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Abstract We investigate extreme studentized and normal-
ized residuals as test statistics for outlier detection in the
Gauss–Markov model possibly not of full rank. We show
how critical values (quantile values) of such test statistics
are derived from the probability distribution of a single stu-
dentized or normalized residual by dividing the level of error
probability by the number of residuals. This derivation
neglects dependencies between the residuals. We suggest
improving this by a procedure based on the Monte Carlo
method for the numerical computation of such critical values
up to arbitrary precision. Results for free leveling networks
reveal significant differences to the values used so far. We also
show how to compute those critical values for non-normal
error distributions. The results prove that the critical values
are very sensitive to the type of error distribution.

Keywords Outlier detection · Gauss–Markov model ·
Hypothesis testing

1 Introduction

One of today’s major challenges of geodetic data analysis is
gross error detection. In geodesy, a gross error is a measure-
ment deviation that is assumed to be generated by a stochastic
process of a significantly different characteristic from what
is assumed in the stochastic model of the parameter esti-
mation. Typically, the statistical dispersion of this process
is much larger. Gross errors are also referred to as outliers
in applied statistics. There are some more or less tentative
definitions of an outlier. We quote one of the most popular
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definitions given be Hawkins (1980): “An outlier is an obser-
vation which deviates so much from the other observations
as to arouse suspicions that it was generated by a different
mechanism”. This is very much equivalent to a gross error
in geodesy. We do not dwell on this terminological issue, but
use the term “outlier” throughout the rest of the paper.

The quality of parameter estimation using the classical
method of least squares is very much affected by outliers. In
the last few decades, a toolbox of robust estimation methods
has evolved. They are able to produce reasonable results even
if the observations contain some outliers. We do not go into
details, but refer to Andersen (2008) for details.

In geodesy, we often try to identify outliers in the frame-
work of a statistical hypothesis testing and down-weight or
remove them from the input data set. If the number of out-
liers is small and if our data set is sufficiently redundant,
then we may not lose a significant amount of information.
But we retain the advantage that we can employ simple and
efficient tools of geodetic data analysis like classical least
squares estimation. In the following, we exclusively pursue
this approach.

The best-established method for identification of outli-
ers in geodetic data analysis is data snooping. This method
by Baarda (1968) was later extended by Pope (1976) to
the case that the accuracy of the observations is a priori
unknown. Although data snooping was first introduced for
the adjustment of geodetic networks, it is a generally appli-
cable method. First, we perform the so-called global test of
the model. Here, we use the weighted sum of squares of the
least squares residuals as a test statistic, i.e. as a value indi-
cating outliers or other inconsistencies in the functional or
stochastic model. If this test statistic is smaller than some
critical value, i.e. a quantile value of its probability distribu-
tion, then we accept the hypothesis that the observations do
not contain outliers.
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1138 R. Lehmann

Otherwise, and if other deficiencies of the functional and
stochastic model can be ruled out, we have to detect and
eliminate one or more outliers. In order to actually find the
outlying observation, we perform the individual or local test,
where the individual residuals are considered. The aim of this
paper is to compute improved critical values of the test sta-
tistics used here.

Since data snooping is based on a statistical hypothesis
testing, it may lead to a false decision as follows:

Type I error Rejection of a Probability level α

true hypothesis
Type II error Acceptance of a Probability level β

false hypothesis

The computation of the critical values of the test statis-
tics for this test makes a severe neglect, which is no longer
necessary to make, when fast computers are available. We
will show how to improve the computation of such critical
values.

Lehmann (2010) and Lehmann and Scheffler (2011) pose
the problem how to determine the optimal levels of type I
error probabilities for global and local tests in data snooping.
If these levels are chosen too low, then we get too large crit-
ical values and many outliers remain undetected. If on the
contrary these levels are chosen too high, then we get too
small critical values and it is likely that good observations
are eliminated. How do we strike a balance between these
impairments of parameter estimation? In the papers quoted
above, it is shown how to use the Monte Carlo method for
this purpose.

A different approach introduces fuzzy sets for outlier
detection (Aliosmanoglu and Akyilmaz 2001; Wieser 2001).
The set of outliers is considered as a fuzzy set and the mem-
bership function is derived from the difference between test
statistic and critical value. Also, here improved critical values
of the test statistic would be needed.

