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Abstract The LLL reduction of lattice vectors and its vari-
ants have been widely used to solve the weighted integer
least squares (ILS) problem, or equivalently, the weighted
closest point problem. Instead of reducing lattice vectors,
we propose a parallel Cholesky-based reduction method for
positive definite quadratic forms. The new reduction method
directly works on the positive definite matrix associated with
the weighted ILS problem and is shown to satisfy part of the
inequalities required by Minkowski’s reduction of positive
definite quadratic forms. The complexity of the algorithm can
be fixed a priori by limiting the number of iterations. The sim-
ulations have clearly shown that the parallel Cholesky-based
reduction method is significantly better than the LLL algo-
rithm to reduce the condition number of the positive definite
matrix, and as a result, can significantly reduce the search-
ing space for the global optimal, weighted ILS or maximum
likelihood estimate.

Keywords Global positioning system (GPS) · Integer
linear model · Integer least squares · Closest point
problem · Reduction of quadratic forms · LLL reduction ·
Multiple-input–multiple-output

1 Introduction

Consider the following integer linear model:

y = Bz + ε, (1)

where y is an n-dimensional vector of real-valued data, B
is an (n × m) real-valued matrix of full column rank, and
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ε is the random error vector of the measurements y with
the variance–covariance matrix W−1σ 2. The matrix W has
often been called a weight matrix of the measurements y in
the engineering literature (see, e.g. Koch 1999; Xu 2006), and
σ 2 is generally assumed to be an unknown positive scalar.
A basic problem in connection with the model (1) is to esti-
mate the unknown integer vector z from the real-valued data
y, i.e., z ∈ Z

m , and Z
m is defined as an m-dimensional integer

space.
The integer linear model (1) has been an interdisciplinary

subject of study, ranging, for example, from the geometry
of numbers and integer programming to multiple-input–
multiple-output (MIMO) communication systems, learning
with errors, cryptography, crystallography, and global nav-
igation satellite systems (GNSS). Without the term of ran-
dom errors ε, the deterministic part of the model (1), namely,
y = Bz with z ∈ Z

m , defines a lattice of discrete points
in R

n with the basis of m linearly independent column vec-
tors of B and is the starting point of the geometry of numbers
(see, e.g. Conway and Sloane 1999; Gruber and Lekkerkerker
1987), where R

n is an n-dimensional real-valued space. In
a MIMO communication system or a problem of learning
with errors, the key issue is to correctly estimate the inte-
ger unknown vector z from the noise-contaminated received
data y, which can be respectively interpreted in the language
of decoding and/or codewords (see, e.g. Agrell et al. 2002;
Regev 2009). In cryptography, a cryptographer attempts to
hide secret information on the basis of the NP-hard complex-
ity of solving the integer linear model (1) on one hand and
uses approaches to solving the same problem (1) to attack
or disclose a cryptosystem (see, e.g. Joux and Stern 1998;
Regev 2009) on the other hand. However, a crystallographer
would be concerned with reconstructing the lattice structure
of a crystalline by solving for the integer coordinates from
a set of X-ray projections along different lattice directions;
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this problem is also known as a discrete tomography (see, e.g.
Brunetti and Daurat 2003; Gardner et al. 1999). In GNSS, one
is interested in correctly finding the integer unknown vector
z, which is essential for precise GNSS positioning (see, e.g.
Teunissen 1993; Hofmann-Wellenhof et al. 1992; Xu et al.
1995; Grafarend 2000). In fact, in the case of GNSS precise
positioning, we have to deal with a slightly more complicated
model with both types of unknown parameters as follows:

y = Aβ + Bz + ε, (2)

where A is an (n × t) real-valued matrix of full column
rank, and β is a real-valued nonstochastic vector, i.e., β ∈
R

t with R
t being a t-dimensional real-valued space. The

model (2) has also been called a mixed integer linear model
(see, e.g. Xu et al. 1995; Grafarend 2000; Xu 1998, 2006,
2010). By projecting the problem (2) onto the orthogonal
complement of the range of A with the projection matrix
[I − A(ATWA)−1ATW] (Teunissen 1993) or by following
the two-step approach of Xu et al. (1995), we can reduce
the mixed integer linear model (2) to the integer linear
model (1).

