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Abstract GNSS ambiguity resolution is the key issue in the
high-precision relative geodetic positioning and navigation
applications. It is a problem of integer programming plus
integer quality evaluation. Different integer search estima-
tion methods have been proposed for the integer solution of
ambiguity resolution. Slow rate of convergence is the main
obstacle to the existing methods where tens of ambiguities
are involved. Herein, integer search estimation for the GNSS
ambiguity resolution based on the lattice theory is proposed.
It is mathematically shown that the closest lattice point prob-
lem is the same as the integer least-squares (ILS) estimation
problem and that the lattice reduction speeds up searching
process. We have implemented three integer search strate-
gies: Agrell, Eriksson, Vardy, Zeger (AEVZ), modification
of Schnorr–Euchner enumeration (M-SE) and modification
of Viterbo-Boutros enumeration (M-VB). The methods have
been numerically implemented in several simulated exam-
ples under different scenarios and over 100 independent
runs. The decorrelation process (or unimodular transforma-
tions) has been first used to transform the original ILS prob-
lem to a new one in all simulations. We have then applied
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different search algorithms to the transformed ILS prob-
lem. The numerical simulations have shown that AEVZ,
M-SE, and M-VB are about 320, 120 and 50 times faster
than LAMBDA, respectively, for a search space of dimen-
sion 40. This number could change to about 350, 160 and
60 for dimension 45. The AEVZ is shown to be faster than
MLAMBDA by a factor of 5. Similar conclusions could be
made using the application of the proposed algorithms to the
real GPS data.

Keywords Integer least-squares estimation · GNSS
ambiguity resolution · Lattice theory · Pohst enumeration ·
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1 Introduction

High-precision GNSS positioning is achieved using the car-
rier phase observables in the relative positioning mode.
GNSS relative positioning is used for many high-precision
applications such as surveying, mapping, GIS, and precise
navigation. A prerequisite to this is the successful determina-
tion of the integer double difference carrier phase ambiguity
parameters. Mathematically, double difference carrier phase
observation equation is a mixed integer nonlinear model. Lin-
earizing the carrier phase observation equation yields the fol-
lowing mixed integer linear model (Teunissen 1995; Xu et al.
1995; Xu 2006):

y = Aa + Bb + e (1)

where y is a t-dimensional vector of observed minus approx-
imate double difference carrier phase observations, a is an
n-dimensional integer vector, b is an m-dimensional real-val-
ued vector, e is the error vector of observations, and A and B
are the t × n and t × m real-valued matrices, respectively.
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Fig. 1 Some of carrier phase
ambiguity resolution methods
available in literature

Applying the least-squares criterion to (1), to estimate the
unknown parameters, yields

min(y − Aa − Bb)TP(y − Aa − Bb) (2)

where P is the weight matrix of observables. This minimi-
zation problem, which is a type of mixed integer nonlin-
ear programming (MINLP) problem, is also referred to as
a mixed integer least-squares (ILS) problem. The ambiguity
parameters are initially determined as part of the ordinary
least-squares by neglecting the integerness of ambiguities.

What can be obtained are the real-valued parameters

([
â
b̂

])

along with their covariance matrix

([
Qâ Qâb̂
Qb̂â Qb̂

])
. The

minimization problem in (2) is equivalent to the following
problem (Teunissen 1993; Xu et al. 1995):

ǎ = min(â − a)TP(â − a) (3)

which is the standard ILS or the integer quadratic program-
ming (IQP) problem. It is clear that the solution to the original
mixed ILS problem (2) depends on the solution of ILS (3).
Denoting the integer solution of (3) by ǎ, one can then obtain
the least-squares estimates of the real parameters b̌ as

b̌ = (BTPB)−1BTP(y − Aǎ) (4)

Various methods have been developed in the past to deal with
carrier phase ambiguity resolution. Figure 1 shows some of
the well known strategies considered so far in literature.

On the whole, ambiguity resolution methods can be clas-
sified into two main categories, namely motion-based and
search-based methods (Buist 2007). Motion-based category
takes advantage of the information contained in the changes
in visible GNSS satellites or the motion of the platform, i.e.
changes in receiver-satellite geometry. This motion-based
method takes time to ambiguity solution and requires at least
three non-coplanar baselines (Cohen 1996). Therefore, they
are not applicable for real time GNSS positioning and the lat-
ter category, i.e. search-based methods are always selected
because these methods are not necessarily dependent on
motion.

Search-based methods are classified into three groups:
searching in coordinate domain, measurement domain, and
ambiguity domain. Two types of solutions in ambiguity
domain are called Bayesian and non-Bayesian. There are
several non-Bayesian methods for ambiguity resolution in
ambiguity domain. We can at least mention least-squares
ambiguity search technique (LSAST) proposed by Lan-
gley et al. (1984) and Wei (1986), fast ambiguity res-
olution approach (FARA) proposed by Frei and Beutler
(1990), least-squares ambiguity decorrelation adjustment
(LAMBDA) proposed by Teunissen (1993, 1994, 1995),
modified LAMBDA method proposed by Chang et al. (2005),
fast ambiguity search filter (FASF) proposed by Chen (1994)
and Chen and Lachapelle (1995), integer programming (IP)
proposed by Xu et al. (1995) and Xu (1998) and optimal
method for estimating GPS ambiguities (OMEGA) proposed
by Kim and Langley (2000).

In mathematical language, ambiguity resolution is a prob-
lem of IP plus integer quality evaluation. We will discuss
the first problem in this paper from the point of view of the
closest lattice point (CLP) in lattice theory. The study of lat-
tices was originally motivated by the geometry of numbers.
A lattice L is a discrete additive subgroup of R

d , gener-
ated by the set of integer linear combinations of no more
than d vectors b1, b2, . . ., bk, where k ≤ d. If these vectors
are linearly independent, we say that they are a basis of the
lattice L . Lattice basis reduction is the computation of lattice
bases where the base vectors are not only as orthogonal as
possible to each other, but also as short as possible. This is
an important problem in geometry of numbers with appli-
cations in communications, combinatorial optimization such
as IP, computer algebra and cryptography (see, for example
Kannan 1987; Steinfeld et al. 2007).

One of the most famous problem related to lattices is the
CLP problem: given a lattice basis and a target vector in R

d ,
find a lattice vector that is closest to the target. The CLP
problem has applications in various fields, including number
theory, cryptography and communication theory (Agrell et al.
2002). This contribution presents another application of the
CLP problem to the problem of integer ambiguity resolution.
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In addition to the US system GPS, the Russian GLONASS
is also in place and the European Galileo, Chinese COM-
PASS, Japanese QZSS are currently under construction and
will also transmit multiple frequency signals. The increase
in satellite availability and transmitted signals will increase
the number of ambiguity parameters. Many methods have
been developed to increase the search efficiency. However,
when dealing with high-dimensional ambiguity parameters,
the existing methods are still slow. The goal of this paper
is to apply the popular methods taken from the mathemat-
ical field of lattice theory to integer search estimation for
GNSS ambiguity resolution. We test out these strategies in
the rest of the paper and compare them to the LAMBDA and
MLAMBDA methods. Numerical results indicate substantial
improvement in speed to the problem of ILS.

