
J Geod
DOI 10.1007/s00190-012-0560-9

ORIGINAL ARTICLE

A stochastic framework for inequality constrained estimation

Lutz Roese-Koerner · Balaji Devaraju ·
Nico Sneeuw · Wolf-Dieter Schuh

Received: 15 November 2011 / Accepted: 24 March 2012
© Springer-Verlag 2012

Abstract Quality description is one of the key features of
geodetic inference. This is even more true if additional infor-
mation about the parameters is available that could improve
the accuracy of the estimate. However, if such additional
information is provided in the form of inequality constraints,
most of the standard tools of quality description (variance
propagation, confidence ellipses, etc.) cannot be applied, as
there is no analytical relationship between parameters and
observations. Some analytical methods have been developed
for describing the quality of inequality constrained estimates.
However, these methods either ignore the probability mass in
the infeasible region or the influence of inactive constraints
and therefore yield only approximate results. In this article,
a frequentist framework for quality description of inequality
constrained least-squares estimates is developed, based on
the Monte Carlo method. The quality is described in terms
of highest probability density regions. Beyond this accuracy
estimate, the proposed method allows to determine the influ-
ence and contribution of each constraint on each parameter
using Lagrange multipliers. Plausibility of the constraints is
checked by hypothesis testing and estimating the probability
mass in the infeasible region. As more probability mass con-
centrates in less space, applying the proposed method results
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in smaller confidence regions compared to the unconstrained
ordinary least-squares solution. The method is applied to
describe the quality of estimates in the problem of approxi-
mating a time series with positive definite functions.
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1 Introduction

Prior knowledge about properties of the parameters is very
common in many geodetic applications. This information
(e.g. the knowledge that parameters lie within a certain inter-
val) is often expressed by inequality constraints, which have
to be strictly fulfilled. An example of prior knowledge of this
type are constraints due to limited resources or a maximum
feasible slope parameter of a surface of best fit.

Although well known in mathematics for some time,
inequality constrained least-squares (ICLS) adjustment did
not appear in geodetic literature before the late seventies and
early eighties. Schaffrin et al. (1980), for example, trans-
formed the task of a second order design of geodetic net-
works into a linear complementarity problem (LCP) and
solved it with the Dantzig–Cottle algorithm to ensure posi-
tive weights. Schaffrin (1981) pointed out the potential of the
same approach for the problem of estimating a (quasi-)opti-
mal finite impulse response (FIR) filter with a constraint on
the maximum approximation error, and for the problem of
estimating non-negative variance components. Not only the
second, but also the first order design could be improved
by inequalities as was shown by Koch (1982, 1985). He
introduced inequality constraints on the maximum feasible
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distance for a coordinate shift as well as a constraint on the
overall accuracy.

More recent work also include the semantic integration of
data from a geographical information system and digital ter-
rain models using object specific constraints (Koch 2006) as
well as the inclusion of (im)possible directions of landslide
movement as constraints in the determination of landslide
(Song et al. 2010).

Despite the highly developed estimation theory dealing
with inequality constrained problems, these techniques are
far from being standard tools in geodesy. This might be due
to the fact, that up to now, the existing approaches to describe
the quality of inequality constrained estimates (Liew 1976;
Geweke 1986; Zhu et al. 2005), have several drawbacks, e.g.,
a suboptimal treatment of the truncated probability mass or
overoptimistic results.

In ordinary or equality constrained least-squares (OLS and
ECLS, respectively) adjustment, a wide range of tools to
quantify the accuracy of an estimate is available. As there
is an analytical solution, it is possible to project the accu-
racy of the observations (given in the form of a covariance
matrix) to the parameters. This is no longer possible in the
inequality constrained case, as the parameters are not linked
analytically with the observations. Therefore, iterative solv-
ers are used (either simplex or interior point methods, cf.
Sect. 2.2), and the law of error propagation can no longer be
applied. The idea of a symmetric standard deviation, in the
sense of an interval around estimated quantities, is no longer
sufficient to describe the accuracy, dealing with a parameter
space truncated by inequality constraints, which can destroy
symmetry.

Nevertheless, it is crucial to have a measure for the accu-
racy of an estimate. In contrast to standard deviations, con-
fidence regions can be given in truncated parameter spaces,
as they can be adapted to the constraints. In order to con-
struct confidence regions, the probability density function
(PDF) of the estimates must be known. Due to the above
mentioned difficulties in applying analytical techniques for
quality description of ICLS estimates, the approach we pro-
pose in this paper is a Monte Carlo technique. This has the
advantage, that no complex analytical relationship has to be
evaluated and that it is easy to parallelize.

We use the active-set method (cf. Gill et al. 1981, p. 167–
173) to solve M instances of the original problem with ran-
domized observation vectors to compute an empirical PDF
of the estimated parameters. Knowing this discrete approx-
imation of the PDF, confidence regions are computed and
several ideas of what constitutes a best estimator in this case
are discussed.

Besides knowing the distribution of the parameters, it
might be interesting to examine the influence of the con-
straints on the estimate. Therefore, a sensitivity analysis is
described, which allows to quantify the influence of each con-

straint on each parameter. Furthermore, an hypothesis testing
is outlined to determine if the data support the constraints,
and it is shown how the ratio of probability mass inside the
feasible region can be computed.

As quality description is a key feature of geodetic adjust-
ment theory, the purpose of this paper is to describe a frame-
work for the stochastic description of ICLS estimates, which
overcomes many of the drawbacks of the existing methods.