Applying the weighted least squares (LS) criterion to the
integer linear model (1), we have the following minimization
model:

min:
z∈Zm

F(z) = (y − Bz)TW(y − Bz), (3)

which is also called the integer least squares (ILS) problem.
If the random errors ε are assumed to be normally distrib-
uted, the integer optimization problem (3) can naturally be
derived from the maximum likelihood (ML) principle (see,
e.g. Artés et al. 2003; Damen et al. 2003). The ILS problem
(3) can be rewritten equivalently as follows:

min:
z∈Zm

F(z) = (z − z f )
TWf (z − z f ), (4)

where

Wf = BTWB,

z f = (BTWB)−1BTWy = W−1
f BTWy,

(see, e.g. Teunissen 1993; Xu et al. 1995; Xu 2006). If W = I,
then (3) has been better known as the closest vector problem
(see, e.g. Nemhauser and Wolsey 1988) or as the closest point
problem (see, e.g. Agrell et al. 2002; Babai 1986). Further-
more, if y = 0, W = I and z �= 0, then (3) has been well
known as the shortest vector problem (see, e.g. Grötschel
et al. 1988; Nemhauser and Wolsey 1988).

The ILS problem (3) is obviously a standard quadratic
integer programming model (see, e.g. Taha 1975; Nemhauser
and Wolsey 1988; Li and Sun 2006). In principle, one

can use any appropriate integer programming methods, as
documented, for example, in the above mentioned books, to
find the global optimal integer solution to (3). In general, one
may classify the approaches to solve (3) into two types: exact
and approximate. Finding the exact solution to (3) is known to
be NP-hard (see, e.g. Agrell et al. 2002; Grötschel et al. 1988;
Nemhauser and Wolsey 1988; Conway and Sloane 1999).
Almost all efficient algorithms to find the exact solution to
(3) are designed by the combination of reduction methods
with a proper enumeration strategy. The most widely used
(exact) method of enumeration was originally proposed by
Pohst (1981) and detailed in Fincke and Pohst (1985). The
efficiency of searching for the minimum solution was further
improved by Schnorr and Euchner (1994), which culminated
with a celebrated algorithm for many practical applications
(see, e.g. Agrell et al. 2002; Damen et al. 2003). The second
type of methods is mainly focused on finding an approx-
imate solution to (3). The simplest approximate approach
can either solve (3) as if it were a real-valued problem and
then round the floating point solution to its nearest integer
(see, e.g. Taha 1975) or sequentially fix the floating point
component to its nearest integer at each step of iteration.
However, the most widely used method to find an approxi-
mate solution may be based on lattice reduction, in particular,
the polynomial-time reduction method invented by Lenstra
et al. (1982) which has now been popularized as the LLL
algorithm after the initials of the family names of its three
inventors.

Actually, reduction is not only a method to help quickly
find an approximate solution to the ILS problem (3) but can
also be a key component in efficiently speeding up finding
the exact minimum integer solution, as can be clearly seen
in Pohst (1981), Fincke and Pohst (1985) and Schnorr and
Euchner (1994). Obviously, correctly estimating the integer
unknown parameters z is the only part of statistical infer-
ence in connection with the integer linear model (1). If the
reader would like to know more beyond the integer estima-
tion, he or she should consult Shannon (1959) for a lower
error probabilistic bound for incorrectly estimating z, and
Xu (2006) both for lower error probabilistic bounds better
than that by Shannon (1959) and for statistical hypothesis
testing in the mixed integer linear model (2). In this contri-
bution, we will focus on reduction. More specifically, we will
develop an integer parallel Cholesky-based reduction method
for solving the ILS problem (3) in Sect. 2. In Sect. 3, we will
briefly discuss the quality measures of reduction to be used
for performance comparison of different reduction meth-
ods. We then design experiments to demonstrate the parallel
Cholesky-based reduction method, to investigate the effect
of sorting on reduction and to compare the parallel reduction
method with the popular LLL reduction algorithm in Sect. 4.
We will conclude this contribution with some remarks in
Sect. 5.
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2 Reduction of lattice vectors and positive definite
quadratic forms

2.1 Reduction of lattice vectors

Given m independently linear vectors bi (i = 1, 2, . . . , m)

of dimension n, a lattice is the discrete point set in the real-
valued subspace of R

n and is defined as follows:

L =
{

m∑
i=1

bi zi | zi ∈ Z

}
, (5)

(see, e.g. Conway and Sloane 1999; Gruber and Lekkerkerker
1987). Here the vectors bi (i = 1, 2, . . . , m) are called a basis
of the lattice L, and m is the rank of L.