The remaining of this paper is organized as follows. In
Sect. 2, we introduce the closest point in lattice versus inte-
ger ambiguity resolution problem. It is shown how the ILS
problem can be converted to the problem of the closest
point in the lattice. Section 3 presents the implementation
of the lattice theory and mathematically shows lattice basis
reduction speeds up searching process. Section 4 gives Pohst
and Schnorr–Euchner enumerations. It then presents three
searching closest point algorithms based on the Pohst and
Schnorr–Euchner enumerations. We give numerical simu-
lated and real GPS experiment results in Sect. 5. Conclusions
are presented in Sect. 6.

2 Lattice theory versus integer ambiguity resolution

2.1 Introduction to lattices

In geometry of numbers, a lattice in R
d is a discrete, addi-

tive, abelian subgroup of R
d consisting of points. Discrete

signifies that there are no cluster points but all points have a
minimum Euclidean distance from each other. Let the vectors
b1, b2, . . . , bk ∈ R

d , k ≤ d be linear independent. The set

� =
{

u ∈ R
d

∣∣∣∣∣u =
k∑

i=1

aibi , ai ∈ Z

}
(5)

is called a lattice, where k is the rank of the lattice and d is the
dimension of its basis vector. Therefore, every lattice can be
represented by a set B = {b1, b2, . . . , bk} of its basis vectors
called the basis of the lattice. For a lattice with k = d, we
refer to as a full rank lattice. In the matrix form the lattice
can be represented as follows:

�(B) = {Ba : a ∈ Z
k} (6)

The addition of vectors is associative and commutative, and
further a lattice is an abelian group. Two lattices with the
basis matrices B and C are called identical if all points of
the two lattices are the same. A lattice basis is not unique

Fig. 2 The closest lattice point x to a given input point y

and every basis B can be transformed into another basis C
such that �(B) = �(C). This is achieved using a unimodular
transformation for which we refer to Xu et al. (1995).

By the CLP problem, for a given input point y ∈ R
d , one

searches a vector x such that

‖y − x‖2 ≤ ‖y − c‖2 ∀c ∈ � (7)

Using the lattice defined with the generator matrix B in Eq.
(6), there is a vector a ∈ Z

k such that for x ∈ �, x = Ba.
Therefore, the CLP problem in a lattice, with a generator
matrix B, is equivalent to finding a vector a ∈ Z

k such that

‖y − x‖2 = ‖y − Ba‖2 = min∀c∈�
‖y − c‖2

= min
∀b∈Zk

‖y − Bb‖2 (8)

Figure 2 depicts the CLP (i.e. x) to a given input point y.
For a d-dimensional lattice in R

d and for i ranging from
1 to k, the i th successive minimum λi (�) is the radius of the
smallest closed ball centered at the origin containing i linear
independent lattice vectors. The shortest vector problem is
to find a vector in � − {0} that has the smallest Euclidean
norm.

2.2 Integer least-squares problem as a CLP problem

Consider again the ILS problem (IQP) introduced in Eq. (3).
Since the covariance matrix Qâ of the estimated ambiguity
parameters is positive definite, the Cholesky decomposition
of the matrix P = Q−1

â reads

P = RTR (9)

which yields

(â − a)TP(â − a) = (â − a)TRTR(â − a)

= (Râ − Ra)T(Râ − Ra) (10)

Assuming Râ = y, one obtains

(â − a)TP(â − a) = (y − Ra)T(y − Ra) = ‖y − Ra‖2

(11)
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Therefore, ILS problem using Eq. (11) can be rewritten as
follows

ǎ = min(â − a)TP(â − a) = min ‖y − Ra‖2 (12)

The preceding minimization problem is equivalent to the
CLP problem of the lattice �(R) = {Ra : a ∈ Z

n}, with the
basis matrix R and the given point y. Therefore, ILS problem
is in fact a CLP problem in lattice �(R).

3 Background on lattice basis reduction

3.1 Lattice basis reduction

Hermite (1850) published the first lattice reduction (LR)
algorithm in an arbitrary dimension by trying to generalize
Lagrange’s two-dimensional algorithm (Lagrange 1773). In
his famous letters to Jacobi, Hermite described two reduction
notions (along with algorithms) in the language of quadratic
forms: the first letter presented an algorithm to show the exis-
tence of Hermite’s constant (which guarantees the existence
of short lattice vectors), while the second letter presented
a slightly different algorithm to further prove the existence
of lattice bases with bounded orthogonality defect (Nguyen
and Stehlé 2009). Hermite’s algorithms can be viewed as the
ancestors of the Lenstra, Lenstra and Lovasz (LLL) algo-
rithm.

In mathematics, the goal of lattice reduction is to trans-
form a given lattice basis into another lattice basis of which its
vectors have the smallest possible length and they are close to
orthogonal (for lattice-search problems, this was first noted
by Coveyou and Macpherson 1967). There exists no per-
fect lattice basis reduction algorithm because it depends on
many factors like runtime, dimension of the basis, the given
problem to solve, and the expected quality of the solution.
A perfect algorithm should be able to handle high-dimen-
sional lattice and provide appropriate solutions in acceptable
time. Since the runtime plays an important role, a trade-
off between the runtime and a good solution for a given
lattice problem is necessary. For example, Korkine–Zolota-
reff (KZ) reduction is very strong, but expensive to com-
pute. On the contrary, LLL reduction is fairly cheap, but
an LLL-reduced basis is of much lower quality (Hanrot
and Stehle 2007). The orthogonalization, size reduction, and
vector swapping constitute the three fundamentals of the
lattice basis reduction, which will be followed in the next
subsections.

The covariance matrix of the ambiguities geometrically
defines a hyper-ellipsoid centered on the float ambiguities,
related to the searching space. Within a short observation
span, there is a high correlation between ambiguities and
the search ellipsoid may be particularly elongated (Teunis-
sen 1996). Therefore, the search process can be very time

consuming. In the GNSS literature, reduction stage is called
decorrelation. To increase the searching speed for the CLP
or integer ambiguities, one needs to decrease the correlation
among the original ambiguities. By a reparametrization of
the ambiguities which is called decorrelation or reduction,
the hyper ellipsoid is transformed to an almost spheroid and
consequently the searching process speeds up.