The present article is organized as follows: in Sect. 2, basic
principles of inequality constraint adjustment and existing
methods of quality description are reviewed. In Sect. 3, we
introduce a new method for the quality description of ICLS
problems and provide some analysis tools to measure the
contribution of the constraints. Results of such a constrained
estimate are presented in Sect. 4, where the methodology is
applied to the problem of fitting a time series using a cosine
transformation with only non-negative coefficients. This is a
task, which appears for example, when a covariance function
of a time series should be estimated, because the fulfillment
of the non-negativity constraints ensures that the resulting
function is positive (semi-)definite. Finally, in Sect. 5, the
major findings are summarized, drawbacks and advantages
of the proposed method are reviewed and some future chal-
lenges in quality description are pointed out.

2 Background

2.1 Inequality constrained least-squares estimation (ICLS)

Every problem in which a convex objective function Φ

should be minimized with respect to some constraints form-
ing a convex set is called a convex optimization problem
(Boyd and Vandenberghe 2004, p. 137). The (linear) ICLS
problem is a special case of this type of problem as a quadratic
function (the sum of squared residuals) is to be minimized
subject to linear inequality constraints.

The deterministic model of a standard Gauss–Markov
model (GMM) is given as

y + v = Ax. (1)

y contains the n observations, v is the vector of residuals,
A the design matrix and the m unknown parameters are con-
tained in x. The random vector of observations Y is supposed
to be normally distributed with known variance–covariance
(VCV) matrix

Y ∼ N (Aξξξ, Q).

ξξξ is the vector of true parameters. In a linear ICLS problem,
we try to minimize the (weighted) sum of squared residuals
subject to linear constraints
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minimize Φ(x) = vTPv (2a)

subject to BTx ≤ b. (2b)

P denotes the weight matrix, B the matrix containing p con-
straints and b the right hand side of the constraints. The rep-
resentation for the linear inequality constraints chosen here
can be used in all ICLS problems without loss of generality,
because greater than or equal to constraints can be trans-
formed to less than or equal to constraints. This also greatly
simplifies the way the constraints are handled in the estima-
tion process.

Many algorithms use the Lagrangian of an ICLS problem,
which is computed by multiplying the rearranged constraints
with the so called Lagrange multiplier vector k and adding
the product to the objective function Φ(x)

L(x, k) = Φ(x) + kT(BTx − b) (3a)

= xTNx − 2xTn + yTy + kT(BTx − b), (3b)

with normal equation matrix N and right hand side of the
normal equations n. The Lagrangian allows us to integrate
the constraints into the objective function. This is pos-
sible, because for each constraint a new parameter—the
Lagrange multiplier ki linked with the i th constraint—is
introduced. Derivation of (3b) leads to the Karush–Kuhn–
Tucker conditions (cf. Boyd and Vandenberghe 2004, p.243).
Especially one of them—the condition of complementary
slackness—will be explained and used later in the active con-
straint approach in Sect. 2.3.1.

2.2 Solving ICLS problems

In the taxonomy of optimization problems, Eq. (2) is called
a quadratic program (QP), as a quadratic objective function
is to be minimized subject to linear inequality constraints
(Boyd and Vandenberghe 2004, p.152). Several solvers for
this type of problem exist, which can be subdivided into two
classes (despite some exceptions): simplex methods and inte-
rior point methods. While the former are special solvers for
quadratic and linear programs (LP), the latter are applicable
to a wide range of convex optimization problems.

Simplex methods like the active-set method (Gill et al.
1981, p.167–173) or Dantzig’s simplex method for quadratic
programming (Dantzig 1998, p. 490–498) subdivide the set
of constraints (here symbolized by the matrix of constraints
B and the righthand side b) into an active part Ba, ba and an
inactive part Bi, bi. A constraint is called active (or binding)
if it is exactly satisfied, and therefore, holds as equality con-
straint. It is called inactive, if it is fulfilled as strict inequality.
Therefore, (2b) can be written as:

BT
a x = ba and BT

i x < bi. (4)

The constraints that have been identified as active constraints
are then used to follow the boundary of the feasible region
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Fig. 1 Isolines of the objective function (black ellipses) and constraints
(straight lines) of an ICLS problem. The optimal OLS solution (gray
dot) is in the infeasible region (gray shaded area). The ICLS solu-
tion (black dot) is the projection of the unconstrained solution onto the
boundary of the feasible set. One constraint is active in the optimal
solution (solid line) and two are inactive (dashed lines)

(i.e. the region in the parameter space, where all constraints
are satisfied, cf. the unshaded area in Fig. 1), until the opti-
mal solution (black dot) is reached. The optimal solution is
the point with smallest value of the objective function, that
fulfills all constraints. This point will always lie at the bound-
ary of the feasible region if at least one constraint is active
(solid line). The solution of a quadratic program is therefore
the projection of the solution of the unconstrained problem
(gray dot) onto the feasible set, due to the metric of the prob-
lem (illustrated by the contour lines, representing isolines of
the objective function).

Interior point methods like the logarithmic barrier method
or primal–dual methods (Boyd and Vandenberghe 2004,
p. 568–571 and p. 609–613) use a different approach: start-
ing at a feasible point far away from the constraints, the
solution follows a central path through the interior of the
feasible region towards the optimum. This is done by split-
ting the complex original problem either into a sequence of
unconstrained problems, e.g. by punishing the violation of
constraints by using a penalty function (barrier methods), or
into a sequence of simpler inequality constrained problem,
by relaxing some conditions of the constraints (primal–dual
methods).

It is also possible to transform the QP into a Linear Com-
plementarity Problem (LCP, Koch 2006, p. 24–25) and solve
it e.g. with Lemke’s algorithm (cf. Fritsch 1985). More recent
approaches include, for example, the aggregation of all sim-
ple inequality constraints into one complex equality con-
straint (Peng et al. 2006).

