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Abstract The issue of combining high-resolution gravity
models, based on observations taken on the Earth surface,
with those derived from satellite-only observations is of
increasing importance, due to the new data provided by grav-
ity satellite missions, CHAMP, GRACE and GOCE. The pa-
per addresses this issue with a twofold purpose. On the one
hand, it is an attempt to discuss and assess general concepts,
well known in literature, such as achievable resolution, reg-
ularization in the least-squares sense or in an infinite dimen-
sional setup, combination criteria, symmetry and block
diagonal structures. In particular, as for the symmetry ques-
tion, a well-defined result, generalizing known facts, is
derived. On the other hand, the outcomes of the general
discussion are specifically applied to the combination of a
high-resolution model (e.g. EGM08) with a GOCE gravity
model estimated by the so-called space-wise approach. Small
numerical examples are developed to clarify the property of
the proposed solution.
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1 Introduction and definition of the problem

One of the main achievements of the past few years in the
process of improving the knowledge of the gravity field of the
Earth is constituted by the establishment of the global grav-
ity model, EGM08, see Pavlis et al. (2008), complete up to
the maximum degree 2,159 with some coefficients estimated
up to degree 2,190, roughly implying a ground resolution of
5′ × 5′, and an overall accuracy expressed by a commission
error of about 9 cm.

Yet, the approach used to combine the huge and inhomo-
geneous “ground” material (primarily gravity, digital terrain
models and mean radar altimetry) goes through a number of
approximation steps culminating in the final estimation by
the so-called block diagonal least-squares techniques (Pavlis
et al. 2008). The success of this global model could not be
so important without the joint use of the information derived
from satellite observations, namely the spherical harmonic
coefficients of the GRACE model ITG-GRACE03S (Mayer-
Gürr 2006). In the near future, the problem of producing
a new global model that will incorporate the information
derived from the GOCE mission (ESA 1999) in the form of
a GOCE-only model (Pail et al. 2011) will have to be solved.

The problem is indeed not new and it has been discussed
many times in literature (see for instance the pioneering work
by Kaula 1966a) as well as already applied in one form or the
other in the computation of different families of global mod-
els (for instance the EGM series: see Lemoine et al. 1998,
the EIGEN series: see Reigber et al. 2005, the OSU series:
see Rapp 1984, or the TEG series: see Tapley et al. 1997, Ch.
10, just to mention a few).

The approach applied to produce such a combined model
has been basically a least-squares approach, leading to a di-
rect sum of normal matrices, usually requiring the solution of
the delicate problem of determining their relative weighting,
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due to the imperfect knowledge of the error covariance struc-
ture of the estimated coefficients.

On the other hand, there are approaches to the production
of satellite-only global models that do not follow a least-
squares criterion and therefore for them there is no normal
matrix available. For instance, for the GOCE mission one
of the ways in which a global model is produced is the
so-called space-wise approach (SpW) in which no normal
equations are implemented and so no normal matrix is avail-
able (Migliaccio et al. 2004; Reguzzoni and Tselfes 2009).
Nevertheless, an error covariance matrix of the spherical har-
monic coefficients is computed for the SpW solution. This
in fact, following a line of thought introduced in geodesy
by Gundlich et al. (2003) to work out the covariance of the
EGM96 model (Lemoine et al. 1998), can be obtained via
Monte Carlo methods (Alkhatib and Schuh 2007; Migliac-
cio et al. 2009).

This paper tries to propose a solution to the problem
of combining two global models under the above condi-
tions. In order to properly define such a solution we found
it important to answer a number of questions which we list
below:

• before merging two existing solutions, should we resort to
a pure finite dimensional deterministic theory, namely a
least-squares method after reduction of the solution space
to a finite number of parameters, or should we use infinite
dimensional methods like in collocation? Moreover, to
what extent are the solutions different from one another?
See also Colombo (1981); Moritz (1989); Bosch (1993);
Krarup (2006);

• is there a point where the two approaches, least-squares
and collocation, diverge significantly, either algorithmi-
cally or numerically? See also Rapp (1975);

• in order to implement the merging, in particular for the
case at hand, is it necessary to resort to the observations
or can we just use the estimated coefficients and their
covariance matrices? See also Koch (1999);

• since the reduction of the numerical effort to the solution
of a block diagonal (or almost block diagonal) “normal”
system is a key issue for its feasibility, what is the hypoth-
esis that we implicitly impose on the data by using such
a technique? In particular, is a block diagonal structure
of the normal system of collocation theory necessarily
related to the (certainly unrealistic) hypothesis of isot-
ropy of the underlying field? See also Colombo (1981);
Sansò and Tscherning (2003); Boxhammer and Schuh
(2006);

• what is the best way of applying a block diagonal approx-
imation? In particular, should we average out the factors
that produce non-zero entries out of the block diagonal
pattern or should we only compute a full normal matrix
and then disregard the non-block diagonal terms?

• what is the effect of using a block diagonal approximation
to the combination of models like EGM08 and GOCE-
only? In particular, is this approximation restricting the
influence of the newly achieved GOCE model on the com-
bined solution coefficients to the maximum degree and
order of the satellite-only model?

To all these questions we try to give an answer. In par-
ticular the first four questions are already well discussed in
geodetic literature, but we recall them trying to provide some
improvement and always comparing the least-squares with
the collocation approach. To the last two questions we try to
answer by means of small numerical examples, attempting to
capture the essential features of the numerically much heavier
real case; similar studies on the impact of the block diagonal
approximation can be found for instance in Gruber (2001).

Closing this section, we introduce some elements of the
notation that we shall employ, in order to keep formulas as
concise as possible. In particular, we shall assume that the
gravity anomalous potential T (x) on a reference sphere, with
radius r = R, can be represented by a possibly infinite dimen-
sional series of spherical harmonics

T (x) =
+∞∑

n=2

n∑

m=−n

Tnm Snm(x), (1)

where x = (R, ϑ, λ),

Snm(x) = Pn,|m|(ϑ)
{

cos mλ m ≥ 0
sin |m|λ m < 0

(2)

and Pn,|m| are the fully normalized Legendre functions
(Heiskanen and Moritz 1967).

To shorten the formula (1) one can introduce the vector
of the harmonic coefficients T ≡ {Tnm}, originally ordered
degree by degree, i.e.

TT ≡ [. . . ; Tn,−n, . . . Tn,0 . . . Tn,n; . . .] (3)

n = 2, 3, . . .

The upper limit of n in (3), depending on the context, can
be either ∞ or just a very high number like N = 2,159, i.e.
the maximum degree of the high-resolution prior model.