3.2 Orthogonalization

Consider the lattice basis B = (b1, b2, . . . , bn). The orthog-
onalization process provides the Gram–Schmidt coefficients
gi j and the squared 2-norms of the orthogonalized lattice
basis vectors b0

i , i.e. ‖b0
i ‖2, with the help of QR decomposi-

tion using the Gram–Schmidt process in the shape of R̃:

R̃ =

⎛
⎜⎜⎜⎜⎜⎝

‖b0
1‖2 g2,1 · · · gn−1,1 gn,1

0 ‖b0
2‖2 g3,2 . . . gn,2

...
...

. . . . . .
...

0 · · · 0 ‖b0
n−1‖2 gn,n−1

0 0 · · · 0 ‖b0
n‖2

⎞
⎟⎟⎟⎟⎟⎠

(13)

QR decomposition and the Gram–Schmidt process are
described in Appendix. Basis orthogonalization is explained
in Algorithm 1.

Algorithm 1 Basis Orthogonalization
Input: Lattice basis B = (b1, b2, . . . , bn) ∈ R

n

Output: R̃
1: Computing QR decomposition by means of Gram–Schmidt process
2: for i = 1: n
3: for j = i + 1: n
4: r̃i, j = ri,j

ri,i

5: end for
6: r̃i,i = r2

i,i

7: end for

3.3 Size reduction

A lattice basis B = (b1, b2, . . . , bn) is said to be size-reduced
if its Gram–Schmidt orthogonalization coefficients gi j ’s all
satisfy |gi, j | ≤ 1

2 for all 1 ≤ j < i ≤ k. Size reduction was
introduced by Lagrange (1773).

Any basis can be converted into a size reduced basis by
Algorithm 2.

Algorithm 2 Basis Size Reduction
Input : Lattice basis B = (b1, b2, . . . , bn) ∈ R

n and the Gram–Schmidt coefficients
Output : Size reduced basis B
1: for i = 2 : n
2: for j = i − 1 : n
3: If |gi, j | > 1

2
4: bi = bi − round(gi, j )bj

5: gi, j = gi, j − round(gi, j )

6: for l = 1 : j − 1 gi,l = gi,l − round(gi, j )g j,l

7: End if
8: end for
9: end for
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Fast integer least-squares estimation for GNSS 127

3.4 Vector swapping

To gain a better reduction, vector swapping is used which
is a unimodulary transformation operation. The order of bi

and then the dedicated orthogonalized versions b∗
i will be

changed by swapping. Algorithm 2 demonstrates that the
basis vector bk can be size reduced using the Gram–Schmidt
coefficients by k−1 vectors, the vector bk−1 by k−2 vectors,
and finally b2 by only one vector, i.e. b1. In this manner, the
vector b1 itself is not size reduced. Consequently, the relative
short vectors should be taken to the front and the long vec-
tors to the end of the basis. Then, a long vector has a higher
chance to get size reduced and the shortest vector cannot be
size reduced at all.

It is useful to swap two vectors bi and bi+1 when the dedi-
cated orthogonalized version b∗

i gets shorter. Swap condition
for consecutive vectors bi and bi+1 is as follows (Lenstra et al.
1982):

δ‖b∗
i ‖2

2 ≤ ‖b∗
i+1‖2

2 + g2
i+1,i‖b∗

i ‖2
2

1

4
< δ ≤ 1

i = 1, . . . , n − 1 (14)

LLL reduction proposed by Lenstra et al. (1982) who focused
on δ = 3

4 . Two types of reduction that are more frequently
used in practice are Korkine–Zolotareff (KZ) reduction pro-
posed by Korkine and Zolotareff (1873) and LLL reduction.
A basis B = (b1, b2, . . . , bn) is LLL-reduced if it is size-
reduced and if its Gram–Schmidt orthogonalization vectors
satisfy the (n − 1) conditions (14). This implies that the
lengths of the b∗

i ’s cannot decrease too fast: intuitively, the
vectors are not far from being orthogonal.

The LLL reduction is often used in situations where the
KZ reduction would be too time consuming and terminates in
polynomial time according to the lattice dimension. One rea-
son for their reputation is that their algorithms are recursive.
The n-dimensional reduction problem can be recursively
reduced to a n − 1-dimensional reduction problem which
is not feasible with Minkowski (1905) reduction. Finding
good reduced bases has proved invaluable in many fields of
computer science and mathematics (see for example, Cohen
1995; Grotschel et al. 1993), particularly in cryptology (see
for instance, Nguyen and Stern 2001; Micciancio and Gold-
wasser 2002). For the issue on numerical stability for lattice
basis reduction algorithms the reader can consult for instance,
Nguyen and Stehlé (2004, 2009) and Pujol and Stehle (2008).
Recently improved lattice basis reduction algorithms are
studied in Bartkewitz (2009).

Definition 2 A Lattice is called δ-LLL-reduced when

1. it is size reduced
2. δ‖b∗

i−1‖2
2 ≤ ‖b∗

i‖2
2 + g2

i,i−1‖b∗
i−1‖2

2

i = 2, . . . , n 1
4 < δ ≤ 1

The LLL algorithm uses Gram–Schmidt process for the
orthogonalization and the size reduction algorithm (Algo-
rithm 2). Algorithm 3 shows the LLL algorithm.

Algorithm 3 LLL-Algorithm for basis reduction
Input: Lattice basis B = (b1, b2, . . . , bn) and reduction parameter δ with 1

4 < δ < 1
Output: δ-LLL-reduced basis B
1: Using Gram–Schmidt process to compute coefficients gi, j

2: i = 2
3: while i ≤ n
4: Using Algorithm 2 to size reduce the vector bi

5: If δ‖b∗
i−1‖2

2 > ‖b∗
i‖2

2 + g2
i,i−1‖b∗

i−1‖2
2 then

6: Swap basis vectors bi and bi−1

7: Update Gram–Schmidt coefficients gl, j for l > j
8: i = max(i − 1, 2)

9: else
10: i = i + 1
11: end if
12: end while

The decorrelation process is utilized to alter the integer ambi-
guity resolution problem of Eq. (3) to a new one

ǎ1 = min(â1 − a1)
TP1(â1 − a1) (15)

by the so called G transformation such that

a1 = GTa P1 = GTPG (16)

where G is unimodular, i.e. |det(G)| = 1. When the opti-
mal integer estimate of a1 in model (16) is found, the integer
ambiguity parameters ǎ are calculated via ǎ = (GT)−1ǎ1.
Since G is an integer matrix, G−1 and as a result ǎ will remain
integer.