It is important to mention two facts: first is, that all meth-
ods theoretically give the same result, and second that if no
constraint is active in the solution, the result will be identi-
cal to the OLS estimate. That is because inactive constraints
(dotted lines in Fig. 1) do not influence the parameter esti-
mation. However, as we will discuss later, they do influence
its statistical properties.
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2.3 Quality description in ICLS estimates

All methods described in the last section are iterative solvers.
Therefore (and due to the presence of inequality constraints),
it is difficult to describe the quality of the estimate. So far, two
different approaches to give a measure for the accuracy of
those estimates have been developed: The active constraint
approach, which uses frequentist statistics and a Bayesian
method.

2.3.1 Active constraint approach

The idea of Liew (1976) is to reduce an inequality constraint
problem to an equality constraint one. As active constraints
hold as equality constraints, only those constraints active in
the optimal solution are taken into account and are treated as
equalities. This approach consists of four steps.

As it is not known beforehand which of the constraints will
be active for the optimal solution, in a first step the ICLS prob-
lem is solved (e.g. via Lemke’s algorithm, using the transfor-
mation to a LCP). Afterwards, the Lagrange multipliers are
used to identify the active constraints Ba, ba. This is possible,
as there is the rule of complementary slackness (cf. Gill et al.
1990, p. 302)

k j (BTx − b) j
!= 0, ∀ j = 1, . . . p, (5)

stating that only Lagrange multipliers of active constraints
are different from zero. We will later use the reverse con-
clusion that the larger the value of a Lagrange multiplier is,
the stronger is its influence on the solution. Having identi-
fied those constraints, which hold as equalities, and therefore
have an associated Lagrange multiplier with a positive value,
a standard equality constrained least-squares estimate can be
carried out, discarding all inactive constraints

minimize Φ(x) = vTPv (6a)

subject to BT
a x = ba. (6b)

This allows to compute the variance–covariance matrix of
the equality constrained problem.

One severe shortcoming of this method is that—due to the
restriction on the first two moments—one only gets a sym-
metric PDF of the ICLS problem rather than the one shown
in Fig. 2, where the ICLS PDF is the region bounded by the
constraints. Though the inactive constraints do not contribute
to the estimation process, it will be shown in Sect. 4 that they
do matter in estimating a PDF. Furthermore, the treatment
of active constraints as equalities may lead to overoptimis-
tic variances. One can easily imagine worst case scenarios
where it even leads to a (highly unrealistic) variance of zero,
for example the univariate case with one active constraint.
Also, the approach is not robust to changes in the set of active
constraints due to (small) changes in the observations.

µ

infeasiblefeasible

constraint

Fig. 2 Effect of a single inequality constraint (dotted line) on the PDF
of a parameter with expectation value μ (univariate case). As the prob-
ability mass has to be conserved, it is necessary to decide how to handle
the part of the probability mass of the unconstrained estimate (dashed
line) that is truncated by the constraint (gray shaded area). This could
either be done by scaling the whole function (approach of Zhu et al.
2005, gray line) or by accumulating that probability mass at the bound-
ary of the feasible set (MC-QP approach, black line)

2.3.2 Bayesian approach

Besides the frequentist approaches, the problem of ICLS esti-
mation can also be tackled using Bayesian statistics. Here the
inequality constraints are converted into prior information
on the parameters. Geweke (1986) suggested this approach,
which was further developed and introduced to geodesy by
Zhu et al. (2005).

According to Bayes’s theorem:

f (x|y) = f (y|x) f (x)

f (y)
(7)

the posterior probability density f (x|y) of the parameters,
given a set of observations, can be described as the product
of the likelihood function

f (y|x) = f (v) ∝ exp

{
− 1

2σ 2
0

vT Q−1 v

}
(8)

depending on the residuals v, the variance–covariance matrix
of the observations Q and the prior distribution f (x) of the
parameters (cf. Koch 2007, p.89). Usually a uniform distri-
bution of the form

f (x) =
{ 1

s , if BTx ≤ b
0, otherwise

(9)

is used. The constant s ensures, that the integral over the
whole space is equal to one. In statistics, the normalization
term f (y) is often neglected, resulting in

f (x|y) ∝ f (y|x) f (x). (10)

The idea with this method is that we assume that the
observations y and the residuals v a priori follow the nor-
mal probability density function f (y) and f (y|x) = f (v),
respectively, and further we assume that the possible solu-
tions x a priori follow a uniform density function within the
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given constrained bounds. Thus, inserting these probability
densities in (10) provides us with an a posteriori density func-
tion as follows

f (x|y) ∝

⎧⎨
⎩ exp

{
− 1

2σ 2
0

vT Q−1 v
}

1
s , if BTx ≤ b

0, otherwise
. (11)

The posterior density is a truncated (piece-wise contin-
uous) version of the prior distribution of the observations,
where the truncation points are determined by the constraints.
If the truncated posterior distribution has to be treated like a
probability density function, then the area under the function
must be equal to one. This is not the case for the truncated
function. One way of dealing with this condition is to nor-
malize the posterior density with a constant factor. However,
this results in a scaling of the whole PDF (see gray line in
Fig. 2) meaning that the constraints influence not only the
boundary regions but the complete PDF.

An advantage of this approach is that it gives an analyt-
ical expression for the stochastic description of the ICLS
estimate. However, the numerical evaluation of the PDF is
computationally very expensive in the multivariate case. Fur-
thermore, distributing the probability mass that is outside the
feasible region over the whole PDF (i.e. scaling), might not
be the most realistic treatment. We suggest that a more proper
treatment would be to move the probability mass outside the
feasible region only as far as needed to satisfy the constraints
(see black line in Fig. 2). Therefore, in the next section we
propose a (frequentist) Monte Carlo approach, which follows
the idea described above.