Correspondingly, and keeping the same ordering scheme,
one can define the vector S(x) = {Snm(x)}, so that (1) simply
writes

T (x) = TTS(x). (4)

When useful the vector T will be split into two parts. One,
T(N ), is the same as (3) but with n running from 2 to N , while
the other T(N ) is the same as (3) but with n running from N+1
up to the upper limit, N or +∞. So we can always put

T =
∣∣∣∣

T(N )
T(N )

∣∣∣∣ . (5)
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The same splitting can be applied to the vector S(x) or
even to any matrix A multiplying T, to the extent that we can
write

A = [A(N ),A(N )] (6)

and

AT = A(N )T(N ) + A(N )T(N ). (7)

Since the case will be often present that N is just the
maximum order of the new satellite-only global model (e.g.
N = 250), we shall adopt the notation TS for the corre-
sponding vector of coefficients. When on the contrary the
maximum degree is N , the degree of the prior global model,
we shall call the vector TG.

In this particular case we shall write

TG =
∣∣∣∣
TS

Tr

∣∣∣∣ (8)

to indicate that Tr contains the remnant of TS, e.g. all the
degrees between 251 and 2,159.

A similar notation will then be adopted for vectors or
matrices that multiply TG. Other reorderings of T will be
needed in the text, e.g. grouping coefficients with the same
order, but they will be clarified from time to time.

2 Finite versus infinite dimensional solutions

It has been mentioned in the previous section that there are
alternative approaches to the estimation of the coefficients
of a global model; either the reduction to finite dimensional
spaces followed by a least-squares application, or the use
of collocation concepts, which work directly into an infinite
dimensional Hilbert space (Sansò 1986).

The purpose of this section is to recall the relation between
the two solutions and to analyse under what conditions they
are equivalent and in particular under what conditions a trun-
cated solution T̂(N ) can be considered to provide a good
approximation to the sought global model.

There are two different interpretations of the collocation
approach to treat the linear problem

Y = AT + ν, (9)

with T ∈ R∞. In one of them, T is treated as an R∞ random
vector with known covariance matrix CT that for the sake of
simplicity we shall assume to be diagonal. In this case T̂ is
determined as the linear predictor that minimizes the mean
square prediction error. In the other approach, the predic-
tor T̂ (x) = T̂

T
S(x) is restricted to some Hilbert space HK ,

with reproducing kernel K (x, y) and determined on the basis
of the hybrid norm or regularized least-squares collocation
principle

Min
T

{
(Y − AT)TC−1

ν (Y − AT)+ ‖ TTS(x) ‖2
HK

}
. (10)

When K (x, y) is isotropic, i.e.

K(x, y) =
∑

n

kn Snm(x)Snm(y), (11)

the principle (10) can be re-formulated as

Min
T

{
(Y − AT)TC−1

ν (Y − AT)+ TTK−1T
}

(12)

where K−1 is an infinite dimensional diagonal matrix with
diagonal elements k−1

n . It is known since long that the two ap-
proaches described above are equivalent on condition that the
two matrices CT and K are equal, i.e. when we interpret Tnm

as uncorrelated random variables with zero mean and vari-
ances equal to kn (Sansò 1986; Sansò et al. 2000). So we shall
not dwell on this proof of equivalence, but we shall inves-
tigate the relation between this solution and a least-squares
solution when the full available information is exploited.

In fact if we add to the observation equations

Y = A(N )T(N ) + ν (13)

the further pseudo-observation equations

T(N ) = η, (14)

with the assumption that the average E{η} = 0 and given the
covariances Cν , Cη [diagonal, with variances σ 2

n (T )] and
Cνη = 0, we can write the full least-squares principle as

Min
{
(Y−A(N )T(N ))TC−1

ν (Y−A(N )T(N ))+TT
(N )C

−1
η T(N )

}

(15)

leading to the normal system

(D(N ) + C−1
η )T̂(N ) = AT

(N )C
−1
ν Y (16)

(D(N ) = AT
(N )C

−1
ν A(N )). (17)

Note that (15) is nothing but a Tykhonov regularized princi-
ple (Phillips 1962; Tikhonov 1963) with C−1

η as a regularizer;
see also Kirsch (1996), Sect. 2.2.

If we compare (12) and (15) we see that the two principles
are formally identical, with the only difference that in (12)
T̂ is infinite dimensional, while in (16) the unknown T̂(N ) is
finite dimensional, in fact with dimension (N + 1)2 − 4. As
it is obvious, we can state an equivalence between the two
only on condition that the approximation holds

AT̂ = A(N )T̂(N ) + A(N )T̂
(N ) ∼= A(N )T̂(N ), (18)

i.e. that the addendum A(N )T̂
(N )

can be neglected in (18)
with respect to the noise term ν. This requirement could be
understood either roughly in terms of orders of magnitude,
or made more precise, as shortly developed in the Appendix.
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In any way the relation (18) becomes strictly true if A has
from the beginning the form

A = |A(N )0|. (19)

In this case in fact one writes (12) in the form

Min
{
(Y − A(N )T(N ))TC−1

ν (Y − A(N )T(N ))

+ TT
(N )K

−1
(N )T(N ) + T(N )T(K(N ))−1T(N )

}
; (20)

since T(N ) appears in (20) only in the last quadratic term, we
see that the minimum condition imposes

T̂
(N ) ≡ 0 (21)

while T̂(N ) is given by the same normal equation (16) on
condition that

Cη = K(N ) (22)

or

σ 2
n (T ) = kn . (23)

One interesting observation here is that the equivalence
between the least-squares collocation principle and the sim-

ple regularized least-squares lies on the fact that A(N )T̂
(N )

is
negligible with respect to the noise ν, which traces back to the
sensitivity criterion more than to the commission/omission
error criterion, as discussed in the Appendix too.

Another interesting remark is that if one does not want
to use the sharp truncation hypothesis (19), one is led to the
infinite dimensional solution

T̂ = (ATC−1
ν A + K−1)−1ATC−1

ν Y (24)

which might seem not easily computable. This, however,
is not the case on account of the identity (see for instance
Colombo 1981, p. 50)

(ATC−1
ν A + K−1)−1ATC−1

ν ≡ KAT(Cν + AKAT)−1, (25)

showing that only finite dimensional inversions are required.
In addition the form (25) of the predictor is exactly the same
as that of the standard collocation theory.

The conclusions of this section are twofold. The first is
that finite or infinite dimensional solutions are admissible
approximations of one another, if observation equations are
suitably truncated, disregarding terms that can be considered
irrelevant, in the sense worked out in the Appendix. In prac-
tice, this means that considering T as infinite dimensional or
finite dimensional, with any large dimensions, will be for us
one and the same thing, at least for the problem at hand.

The second conclusion, issuing from the first, is that basi-
cally using a least-squares collocation approach or just a
least-squares approach augmented with pseudo-observation
equations (14) leads to the same solution. So, no particular
choice has to be made up to here, between the two.

