0.73 0.74 0.92 1.17 0.88

“20-day” 1.20 0.69 0.77 0.98 1.36 0.87

“30-day” 1.33 0.69 1.01 1.32 2.63 0.87

Multi-series errors

“10-day” 1.55 1.38 1.22 1.47 1.29 1.21

“20-day” 1.40 1.14 1.04 1.30 1.25 1.05

“30-day” 1.27 1.01 1.07 1.40 1.94 0.87

Note that this definition includes the true errors as part of
the “signal”, which limits the minimum SNR value to about
1.0.

Table 3 lists the SNRs computed from the two types of
errors and the full-signal variances of Table 1. Because the
open-ocean errors are typically upper-bound estimates, the
upper half of Table 3 will tend to underestimate the SNRs.
The opposite is true for the multi-series errors on the bottom
half of the table. The full-field SNRs are large, especially
in basins with large annual signals. As many others have
shown (Wahr et al. 2004; Swenson et al. 2006; Strassberg
et al. 2007, etc.), GRACE is able to distinguish long-period
signal, especially in larger basins. The only basin where the
errors approach the level of signal is in the Sahara desert.
The Mississippi and Illinois basins are noisy, but the primary
signal should be readily apparent. In the Amazon, Ganges,
and Bangladesh regions, low-frequency signal dominates
the errors. Overall, longer windows give higher full-signal
SNRs than shorter windows (typically a 50–200 % increase
between the shortest and longest windows).

However, the primary interest of this paper is the short-
period signals which are not determined by the monthly
GRACE products. Table 4 shows the SNRs after a 3 cpy high-
pass filter has been applied to the CSR windowed series. In
this frequency regime, the variability of the signal is typically
the same size as the open-ocean estimates of the errors. There
is no clear dependency on window length and only limited
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Fig. 7 CSR basin average of
Ganges for f > 3 cpy. Series
from top to bottom use Gaussian
windowings with FWHM of 7,
15, and 23 days

impact from basin choice. The SNRs are in the 1–2 range
when using the multi-series error estimate and 1–1.5 when
using the open-ocean technique.

An example of the level of estimated error compared
to the actual high-frequency signal is given in Fig. 7, for
the Ganges basin. The top plot shows the “10-day” Gauss-
ian-windowed CSR GRACE solution, the middle shows the
“20-day”, and the bottom shows the “30-day” solution. On
each are sketched the two-sigma (95 % confidence) error lev-
els about the mean, as well as dotted black lines denoting
the equivalent level of variability in the actual basin average
(twice the GRACE high-frequency RMS).

This basin was picked intentionally, since it and the over-
lapping Bangladesh basin are the only locations from 2005 to
2007 where we have seen the GRACE signal clearly emerge
from behind both error bars (days 160–220). This is part of
a 4-month-long signal, the longest possible given the 3 cpy
high-pass filtering. In all other basins we have seen, and at
all other times even in this area, most of the high-frequency
signal lies within both 2-sigma error bars, and almost all
lies within the larger, open-ocean line (Bonin 2010). Overall,

high-frequency signal seems to be buried in noise. In addi-
tion, though the amplitude of the high-frequency GRACE
signal retrieved grows as the window length decreases, the
errors grow proportionally. Shortening the window length
neither improves nor degrades overall signal recognition.

Three general types of basins emerge from the SNR calcu-
lations. The first includes basins like the Sahara desert, where
even the annual signal is on the level of the satellite errors.
In the majority of basins, like the Amazon and Mississippi,
the low-frequency signal is clearly discernable by GRACE,
but higher-frequency signal is near the level of the satellite
errors. The third type of basin is one like the Ganges region,
where even above 3 cpy, some signal is recognizable over the
noise. In these areas, not all of the GRACE high-frequency
signal is necessarily true, but the largest peaks or dips are
likely to be.