One could also think of a modification of the Bayesian
method (e.g. using Dirac delta functions to model the sin-
gularities at the boundaries of the feasible set as is done
in Albertella et al. 2006). However, the modification of the
Bayesian approach will not be pursued here as it is not the
intention of the current contribution.

3 A stochastic framework for ICLS estimates

We subdivide the task of defining a stochastic framework for
ICLS estimates into the problem of quality description and
the problem of measuring the influence of the constraints.
Afterwards, both parts are combined to the aforementioned
stochastic framework.

3.1 Quality description

Along the line of thought at the end of Sect. 2.3.2 we develop
a method to compute a (possibly multivariate) PDF of the
estimated parameters with the property, that all the probabil-
ity mass in the infeasible region is projected to the nearest
spot in the feasible region due to the metric of our objective

function. In the absence of analytical expressions, we use a
Monte Carlo method to compute an empirical PDF of the
parameters, which also allows to derive confidence regions.

3.1.1 Deriving the posterior PDF of the parameters

The general idea is to generate M samples of the observa-
tions, according to their distribution (which is assumed to be
known). All M realizations of the observations are seen as
independent problems and solved via an optimization method
(e.g. the active-set method) resulting in M realizations of the
estimated parameters. If M is chosen large enough, the his-
togram of the parameters will be an adequate approximation
of the PDF of the estimated parameters. In the following, all
steps will be described in detail:

First we compute the ICLS solution x̃ and the OLS solu-
tion of the unconstrained problem (1)

x̂ = (ATQ−1A)−1ATQ−1y, (12)

which will be used to determine the expectation value of the
observations

E{Y} = ŷ = E{AX } = Ax̂. (13)

Henceforth in this paper, unconstrained quantities are marked
with a hat to distinguish them from quantities of an adjust-
ment with constraints, which are indicated by a tilde. Assum-
ing the most general case in which the variance–covariance
matrix Q of observation vector Y is fully populated, a Monte
Carlo simulation for correlated data can be carried out using
the Cholesky factorization (cf. Alkhatib and Schuh 2007).
Therefore, the positive definite variance–covariance matrix
Q of the observations is decomposed into the product of two
upper triangular matrices R:

Q = RTR. (14)

This is expedient to model the full stochastic information
of the observations. Afterwards, M independent samples
s(i)

e are generated using the standard normal distribution
E ∼ N (0, I). The superscript (i) denotes the number of
the sample (i = 1, 2, . . . , M). Now the vector s(i)

e is trans-
formed to

s(i)
�y = RTs(i)

e .

All vectors generated in that manner are realizations of the
random vector �Y ∼ N (0, Q) representing the colored
noise of the observations. Adding the noise vectors to the
estimated observations ŷ we get M realizations of the obser-
vation vector

y(i) = ŷ + s(i)
�y. (15)

For each of these M realizations of the observations, we com-
pute a sample s(i)

x̃ of the estimated parameters x̃ using the
active-set method to solve the ICLS problem. Usually, when
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performing a Monte Carlo simulation to determine the accu-
racy of an estimate, an empirical variance–covariance matrix
is estimated from the parameters

���{X̃ } = E{(X̃ − E{X̃ })(X̃ − E{X̃ })T}. (16)

However, as mentioned before, this second central moment
would not contain the full stochastic information in the
inequality constrained case because we have to deal with
truncated PDFs. Therefore, it is more conducive to compute
an m-dimensional histogram of the parameters. This histo-
gram can be seen as a discrete approximation of the joint
PDF of the parameters. Approximations of the marginal den-
sities can be computed the same way, adding up the particu-
lar rows of the hyper matrix of the histogram. The quality of
approximation of the continuous PDF depends directly on M
(cf. Alkhatib and Schuh 2007), which therefore has to be cho-
sen in a way that allows a satisfactory approximation while
keeping the computation time at an acceptable level. In each
Monte Carlo iteration a new optimization problem has to be
solved. However, as the solution of the original ICLS problem
can be used as initial value for the parameters, convergence
of the active-set method is usually quite fast.

3.1.2 Optimal ICLS solution

Having obtained the posterior density, one can think of at
least four different possibilities to define an optimal point
estimate (cf. Zhu et al. 2005): the mean, the median, the
mode and the solution that minimizes the original ICLS prob-
lem. As the introduction of inequality constraints might lead
to multi-modal distributions (due to the accumulation at the
boundaries), mean and mode are in general improper.

Empirical studies have shown that the median of the PDF
and the point that minimizes the original problem often are
very similar but not necessarily the same. Henceforth in this
paper, we will use the term solution to refer to the solution
of the original problem as it is more convenient to compute.
As this is either the OLS estimate or its projection onto the
boundary of the feasible set (cf. Sect. 2.2), it is best in the
sense that it is the solution with the smallest sum of squared
residuals of all feasible points.

3.1.3 Confidence regions (HPD regions)

Different definitions of confidence regions have been devel-
oped. One concept, which is perfectly suited to be combined
with Monte Carlo methods is called highest posterior den-
sity (HPD) region. It gives a quality measure of the estimate
in form of a region Ω containing a certain percentage (e.g.
95 %) of the samples

P(x ∈ Ω|y) = 1 − α. (17)

1−α is the level of significance. According to Chen and Shao
(1999) a region is called a HPD region if it is the smallest
possible region with the property that every point inside has
a higher density than every point outside the region.