Several decorrelation techniques have been proposed in
GNSS literature. We can point out the Gaussian decorrela-
tion technique applied in LAMBDA, proposed by Teunissen
(1995), inverse integer Cholesky decomposition proposed by
Xu (2001), LLL proposed by Hassibi and Boyed (1998) and
Grafarend (2000), modified reduction algorithm proposed by
Chang et al. (2005), united ambiguity decorrelation proposed
by Liu et al. (1999) and (inverse) paired Cholesky integer
transformation proposed by Zhou (2010).

3.5 Why lattice reduction speeds up searching process?

We now mathematically show that the lattice reduction
method reduces the numbers of candidates for searching
and consequently the searching process speeds up. Consider
again the ILS problem

‖â − a‖2
P = (â − a)TP(â − a) = (Râ − Ra)T(Râ − Ra)

= ‖R(â − a)‖2 (17)

where R is the generator matrix of lattice �(R) = {Ra: a
∈ Z

n}. Also, consider that the upper bound of ‖â − a‖2
P is r2

i.e. ‖â − a‖2
P ≤ r2. Applying a reduction algorithm such as

LLL algorithm to the row vectors of R−1 instead of R (the
reason will become clear soon), we obtain R−1

r = UR−1, or
equivalently
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128 S. Jazaeri et al.

R = RrU (18)

Then

‖R(â−a)‖2 =‖RrU(â−a)‖2 =‖Rr(ŝ−s)‖2 < r2 (19)

where s = Ua and ŝ = Uâ. Since (ŝ − s) = R−1
r Rr(ŝ − s)

we have

(ŝi − si) = r−1
i Rr(ŝ − s) (20)

Similarly

(âi − ai) = r−1
i R(â − a) (21)

where si is the i th element of s, ai is the i th element of a, r−1
i

denotes the i th row vector of R−1
r and r−1

i denotes the i th
row vector of R−1. Considering rr = Rr(ŝ − s) and rr =
R(â − a), where rr and rr are column vectors, and 〈.〉 denot-
ing the inner product, one has

(ŝi − si)
2 =

(
r−1

i Rr(ŝ − s)
)2 =

(
〈r−1

i .rr〉
)2

(22)

(âi − ai)
2 =

(
r−1

i R(â − a)
)2 =

(
〈r−1

i .rr〉
)2

(23)

Applying the Cauchy–Shwarz inequality to the equations
yields

(ŝi − si)
2 =

(〈
r−1

i .rr

〉)2 ≤
∥∥∥r−1

i

∥∥∥2 ‖rr‖2

=
∥∥∥r−1

i

∥∥∥2 ∥∥Rr(ŝ − s)
∥∥2 (24)

(âi − ai)
2 =

(〈
r−1

i .rr

〉)2 ≤
∥∥∥r−1

i

∥∥∥2 ‖rr‖2

=
∥∥∥r−1

i

∥∥∥2 ∥∥R(â − a)
∥∥2 (25)

Equations (24) and (25) with Eq. (19) will convert to

(ŝi − si)
2 ≤

∥∥∥r−1
i

∥∥∥2
r2 (26)

(âi − ai)
2 ≤

∥∥∥r−1
i

∥∥∥2
r2 (27)

Because U is a unimodular matrix we have det(U) = 1
and hence det(R−1

r ) = det(R−1). According to Hadamard’s
inequality we have

|det(R−1)| ≤
n∏

i=1

∥∥∥r−1
i

∥∥∥ (28)

For orthogonal vectors r−1
i , equality is achieved and we have

(Mow 2003)

|det(R−1
r )| =

n∏
i=1

∥∥∥r−1
i

∥∥∥ (29)

Equations (28) and (29) yield

n∏
i=1

‖r−1
i ‖ ≤

n∏
i=1

∥∥∥r−1
i

∥∥∥ (30)

Using Eqs. (26) and (27) we have

n∏
i=1

∣∣(ŝi − si)
∣∣ ≤

n∏
i=1

∥∥∥r−1
i r
∥∥∥ (31)

n∏
i=1

∣∣(âi − ai)
∣∣ ≤

n∏
i=1

∥∥∥r−1
i r
∥∥∥ (32)

Using Eq. (30), the product
∥∥∥r−1

1

∥∥∥
∥∥∥r−1

2

∥∥∥ . . .
∥∥r−1

n

∥∥ is smaller

than
∥∥∥r−1

1

∥∥∥
∥∥∥r−1

2

∥∥∥ . . .
∥∥r−1

n

∥∥. Equations (31) and (32) indicate

that the numbers of candidates as a whole for searching in the
reduced lattice will decrease and consequently the searching
process speeds up.

4 Closest point search algorithms

In this section, we start with a conceptual description of vari-
ous lattice search algorithms. In this framework, we introduce
the Pohst strategy, the Schnorr–Euchner refinement of the Po-
hst strategy and three CLP search algorithms, i.e. Agrell, Eri-
ksson, Vardy, Zeger (AEVZ), modification of Viterbo-Bou-
tros (M-VB) and modification of Schnorr–Euchner (M-SE)
that are basically applications of the studies by Fincke and
Pohst (1985)) and Schnorr and Euchner (1994).

Pohst (1981) proposed an efficient algorithm for enumer-
ating all lattice points within a sphere with a certain radius.
The search strategy used in the LAMBDA method, proposed
by Teunissen (1993), is a variant of Pohst enumeration strat-
egy. Pohst enumeration approach has been extensively used
in CLP search problems because of its efficiency.

Pohst closest point search algorithm is briefly outlined as
follows.

Consider the CLP problem in lattice �(R) defined in
model (12). Let R0 be the squared radius of an n-dimen-
sional sphere centered at y. Equation (12) gives

‖y − Ra‖2 ≤ R0 (33)

Due to the upper triangular form of R, the inequality implies
a set of conditions as

n∑
j=i

⎛
⎝y j −

m∑
l= j

R j,lal

⎞
⎠

2

≤ R0 i = 1, . . . , n (34)

Considering the above conditions in the order from i = n
down to 1, the set of admissible values of each variable ai is
achieved using the values given for variables ai+1, . . . , an .
More explicitly if the values of a j for i + 1 ≤ j ≤ n are
fixed, the component ai , i = n − 1, n − 2, . . . , 1 can take
values in the range of integers [Li , Ui ] where
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Li = round

⎡
⎢⎢⎣ 1

Ri,i

⎛
⎝yi −

n∑
j=i+1

Ri, j a j

−

√√√√√R0 −
n∑

j=i+1

⎛
⎝y j −

n∑
l= j

R j,lal

⎞
⎠

2
⎞
⎟⎟⎠
⎤
⎥⎥⎦ (35)