The outline of the paper is as follows. First, we derive
extreme normalized and studentized residuals as test statis-
tics for outliers in the Gauss–Markov model, possibly not
of full rank. Then, we show how to derive critical values
by means of the Monte Carlo method. Next, we study three
standard geodetic Gauss–Markov models. It will turn out that
there are significant differences between the classical criti-
cal values and the related quantities computed by the Monte
Carlo method.

2 Gauss–Markov model not of full rank

To relate the parameters to the observations, we begin with
the familiar Gauss–Markov model in the linearized form:

y = Aξ + e, E{e} = 0, D{e} = σ 2
0 P−1 (1)

y is the n × 1-vector of known observations, ξ is the u × 1-
vector of unknown parameters, A is the n ×u-matrix relating
observations and parameters. e is the n×1-vector of unknown
observations errors. E and D denote the operators of expecta-
tion and dispersion. P is the known n ×n-matrix of weights.
σ 2

0 is a variance factor, which may or may not be known. e
is a vector of random variates and so is y.

For the sake of universal applicability, the system may or
may not be of full rank:

rank(A) = q ≤ u

The least squares solution for the estimated parameters reads

ξ̂ = (AT P A)− AT Py (2)

with superscript “−” denoting some generalized inverse
matrix. If q = u, this solution is also a best linear unbiased
estimate, otherwise ξ̂ may not be unique. The residuals (esti-
mated observation errors) are always unique and we obtain
them by

ê = y − Aξ̂

= y − A(AT P A)− AT Py

= Aξ + e − A(AT P A)− AT P(Aξ + e)

= e − A(AT P A)− AT Pe = Re (3)

This rewriting invokes a property of generalized inverses (cf.
Koch 1999). R is known as the redundancy matrix. The dis-
persion of the residuals reads

D{ê} = σ 2
0 (P−1 − A(AT P A)− AT)

= σ 2
0 R P−1 = σ 2

0 Qêê (4)

where Qêê denotes the cofactor matrix of the residuals. There-
from, we may derive an unbiased estimate of the variance
factor σ 2

0 as

σ̂ 2
0 = êT Pê

n − q
(5)

All estimates ξ̂ , ê, σ̂ 2
0 are functions of e and consequently

random variates or random vectors.

3 Normalized and studentized residuals as test
statistics for outliers

For hypothesis testing, it is important to assume a distribu-
tion of the observation errors e not being outliers. This is
typically a central Gaussian distribution:

e ∼ N (0, σ 2
0 P−1) (6)

Under this assumption, the least squares solution (2) is also
a maximum likelihood solution (Koch 1999).

123



Critical values for extreme normalized and studentized residuals 1139

A test statistic is a quantity which assumes extreme values
in the case that a certain null hypothesis H0 is not fulfilled.
In the case of outlier detection, this null hypothesis is:

H0: No observation yi , i = 1, . . . , n is affected by
outliers.

A possible alternative hypothesis is

H (i)
A : The observation yi for some fixed i is an outlier.

According to the pioneering work of Baarda (1968), the
decision can be based on the value of the normalized residual

wi,norm = êi

σ0
√

qei ei

(7)

as a test statistic, where qei ei denotes the i th diagonal element
of Qêê in (4). wi,norm is by definition (7) a random variate. If
H0 holds true, then wi,norm ∼ N (0, 1) is easily derived. For
example, individual values of |wi,norm| > 1.96 occur only
with a probability of α = 0.05. If we find |wi,norm| > 1.96
for some yi , we may reject H0. This induces a probability of
type I decision error (rejecting H0 if it is true) of α = 0.05.
Other critical values are 1.64 for α = 0.10 and 2.58 for
α = 0.01. In general, the critical value reads

cnorm = �−1
(

1 − α

2

)
(8)

where � denotes the cumulative distribution function (cdf)
of N (0, 1). Note that we perform a two-sided test of the form
|wi,norm| ≤ cnorm. That is why we have α/2 in (8).