Benefits of HPD regions are, that they do not rely on
(asymptotic) normality assumptions, and are able to describe
also multimodal densities. However, one has to be aware that
they are computationally expensive to obtain, and may not
be connected in the multimodal case (Chen and Shao 1999,
p. 84). As stated in GUM Supplement 1 (Joint Committee
for Guides in Metrology 2008, p. 30) HPD intervals of a one
dimensional problem can be computed by sorting the results
of the Monte Carlo study and discarding the smallest and
biggest α

2 percent. This definition is easily extended to the
multivariate case (cf. Roese-Koerner et al. 2011).

In contrast to the traditional approach working with the
first two moments of the PDF, in the HPD approach no
assumptions about the geometry of the confidence regions
are needed. This is a necessary feature as we will have to deal
with ellipses truncated by constraints and possibly extended
along the boundary of the feasible set.

3.2 Analysis tools for constraints

Besides the actual quality description, it might also be rea-
sonable to measure the influence of the constraints on the
solution. We will present tools to perform such an analysis:
Two global measures to investigate if the data support the
constraints in general, and a local measure to determine the
influence of each constraint.

3.2.1 Testing the plausibility of the constraints

In order to test if the introduction of inequality constraints
results in a significant change in the parameters, a testing
procedure according to Wald (1943) is applied, which was
first used in the inequality constrained case by Koch (1981).
Usually this test is used in the equality constrained case. In
order to apply the Wald test for inequality constraints, the
ICLS problem is solved, all pa active constraints

BT
a x = ba

are treated as equality constraints and all inactive constraints
are neglected as in the approach of Liew (1976). Then the
estimation is carried out as a two-step approach. In a first
step an OLS adjustment is done:

y + v = Ax, Q{Y} = Q (18)

Q{X̂ } = (ATQ−1A)−1 (19)

x̂ = (ATQ−1A)−1ATQ−1y = Q{X̂ }ATQ−1y (20)

v̂ = Ax̂ − y. (21)
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Afterwards, an adjustment of the equality constraints is car-
ried out.

BT
a (x̂ + r) = ba (22)

r = −Q{X̂ }Ba(BT
a Q{X̂ }Ba)

−1(BT
a x̂ − ba) (23)

x̃ = x̂ + r. (24)

Now, the estimated a posteriori variance factor of the first
step

ŝ2
1 = v̂TQ−1v̂

n − m
(25)

and of the second step

ŝ2
2 = rTQ{X̂ }−1r

pa
(26)

are computed and the actual hypothesis testing is carried out
via the Wald test.
Test hypothesis H0 vs. hypothesis HA:
H0: The changes through the equalities are not significant.
HA: The changes through the equalities are significant.

As Ŝ2
1 and Ŝ2

2 are independent (cf. Koch 1999, p. 273–
274), the test statistic

T = Ŝ2
2

Ŝ2
1

∼ Fpa,n−m (27)

follows the Fisher distribution, as it is the ratio of two inde-
pendent, χ2 distributed quantities, which are reduced by their
degrees of freedom (n−m and pa, respectively). Now, a level
of significance 1 − α is chosen (e.g. 95 %) and a one-sided
test is carried out. If the test statistic of the Wald test is less
than or equal to the critical value of the Fisher distribution,
then the changes due to the constraints are not significant.
This is equivalent to the statement, that the constraints only
lead to small changes in the parameters. If the test statistic is
greater than the critical value, then the constraints are very
strong and will change the result significantly. In this case,
each constraint can be tested separately, if required.

Similar to Liew (1976), we can conclude from this test
solely if the equality constraint problem is supported by the
data or not. We can draw no conclusions what will happen
if other inequality constraints become active, because in that
case a different hypothesis testing would be carried out, due
to the changes in the test statistic and in the degrees of free-
dom. However, for the set of constraints active in the actual
solution, the hypothesis testing does allow interpretation as
stated above.

3.2.2 Probability mass in the infeasible region

Another global measure of the change in the result due to
the introduction of constraints is the ratio d of estimates in
which at least one constraint is active (ICLS estimates) com-
pared to the total number of estimates (=number of Monte

Carlo iterations). If at least one constraint is active, then the
unconstrained OLS solution will be in the infeasible region.
Therefore, d is an unbiased estimator of the probability mass
outside the feasible region. If it is close to one, then in nearly
every sample of the Monte Carlo study the optimal solution is
projected onto the boundary of the feasible set. If d is close to
zero, then the constraints have solely a very small influence
on the estimation process.

3.2.3 Sensitivity analysis

In order to determine the influence of each constraint on each
parameter, we set the derivative with respect to the parame-
ters x of the Lagrangian (3b) of the ICLS problem equal to
zero

∂L

∂xT = 2Nx − 2n + Bk != 0. (28)

Resolving for x, yields

x̃ = x̂ −1

2
Q{X̃ }Bk̃︸ ︷︷ ︸

�x

= x̂ + �x. (29)

With this explicit relation between the unconstrained solution
x̂, the constrained solution x̃ and the Lagrange multipliers k̃
it is possible to do a sensitivity analysis. The perturbation of
x̂ consists of three parts:

1. influence of the Lagrange multipliers k̃,
2. influence of the design Q{X̃ },
3. influence of the matrix B of constraints.

As a rule of thumb one can say that the larger the value of the
Lagrange multiplier is, the larger is the perturbation by the
related active constraint. If there are no correlations between
the parameters and each constraint contains only one parame-
ter (called independent constraints), then one constraint only
influences one parameter. If there are correlations between
the parameters, then the constraints will also have an influ-
ence on all the correlated parameters. The individual influ-
ence of each constraint on the parameters can be determined
(only Lagrange multipliers of active constraints have values
different from zero) by evaluating (29).