Ui = round

⎡
⎣ 1

Ri,i

⎛
⎝yi −

n∑
j=i+1

Ri, j a j

+

√√√√√R0 −
n∑

j=i+1

⎛
⎝y j −

n∑
l= j

R j,lal

⎞
⎠

2
⎞
⎟⎟⎠
⎤
⎥⎥⎦ (36)

where round(.) denotes rounding to the closest integer. If

n∑
j=i+1

⎛
⎝y j −

n∑
l= j

R j,lal

⎞
⎠

2

> R0 (37)

there is no value of ai satisfying the inequalities (35) and
(36). Therefore, the points corresponding to the fixed values
ai+1, . . . , an do not belong to the sphere with radius

√
R0

centered at y. Pohst algorithm consists of spanning at each
level i the admissible interval [Li , Ui ], starting from level
i = n and climbing up to level i = n − 1, n − 2, . . . , 1. At
each level, the interval [Li , Ui ] is determined by the values
of the variables at lower levels corresponding to higher indi-
ces. If the interval [L1, U1] is non-empty, all a ∈ [L1, U1]
and fixed values of the variables at lower levels yield lattice
points in defined sphere with radius R0. The squared Euclid-
ean distances between such points and y are

d2(y, Ra) =
n∑

j=1

⎛
⎝y j −

n∑
l= j

R j,lal

⎞
⎠

2

(38)

The Pohst algorithm provides the point ǎ for which Euclidean
distances defined in Eq. (38) is minimum. If, after spanning
the interval [Ln, Un], corresponding to an , no point in the
sphere is found (empty sphere), the search fails. In this case,
the search squared radius R0 must be increased and the search
is resumed with new squared radius. In Pohst method every
variable ai takes values in the order Li , Li + 1, . . . , Ui at
each level. Schnorr–Euchner strategy is the variant of Po-
hst strategy and the intervals at every level are spanned in a
zig-zag order, starting from the midpoint of the interval. The
midpoint of every interval at level i is as follows

Mi = round

⎛
⎝ 1

Ri,i

⎛
⎝yi −

n∑
j=i+1

Ri, j a j

⎞
⎠
⎞
⎠ (39)

In Schnorr–Euchner enumeration, every variable at level i
takes values in the order Mi , Mi + 1, Mi − 1, Mi + 2, Mi −
2, . . . , if

yi −
n∑

j=i+1

Ri, j a j − Ri,i Mi ≥ 0 (40)

or, in the order Mi , Mi − 1, Mi + 1, Mi − 2, Mi + 2, . . . , if

yi −
n∑

j=i+1

Ri, j a j − Ri,i Mi < 0 (41)

This enumeration strategy was firstly introduced by Schnorr
and Euchner (1994). Teunissen (1995) explained that instead
of scanning the interval per ambiguity from left to right for
integers (Pohst strategy), one can search in an alternating
way around the conditional estimate in a zig-zag order. That
strategy is, however, different from Schnorr–Euchner strat-
egy and selecting integer in the interval (per ambiguity) is
not based on the conditions (40) and (41). In Schnorr–Euch-
ner strategy, R0 can be set to infinity (R0 = ∞) and there is
no need to compute the search radius at first. In this way the
search never fails and the first point found corresponds to the
Babai point (Babai 1986; Agrell et al. 2002)

aBabai
i = round

⎛
⎝ 1

Ri,i

⎛
⎝yi −

n∑
j=i+1

Ri, j a
Babai
j

⎞
⎠
⎞
⎠ (42)

An efficient closest point search algorithm, based on the Sch-
norr–Euchner variant of the Pohst technique, is implemented
by Agrell et al. (2002). We call this CLP search algorithm
AEVZ, as an abbreviation for the names of the authors. This
strategy is shown to be considerably faster than other known
methods, by means of a theoretical comparison with the Kan-
nan algorithm (Kannan 1983) and an experimental compar-
ison with the Pohst algorithm and its variants, such as the
Viterbo-Boutros decoder (Viterbo and Boutros 1999). The
algorithm can be modified to solve a number of related search
problems for lattices, which includes finding the shortest vec-
tor, determining the kissing number, computing the Voronoi-
relevant vectors, and finding a Korkine–Zolotareff reduced
basis (Agrell et al. 2002).

AEVZ is the variant of Pohst strategy and the intervals at
every level are spanned also based on Schnorr–Euchner enu-
meration. The squared search radius is set to infinity. Based
on Schnorr–Euchner strategy, it is easy to see that the first
point found with R0 = ∞ corresponds to the Babai point.
Therefore, the first lattice point generated will be the Babai
point when the search process is starting from level i = n and
reaching to level 1. After the Babai point is found, the R0 is set
to the distance d2(y, RaBabai). In this manner the search never
fails. During the search process, the search sphere shrinks
each time when a new integer point is found. This is crucial
to the efficiency of the search process. This method starts to
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search a new candidate with returning to level 2 and take the
next integer at this level based on Schnorr–Euchner enumer-
ation (Eqs. 40 and 41). If the new calculated squared search
radius is smaller than previous radius, the search process
moves to level 1, otherwise it proceeds with level 3 to take
the next integer value at this level. The search process will
be continued until a new candidate at level 1 will be found.
Finally, when the search process fails to find a new integer
value at level n, i.e. its squared distance is larger than best
squared distance found so far, the search process stops and
the latest integer point found is the optimal solution we look
for.

Modification of the Schnorr–Euchner enumeration
(M-SE) is similar to AEVZ CLP search algorithm. The
squared radius search is, however, not considered infinity
but an input parameter (Damen et al. 2003). A too small
squared radius may result in an empty sphere, whereas a too
large one may result in too many points to be enumerated.
A usual candidate for R0 is the covering radius, defined to
be the radius of the spheres centered at the lattice points that
cover the entire space in the most efficient way. The covering
radius can be computed by exhaustive search and the running
time for exhaustive search becomes forbiddingly large. This
problem is called NP-hard (Guruswami et al. 2005). To cal-
culate the initial squared radius R0, the reader is referred to
Teunissen et al. (1997), Hassibi and Boyed (1998), Zhou and
Giannakis (2005), and Hassibi and Vikalo (2005). The AEVZ
and M-SE methods are implemented in MATLAB and their
codes are provided in the supplementary electronic file.

The VB implementation (Viterbo and Boutros 1999) is
a variant of Pohst strategy and contrary to the AEVZ CLP
search algorithm, the squared search radius is set to R0. But
R0 is changed adaptively along the search. In this method
search strategy continue until it reaches level 1 and obtain
the first integer point. Then R0 is updated and the search is
restarted in the new sphere with smaller radius. The new pro-
cess starts at level 1 to search through all other valid integers
from the smallest to the largest. Then move up to level 2 to
update the integer value to be the next nearest integer based
on Pohst enumeration. If it belongs to the authorized interval
at level 2, it moves down to level 1 to update the integer value
at this level; otherwise it moves up to level 3 to update the
integer value at this level and so on. Finally, when it fails to
find a new integer value at level n that satisfies the inequality
(yn − Rn,nan)2 < R0, the search process stops. The latest
integer point found is the optimal solution we look for. Dur-
ing the search process, the search sphere shrinks each time
when a new integer point is found.