If σ0 is not known, we may use a test statistic of the form

wi,stud = êi

σ̂0
√

qei ei

(9)

suggested by Pope (1976). It is known as studentized residual.
wi,stud is by definition (9) a random variate. If H0 holds true, it
has been shown by Pope (1976) that wi,stud ∼ τ(1, n−q−1).
This distribution is known as τ -distribution with 1 and
n − q − 1 degrees of freedom.

Quantiles of the τ -distribution can be computed from
quantiles of Fisher’s F-distribution, or in our case, where
the first degree of freedom is 1, also from Student’s t distri-
bution. In general, the critical value for (9) can be computed
as

cstud =
√√√√ (n − q)t2

n−q−1(α/2)

n − q − 1 + t2
n−q−1(α/2)

(10)

where t denotes the quantile of the Student’s t distribution
with n −q −1 degrees of freedom (Pope 1976). Note that we
perform a two-sided test of the form |wi,stud| ≤ cstud. That is

why we have α/2 in (10). From (10) we deduce

0 ≤ cstud <
√

n − q. (11)

4 Testing against n alternative hypotheses

Usually it is not known which observation yi may be an
outlier. Therefore, a more appropriate alternative hypothesis
would be

HA: There is at least one outlier in the vector of observa-
tions y.

Since HA = H (1)
A ∨ H (2)

A ∨ · · · ∨ H (n)
A where each H (i)

A
denotes an alternative hypothesis from the preceding section,
this is equivalent to testing H0 against a sequence of alterna-
tive hypotheses

H (1)
A , . . . , H (n)

A

Let wi , i = 1, . . . , n denote either normalized or studentized
residuals from (7) or (9). H0 is rejected if |wi | exceeds a crit-
ical value c for any i = 1, . . . , n. Otherwise, it is accepted.
Therefore, the test statistic coming into effect is

w = max
i=1,...,n

|wi | (12)

A true H0 is rejected after n tests, if it is rejected in any of the
n tests. The probability that a true H0 is accepted in test i is
1 − α, i = 1, . . . , n. If there is an outlier in any observation
and since R in (3) is not a diagonal matrix, it is likely that
more than one residual is large. Therefore, H0 is likely to be
rejected in more than one test, i.e. the test results depend on
each other to some degree. For the sake of simplicity, those
dependencies are usually neglected. Then the probability that
a true H0 is accepted in each test is approximately (1 − α)n .
Hence, the probability α′ that a true H0 is rejected in any test
would be

α′ = 1 − (1 − α)n (13)

Since α is small, we get α′ ≈ nα. This is accounted for by
computing the critical value c either by

cnorm = �−1
(

1 − α′
2n

)
(14)

or by

cstud =
√√√√ (n − q)t2

n−q−1(α
′/(2n))

n − q − 1 + t2
n−q−1(α

′/(2n))
(15)

if α′ is the desired probability of type I decision error with
respect to HA = H (1)

A ∨ H (2)
A ∨· · ·∨ H (n)

A . This procedure is
well known and was suggested by Stefansky (1972) for the
first time.
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1140 R. Lehmann

Ac

e1

e2

Fig. 1 Set of acceptance Ac in the simplest case of two independent
repeated observations y1 = x + e1, y2 = x + e2 of identical variance,
i.e. A = (1 1)T and P = I

5 Extreme normalized and studentized residuals as test
statistics

As an alternative procedure, one could treat the extreme
(i.e. maximum absolute) normalized or studentized residuals
w in (12) directly as a test statistic. One advantage is that
we do not need to neglect dependencies in the hypotheses as
in (13). However, the distributions of the test statistic cannot
be derived from well-known test distributions like normal or
t-distribution anymore. Therefore, critical values cannot be
taken from a statistical table, but must be computed numeri-
cally.

If Fw denotes the cdf of the test statistic w and α is a given
probability of type I decision error, we get the desired critical
value c by

c = F−1
w (1 − α)

Note that using (12) as a test statistic, we perform a one-sided
test of the form w ≤ c.

Since w = w(e) is a function of a random vector e (obser-
vation errors), its distribution is propagated from (6). Let
En denote the n-dimensional Euclidian space of observation
errors e and let Ac ⊂ En denote the subset of acceptance of
H0, i.e (Fig. 1).