3 Least-squares combination, sufficient statistics and
innovation solutions

In this section we address the question of combining differ-
ent data sets, that, to come closer to our real problem, we will
tag with indexes G or S thinking of them as data pertaining to
“global” prior observations or to new “satellite” observations
that we want to merge with the former. Let us remark in any
event that although the matters discussed in the paper are ori-
ented to the solution of a specific problem, justifying the use
of the indexes G and S, yet the same reasonings do apply to a
more general situation in which global models with different
spectral resolutions have to be combined. So the idea is that
YG is a global data set with model

YG = AGTG + νG, E{νGνT
G} = CG (26)

leading to a global model, e.g. EGM08,

T̂G = D−1
G AT

GC−1
G YG (27)

(DG = AT
GC−1

G AG)

up to some high degree, e.g. 2,159, while YS is a “new”
satellite data set with model

YS = ASTS + νS, E{νSνT
S} = CS (28)

and with solution

T̂S = D−1
S AT

SC−1
S YS (29)

(DS = AT
SC−1

S AS)

to fix the ideas up to some degree NS between 200 and 250.
Moreover, we can assume that

E{νGνT
S} = CGS ≡ 0. (30)

Our problem is how to combine all the available informa-
tion to get the best estimate of the coefficients. A first idea
would be to form with (26) and (28) a unique least-squares
system. However, in order to have the same unknown param-
eter vector, recalling the notation (8) with dim TG 	 dim TS,
we can introduce the projector

� = [IS, 0] (31)

such that

TS = �T (32)

and rewrite (28) as

YS = AS�T + νS. (33)

Standard least-squares theory now (see Koch 1999), taking
(30) into account, gives the normal equations system

(DG + �TDS�)T̂ = AT
GC−1

G YG + �TAT
SC−1

S YS. (34)

Another idea would be to use the already estimated coef-
ficients, T̂G, with its error covariance D−1

G , and T̂S, with its
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error covariance matrix D−1
S , and write as “observation equa-

tions”
{

T̂G = T + eG, (CeG = D−1
G )

T̂S = �T + eS, (CeS = D−1
S )

(35)

where indeed eG and eS are uncorrelated. The application of
the least-squares principle to (35) then gives

(DG + �TDS�)T̂ = DGT̂G + �TDST̂S

= AT
GC−1

G YG + �TAT
SC−1

S YS. (36)

Notice that, by assuming that we know the full covariances
of the observations and therefore of eG and eS too, see (35),
we do not need to introduce relative weights of the normal
matrices in (36). This is also the reason why we do not use
the notation D̂

−1
G and D̂

−1
S to indicate estimated covariance

matrices. This is true at least in principle. In the real situ-
ation the relative weighting is often solved in an empirical
way (see for instance Koch and Kusche 2002).

As we see (36) is the same as (34), implying that also the
two estimates, T̂, are the same. This is not surprising and
reflects the well-known fact that T̂G and T̂S are sufficient
statistics for T in the models (26) and (33), respectively (see
Cox and Hinkley 1974, Sect. 2.2).

So the problem now is not which of the two ways we want
to choose, but rather the numerical solvability of the normal
system (36). In this respect it is particularly useful to write
the solution of (36) by exploiting the identity

(DG + �TDS�)−1

= D−1
G − D−1

G �T(D−1
S + �D−1

G �T)−1�D−1
G (37)

to arrive at the solution in innovation form

T̂ − T̂G = D−1
G �T(D−1

S + �D−1
G �T)−1(T̂S − �T̂G).

(38)

All that is not new as it is a standard trick applied for in-
stance in Kalman filtering (Kalman and Bucy 1961), but it
is the interpretation and the form (38) that makes it useful to
our case.

We do not dwell on the problem of computing D−1
G , al-

though we observe that this problem has already been solved
in some approximate way, because we have already been able
to compute T̂G.

On the other hand, we note that in (38) the known term
is just the variation of the estimate T̂S with respect to the
same coefficients contained in the previous model T̂G that
we want to update. We note also that, apart from D−1

G , the
central matrix-inversion in (38) has the same dimension of
T̂S and not of T̂G. Moreover, in (38) we never meet DS, but
only D−1

S . This is of utmost importance because in analysing
the satellite data often the operative analysis chain does not
lead directly to normal equations. An example is the so-called
space-wise approach to gravity mission analysis (Migliaccio

et al. 2004; Reguzzoni and Tselfes 2009). However, the solu-
tion algorithm allows to give an estimate of the error covari-
ance matrix of T̂S, namely of D−1

S , by means of a Monte
Carlo method (Migliaccio et al. 2009). This approximation,
though reasonably good for individual coefficients, is not
uniform in the sense of a matrix norm (Pertusini et al. 2010).
Furthermore, even when one can use more samples than un-
knowns (40,000 samples for a coefficient vector up to degree
200), still it has generally a very unstable inverse, as it has
been proved numerically. Therefore, it could never be used
to derive DS from D−1

S .
We note as well that the same reasoning holds for D−1

G
too. Therefore also for the “global” observations YG and the
corresponding global model, T̂G, we see that we do not need
the original normal matrix but only its inverse.

For the above reasons, the solution (38) is feasible, while
the solution of (36) might not be.

A final remark is that, in case we believe we have enough
information to write equations like (14), i.e. to build the ma-
trix K(N ) according to (22) and (23) up to the maximum
degree N , the two basic formulas (36) and (38) have to be
modified simply by changing DG into DG+K−1

(N ), i.e. by add-

ing k−1
n = σ−2

n (T ) at the proper places to the diagonal terms
of DG. In particular this has no impact on the implementation
of the solution (38), whether the shape of the normal matrix
therein is block diagonal or not.

Three conclusions can be derived from the discussion of
this section. The first is that one can directly use the esti-
mated coefficients from two different data sets “G” and “S”
to produce a combined solution, without resorting to the orig-
inal observations, if we believe that covariances have been
correctly propagated. The second is that, by writing the com-
bination solution in the “updating” form (38), the numerical
complexity of its computation is of the same order as that of
deriving the coefficients T̂S from the data YS only. The third
one is that the computation of formula (38) does not require
the knowledge of the normal matrices DS and DG, but only
of the covariance matrices D−1

S and D−1
G . These in fact might

be available, at least in approximated form, without DS and
DG being known.

The search for a solution of the combination problem
by inverting (D−1

S + �D−1
G �T) is extensively discussed in

Sect. 5.

4 Symmetry and block diagonal structures

The idea that normal systems in both least-squares and
collocation concepts, when data sets are axi-symmetrical,
take the form of a discrete convolution in longitude,λ, is pres-
ent in the geodetic literature since a long time, see for instance
Colombo (1981), Sneeuw (2000), Sansò and Tscherning
(2003), just to mention a few. This leads to a block diagonal
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structure of normal matrices, where blocks have a maximum
dimension equal to N , decreasing to dimension 1 for the
coefficients TN ,±N . This makes at once feasible the solution
of normal systems and even the explicit inversion and stor-
age of the normal matrix by inverting the individual blocks.
For this reason, it is very important to investigate clearly this
item in the context of global models combination.

One remark is basic to understand this section, namely
when we say that a data set is axi-symmetric we mean that
the points where data are given form a grid along parallels (i.e.
circles around the Z axis) at constant �λ intervals, though
the radius of each parallel and the distance between any two
parallels can vary. For instance a regular geographic grid on
the ellipsoid is axi-symmetrical. Note also that we could even
have different observation functionals from parallel to par-
allel, though on each parallel the functional has to be the
same.