GRACE’s ability to resolve true time-variable signal is not
dependent on the frequency of the signal, but on the amplitude
of that signal relative to the local noise level. It is important
to take into account the background noises, which are typi-
cally 1–3 cm in amplitude at the 2-sigma (95 % confidence)
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level. Because long-term, annual, and near-annual geophys-
ical signals tend to be large, they are represented well by
GRACE. Faster-moving signals will only be visible over the
errors if they are large (typically greater than 5 cm peak-to-
peak change). Experience within these six basins and other
hydrologic regions suggests that most of the large amplitude
signals which GRACE sees typically happen on the time scale
of several months, not faster.

4 Validation using the GLDAS hydrology model

The previous section concluded that basin-wide errors are
at about the same level as basin-wide high-frequency sig-
nals. To validate this, we use NASA’s Global Land Data
Assimilation System (GLDAS) hydrologic model (Rodell et
al. 2004). This version of GLDAS uses the Noah land surface
model and is released as a 1◦ × 1◦ grid every 3 h. The mod-
eled terrestrial water storage (TWS) is the sum of the four
soil moisture layers (maximum depth: 2 m), the snow-water
equivalent (SWE), and the canopy water storage (Mirador
Mirador Earth Science Data Search Tool 2010).

Unfortunately, the SWE component has a known prob-
lem where the snowpack in a few grid points incorrectly
accumulates without melting for long periods of time
(Matthew Rodell 2010, personal communication). This
results in anomalously large values for TWS over localized
areas. To correct this, the SWE grids were assessed during
the local summer (August for the northern hemisphere and
January for the southern hemisphere). Any grid cells which
registered more than 10 cm of SWE during those months
were considered suspect and their data eliminated for the
entire span of time used. These holes were filled using a
weighted average of the surrounding data, with Gaussian
weightings and a halfwidth radius of 3◦. The result is a SWE
map with no unreasonable long-term accumulations of snow.
This correction applies only to the SWE; the soil moisture
and canopy water components have no smoothing or correc-
tions applied.

Gaussian-windowed versions of the GLDAS TWS were
created to match GRACE. The GLDAS series have been con-
verted from their gridded format into 60 × 60 spherical har-
monics, which has the effect of spatially smoothing them. As
none of the GRACE series contain degree 0 or 1 terms, those
have been removed from GLDAS.

Because the GLDAS model excludes surface water and
ground water, it sometimes underestimates the amplitude
of TWS (Niu and Yang 2006; Güntner et al. 2008). Lower
seasonal amplitudes are common in regions where signif-
icant mass transport is conducted by surface water (Wahr
et al. 2004). This results in a loss of signal amplitude in
such regions (largest in the Amazon and Bangladesh, in this
study) and occasionally a phase shift (seen here only in the

Table 5 Correlations of the windowed GRACE series with simi-
larly windowed GLDAS, and percent of model variance explained by
GRACE

Window Amazon Sahara Miss. Ganges Bang. Illinois

Correlations for frequencies below 3 cpy only

“10-day” 0.92 0.76 0.95 0.99 0.96 0.93

“20-day” 0.92 0.75 0.96 0.98 0.97 0.96

“30-day” 0.93 0.75 0.96 0.98 0.97 0.96

Correlations for frequencies above 3 cpy only

“10-day” 0.34 -0.055 0.42 0.64 0.69 0.46

“20-day” 0.44 -0.077 0.57 0.70 0.70 0.47

“30-day” 0.56 -0.19 0.65 0.68 0.71 0.50

Percent of GLDAS variance explained by GRACE (freq > 3 cpy) (%)

“10-day” 4 0 10 23 27 8

“20-day” 10 0 19 29 26 8

“30-day” 21 0 26 29 27 7

Amazon) compared to GRACE. Despite this, basin-averaged
GLDAS and the windowed GRACE series have a 92–99 %
low-frequency correlation in all basins except the Sahara des-
ert, where it is 75 % (upper part of Table 5). Windowing has
no noticeable impact on these f < 3 cpy results.

For faster-moving signals, the correlations are not as
good (middle part of Table 5). Correlations are typically
between 40 and 70 % (and effectively zero across the Sahara
desert) and vary by location. The Ganges and Bangladesh
regions show fairly good high-frequency agreement with
the model. The Amazon, Mississippi, and Illinois basins
are less well-correlated. Moreover, the percentage of the
high-frequency GRACE variance explained by GLDAS is
only 0–30 % in all basins (lower part of Table 5). Slightly
more signal is sometimes explained in the longer-windowed
cases, due to the decrease in GRACE errors, but the vast
majority of the GRACE high-frequency signal is not seen by
GLDAS.