Ac := {e ∈ En : w(e) < c} (16)

The probability of w(e) < c is the same as of e ∈ Ac. There-
fore, values of the cdf Fw can be computed by

1 − α = Fw(c) =
∫

Ac

ϕe(e)de (17)

where ϕe denotes the probability density function (pdf) of e.
In the case of (6), this reads(19)

Fw(c) = det(P)1/2

(2π)n/2σ n
0

∫

Ac

exp

(
−eT Pe

2σ 2
0

)
de (18)

Let Ic(e) denote the indicator function of Ac (i.e. assuming
values 1 for e ∈ Ac and 0 otherwise). We get

Fw(c) =
∫

En

Ic(e) · ϕe(e)de = E{Ic} (19)

Since Ic is not a simple function, the integral in (19) cannot
be evaluated analytically.

6 Monte Carlo approach

Monte Carlo methods are able to compute statistical quan-
tities numerically. They are used whenever the functional
relationships are analytically not tractable, as is the case for
data snooping. The basic idea is to approximate probability
distributions by frequency distributions of computer random
experiments performed using pseudo random numbers. The
convergence is only of the order of m−1/2, if m is the num-
ber of experiments performed, but unlike other methods, this
order does not depend on the dimension of the data space
(Tanizaki 2004), i.e. the number of observations n in geod-
esy, which is typically very large.

Since the advent of fast computers, we use Monte Carlo
methods in geodesy (e.g. Lehmann 1994; Alkhatib et al.
2009). Those methods have already been applied in outlier
detection (e.g. Koch 2007; Lehmann and Scheffler 2011).

In essence, the expectation in (19) is approximated by the
arithmetic mean

Fw(c) = E{Ic} ≈ Mean{Ic} = 1

m

N∑
k=1

Ic(ek) (20)

computed by pseudo random vectors ek, k = 1, . . . , m of the
desired distribution.

According to (6), we chose the multivariate normal dis-
tribution for e. We apply the Box–Muller method (Box and
Muller 1958), a common and efficient method for generation
of normal pseudo random numbers. It needs uniform pseudo
random numbers in the interval [0, 1) coming from a modern
Mersenne twister generator with period 219937 − 1.

7 Computation procedure

Firstly, note that the distributions of normalized or studen-
tized residuals are independent of σ0. Consequently, the same
holds true for w in (12). If we compute a pseudo random vec-
tor for e and we do not know σ0, we may use any positive
value instead. The value will be canceled in (7) or (9).

Secondly, normalized or studentized residuals depend on
the observation errors e, but not on the true values Aξ of the
observed quantities. This has been shown in (3).
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Critical values for extreme normalized and studentized residuals 1141

Thirdly, the joint distribution of the vector of normalized
or studentized residuals depends on the elements of Qêê.
Only the effect of the main diagonal elements qei ei is can-
celed by the denominator of (7) or (9). If we compute the
absolute maximum w in (12), we retain the effect of the
off-diagonal elements of Qêê. Therefore, the distribution of
w will in general depend on those elements and in this way
on the matrices A and P , see (3), (4).

The following procedure yields arbitrarily precise approx-
imations of the desired critical values of w in (12):

1. Compute a sequence of m pseudo random vectors ek,

k = 1, . . . , m of the desired distribution, e.g. from (6).
m is known as the number of Monte Carlo experiments.

2. For each ek, k = 1, . . . , m estimate residuals êk by (3)
and compute the test statistic wk by (7) or (9) and (12).
The frequency distribution of wk is an approximation of
the probability distribution of w.

3. For some critical value c, we would get Ic(ek) = 1 for
wk < c and Ic(ek) = 0 otherwise. Hence, the desired
mean{Ic} is the fraction of wk smaller than c. c must be
determined such that this fraction becomes 1 − α. For
this purpose, sort vector wk numerically, getting a sorted
vector w′

k such that w′
1 ≤ w′

2 ≤ · · · ≤ w′
m . Determine

the critical value

c = 1

2

(
w′

[(1−α)m] + w′
[(1−α)m]+1

)
(21)

where [•] denotes rounding down to the next integer.
Note that this can be done for a sequence of values α in
parallel.