We could split the section in two parts: block diagonal
least-squares systems and block diagonal matrices for ran-
dom fields. Since the first part is well described in literature,
we send the reader to the mentioned works, while we will be
more analytical on the second case because to our knowledge
the result is new in this general form.

Assume that a grid with nodes

t ≡ (ϑi , k�), (i parallel index, k meridian index)

1 ≤ k ≤ M = 2π

�

is given and at each node we have an observation equation

Yt =
∑

n,m

γnm TnmYnm(xt)Wt,n + νt (39)

where

Wt,n =
(

R

ri

)n+1

. (40)

The form (39) of the observation equations is particular in
the sense that we assume that the observational functionals
are diagonalised by the solid spherical harmonics, their effect
being expressed by the numerical coefficients γnm . This is the
case for most of the useful functionals, at least in spherical
approximation.

Assume further T (x) ≡ TTS(x) to be a random field, i.e.
T to be a random vector in R∞. What we shall prove in a
moment is that under conditions of axi-symmetry, plus one
slightly more restrictive condition, we have, using the nota-
tion (39), that the covariance of T (x) can be written as (see
Lemma 1)

C(ϑ, ϑ ′, λ− λ′) =
+∞∑

m=0

+∞∑


,n=m

Cm

n P
m(ϑ)Pnm(ϑ

′)W
ϑWnϑ ′

· cos m(λ− λ′)

≡
+∞∑

m=0

Cm(ϑ, ϑ ′) cos m(λ− λ′) (41)

where

W
ϑ =
(

R

rϑ

)
+1

, (42)

Cm(ϑ, ϑ ′) = Cm(ϑ ′, ϑ), Cm
n
 = Cm


n . (43)

Therefore, the normal matrix of collocation, with
functionals of the form (39), will read [with t = (ϑi , k�),
t′ = (ϑr , s�)]

C(L t, L t′) =
+∞∑

m=0

⎛

⎝
+∞∑


,n=m

γ
mγnmCm

n P
m(ϑi )Pnm(ϑr )

⎞

⎠

· cos m(k − s)�

≡
+∞∑

m=0

Gm
ir cos m(k − s)�

≡
M−1∑

m=0

G̃m
ir cos m(k − s)�. (44)

In the last step of (44) aliasing is taken into account. In fact,
noting that the meridian indexes k, s run from 0 to M − 1
and � = 2π

M
, so that

cos(m + hM)(k − s)� = cos m(k − s)�, ∀h ≥ 0 (45)

one can put

G̃m
ir =

+∞∑

h=0

Gm+hM
ir , 0 ≤ m ≤ M − 1. (46)

Now it is just a matter of simple algebra to prove that the
inverse of the matrix

Ctt′ ≡ C(L t, L t′) (47)

has the explicit shape [with t′′ = (ϑp, q�)]

C (−1)
t′t′′ = 1

M
2

M−1∑

m′=0

Hm′
r p

cos m′(s − p)�

1 + δm′0
. (48)

In this endeavour the identity (Papoulis 1984, Sect. 3.4)

M−1∑

s=0

cos m(k − s)� cos m′(s − q)�

= Mδmm′(1 + δm0) cos m(k − q)� (49)
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plays a central role. Moreover, the matrices {Hm
r p} are defined

to be the inverse of the matrices {G̃m
ir }, namely

∑

r

G̃m
ir Hm

r p ≡ δi p. (50)

It has to be pointed out that the indexes i, r, p are referred
to parallels and therefore they vary from 1 up to the number
of parallels present in the grid. We notice as well that even if
the noise has a more general structure, for instance it is the
sum of an uncorrelated component, possibly variable from
point to point, and another component with the same covari-
ance structure as in (41), then formulas (44) and (48) still
remain true.

Formulas (48), (49) prove that the solution of the normal
system can then be obtained by inverting only blocks with the
same dimension as the number of parallels. All that agrees
with the findings of Sansò and Tscherning (2003). However,
in the context of the mentioned paper also the noise was sup-
posed to be constant along parallels, a very heavy and often
not met hypothesis. This requirement was necessary there to
apply an FFT algorithm which here is not used and therefore
there is no need that the noise variance be constant along the
main diagonal. So now the problem left is to prove (41) as a
consequence of axi-symmetry. We note that this is new since
we do not assume that T (x) is isotropic, i.e. that it depends
on the spherical distance ψ only

C(x, x′) ≡ C(ψxx′), (51)

from which (41) descends easily, but we only suppose that

C(x, x′) = C(ϑ, ϑ ′, λ− λ′), (52)

which is a consequence of axi-symmetry, together with the
more restrictive condition that

C(ϑ, ϑ ′, λ− λ′) = C(ϑ, ϑ ′, λ′ − λ). (53)

Physically this means that, by using the symbols of Fig. 1,
the following equalities hold

C(x, x′) ≡ C(x′′, x′′′) ≡ C(x, ′x). (54)

In other words, C(ϑ, ϑ ′, λ−λ′) is an even function of λ−λ′.
We are ready now for the proof of (41).

Lemma 1 Assume that the random field T (x) enjoys the
symmetries implied by (54), so that its covariance function
satisfies (52) and (53), then C(ϑ, ϑ ′, λ − λ′) must take the
form (41), with the coefficients Cm


n satisfying the symmetry
relation (43).

Proof To prove the Lemma we need preliminarily a proposi-
tion, which is easily found on any book on Sturm–Liouville
theory, for instance Nikiforov and Uvarov (1988) (Ch. II,
Sect. 8–10).

x'

x

'x x'

x'x '’

x'x '’'’

'’

Fig. 1 The symmetries of the random field T (x)

Proposition 1 For any fixed m, the sequence
{

P̃nm(ϑ) =
√

1 + δm0

2
Pnm(ϑ), n = m,m + 1, . . .

}
(55)

is a complete orthonormal sequence in L2(0, π)sin ϑ with
weight (sin ϑ). This means that ∀ f (ϑ) ∈ L2(0, π)sin ϑ one
has the convergent representation
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f (ϑ) =
+∞∑

n=m

P̃nm
(

f, P̃nm
)

(
f, P̃nm

) =
π∫

0

f (ϑ)P̃nm(ϑ) sin ϑdϑ.

(56)

Here we only remark that it is easy to derive (56), when
we already know that {Ynm(ϑ, λ)} is a complete orthonormal
system in L2 over the unit sphere with scalar product

( f, g)σ = 1

4π

∫

σ

f (ϑ, λ)g(ϑ, λ) sin ϑ dϑ dλ. (57)

As a matter of fact, such a property is well known among
geodesists (see Heiskanen and Moritz 1967, Sect. 1.3).