According to Boyd and Vandenberghe (2004, p. 252) the
Lagrange multipliers can be interpreted as a measure for the
activeness of a constraint. If the Lagrange multiplier k̃i is
zero, there will be no change in the sum of squared residuals
Φ(x) through the i th constraint. For small values of k̃i , there
will be an effect on Φ(x), which will be small, whereas for
large k̃i even small changes to the constraints can result in
great changes in Φ(x). Needless to say, that this is just a rule
of thumb as in (29) there still are the influences of the VCV
matrix Q{X̃ } and the constraint matrix B.
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3.3 Monte Carlo quadratic programming method

In order to gain as much information about the quality of
the estimate, all tools described above are now combined
into a framework for the stochastic description of ICLS esti-
mates. In this Monte Carlo quadratic programming (MC-QP)
method, we are no longer restricted to compute solely the
solution of an ICLS estimator, but can also determine some
of its statistical properties. The proposed stochastic frame-
work is summarized as pseudo code in Algorithm 1.

Algorithm 1: A Stochastic framework for ICLS esti-
mates: The MC-QP method.

[x̂, ŷ] = solveOlsProblem(A, y, Q)
[x̃, ỹ, k̃] = solveIclsProblem(A, y, Q, B, b, x̂)

hypothesisTesting(x̂, A, Q, ŷ, B, b)
for i = 1 : M do

generate sample s(i)
Y of Y ∼ N (AX̂, Q)

[s(i)
x̃ , sỹ, sk̃] = solveIclsProblem(s(i)

Y , A, Q, B, b, x̃)

end
f = computeEmpiricalPdf(sx̃)
deriveConfidenceRegions(f)
sensitivityAnalysis(A, Q, B, k̃)
d = computeProbabilityMassInInfeasibleRegion(sk̃)

First the OLS and ICLS solutions are determined and a
hypothesis testing is carried out to determine if the constraints
are plausible. If the null hypothesis is discarded (meaning
that the data do not support the constraints), one can decide
whether to compute the solution with or without constraints
(depending on the problem).

Afterwards a Monte Carlo simulation is carried out, the
empirical probability density function of the parameters X̃
is computed, and their confidence regions are derived. The
influence of each constraint on each parameter can be deter-
mined in a sensitivity analysis using the Lagrange multipliers
k̃. As an overall measure for the influence of the constraints
the percentage d of the probability mass outside the feasible
region and on its boundary can be computed.

4 Application of MC-QP method

In this section, three examples will be shown to elucidate the
framework for stochastic description of the ICLS estimates.
The first two examples are bivariate examples, which are sim-
ple problems to explicitly show the features of the MC-QP
method. The third example is a multivariate example, which
is designed to show mainly the sensitivity analysis capabili-
ties of the MC-QP approach. Further, most of the real-world
problems are multivariate and hence, this example will show
the full capability of the approach. Stochastic description

−5

0

5

−5 0 5

Fig. 3 Illustration of some of the observations (gray dots), the OLS
line-fit (gray line) and the ICLS line-fit (dashed black line)

based on the Bayesian method of Zhu et al. (2005) will also
be shown for comparison.

4.1 Line of best fit

The first example that will be illustrated is that of a line of
best fit, where the parameters that need to be estimated are
the slope (x1) and intercept (x2) of the line (Fig. 3).

4.1.1 Independent constraints

The observations along the line are generated by taking an
arbitrary slope x1 = 1.3 and intercept x2 = 1.5, and to
these true values white-noise is added in form of the vector
E ∼ N (0, I):

yi = ti x1 + x2 + ei (30a)

y = A x + e, x =
[

x1

x2

]
. (30b)

To this line-fitting problem inequality constraints are added,
which are given as[

x1

x2

]
≤

[
1.30
1.85

]
. (30c)

Therefore, the constraint matrix becomes B = I. The iden-
tity matrix implies that the constraint applied to one parame-
ter is functionally independent of the one applied to the other
parameter. Such constraints will be referred to as indepen-
dent constraints. In such cases, the application of constraints
is equivalent to applying constraints in a univariate case, pro-
vided the parameters are uncorrelated.

Now, the stochastic framework outlined in Sect. 3.3 is
applied to this ICLS problem. The numerical results show
that the OLS estimate of the slope already satisfies the
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Table 1 Numerical results from the line-fitting problem with indepen-
dent constraints)

ICLS estimates: d = 67 % Wald test: 0.17 < 4.38
The table on the left shows the estimates OLS (x̂) and ICLS (x̃). The table
on the right shows the sensitivity analysis performed with Lagrange
multipliers (k̃), which indicate that there is only one active constraint
(k̃2) and it contributes to the perturbations (�x) in the ICLS estimates.
d = 67 % is the percentage of probability mass in the infeasible region.
The result of the Wald test shows that the test statistic 0.17 is smaller than
the critical value of 4.38, meaning that the data supports the constraints
(cf. Sect. 3.2.1)

constraint but that of the intercept does not. After apply-
ing the ICLS estimation both estimates have been changed
(cf. Table 1). Sensitivity analysis of the parameters using
the Lagrange multipliers (k̃) shows that the constraint on
the slope is inactive (k̃1 = 0), while the constraint on the
intercept is active (k̃2 = 3.474). However, the active con-
straint on the intercept contributes to both the changes in

slope and intercept, and that is due to the negative correla-
tion introduced by the design matrix A. Analytically, this can
be explained using (29), where if B = I then

�x = −1

2
Q{X̂ }k̃. (31)

In (31), the covariance matrix Q{X̂ } , describes the correla-
tions between the parameters. If the parameters are correlated
in the independent constraints case, they directly affect the
perturbations �x.