A drawback of this technique is that the VB algorithm may
re-span values of ai for some levels i, 1 ≤ i ≤ n, that have
already been spanned in the previous sphere. In modified-VB
(M-VB) algorithm, once a lattice point is found, all the upper
bounds of the intervals are updated without restarting. This is

the main advantage of this strategy over VB method. In other
words, some values of ai that have already been examined,
will not be reconsidered after reducing the sphere radius. For
further information, the reader is referred to Damen et al.
(2003). The M-VB method is implemented in MATLAB and
the code is provided in the supplementary electronic file.

We point out that the AEVZ, M-VB and M-SE CLP search
algorithms are the fastest algorithms currently available for
finding CLP, which can accordingly be used for ILS estima-
tion.

5 Numerical results and discussion

To compare different search strategies for GNSS high-dimen-
sional ambiguity resolution, in this section, we use many
different simulated data to compare the performance of three
integer search methods presented in the previous section.
This includes simulations such as those implemented in
Chang et al. (2005) applied to compare the LAMBDA and
MLAMBDA, and simulations using algorithms presented by
Xu (2001). Further, we have also included results on a real
GPS data set in which real ambiguity vector along with its
covariance matrix were used. We test out the searching speed
of the methods and compare them to the LAMBDA and
MLAMBDA. All presented results in this section are per-
formed in MATLAB 7.6.0 on a PC, 2.8 GHz with 2.96 GB
memory running Windows XP professional.

We highlight that the goal is not to test the performance
of the LAMBDA and MLAMBDA. We hypothesize that the
original LAMBDA implemented in MATLAB by Delft Uni-
versity of Technology is not likely optimized to allow for per-
formance comparison in terms of computational efficiency
because this available version is intended for educational
purposes. We only compare searching speed of the methods
presented among each other and compare them to the cur-
rent version of LAMBDA available in the website of Delft
University of Technology and the MLAMBDA provided by
Xiao-Wen Chang.

Simulations are performed for different cases. The real
vector â was constructed as

â = 100 × randn(n, 1) (43)

where randn(n, 1) is a MATLAB built-in function to pro-
duce a vector of n random entries having standard normal
distribution.

Similar to the simulations in Chang et al. (2005), to con-
struct covariance matrix of real ambiguity parameters, we
consider seven cases. The first four cases are based on Qâ =
LTDL, where L is a unit lower triangular matrix with each
li j (for i > j) being a random number generated by randn,
and D is generated in four different cases:

123



Fast integer least-squares estimation for GNSS 131

• Case 1: D = diag(di ), di = rand, where rand is a MAT-
LAB built-in function to generate uniformly distributed
random numbers in (0, 1).

• Case 2: D = diag(n−1, (n − 1)−1, . . . , 1)

• Case 3: D = diag(1, (2)−1, . . . , n−1)

• Case 4: D = diag(200, 200, 200, 0.1, 0.1, . . . , 0.1)

The other three cases are as follows:

• Case 5: Qâ = UDUT , U is a random orthogonal matrix
obtained by the QR factorization of a random matrix
generated by randn(n, n), D = diag(di t), di = rand.

• Case 6: Qâ = UDUT , U is generated in the same way
as in case 5, d1 = 2− n

4 , dn = 2
n
4 , other diagonal ele-

ments of D is randomly distributed between d1, dn, n is
the dimension of Qâ. Thus the condition number of Qâ
is 2

n
2 .

• Case 7: Qâ = ATA, A = randn(n, n).

Case 4 is motivated because the covariance matrix Qâ in
GPS usually has a large gap between the third conditioned
standard deviation and the forth one (Teunissen 1998a, Sect.
8.3.3).

To fairly compare all search processes and to speed up
searching in all simulations, after applying the decorrelation
process, we used the search algorithms to the transformed
ILS problem. All presented results are performed over 100
independent runs. Numerical results just show the average
search time of the three presented algorithms (AEVZ, M-
VB and M-SE), LAMBDA and MLAMDA. The compu-
tation time for the decorrelation was not included. For the
LAMBDA, MLAMBDA and the three lattice search algo-
rithms, the Gaussian decorrelation method is used before the
search process.

Because we used the same decorrelation method for all
search algorithms, the total ILS estimation time will increase
by the same amount if we include the computation time for
the decorrelation. This indicates that only the computation
time of different search algorithms is of interest in the pres-
ent contribution. Obviously, if we do not apply the decor-
relation process and use the search process on the original
least-squares problem, the search time for the presented algo-
rithms, LAMBDA and MLAMBDA will all increase propor-
tional to the computation search time presented for different
methods when applying the decorrelation process. In each
run the best optimal ILS is estimated and we search only for
the (first) best solution with LAMBDA and MLAMBDA.
The average integer searching time (excluding the reduction
time) for all simulated data and for dimensions of 40 and 45
are given below.

For weak models in which the success rate is low, the
decorrelation and search time will generally be longer. To
have strong models, in all simulations, the success rate is

considered to be 99.999%. To reach exactly this high success
rate, the simulated covariance matrices in some cases will
slightly be scaled as Qâ = σ Qâ. A simple measure to infer
the float ambiguity precision is the ambiguity dilution of pre-
cision (ADOP) defined in Teunissen (1997). We applied the
success rate defined in Teunissen (1998b), which is a func-
tion of ADOP. Average searching time in seconds for all
simulation cases are presented in Table 1.

We also constructed the real vector â using the MATLAB
built-in function in the statistics toolbox (mvnrnd.m), which
allows to generate the ambiguities for a given covariance
matrix. Tables 2 and 3 outline the results of all simulation
cases 1–7 for dimensions n = 40 and n = 45, respectively.