Now assume that the variance of T (x), namely C(x, x)
is bounded everywhere so that C(ϑ, ϑ ′, λ − λ′) is certainly
square integrable in each of its variables. Therefore, we can
use the Fourier development, with cosine elements only,

C(ϑ, ϑ ′, λ− λ′) =
+∞∑

m=0

Cm(ϑ, ϑ ′) cos m(λ− λ′), (58)

because C is even in λ− λ′.
We note as well that we always have

C(x, x′) = C(ϑ, ϑ ′, λ− λ′) = C(ϑ ′, ϑ, λ′ − λ) = C(x′, x)

(59)

because C(x, x′) is a covariance function but at the same time

C(ϑ ′, ϑ, λ− λ′) = C(ϑ ′, ϑ, λ′ − λ) (60)
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because of (53). This clearly implies

Cm(ϑ, ϑ ′) = Cm(ϑ ′, ϑ). (61)

Now, using Proposition 1, we can claim that there is a se-
quence hm

n (ϑ
′) such that

Cm(ϑ, ϑ ′) =
+∞∑

n=m

P̃nm(ϑ)h
m
n (ϑ

′). (62)

From (62) and (56) we have

hm
n (ϑ

′) = (
Cm(ϑ, ϑ ′), P̃nm(ϑ)

) = (
Cm(ϑ ′, ϑ), P̃nm(ϑ)

)

=
+∞∑


=m

P̃
m(ϑ
′)

(
hm

 (ϑ), P̃nm(ϑ)

)
. (63)

On the other hand, again using Proposition 1 and (56), it is

hm
n (ϑ

′) =
+∞∑


m

(
hm

n (ϑ), P̃
m(ϑ)
)

P̃
m(ϑ
′). (64)

Comparing (63) and (64) we see that
(
hm

 (ϑ), P̃nm(ϑ)

)=(
hm

n (ϑ), P̃
m(ϑ)
)=C

m

n = C

m
n
. (65)

So substituting back into (63) and (62) we get

Cm(ϑ, ϑ ′) =
+∞∑

n=m

+∞∑


=m

C
m
n
 P̃nm(ϑ)P̃
m(ϑ

′)

≡
+∞∑

n,
=m

Cm
n
Pnm(ϑ)P
m(ϑ

′) (66)

where we have put

Cm
n
 = C

m
n
 · 1 + δm0

4
. (67)

Because of (65), Cm
n
 satisfies the symmetry relation (43) and

the Lemma is proved. 
�
Concluding the section we can claim that, under the

conditions of axi-symmetry described at the beginning, both
approaches, least-squares and collocation, lead to block diag-
onal normal systems solvable by inverting smaller block
matrices, which is a feasible numerical task.

We call the attention to the fact that based on the above
discussion, axi-symmetry and block diagonal structure cor-
respond to one another. So even the use of a block diagonal
approximation is not presupposing the isotropy of the under-
lying signal, but rather a form of axi-symmetry of its stochas-
tic characteristics. In particular it has to be underlined that if
T
m are independent, although not with equal variances, yet
(41) can still be satisfied; in fact the symmetry requirement
(60) implies only that T
m and T
,−m have the same variance.

As for the noise, if it has a correlated component, this must
have the same axi-symmetric behaviour of the signal, while
an uncorrelated component can be arbitrary.

A final remark is in order here on the comparison of a col-
location solution with a pure least-squares solution. In some
sense the two are complementary as for the requirements we
have to put on signal and noise. For the sake of simplicity
assume the noise to be just uncorrelated. Then in forming
the ordinary least-squares normals we get a block diagonal
structure only if the noise is axi-symmetric, i.e. it has constant
variance on parallels. On the other hand, we do not need to
put any requirement on the signal, which is just represented
by deterministic parameters. On the contrary, a collocation
solution will have a block diagonal “normal” matrix only if
the signal is stochastically axi-symmetric, but the noise is not
required to satisfy any particular constraint.

5 Small examples on the way of a numerical solution

It is time now to look at the problem of how to implement
numerically the solution, for instance in the form (38), which
we rewrite as

δT̂ = CG�T(CS + �CG�T)−1δT̂S,

δT̂ = T̂ − T̂G, δT̂S = T̂S − �T̂G, (68)

� = [IS, 0], CS = D−1
S , CG = D−1

G .

We recall that CS is the error covariance matrix of the satellite
solution T̂S, that is in fact available, and CG the error covari-
ance matrix of T̂G, which we assume to be available too.

As we see, there are two main numerical problems in the
implementation of (68):

(1) the computation of CG�T;
(2) the computation of (CS + �CG�T)−1δT̂S.

We tackle separately the two problems.
(1) here we must take advantage of the discussion of

Sect. 4. In building a high-resolution global model, for in-
stance EGM08, the “ground” data are ultimately downward
continued to a regular grid at the ellipsoid level (Rapp 1994;
Pavlis 1997). The form of the observation equations at this
point is such as to support an application of the discussion
of Sect. 4, namely such that we can expect a block diagonal
normal matrix DG.

This, however, requires to disregard the inhomogeneity of
the accuracy and spatial distribution of the data from which
mean anomalies are estimated. Moreover, the effect of the
downward continuation is strongly dependent on the topog-
raphy and therefore it displays an important geographic sig-
nature. All in all, the predicted residual anomalies are affected
by errors that are certainly not constant in longitude, particu-
larly when crossing high mountain chains like the Himalayas
or the Andes.
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The possible combination with previously existing satel-
lite models does not modify the above statement since these
are intrinsically almost block diagonal. So, the conditions for
cylindrical symmetry are violated and we cannot expect an
exactly block diagonal DG. Nevertheless, the success of the
solution obtained by using only the block diagonal part of
DG (Pavlis et al. 2008) strongly supports the hypothesis that
such an inhomogeneity is only a minor problem.

The following simulated example goes along with this
conclusion.

Example 1 This example is meant to clarify how large can
be the degradation of a simple block diagonal solution of
harmonic coefficients estimation from ground data, despite
the presence of a noise with significantly non axi-symmetric
variances.

The idea is basically that once we write (26), even if the
best estimator is the one given by (27), according to the Gauss
Markov theorem (Koch 1999), still an unbiased estimator is

T̂G = (AT
GAG)

−1AT
GYG. (69)

The point is that if YG is a gridded data set, e.g. of gravity
anomalies on the ellipsoid, then, according to the discussion
of Sect. 4, the normal matrix AT

GAG is block diagonal and the
solution of (69) is computable even for very high degrees.

The question is how much we lose in this procedure. In
order to gain insight into the loss, we have performed a small
simulation, in which data are δg values on a 3◦ × 3◦ grid
on the ellipsoid. The anomalies are computed from EGM96
(Lemoine et al. 1998) up to degree 59, since in this way no ali-
asing is present in the data. Then a random independent error
has been added to the data, sampling with the following rules:

Land (general) σν = 2 mGal
Ocean σν = 5 mGal
Himalayas–Andes σν = 12 mGal

The data have then been inverted with three different meth-
ods and error degree variances have been computed:

(a) exact least-squares solution, i.e. with the correct use of
the covariance matrix of the observations;

(b) the block diagonal solution (69);
(c) the solution by discretisation of integration formulas

(Colombo 1981).