It is valid to question the utility of the inactive constraints
in ICLS problems as they do not directly contribute to the
estimation process. However, the inactive constraints in addi-
tion to the active constraints define the parameter space, and
therefore the probability space of the estimates. Therefore,
while the inactive constraints can be neglected within the esti-
mation process, if they are already known, they are essential
for describing the quality of the parameter estimates.

The quality of the estimates from OLS, MC-QP and the
Bayesian methods are shown in Fig. 4. The peak of the ICLS
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Joint PDF from MC-QP method after 10,000,000
Monte Carlo iterations

(a) Marginal PDF of x1(b)

Marginal PDF of x2(c) Joint PDF from Bayesian method(d)

Fig. 4 Probability density functions (joint and marginal) from the line-
fitting problem with independent inequality constraints. The contours in
joint PDFs and gray bars in the marginal PDFs are from OLS estimates.
In the marginal PDFs black lines indicate MC-QP method and gray lines

indicate Bayesian approach. The dotted lines indicate the truncation by
the constraints. The HPD region in the joint PDFs is marked as a black
contour line. The accumulation (MC-QP) and scaling (Bayesian) dif-
ference is clearly evident both in the joint and marginal PDFs
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Fig. 5 Probability density functions (joint and marginal) from the line-
fitting problem with dependent constraints. From the joint PDFs it is
clear that this is a bounded constraint problem as the densities are con-

fined to the triangular region formed by the constraints. Due to the
inclined plane x1 + x2 ≥ 3, there is complex accumulation of the prob-
ability densities taking place in the marginal PDF of x2

Table 2 Results from the line-fitting problem with dependent
constraints

ICLS estimates: d = 79 % Wald test: 0.17 < 4.38
The arrangement of the tables is the same as that of Table 1. Despite the
ICLS estimates being identical to those in the independent constraints
case, the probability mass in the infeasible region, indicated by d, is sig-
nificantly different. This is a clear indication of the influence of inactive
constraints on the statistical properties of the estimate

PDF of slope (x1) is slightly shifted from that of the OLS
PDF. This is an interesting case, since the constraints that

were applied were independent of each other. The reason
for this shift in the peak is the negative correlation between
the slope and intercept of the line: if the slope increases the
intercept has to decrease and vice-versa. On further scrutiny,
a similar shift has not taken place in the PDF of the intercept,
whose OLS estimate has not satisfied the constraints. This
is due to the spread of the probability densities of the inter-
cept, and hence the slope introduced by the correlation does
not affect the accumulation of the densities. Therefore, the
inactively constrained estimates will undergo a shift in their
values based on the correlation between the parameters and
the size of the changes in the values of the actively constrained
estimates. In this context, it should be mentioned that even
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Fig. 6 Observations (gray dots), and the OLS (gray line) and ICLS
(black line) fits to the observations of the positive cosine function esti-
mation problem

though the constrained and unconstrained estimates seem to
be very similar in this example (cf. Fig. 3), their respective
probability densities are entirely different (cf. Fig. 4).

In general, whether a frequentist or a Bayesian approach
is followed, one should arrive at the same result for the confi-
dence regions and the PDF curves (neglecting the roughness
which is a consequence of the Monte Carlo sampling). How-
ever, in the example problem (30), the two approaches differ
drastically (cf. Fig. 4). The drastic difference is mainly due
to the way in which the boundary of the truncated parameter
space is treated in the Bayesian method (scaling or accu-
mulating). This difference ends up in the different sizes of
the HPD regions: a compact HPD region for the MC-QP

approach and wider one for the Bayesian approach. A modi-
fication of the Bayesian method for a similar treatment of
the boundary conditions should provide the same quality
description as the MC-QP method (cf. Sect. 2.3.2).

4.1.2 Dependent constraints

An additional constraint is added to the line-fitting problem
defined in (30) such that it relates both the parameters, as
follows

⎡
⎣ x1

x2

−x1 − x2

⎤
⎦ ≤

⎡
⎣ 1.30

1.85
2.90

⎤
⎦ . (32)

Now the constraint matrix B is not an identity matrix anymore
due to the constraints being dependent on both the parame-
ters. Such constraints will be called dependent constraints.
The stochastic framework is applied to the ICLS problem
subject to the constraints of (32). The third constraint that
was added is an inactive constraint, and hence the ICLS esti-
mated parameters have the same values as in the problem
with independent constraints. This is further confirmed by
the Lagrange multipliers of the constraints (cf. Table 2).

Though the estimates of the ICLS problem with indepen-
dent constraints and dependent constraints are equivalent,
their joint PDFs are completely different. The striking dif-
ference is seen in the marginal density function (MDF) of the
intercept x2 (cf. Fig. 5). While the MDF from the indepen-
dent constraints is only affected at the boundary between the
feasible and infeasible region, the MDF from the dependent
constraints is affected on either side of the boundary. This is
clearly due to the constraint (x1 + x2 ≥ 3) cutting diagonally
across the joint density function. The addition of the third
constraint, although inactive, is felt most in the HPD region:

Table 3 Results from the ICLS estimation and sensitivity analysis for fitting a positive cosine function

ICLS estimates: d = 100 % Wald test: 1.98 < 2.08
The table on the left shows the estimates from OLS (x̂) and ICLS (x̃), and the table on the right shows the sensitivity analysis based on the Lagrange
multipliers (k̃). Sensitivity analysis is only shown for the active constraints as the contributions from inactive constraints (k̃0, k̃1, k̃2, k̃5, k̃6, k̃8 and k̃9)
are always zero. Bold values indicate the influence of a constraint on the corresponding parameter. In all estimates at least one constraint is active
(d = 100 %). Nonetheless, the Wald test yields a test statistic of 1.98, which is less than the critical value of 2.08. This is a lot closer to the critical
value compared to the previous examples
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Fig. 7 Probability density functions (joint and marginal) of the
positive cosine function estimation problem after 1,000,000 Monte
Carlo iterations. Three different pairs of joint PDFs are shown:
x3 & x4, x4 & x1and x1 & x8. The contour lines are from the OLS esti-
mate and the dotted lines are the constraints. These pairs show the range

of joint PDFs that can be expected from a multi-dimensional estima-
tion problem. While some joint PDFs are entirely in the feasible region,
some of them are either partly or entirely in the infeasible region. Due
to the negligible correlation between the parameters, all the OLS joint
PDFs are near circular

The region is far more compact for the dependent constraints
than in the independent constraints case.