When compared with the LAMBDA and MLAMBDA
methods, the methods presented in this contribution are
faster. Table 1 shows, on average, that AEVZ is about 127,
470, 399, 261, 106, 269, 256, M-VB is about 24, 121, 35,
58, 22, 77, 57 and M-SE is about 56, 315, 38, 103, 58, 177,
187 times as fast as LAMBDA for cases 1–7, respectively. In
Table 2, AEVZ is about 105, 443, 197, 396, 153, 224, 446,
M-VB is about 20, 84, 7, 83, 47, 39, 99 and M-SE is about
44, 374, 7, 147, 101, 132, 323 times faster than LAMBDA,

Table 1 Average searching time over 100 independent runs (seconds)
of different algorithms for dimension n = 40

Case Method

LAMBDA MLAMDA AEVZ M-VB M-SE

1 1.8067 0.0974 0.0142 0.0737 0.0322

2 1,266.0964 16.5427 2.6934 10.4765 4.0202

3 0.5983 0.0089 0.0015 0.0169 0.0158

4 2.6668 0.0668 0.0102 0.0455 0.0257

5 4.7601 0.2790 0.0448 0.2091 0.0817

6 40.1202 1.0440 0.1489 0.5204 0.2264

7 216.5075 5.5765 0.8446 3.8094 1.1548

Real ambiguities are simulated using Eq. (43)

Table 2 Average searching time over 100 independent runs (seconds)
of different algorithms for dimension n = 40

Case Method

LAMBDA MLAMDA AEVZ M-VB M-SE

1 1.5421 0.1077 0.0147 0.0769 0.0351

2 952.4090 11.4410 2.1501 11.2924 2.5474

3 0.1021 0.0022 0.000519 0.0136 0.0133

4 3.3670 0.0458 0.0085 0.0403 0.0228

5 7.9429 0.2739 0.0520 0.1700 0.0784

6 32.4202 0.9899 0.1444 0.8309 0.2449

7 368.1308 5.1078 0.8255 3.7123 1.1392

Real ambiguities are simulated using the MATLAB built-in function
mvnrnd.m
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Table 3 Average searching time over 100 independent runs (seconds)
of different algorithms for dimension n = 45

Case Method

LAMBDA MLAMDA AEVZ M-VB M-SE

1 4.7110 0.3246 0.0508 0.2482 0.0892

2 6,279.4891 83.428 13.2846 81.3527 27.2622

3 0.4278 0.0011 0.0006389 0.0187 0.0186

4 9.3553 0.1196 0.0231 0.0864 0.0474

5 21.6018 1.0358 0.1859 0.5323 0.2590

6 269.1465 4.5191 0.8125 3.3407 0.9809

7 2,117.5926 30.5525 6.1057 24.7601 7.6046

Real ambiguities are simulated using the MATLAB built-in function
mvnrnd.m

respectively. In Table 3, AEVZ is about 92, 472, 669, 404,
116, 331, 347, M-VB is about 19, 77, 23, 108, 40, 80, 85 and
M-SE is about 53, 230, 23, 197, 83, 274, 278 times as fast as
LAMBDA, respectively. AEVZ is about 7, 6, 6, 7, 6, 7, and
7 times in Table 1, 7, 5, 4, 5, 5, 7, and 6 times in Table 2 and
6, 6, 2, 5, 6, 6, and 5 times in Table 3 as fast as MLAMBDA
for cases 1–7, respectively.

When AEVZ is compared to the M-VB and M-SE, it
appears to be the fastest method. The results of the aver-
age searching time (in seconds) are provided for the AEVZ
method in Fig. 3, for n = 10, 11, . . . , 50. Also Fig. 4 shows
the average number of candidates searched in each case.

Another simulation algorithm was proposed by Xu (2001).
Let Qâ be decomposed as follows:

Fig. 3 Average searching time (seconds) in logarithmic scale for the AEVZ method over 100 independent runs for cases 1–7

Fig. 4 Average number of candidates for the AEVZ method searched over 100 independent runs for cases 1–7
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Qâ = U�UT (44)

where U is the normalized orthogonal eigenvector square
n×n matrix and � is the diagonal matrix with positive eigen-
value elements of Qâ. The normalized orthogonal eigenvec-
tor matrix U can be uniquely represented as follows:

U = Un×(n−1) . . . U3×2Un×1 . . . U3×1U2×1 (45)

where

Ui j =

⎡
⎢⎢⎢⎢⎣

I1 0 0 0 0
0 cos θi j 0 sin θi j 0
0 0 I2 0 0
0 − sin θi j 0 cos θi j 0
0 0 0 0 I3

⎤
⎥⎥⎥⎥⎦ (46)

with I1, I2 and I3 identity matrices of suitable orders, −π
2 ≤

θi j ≤ π
2 and 0 is either a zero matrix or a zero (row or column)

vector. For more theoretical details the reader is referred to
Xu (1999, 2002) and Xu and Grafarend (1996). � was con-
structed similar to those of previous section as

• Case 1: � = diag(λi ), λi = rand
• Case 2: � = diag(n−1, (n − 1)−1, . . . , 1)

• Case 3: Case 3: � = diag(1, (2)−1, . . . , n−1)

• Case 4: � = diag(200, 200, 200, 0.1, 0.1, . . . , 0.1)

• Case 5: λ1 = 2− n
4 , λn = 2

n
4 , other diagonal elements

of � is randomly distributed between λ1, λn, n is the
dimension of Qâ. Thus the condition number of Qâ is
2

n
2 .

The average searching time for dimension 40 of the pro-
posed methods, LAMBDA, and MLAMBDA are shown in
Tables 4 and 5. In both tables the covariance matrix Qa ‘ is
simulated for cases 1–5. In Table 4, the real vector â is sim-
ulated as â = 100 × randn(n, 1), while, in Table 5 â is
simulated using the MATLAB built-in function mvnrnd.m.

Table 4 shows that, on average, AEVZ is about 97, 53,
38, 29, 2,104, M-VB is about 31, 8, 6, 9, 280 and M-SE is
about 55, 11, 8, 14,369 times as fast as LAMBDA for cases
1–5, respectively. AEVZ is about five times faster than the

Table 4 Average searching time (seconds) over 100 independent runs
of different algorithms for dimension n = 40

Case Method

LAMBDA MLAMBDA AEVZ M-VB M-SE

1 1.8622 0.1275 0.0192 0.0606 0.0338

2 0.1395 0.01485 0.0026 0.0162 0.0129

3 0.1299 0.0156 0.0034 0.0215 0.0166

4 0.3689 0.0476 0.0123 0.0418 0.0259

5 4.8389 0.0124 0.0023 0.0173 0.0131

Real ambiguities and its covariance matrix are simulated using Eqs.
(43) and (44), respectively

Table 5 Average searching time (seconds) over 100 independent runs
of different algorithms for dimension n = 40

Case Method

LAMBDA MLAMBDA AEVZ M-VB M-SE

1 1.2326 0.0927 0.0188 0.0630 0.0221

2 0.0237 0.0014 0.0005823 0.0011 0.0010

3 0.0176 0.0013 0.0005348 0.0097 0.0093

4 0.1446 0.0236 0.0049 0.0205 0.0150

5 2.9337 0.0199 0.0020 0.0194 0.0131

Real ambiguities are simulated using the MATLAB built-in function
mvnrnd.m and its covariance matrix using Eq. (44)