The results are presented in Fig. 2 where we can see that
the solutions (b) and (c) have practically the same perfor-
mance and that their differences with respect to the solution
(a) are perceivable but small.

On the other hand, estimated formal errors derived from
the approximated block diagonal normal matrix could be of
poor quality and this is one of the reasons why the formal
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Fig. 2 Error degree variances of the exact least-squares solution (a), of
the block diagonal solution assuming a unique observation error vari-
ance (b), of the numerical integration solution (c), of the block diagonal
solution neglecting off-diagonal blocks (d); EGM96 signal degree vari-
ances (e)

errors of the resulting solution sometimes need to be empir-
ically calibrated, as performed, e.g. in EGM08 or in the
EIGEN models.

An interesting remark can be drawn if we try to compute
a block diagonal solution by calculating first the correct nor-
mal system and then neglecting the off-diagonal blocks. This
is displayed as (d) in Fig. 2 and, as we can see, this solution
is totally wrong with error degree variances larger than those
of the signal.

A further important remark here is that for the collocation
approach there is not the analogue of an unbiased but non-
optional solution, leading to a block diagonal form like (69).
As a matter of fact, while in Markov’s theory the class of
linear estimators is restricted by the condition of unbiased-
ness before applying the optimum principle, in collocation
the class of linear estimators is, by assumption, always unbi-
ased because the average of each coefficient Tnm is zero; in
other words, in collocation the condition of unbiasedness is
not adding any information (Rao et al. 2008).

Now we can approach the problem of computing CG�T

assuming that DG can be reordered into a block diagonal
form, namely the same block diagonal matrix used in the
computation of the coefficients of EGM08. At this point it is
important to take into account the ordering of the vector T.
In fact we know that the normal matrix is authentically block
diagonal if and only if we organize the vector T by orders,
e.g. m = 0, m = 1, m = −1, . . ., m = NG, m = −NG. But
the projector � has the particular form � = [IS, 0], only
if we put first all orders and degrees up to NS and then the
others, as illustrated in Fig. 3.
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Fig. 3 a Organization of T by orders (n ≤ m ≤ NG); b corresponding
block diagonal normal matrix; c re-organization of T by orders up to
degree NS (area 1), then same orders but degrees NS < n ≤ NG (area

2), then all orders m > NS (area 3); d corresponding normal matrix; b,
d non-zero elements only in drawn blocks

We call BG the normal matrix with the first ordering and
DG that with the second one and we note that DG can be
obtained from BG by reordering rows and columns, i.e. we
have by some permutation matrix P

DG = PBGPT. (70)

Here P is a unitary matrix, preserving the Cartesian modulus
of vectors, so that

P−1 = PT (71)

and then

CG = D−1
G = PB−1

G PT. (72)

On the other hand B−1
G is a block diagonal matrix with the

same profile as BG; therefore (72) says that also D−1
G has the

same shape, i.e. the same blocks of non-zero elements, as DG.
We shall put

CG = D−1
G =

∣∣∣∣
AS ASr

ArS Ar

∣∣∣∣ (73)

and notice that AS is block diagonal with block dimension
determined by the choice of the triangle 1 in Fig. 3c, while in
ArS the non-zero elements are designed in such a way that the
only non-zero outputs (rows of ArS) refer to the components
of T placed in the area 2 in Fig. 3c, i.e. with m ≤ NS and
NS < n ≤ NG. This gives to the normal matrix the peculiar
shape displayed in Fig. 3d, known in literature as kite shape
(Boxhammer and Schuh 2006).

We must remark here that a reverse ordering, giving rise
to a falling kite figure of the normal matrix, has some com-
putational advantages over the presented ordering of Fig. 3d,
as discussed in Lemoine et al. (1998), Sect. 8.2.4.

Now recalling the definition of �, see (68), one finds
immediately that

CG�T =
∣∣∣∣
AS

ArS

∣∣∣∣ . (74)

This therefore closes the first problem.
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(2) Due to (74) we find that

�CG�T = AS (75)

is a block diagonal matrix of dimension (NS+1)2−4 exactly
as CS. Now we have to solve a system of the form

(CS + AS)λ = δT̂S, (76)

so as to arrive, using (68) and (74), at

δT̂ =
∣∣∣∣
AS λ

ArS λ

∣∣∣∣ . (77)

It is interesting to observe that, whatever is λ, the cor-
rections δT̂ different from zero will be only those for which
0 ≤ m ≤ NS, i.e. for the unknowns of the areas 1 and 2
of Fig. 3c. The unknowns relative to the area 3 in the same
figure will not change under any circumstance.

We are now reduced to find the solution of (76). Naturally
if CS would be block diagonal, as AS is, then the solution of
(76) would be trivial. The situation, however, is that CS is not
exactly block diagonal, although it is close to such a condi-
tion. The reason is basically that while the satellite is taking
observations regularly at 1 Hz along the orbit, the observation
points after a sufficiently long time tend to distribute evenly
in parallel bands (Bouman 2000). Since this is the parameter
that mostly affects the prediction error on a grid at satellite
level, one understands that observations on such a grid would
tend to produce an almost block diagonal normal matrix and
then an almost block diagonal covariance matrix CS.

Such a hypothesis has been fully confirmed by Monte
Carlo simulations (see for instance Pertusini et al. 2010). So
we shall assume that one can write

CS = C0S + R (78)

where C0S is the prevailing block diagonal part of CS. Then
(76) can be rewritten as

(G0 + R)λ = δT̃S (79)

where

G0 = C0S + AS (80)

and R is much smaller, hopefully also in norm, than G0.
Moreover, G0 is block diagonal and since we expect AS to

be well conditioned, we do have the same for G0. So, even if
some of the blocks of C0S would not be well conditioned or
even not invertible, the addition of the corresponding blocks
of AS should have a regularizing effect.

At this point the easiest and feasible numerical solution
of (79) is obtained from solving sequentially the system

G0λn+1 = δT̂S − Rλn . (81)

It is immediate to verify that the recursion (81) is equiva-
lent to the use of the known Neumann series

(G0 + R)−1 = G−1
0 − G−1

0 RG−1
0 + G−1

0 RG−1
0 RG−1

0 − · · ·
(82)

In turn (82) is convergent when the norm bound holds

‖ G−1/2
0 RG−1/2

0 ‖≤ q < 1. (83)

Indeed, (82) is not the best numerical solver of our sys-
tem and sometimes it is not even applicable because condi-
tion (83) might not be satisfied. Nevertheless, we mention it
here because in the subsequent example we will compare the
result of (G0 + R)−1 with the first term, G−1

0 , to derive some
interesting suggestions. A better numerical solution can be
obtained by the pre-conditioned conjugate gradient (Hest-
enes and Stiefel 1952; Kirsch 1996) or similar methods.