4. In order to ensure that the approximate values (21) are
close to the true values F−1

w (1 − α), one should observe
the convergence of the procedure as m → ∞ and imple-
ment a suitable termination criterion. We suggest that
the procedure should be terminated as soon as c in (21)
fluctuates by no more than 1 %.

Such a strategy has been used already by Lemeshko and
Lemeshko (2005), but only for extreme studentized residuals
and only for outlier detection in samples, which is equiv-
alent to the case of repeated observations in geodesy. In
Sects. 8–10, we will display the results for a less trivial geo-
detic Gauss–Markov model.

8 A free leveling network

Consider a free leveling network with square loops forming
a checked pattern (see Fig. 2). Observations are uncorrelated
leveled height differences of identical variance σ 2

0 . We apply
the Gauss–Markov model (1) with P = I and A-matrix of

Fig. 2 Leveling network of variable size with square loops forming a
checked pattern

the form

A =

⎛
⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0 0
1 0 −1 · · · 0 0
1 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 −1

⎞
⎟⎟⎟⎟⎟⎠

For a free leveling network, we get rank(A) = q = u−1. The
right inverse in (2)–(4) is computed as usual by the constraint

ξ = 0 (see Koch 1999). Note that the actual observations
are not required to compute improved critical values (21).

Example In the case of two loops and an “off the reel” order-
ing of the observations, we get

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1 0 0 0
−1 1 0 0 0 0
0 −1 0 1 0 0
0 0 1 −1 0 0
0 0 −1 0 1 0
0 0 0 0 −1 1
0 0 0 1 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(22)

The cofactor matrix of the residuals reads

Qêê =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

+0.27 +0.27 +0.27 −0.07 −0.07 −0.07
+0.27 +0.27 +0.27 −0.07 −0.07 −0.07
+0.27 +0.27 +0.27 −0.07 −0.07 −0.07
+0.20 +0.20 +0.20 +0.20 +0.20 +0.20
−0.07 −0.07 −0.07 +0.27 +0.27 +0.27
−0.07 −0.07 −0.07 +0.27 +0.27 +0.27
−0.07 −0.07 −0.07 +0.27 +0.27 +0.27

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(23)

First of all, we intend to investigate the convergence of the
Monte Carlo procedure described in Sect. 7. Figure 3 shows
how the approximate critical values (21) converge to their
true value as m increases. The computation is performed for
2 × 3 leveling loops, where n = 15 and u = 12. At m =
10,000, we observe only minor changes of c at a relative
magnitude of about 1 %.

To be on the safe side, we decided to double the com-
putational effort to m = 20,000 throughout the following
computations.

Next, we investigate the critical values of extreme nor-
malized residuals for various sizes of networks starting from
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Fig. 3 Critical values (21) of
extreme normalized and
studentized residuals for 2 × 3
leveling loops versus number of
Monte Carlo experiments m

Number of Monte Carlo experiments m

cnorm(α=0.01)

cnorm(α=0.05)

cstud(α=0.01)

cnorm(α=0.10)

cstud(α=0.10)
cstud(α=0.05)

2

2.2

2.4

2.6

2.8

3

3.2

3.4

0 100 200 300 400 500 600 700 800 900 1000

Fig. 4 Critical values of
extreme normalized residuals
for the free leveling network.
Solid curves obtained from (21)
by m = 20,000 Monte Carlo
experiments. Dashed curves
obtained from (14)

cnorm( =0.01) 

cnorm( =0.05) 

cnorm( =0.10)

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

7 12 17 22 27 32 37 42 47 52

Number of observations n

2 × 1 loops. Adding two new loops increases the numbers of
observations n × 5 and the number of parameters u × 3. The
result is displayed in Fig. 4. We observe that the improved
critical values (21) are always smaller than those values com-
puted by (14) neglecting dependencies between the n tests.
In other words, under the condition that H0 is true, it is less
likely to get large extreme normalized residuals than pre-
dicted by (14). For a leveling network, this can be understood
as follows.