Table 6 Average searching time (seconds) over 100 independent runs
of different algorithms (n = 40)

z Method

LAMBDA MLAMBDA AEVZ M-VB M-SE

4 455.3979 2.1859 0.3481 1.9175 0.2894

5 2,178.0591 5.8084 1.2373 4.1437 1.169

6 6,410.9015 16.8465 2.1080 13.6155 3.6330

7 9,400.0812a 29.5532 3.8678 27.1670 5.8936

8 10,679.6293a 50.8189 5.5730 32.1611 9.3548

Real ambiguities are simulated using the MATLAB built-in function
mvnrnd.m and its covariance matrix is constructed by Qâ = U�UT ,
where � is based on Eq. (47)
a For 25 runs

MLAMBDA. For cases 1–5 (Table 5), AEVZ is about 65,
41, 33, 29, 1,467, M-VB is about 19, 21, 2, 7, 151 and M-
SE is about 56, 23, 2, 10, 224 times faster than LAMBDA,
respectively. And AEVZ is about five times faster than the
MLAMBDA.

In the next simulation cases we assume that ranges for
the eigenvalues and the condition numbers of the covariance
matrix are very large. � was constructed as

� = diag(λi ), λi = 10rand∗z z = 4, 5, 6, 7, 8 (47)

to satisfy large condition numbers. Average searching time
for real vector â simulated using the MATLAB built-in func-
tion mvnrnd.m are presented in Table 6.

Because this simulation may not represent the practical
situation, these results have not been included for calculating
the average speed of the three presented methods compared
with LAMBDA and MLAMBDA.

We further evaluate the performance of different search
strategies using a real GPS data set collected using dual fre-
quency GPS Trimble R7 receivers on 14 April 2009, and a
15-s interval. The total number of epochs is 838. The sky
plot for this experiment is shown in Fig. 5. In each epoch the
float ambiguity vector and its covariance matrix are obtained.
The average searching time (over entire observation span)
of different search strategies for fixing the ambiguities is

123



134 S. Jazaeri et al.

Fig. 5 The sky plot of all observed satellites in view above 13 degree
elevation angle for entire time span of 5:25:15 till 8:54:45 on 14 April
2009

Table 7 Average searching time (seconds) of different algorithms

Method

LAMBDA MLAMBDA AEVZ M-VB M-SE

12.0195 0.2357 0.0338 0.1844 0.0534

presented in Table 7. In this case we do not apply the dec-
orrelation process and use the search process on the original
least-squares problem. Similar results to those presented for
the simulated cases are obtained. Among them, it is clear
that the AEVZ is the fastest method to the solution of the
ILS estimation problem.

The proposed methods speed up searching CLP in lattices
and give the optimal integer solution. The results in general
show that these methods are faster than the LAMBDA and
MLAMBDA methods.

6 Summary and conclusions

There exist several methods for ILS estimation. In cases
where tens of integer ambiguities are involved, the exist-
ing methods are still slow. In this contribution, we investi-
gated the ILS estimation problem, which was shown to be the
same as the CLP problem in lattice theory. The mathemat-
ical formulations of three efficient CLP search algorithms,
i.e. AEVZ, M-SE and M-VB were presented.

AEVZ and M-SE algorithms are inspired by Schnorr–Eu-
chner enumeration strategy and M-VB is inspired by Pohst

enumeration strategy. M-VB is more efficient than the VB
searching algorithm. M-SE is similar to AEVZ search algo-
rithm but the squared radius search is not infinity but an input
parameter. In AEVZ search algorithm, search radius is set to
infinity and therefore the search never fails. These algorithms
can all be utilized to solve any IQP problem, including the
least-squares integer estimation of ambiguity parameters.

We discussed the mathematical background and pre-
sented their implementations. We then tested the perfor-
mance of the algorithms using different simulated and real
GPS data. AEVZ, M-SE and M-VB methods when com-
pared to the available version of LAMBDA and MLAMBDA
were proved to be faster on all simulated and real data. The
numerical examples show that, on average, AEVZ is about
320 times, M-VB is about 50 times and M-SE is about 120
times faster than LAMBDA for dimension 40. These num-
bers change to about 350, 60 and 160 times for dimension 45,
which shows its efficiency at higher dimensions. The AEVZ
was shown to be about 5 times faster than MLAMBDA.

Research into the performance of the presented algorithms
for a constrained ILS estimation is ongoing and will be the
subject of future publications.
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Appendix

Proposition 1 (Q R decomposition) Let A ∈ R
d×k and be

non-singular, then the QR decomposition A = QR is unique,
where Q is unitary and R is an upper triangular matrix with
positive diagonal elements Golub and Loan (1996).

A = (a1, a2, . . . , ak)

= QR = (q1, q2, . . . , qk)

⎡
⎢⎢⎢⎣

r1,1 r1,2 · · · r1,k

0 r2,2 · · · r2,k
...

...
. . .

...

0 0 · · · rk,k

⎤
⎥⎥⎥⎦ (1)

Proposition 2 (Gram–Schmidt orthogonalization) The ort-
hogonal basis b0

i of the basis vectors bi determined by the
following iterated process is called the Gram–Schmidt pro-
cess:

b0
1 = b1 (2)

b0
i = bi −

i−1∑
j=1

gi, j b0
j (3)
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where

gi, j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈
bi,b0

j

〉
〈
b0

j ,b
0
j

〉 i > j

1 i = j
0 else

(4)

The Gram–Schmidt process gives the QR decomposition of
a basis B = (b1b2 . . . bk) such that

Q = (q1, q2, . . . , qn) =
(

b0
1

‖b0
1‖2

,
b0

2

‖b0
2‖2

, . . . ,
b0

k

‖b0
k‖2

)
(5)

and

R =

⎡
⎢⎢⎢⎣

r1,1 r1,2 · · · r1,k

0 r2,2 · · · r2,k
...

...
. . .

...

0 0 · · · rk,k

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

‖b0
1‖2 0 · · · 0
0 ‖b0

2‖2 · · · 0
...

...
. . .

...

0 0 · · · ‖b0
k‖2

⎤
⎥⎥⎥⎦× R∗ (6)

where

R∗ =

⎡
⎢⎢⎢⎢⎢⎣

1 g2,1 · · · gk−1,1 gk,1

0 1 g3,2 · · · gk,2
...

...
. . .

...
...

0 · · · 0 1 gk,k−1

0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦

(7)

The Gram–Schmidt orthogonalization algorithm and the
inverse integer Cholesky decorrelation method are imple-
mented in MATLAB and their codes are provided in the sup-
plementary electronic file.
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