Finally let us report, without proof, the formula for the
covariance of the new estimate T̂, where T̂G and T̂S are
merged. Actually, we have

CT̂ = CG − CG�T(CS + AS)
−1�CG. (84)

This is a computationally tractable formula, at least for the
diagonal of CT̂ ; yet, the point here is that from (84) we read
that CT̂ < CG, namely merging the information of T̂S re-
duces, as it has to be, the covariance of the estimation error.

Now that all the main practical problems have been illus-
trated, we show how it works by a numerical example, much
smaller in dimension but correctly reflecting pros and cons
of the method.

Example 2 In this example we have tried to reproduce a
somewhat more realistic situation, though restricting the
computations to a simple and manageable case. The reason
is that we wanted a case where the exact solution could be
computed without a large effort.

The simulation starts with the “true” spherical harmonic
coefficients taken from EGM96, from degree 10 up to de-
gree 179. A regular grid with size 1◦ × 1◦ of δg values has
been computed on a spherical boundary at ground level and a
1 mGal white noise has been added. The least-squares solu-
tion T̂G, up to degree and order 179, and its covariance matrix
CG have been computed. It is then no surprise that CG has
an exact block diagonal structure. At the same time a simu-
lation has been performed on a 2-month GOCE-like orbit for
satellite-to-satellite (SST) observations with a realistic noise
(Catastini et al. 2003). As known, these observations ulti-
mately provide T along the orbit when using the energy inte-
gral approach (Jekeli 1999; Visser et al. 2003). By applying
a collocation gridding at satellite level (which is part of the
so-called space-wise approach), a grid with size 0.5◦ × 0.5◦
of predicted values for the evaluation functional of T has
been produced. Spherical harmonic coefficients from degree
10 up to degree 60 are finally computed by discretisation of
integration formulas. By a classical application of the Monte
Carlo method, we could derive from 10,000 samples, along
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Fig. 4 Empirical (grey) and predicted (black) error degree variances of
the estimated model either from satellite or from ground data. EGM96
signal degree variances are plotted as reference

the above line, an estimate of a realistic, in the framework
of this example, covariance matrix CS. Although, due to the
nature of the observational functional, CS is dominated by
long wavelength errors not exactly cylindrically symmetric,
yet the almost block diagonal outlook of CS, apart from a
few orders close to 0, is quite pronounced. In other words,
the matrix R of equation (78) is here non zero, but small. A
comparison between the error degree variances of the two
sets of estimated coefficients is shown in Fig. 4.

Since the number of unknowns of the example is not large,
namely 3,621 unknowns, the solution of the system (79) and
the final solution (77) can be computed in an exact man-
ner, providing the corrections δT̂ to the input coefficients
T̂G, displayed in Fig. 5. As one can see, the most important
corrections are in the area 1 of Fig. 3c, but also many coef-
ficients in the area 2 undergo a significant variation. All in
all, the signal correction contained in the area 2 has a mean
square power of the order of 1 mm, which is certainly not
very important. Nevertheless, the change of individual coef-
ficients with respect to their own size ranges up to some per
cent (cf. Fig. 6) and therefore it is worthwhile to be computed.

Two further comments could be made on this small simu-
lated experiment. The first is that the solution λ of (79) com-
puted by completely disregarding R, i.e. by exploiting only
the block diagonal part of the normal matrix, is extremely
close to the exact solution. Nevertheless, the use of (77) still
produces a visible effect on the coefficients of area 2 and
should therefore be applied.

A second remark is that in this example the full series
solution (82) cannot be directly applied since the matrix
G−1/2

0 RG−1/2
0 has a single eigenvalue much larger than 1.

A suitable strategy based on more refined numerical meth-
ods should be therefore applied (see for instance Schuh 1996;
Klees et al. 2004).
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Fig. 5 Corrections to the ground-data model from the incorporation of
the satellite-data model. Plotted quantity: log10 δT̂
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Fig. 6 Relative corrections with respect to the true coefficients in the
area 2 (n ≥ 61, m ≤ 60), see Fig. 3c. Plotted quantity: log10[δT̂/T ]

Such conclusions are indeed not of general nature, be-
cause the authors do not know whether they are related to the
peculiar features of this example. Further conclusions of the
section are postponed to the next section.

6 Conclusions

First of all, we would like to underline that this study, al-
though motivated by the need of understanding how to ap-
proach the problem of combining two global models like the
high-resolution EGM08 and the SpW satellite-only model
from the GOCE data analysis, is in fact more general and
could be applied to other cases, e.g. the combination of two
satellite models, at least as far as approximate values of the
inverse normal matrices are available.
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The specific findings for the problem that motivated the
study though are mainly two:

(1) by applying the estimation/prediction formula (38),
issuing either from a least-squares or from a collocation ap-
proach, we can combine two global models with a numerical
complexity (measured by the dimension of the normal system
to be solved) which is as large as the number of parameters
(determinist or stochastic, according to the interpretation) of
the smaller of the two models;

(2) the application of the combination formula (38) does
not require the direct knowledge of the least-squares nor-
mal matrices relative to the two original data sets but only
of their inverse, namely of the covariance matrices of the
already estimated parameters.

Neither of two findings is in itself particularly new, only
it is their consideration for the problem at hand which makes
them appealing to us. In fact, the processes of estimating sep-
arately the two global models, in the paper represented by the
two vectors T̂G and T̂S, are so complicated and use so many
steps of approximation that one is not entitled to say that the
true normal matrices are available. In addition, in our case,
T̂S is not coming from a straight application of least-squares
principles, but rather from a stepwise collocation approach
(the SpW approach), so that the corresponding normal matrix
is not even defined. All in all, in such complicated procedures
it seems to us more reliable and realistic to derive direct esti-
mates of the covariances by means of Monte Carlo sampling
methods than by pure numerical covariance propagation.

More specifically to answer the questions we have put in
the introduction we can draw the following conclusions:

• finite versus infinite dimensional solutions, least-squares
versus collocation: if the full information (including prior
information) is treated either by least-squares or by collo-
cation, it provides exactly the same solution; a difference
occurs only whether we use infinite dimensional covari-
ance functions.
This conclusion was already known in literature. Never-
theless, one point has been elucidated: namely in reduc-
ing the problem to finite dimensions, one cannot use the
simple criterion of equating the commission to the omis-
sion error. Rather a sensitivity analysis has to be con-
ducted and this generally requires global models with a
higher degree to be resolved. Only afterwards, part of
the estimated coefficients, i.e. those above the degree of
equal omission and commission error, can be neglected.
In other words, to avoid biases larger than the noise, the
criterion of the best maximum degree to which perform
the estimation is not the same as that of an acceptable
maximum degree;

• merging our global model by resorting to the original
observation equations versus merging the coefficients: the
answer to the question is clear and very well known in esti-

mation theory (both least-squares and collocation), and it
is traced back to the concept of sufficient statistics or
to projections on nested subspaces. The two approaches
are equivalent when covariances are correctly propagated.
So the point is only whether the combination is numer-
ically feasible. This has been discussed at the point (1),
(2) above;