If there is according to (6) a large measurement error, then
we get large loop misclosures in the adjoining loops and all
residuals in these loops tend to be large in magnitude. If
aligned in the same sense of direction, the residuals also tend
to have the same sign. If all measurement errors happen to be
small, then all residuals tend to be small. Hence, the residuals
are correlated. In (13), we have neglected such correlations.
In this case and if one residual is small, we still suppose that
the neighboring residual in this loop can be large in magni-
tude. In this way using (14), we overestimate the probability
of large extreme normalized residuals and the dashed curve in
Fig. 4 is always above the solid curve. This line of reasoning
applies to positive and negative correlations. (In fact, one can
change positive into negative correlations and vice versa by

changing the sign of one observation.) Therefore, the dashed
curve is always above the solid curve in Fig. 4. The effect
is less pronounced for larger networks, because the correla-
tions attenuate with distance and in a large network almost
all pairs of observations are spatially separated.

Consequently at the same level of error probability, the
improved critical values (21) detect more outliers than those
computed by (7).

We repeat this computation for extreme studentized resid-
uals. The result is displayed in Fig. 5. First of all, we note that
the critical values are smaller than for the extreme normal-
ized residuals. This is comprehensible from definition (9). If
a residual ei is large, then it is probable that also σ̂0 in (5) is
large, partly mitigating the effect in (9). Consequently, stu-
dentized residuals tend to be smaller than normalized residu-
als. But as the number of observations n increases, this effect
more and more vanishes by averaging of the residuals in (5).
Indeed, we observe in Figs. 4 and 5 that the extreme studen-
tized residuals increase faster than the extreme normalized
residuals with the number of observations n.

Another difference between Figs. 4 and 5 is that in small
networks, the critical values of the studentized residuals
hardly depend on α. The reason is that here a large part of
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Critical values for extreme normalized and studentized residuals 1143

Fig. 5 Critical values of
extreme studentized residuals
for the free leveling network.
Solid curves obtained from (21)
by m = 20,000 Monte Carlo
experiments. Dashed curves
obtained from (15). Dotted
curve theoretical upper bound
according to (11)

c

c

c

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

3.3

7 12 17 22 27 32 37 42 47 52

Number of observations n

theoretical
upper
bound

studentized residuals concentrate near the theoretical upper
bound of c according to (11); see dotted curve in Fig. 5. Over-
estimation as before is hardly possible. Differences between
the improved critical values (21) and those values computed
by (15) come into effect when the network gets larger. Again,
the values obtained from (14) are larger for the same reason
as in the case of normalized residuals. The difference is less
pronounced here because of weaker correlations in larger
networks, cf. discussion above.

Larger differences can be expected for models where the
correlations do not diminish with size, e.g. if in a geodetic
network also long traverses have been observed.

9 Correlated observations

All derivations are valid also for correlated observations
where P is not a diagonal matrix. The generation of cor-
related pseudo random numbers e with a desired covariance
matrix D{e} = σ 2

0 P−1 in (1) from uncorrelated pseudo ran-
dom numbers e′ with covariance matrix I can be done by the
transform

e = Ue′

with any n × n-matrix U fulfilling

UU T = D{e} (24)

This property is a consequence of covariance propagation.
We repeat the computations of the preceding section with

a covariance matrix

D{e} = σ 2
0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ ρ . . . ρ ρ

ρ 1 ρ . . . ρ ρ

ρ ρ 1 . . . ρ ρ
...

...
...

...
...

...

ρ ρ ρ
. . . 1 ρ

ρ ρ ρ . . . ρ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(25)

where all pairs of observations are correlated with a corre-
lation coefficient of 0 ≤ ρ < 1. This correlation can be
assumed to be caused by using the same leveling equipment
throughout the whole network. A simple matrix U having
property (24) is a n × n-matrix with elements equal to

ui j = 1

n

(√
1 + (n − 1)ρ + √

1 − ρ
)

+ δi j
√

1 − ρ

where δi j denotes Kronecker’s delta.