The high-frequency comparison of GLDAS and GRACE
is visible in a coherence spectrum of their basin averages. The
cases shown in Fig. 8 use the “20-day” Gaussian window-
ing, but the drop-off characteristics of the coherence spectra
do not change appreciably with window length (not shown).
For frequencies lower than 4–5 cpy, coherence between the
windowed GRACE series and GLDAS is above 0.8 in all
but in the Sahara desert. With the exception of the Gan-
ges basin, the coherence falls below the 90 % confidence
level between 6 and 7 cpy, then remains low. In most places,
the drop between high and low coherence is sharp, sug-
gesting that either GLDAS or GRACE (or both) is no
longer measuring much reliable signal above about 6 cpy.
In the Ganges basin and to a lesser extent in Bangladesh,
coherence remains relatively high through 12 cpy. In these
areas, GRACE is seeing portions of the same signal that
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Fig. 8 Coherence spectra of
CSR series versus the GLDAS
model, over six hydrological
basins. A “20-day” Gaussian
window was used on both

Fig. 9 PSD Comparison of
GLDAS, CSR, ITG, and GSFC
Mascon estimates over the
Ganges basin

GLDAS models predict, suggesting there may occasion-
ally be value in localized GRACE measurements through
monthly frequencies, at least during limited portions of the
time series.

These coherences with GLDAS hold broadly for the
CSR series, ITG-GRACE03, and the GSFC Mascons (Bonin
2010). The declining correlation with the model between 3
and 9 cpy supports the previous finding that GRACE SNRs
are high at low frequencies and decrease quickly as frequency
increases. It is important to note, however, that the major-
ity of the signal strength measured by either the GLDAS
model or any of the GRACE series occurs at frequencies less
than 3 cpy, and continues to decrease as frequency grows.
Figure 9 shows the power spectral density (PSD) of the win-
dowed GLDAS series as well as the comparable GRACE
series over the Ganges basin. There is almost an order of
magnitude drop in the hydrology model’s power between 3
and 9 cpy, much of which is also seen by the GRACE series.
This signal drop-off occurs because many higher-frequency
hydrological effects (i.e. storms) occur over spatial scales too
small for GRACE to resolve. As such, it might be said that
GRACE and GLDAS are highly coherent in the frequency
bands where both contain much energy, but grow incoher-
ent as the power of the hydrological signal quickly decreases
with frequency. Surprisingly, there is no observable corre-
lation between the absolute magnitude of the GLDAS PSD
between 3 and 12 cpy and the correlation or coherence of

GRACE and GLDAS at those same frequencies. For exam-
ple, the coherence of GLDAS to CSR (Fig. 8) is high at
6–12 cpy in the Ganges basins and low at 6–12 cpy in the
Amazon basin. But the drop in the GLDAS PSD amplitude
(such as Fig. 9) between 6 and 12 cpy is similar in both basins.
The coherence cannot be predicted based on the strength of
the hydrological model.

5 Conclusions

With the use of a sliding window technique, it is easy to create
high-frequency GRACE series of equal quality as the official
monthly series. The complicated question is whether the new,
higher-frequency signal is real. Two separate estimates of the
GRACE RL04 errors were computed, resulting in 2-sigma
(95 % confidence) error levels of 1–3 cm. Though there are
exceptions, SNR values tend to fall into two categories based
on frequency. Low-frequency hydrology signals ( f < 3 cpy)
are generally visible and reliable, whether computed from
ordinary monthly GRACE solutions or more frequent win-
dowed GRACE series. High-frequency signals are generally
unreliable, though in specific areas and at limited times real
variability may be visible. Frequency-based coherence with
the GLDAS model and non-CSR GRACE series supports
this, falling from around 90 % at 3 cpy to 20 % at 6–9 cpy, in
most of the basins considered.
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Windowing with 10-, 20-, and 30-day Gaussian filters does
not appreciably change the GRACE high-frequency SNR or
GRACE’s correlation with GLDAS. At a single frequency,
applying any transfer function during the GRACE process-
ing will multiply both signal and error by an identical gain,
resulting in no change of SNR at that frequency. Even when
summed over the 3–18 cpy frequency band where the win-
dows’ transfer functions noticeably differ, a shorter window
will retrieve both more signal and more noise than a longer
window, resulting in similar SNRs. For a similar reason, high-
frequency SNR values are insensitive to basin size. There is
more estimated error in the smaller basins and shorter win-
dows, and also more retrieved signal.