4.2 Estimation of a positive definite covariance function

The 2-D example with dependent and independent con-
straints showed the utility of the stochastic framework
developed here. In order to demonstrate the utility of the
stochastic framework in a more realistic scenario, a multi-
dimensional example is chosen. Also, in the multivariate case
the importance and benefits of sensitivity analysis becomes
more explicit.

The multi-dimensional example that will be used here is
that of fitting a positive cosine expansion to a set of obser-
vations (cf. Fig. 6). Again, the true observations were cor-
rupted by a vector of white noise: E ∼ N (0, I). Despite
the fact that we are dealing with an equally sampled pos-
itive cosine function, we have small correlations between
some of the parameters as we have not sampled a com-
plete period. The maximum degree of the cosine expansion
is m = 9, and since it is a positive cosine expansion, the coef-
ficients of the expansion must be positive, which will be the
independent inequality constraints enforced on the parame-
ters. Therefore, the observation equation of our model for an
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arbitrary i th observation and the parametric constraints read
as

yi + vi = x0

2
+ x1 cos 1ωti + · · · + xm cos mωti , (33a)

x j ≥ 0, j ∈ [0 m], (33b)

with the angular frequency ω = 2π
T , period T, n equally

spaced supporting points ti ∈ [0 0.5) and m + 1 unknown
parameters x0 . . . xm . In matrix form the above equations will
read as

y + v = A x, (33c)

x ≥ 0. (33d)

After applying the stochastic framework to estimate the
parameters and the quality of the estimates, the results from
OLS show that there are three parameters (x3, x4 and x7) that
have negative values, and hence the constraints on these three
parameters have become active (cf. Table 3, left-hand-side
table). The estimates of these parameters have been moved
to the boundary not just by the respective independent con-
straints but also by the other active constraints. Again, this
is due to the correlation between the parameters as was in
the 2-D case [cf. (31)]. Further, the largest Lagrange mul-
tiplier is that of k̃7 and the corresponding absolute change
�x7 to the parameter x7 is the largest as well, which is again
explained by (31). Figure 7 shows the range of joint and mar-
ginal PDFs that can be expected from a multi-dimensional
estimation problem.

Although the method is based on the empirical Monte
Carlo approach, a lot of quality information can already be
obtained from the quadratic programming algorithms them-
selves. For example, the Lagrange multipliers can be used to
carry out sensitivity analysis, which clearly demarcates the
active and inactive constraints and their respective contribu-
tions to the perturbation of all the parameters.

5 Summary and conclusions

A framework for the stochastic description of ICLS estimates
has been developed. It has been shown that with the proposed
MC-QP approach an empirical PDF of the constrained esti-
mate can be determined. The resulting truncated confidence
regions are usually smaller (more compact) than the ones of
an OLS estimate or the ones computed with the Bayesian
method of Zhu et al. (2005). Furthermore, we have given
two global measures for the influence of the inequality con-
straints: the result of a hypothesis testing and the percent-
age of probability mass outside the feasible region. In addi-
tion, it was discussed how the local influence of each con-
straint on each parameter can be determined using Lagrange
multipliers.

The main drawbacks of the existing methods are over-
come by this new approach. The concept of projecting infea-
sible solutions on the boundary of the feasible set instead of
neglecting them, leads to a PDF which is—in the opinion
of the authors—more realistic than the one from the Bayes-
ian method as all available information (even the part in the
infeasible region) is used.

Our method is also more robust to changes in the active
constraints (despite the hypothesis testing) than Liew’s active
constraint approach and also takes into account the influence
of inactive constraints on the statistical properties of the esti-
mate. However, carrying out a Monte Carlo approach remains
a computationally expensive task.

It was shown, that no disturbance through the constraints
take place inside the feasible region (i.e. the PDF in the fea-
sible region is identical to the one of an OLS estimate). All
changes due to constraints take place at the boundary of this
set. If the optimal estimate lies within that feasible region,
then there will be no influence of the constraints on the solu-
tion vector itself, but there still will be an influence on its
statistical properties. That is because prior knowledge given
in the form of inequality constraints can be used to find a
smaller confidence region of the desired parameters (due to
the concentration of the probability mass in the infeasible
region at the boundaries of the feasible set).

The major disadvantage of ICLS problems is the inability
to represent the complete stochastic information in form of a
variance–covariance matrix as the description of the first two
moments of the PDF is no longer sufficient. Therefore, it also
difficult to describe correlations between the parameters of
the ICLS problem. As can be seen for example in Fig. 5a the
introduction of inequality constraints does not change the
orientation of the truncated confidence (hyper-)ellipsoids.
Therefore, it can be assumed that the correlations in the
ICLS case are similar to the ones in the OLS case. However,
we have seen in Sect. 4.1.2 that an additional dependency
between the parameters can be introduced by the constraints,
which might as well be interpreted as a kind of correlation.
The determination of correlation will be further investigated
in future work.
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