Example For ρ = 0.9, the cofactor matrix of the residuals
(23) is modified to

Qêê =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

+0.29 +0.29 +0.29 −0.04 −0.04 −0.04
+0.29 +0.29 +0.29 −0.04 −0.04 −0.04
+0.29 +0.29 +0.29 −0.04 −0.04 −0.04
+0.25 +0.25 +0.25 +0.25 +0.25 +0.25
−0.04 −0.04 −0.04 +0.29 +0.29 +0.29
−0.04 −0.04 −0.04 +0.29 +0.29 +0.29
−0.04 −0.04 −0.04 +0.29 +0.29 +0.29

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(26)

Although ρ = 0.9 is a quite large correlation coefficient, (23)
and (26) are not very much different. We conclude that cor-
relations of the residuals are much more caused by the func-
tional than by the stochastic relationships of the observations.
So, it is no surprise that the critical values do not strongly
depend on the stochastic correlations introduced by (25). In
Tables 1 and 2, we only display the results for α = 0.05.
Other values of α yield a similar outcome. We can conclude
from these tables that in this case, the critical values are prac-
tically the same for all correlations.

10 Non-normal error distributions

Formulas (14) and (15) are only valid if observation errors
are normally distributed according to (6).
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Table 1 Critical values of extreme normalized residuals for the free
leveling network and correlated observations (25), α = 0.05

n c from (14) c from (21) c from (21) c from (21) c from (21)
ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9

7 2.69 2.34 2.31 2.34 2.36

12 2.87 2.68 2.68 2.67 2.68

17 2.97 2.83 2.82 2.84 2.84

22 3.05 2.94 2.91 2.94 2.93

27 3.11 3.02 3.02 3.03 3.01

32 3.16 3.07 3.06 3.08 3.08

37 3.20 3.12 3.11 3.12 3.12

42 3.24 3.17 3.16 3.15 3.17

47 3.27 3.20 3.21 3.21 3.21

52 3.30 3.22 3.23 3.23 3.24

Table 2 Same as Table 1, but studentized rather than normalized
residuals

n c from (15) c from (21) c from (21) c from (21) c from (21)
ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9

7 1.41 1.41 1.41 1.41 1.41

12 1.95 1.94 1.94 1.94 1.94

17 2.26 2.24 2.25 2.24 2.24

22 2.46 2.44 2.44 2.45 2.43

27 2.60 2.59 2.58 2.59 2.58

32 2.71 2.68 2.69 2.68 2.69

37 2.80 2.78 2.78 2.78 2.77

42 2.87 2.85 2.85 2.84 2.85

47 2.93 2.91 2.90 2.91 2.91

52 2.98 2.96 2.96 2.95 2.96

A further advantage of the Monte Carlo method is that we
are not restricted to assumption (6). The only requirement is
that we must be able to generate pseudo random numbers of
the non-normal error distribution. This is ensured for the most
common alternatives like symmetric triangular distribution
or Laplace distribution. In both cases, we get the inverse cdf
explicitly. This enables us to apply the inverse transforma-
tion method for the generation of pseudo random numbers
according to the symmetric triangular and Laplace distribu-
tion (Tanizaki 2004, p. 116). Although neglected here, a fur-
ther interesting alternative is the scale-contaminated normal
distribution (cf. Lehmann 2012).

We repeat the computations of Sect. 8 using (see Fig. 6)

1. the central symmetric triangular distribution and
2. the central Laplace distribution.

Note that again the variance of the pseudo random numbers
can be chosen arbitrarily because it cancels in (7) or (9).
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Fig. 6 Probability density functions of distributions used (zero expec-
tation, unit variance)
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Fig. 7 Critical values of extreme normalized residuals for the free
leveling network computed by (21) using the triangular (T ) distribu-
tion (blue), normal (N) distribution (red) and Laplace (L) distribution
(green curve) for α = 0.05

In Fig. 7 we only display the results for α = 0.05. Other
values of α yield a similar outcome.

Figures 7 and 8 show that the critical values depend very
much on the type of error distribution, even more than on the
functional model. This effect becomes more pronounced as
the number of observations increases. The triangular distri-
bution has bounded observation errors. Under the hypothe-
sis H0, this makes large extreme normalized or studentized
residuals very unlikely. On the contrary, the Laplace distri-
bution has heavy “tails”. Here we can expect to get large
extreme normalized or studentized residuals even if there are
no outliers (H0 holds true). As expected, we observe that
cT < cN < cL holds with subscripts as in Figs. 7 and 8.