GRACE SNRs are low above 3 cpy in frequency not
because of frequency resolution difficulties, but because few
natural signals are large enough on GRACE-sized spatial
scales to clear the error levels inherent in GRACE RL04. In
basins with low signal (like the Sahara desert), the noise
makes it difficult to discern even the annual signal. In
basins where significant 3–9 cpy signal is present (like the
Ganges basin), the CSR windowed series, ITG-GRACE03,
and GSFC’s mascons can all see it, as can the GLDAS model.
However, as the amplitude of hydrological spectra typically
decreases with frequency, true signal is harder to resolve at
higher frequencies. Across the same range of frequencies
(3–9 cpy) where coherency between GRACE series and/or
GLDAS falls from 90 to 20 %, the PSD of the GLDAS hydro-
logical model falls by a factor of 5–10, depending on the
basin. In the hydrological basins looked at, all recognizable
signal occurred in the 0–9 cpy frequency range, and most of
it was in the 0–3 cpy range. This lack of significant signal
results in poor SNRs, poor series correlations, and generally
poorly trusted behavior in the windowed GRACE series for
most applications.

A sliding window series might still be used for high-
frequency analysis in specialized situations. If a signal is
expected at a specific frequency with a specific spatial pat-
tern to it, modeling and fitting to that signal might bring it
out from behind the GRACE errors. For example, it might
be possible to tease out information of the aliasing of the
diurnal/semidiurnal tides, or other longer-period, non-aliased
tides (the M f fortnightly (26.7 cpy) tide was demonstrated
to be a likely candidate possible by Bonin 2010). Another
potential use of the high-frequency GRACE products could
be to pinpoint one-time extreme events, particularly large
coseismic events. These examples are outside the scope of
this paper, but they demonstrate that high-frequency GRACE
series might still have use in studies where the signal is larger
than the corresponding noise at one particular time or one
particular frequency.

However, such signals have been difficult to find on a
recurring basis, either on land or in the ocean. The gravity
signal does change significantly between the beginning and

end of a month, but most of the change is the continuation
of long-term (usually annual) signals. Creating a low-pass fit
to monthly data and interpolating to sub-monthly time steps
determines this part of the sub-monthly change adequately.
Improvements in GRACE-based hydrology coming from the
use of sub-monthly sampling must be more than this. Unfor-
tunately, such improvements are not typically seen in the
sliding-windowed CSR RL04 cases, regardless of the win-
dow length picked. Nor are they found in the ITG-GRACE03
or GSFC Mascon GRACE series. Hopefully, as refinements
to the GRACE processing technique continue, error levels
will drop further and more sub-monthly hydrological signal
will become visible. Due to the decaying spectral power of
the hydrological system on spatial scales of appropriate size
for GRACE, this will become a case of diminishing returns,
however, where ever more effort will be needed to pick up
ever smaller signals at ever higher frequencies.

Until processing improvements are made, it is critical that
users of most “daily” GRACE series realize that weekly or
even monthly scale variability in the series is primarily noise.
Similarly, little should be read into month-to-month changes
in the official monthly sampled series where they diverge
from a low-frequency fit. As a general rule of thumb, CSR
GRACE RL04 does not reliably separate signal from noise
unless the signal is more than 5 cm in amplitude and/or prop-
agates for at least 4 months. Signal above 3 cpy should be
looked at with caution, and signal above 9 cpy doubly so.
Without external knowledge of the physical system, only the
long-period and near-annual frequencies are reliable.
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