• symmetry and block diagonal structures: since block diag-
onal (or almost block diagonal) structures simplify the
numerical work, it is important to understand what are
the implicit conditions (or approximations) imposed on
the problem to which we apply them. The result that they
correspond to a cylindrical symmetry is not new. How-
ever, in the paper the collocation case is worked out in
detail showing that such a symmetry, with an additional
hypothesis, is sufficient to guarantee the block diagonal
shape of the “normal” matrix. The detailed proof was not
known to the authors.
An important remark has been made on this point, show-
ing that there is a different behaviour of least-squares
with respect to collocation when analysing gridded data;
the first method gives a block diagonal normal only if
the noise is constant along parallel. The second method
gives rise to a block diagonal normal if the signal is axi-
symmetric, but the noise can be whatever, as far as it is
uncorrelated;

• on how to perform a block diagonal approximation:
Example 1, though very small, shows that a normal sys-
tem in least-squares theory corresponding to non-opti-
mal estimation, i.e. without an exact inverse noise matrix,
can still provide a good approximation to the exact solu-
tion, while cutting the block diagonal form from a com-
plete exact normal matrix can give a very bad solution.
In this respect least-squares theory seems to depart sig-
nificantly from collocation, where there are no analogous
concepts;

• the coefficients updated by the new satellite data: the
question is whether only coefficients contained in TS will
be updated by the introduction of the YS data. Example 2
clearly shows that, although quantitatively small, yet the
effect of combining T̂S with T̂G has an impact on all
the coefficients with order |m| ≤ NS, even for degrees
n > NS.

Naturally, although some conclusions have been drawn in
the direction of a strategy for the combination in particular of
EGM08 and GOCE global models, a final word still requires
much more research especially on the numerical side, which
in the present paper is certainly of smaller importance.

Acknowledgments This work has been performed in the framework
of the Italian project GOCE-ITALY, supported by the Italian Space
Agency (ASI). Moreover, the authors would like to thank the reviewers
for their important contribution from which the paper has benefited a lot.

123



406 M. Reguzzoni, F. Sansò

Appendix

In this appendix we will make some quantitative consider-
ations on model errors in the observation equations used to
estimate a global model. On the same issue the reader could
consult also Rummel (1997) and Koch (2005).

As we did in Sect. 4, we assume to have observation equa-
tions

Y = AT + ν = A(N )T(N ) + A(N )T(N ) + ν (85)

and we would like to reason on the truncation condition con-
sisting in deleting the term A(N )T(N ). Such a term then will
become a bias b = A(N )T(N ) in our model.

The ordinary criterion would be to require that the com-
mission error at degree N + 1 would become larger than the
omission error (see for instance Rummel 1997).

But this is more a criterion derived for reasons of opti-
mal estimation rather than a choice based on the requirement
that b = 0 will not significantly change the model (85). This
rather asks for the statement that b is “small” with respect to
ν; in this case in fact any criterion tending to reduce ν will
give almost equivalent answers.

The target can be reached either by comparing b with ν

as vectors or component by component. In the first case we
have to use the metric C−1

ν which is natural in the observation
space according to a least-squares principle. So one should
write

bTC−1
ν b = T(N )TA(N )TC−1

ν A(N )T(N ) � νTC−1
ν ν. (86)

If we assume to have prior information on T(N ) in the
form of its (diagonal) covariance matrix K(N ) (Kaula 1966b;
Tscherning and Rapp 1974), (86) can be duly averaged with
respect to T(N ) and to ν, to give

TrK(N )(A(N )TC−1
ν A(N )) � TrC−1

ν Cν = M, (87)

where M is the number of measurements, i.e. the dimension
of ν.

Any further elaboration along this line depends on the
shape of the matrices therein; however, it is useful to notice
that if we have the direct case in which A(N )TC−1

ν A(N ) =
σ−2
ν I, then (87) gives

TrK(N ) � Mσ 2
ν . (88)

In this formula we recognize that TrK(N ) is just the mean
square omission error, while Mσ 2

ν is the mean square com-
mission error. We can observe though that (88) says that the
omission error should be much smaller than the commission
error, forcing us to retain a higher number of unknowns than
those required by the ordinary equality criterion.

Coming to a comparison of individual components bi , νi ,
we are pushed to use more restrictive inequalities implying
also more severe conditions. In fact, assuming that in analogy

to the hypothesis used in Sect. 4 the observation equations
can be written in the form

Yi =
N∑

n=2

n∑

m=−n

γnm Tnm Snm(xi )

+
+∞∑

n=N+1

n∑

m=−n

γnm Tnm Snm(xi )+ νi

= (A(N )T(N ))i + (A(N )T(N ))i + νi , (89)

the following condition issues
∣∣∣∣∣

+∞∑

n=N+1

n∑

m=−n

γnm Tnm Snm(xi )

∣∣∣∣∣ � σνi . (90)

In order to elaborate on (90), one is forced to establish an
a-fortiori condition. So we can write

|bi | =
∣∣∣∣∣

+∞∑

n=N+1

n∑

m=−n

γnm Tnm Snm(xi )

∣∣∣∣∣

≤
+∞∑

n=N+1

n∑

m=−n

|γnm ||Tnm ||Snm(xi )|. (91)

On the other hand, from the known relation
n∑

m=−n

Snm(x)2 = W 2
n (2n + 1), (92)

where

Wn =
(

R

r

)n+1

, (93)

we see that

|Snm(x)| ≤ Wn
√

2n + 1. (94)

Using (94) in (91) and applying the Cauchy–Schwarz
inequality, we get

|bi | ≤
+∞∑

n=N+1

Wn
√

2n + 1

√√√√
n∑

m=−n

γ 2
nm

√√√√
n∑

m=−n

T 2
nm . (95)

Now we recognize that, according to a standard definition,
√√√√

n∑

m=−n

T 2
nm = kn, (96)

and we put

γn =
√√√√ 1

2n + 1

n∑

m=−n

γ 2
nm . (97)

With these positions (95) becomes

|bi | ≤
+∞∑

n=N+1

Wnkn(2n + 1)γn; (98)
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indeed (90) is a-fortiori satisfied if

+∞∑

n=N+1

Wnkn(2n + 1)γn � σνi . (99)

An identical relation could be derived by squaring (90) and
averaging over {Tnm}. We underline that (99) is generally a
much stronger condition than (87).

The conclusion of this appendix, as for the matter of esti-
mating global gravity model, is that despite the criterion of
keeping the maximum degree N of a global model at the
value at which omission and commission errors balance each
other, it is always better to include into the estimation model a
higher maximum degree N ′ and then disregard the estimated
coefficients from degree N + 1 to N ′ than sharply putting
N ′ = N . In any way, it is wise to perform a direct sensitivity
analysis to ascertain by a direct check that biases introduced
by truncation are in fact negligible with respect to noise.
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