11 Considerations regarding the computational
workload

In each Monte Carlo experiment, we have to generate n
pseudo random numbers ek and evaluate ê = Re. Note that
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Fig. 8 Same as Fig. 7, but studentized rather than normalized residuals.
Dotted curve theoretical upper bound according to (11)

R must be computed only once. In the worst case that R is a
dense (not sparse) matrix, we need 2n2 floating point oper-
ations for ê = Re. The computation of the test statistic has
only O(n) operations. Sorting the vector of test statistics typ-
ically requires O(n logn) operations. If n is large, only the
evaluation of ê = Re with dense R deserves consideration.

If we assume a Gauss Markov model with n = 1,000
unknowns and m = 20,000 Monte Carlo experiments, this
amounts to 4 × 1010 floating point operations for only the
evaluation of ê = Re. For example on a common Intel
Core i7 processor with up to 100 GFLOPS, this computa-
tion takes less than a second. In general, we can expect that
minor changes of the functional and stochastic model may
not change the improved critical values considerably.

Hence, we are not overwhelmed with computational work-
load. Also, remember that (21) can be evaluated efficiently
for a sequence of values α in parallel.

12 Monte Carlo-based data snooping

We make a statement concerning the use of the approach
proposed in Lehmann (2010) and Lehmann and Scheffler
(2011) called “Monte Carlo-based data snooping” and show
how it relates to the subject of this paper. It finds the opti-
mum level of error probability α as follows: for a number
of trial levels αi , i = 1, . . . , M the posterior variance of the
estimated parameters is computed and the optimum α∗, i.e.
the value αi , for which the posterior variance of the estimated
parameters is minimum, is selected and possibly refined by
some interpolation. M is a chosen integer large enough to
ensure finding the optimum α∗. The use of a geometric pro-
gression like αi = 2−2−i , i = 1, . . . , 7 is suggested. One can
even use the trial critical values ci , i = 1, . . . , M instead of
error levels, finding the optimum c∗ in the same way. In this
case, ci is not computed in any way from αi by (14) or (15).

Therefore, Monte Carlo-based data snooping does not require
the improved critical values derived here. Computation time
cannot be saved, however, because Monte Carlo-based data
snooping is also moderately time-consuming.

13 Conclusions

The improved critical values promised by the title of this
paper cannot exactly be listed in a table as in the classical
case (see e.g. Pope 1976). This would only be possible in spe-
cial cases (see Lemeshko and Lemeshko 2005). They depend
more or less on the functional and stochastic model. All that
can be given is a procedure for computing the improved val-
ues for each model.

The improved critical values (21) are always smaller than
the critical values (14), (15) used so far. This means that in
the case of no outliers, it is less likely that extreme normal-
ized or studentized residuals get very much larger than those
predicted by the classical approach of Sect. 4. For example,
if H0 is true and is rejected against H (1)

A , it is more likely that

it is rejected also against H (2)
A , etc. because the test statistics

are correlated. This makes the approximation (13) relatively
coarse.

Let us consider the case of iterative outlier elimination,
i.e. after each detected and eliminated outlier, the model is
reprocessed and the outlier detection is restarted. This is a
standard procedure in geodesy. It is obvious that with the
improved critical values, we get the same sequence of outli-
ers as in the classical approach of Sect. 4. It only truncates at
a later cycle of iteration. In other words, we get the same out-
liers as with the classical approach and a larger level of error
probability α. However, it is not easy to derive this larger α

somehow from the value α used before.
Finally, we suggest applying Monte Carlo methods also

in other fields of outlier detection, e.g. there are test statis-
tics for outlier detection, which do not even approximately
permit an analytical derivation of a related cdf. Therefore,
such test statistics have not yet been used in geodesy. As an
example, we mention the kurtosis of the normalized residuals
(cf. Verma et al. 2008), which is able to detect multiple outli-
ers without the need to a priori specify them. Using the Monte
Carlo method, critical values for such test statistics can be
computed in the same way as for the extreme residuals.
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