Reduction is an important problem in the geometry of
numbers. The purpose of reduction is mainly twofold: (i)
to make all the basis vectors of L become the shortest, or
at least, as short as possible; and (ii) to make all the basis
vectors of L as orthogonal as possible. Given a lattice L, its
generated basis is not unique, however. In fact, given a basis
B = (b1, b2, . . . , bm) of L, any basis of the form Br = BG
will exactly reproduce the same lattice L, where G is a uni-
modular matrix with all its elements being integers and the
absolute value of its determinant being equal to unity.

If W = I and by substituting B = Br G−1 into the ILS
problem (4), we have

min:
zN∈Zm

F(zN) = (zN − zr )
TWr (zN − zr ), (6a)

where

zN = G−1z, (6b)

zr = G−1z f , (6c)

Wr = BT
r Br . (6d)

Ideally, if all the column vectors of Br are mutually orthog-
onal, then Wr of (6a) or (6d) becomes diagonal. In this
idealized case, the global optimal integer solution zN can
be trivially obtained by simply rounding the real-valued
vector zr to its nearest integer (see, e.g. Taha 1975). Thus,
the solution to the quadratic convex integer programming
problem (3) can be readily found through the integer trans-
formation z = GzN. Unfortunately, Br is generally not
(column-) orthogonal. Thus, the best possible one can hope
is to find a unimodular matrix G to reduce B such that Br is
as orthogonal as possible.

Fincke and Pohst (1985) showed that reduction meth-
ods can be very powerful in aiding enumeration to quickly
find the exact integer solution to (3). Among the reduction
methods compared, they reported that the LLL algorithm
of reduction by Lenstra et al. (1982) is the fastest. With
a further significant improvement by Schnorr and Euchner
(1994) to incorporate a new strategy of enumeration, this

hybrid, reduction-aided method of enumeration developed
by the authors mentioned here has found wide spread
applications, as can be seen, e.g. in Agrell et al. (2002);
Damen et al. (2003) and a long list of references therein
and an even longer list of their citing articles. Thus, in
order to show the performance of our reduction method
to be developed in the next Sect. 2.2, we will confine
ourselves to the most widely used LLL reduction method
for comparison. For more reduction methods such as Her-
mite reduction, Korkine–Zolotarev reduction and Minkow-
ski reduction, the reader may consult, e.g. Afflerbach
and Grothe (1985); Banihashemi and Khandani (1998);
Helfrich (1985); Nguyen and Stehle (2004) and Seysen
(1993).

Since the LLL reduction has been well documented in the
literature (see, e.g. Lenstra et al. 1982; Nguyen and Stehlé
2009), we will only outline briefly the method for conve-
nience of comparison. To realize the two basic requirements
of size reduction and almost mutual orthogonality of lattice
vectors, the LLL reduction method is essentially based on
two key components: the Gram–Schmidt orthogonalization
process and Lovász condition for vector swapping. Like any
other reduction methods, given the basis vectors bi (i = 1,

2, . . . , m) with a full lattice rank m in R
n , the LLL reduction

method starts with the Gram–Schmidt orthogonalization as
follows:

b∗
i = bi −

i−1∑
j=1

μi j b∗
j , (7a)

μi j = bT
i b∗

j

‖b∗
j‖2 , (7b)

where ‖ · ‖ stands for the Euclidean L2-norm of a vector. To
guarantee size reduction, it is required that |μi j | ≤ 1/2 for
all 1 ≤ j < i ≤ m. For any j < i , if |μi j | > 1/2, then bi is
replaced with (bi − �μi j�b j ), with �μi j� being the integer
nearest to μi j .

To decide whether the orthogonalization process (7) can
continue to the next vector bi+1, Lenstra et al. (1982) com-
pared the current b∗

i against the previous b∗
i−1 and required

them to satisfy Lovász condition:

‖b∗
i−1‖2 ≤ δ2‖b∗

i + μi(i−1)b∗
i−1‖2 (8)

for all 1 < i ≤ m, where δ ∈ (1, 2). In the original LLL
algorithm, δ was set to 2/

√
3 (Lenstra et al. 1982). In case

that Lovász condition (8) is violated, Lenstra et al. (1982)
suggested swapping bi with bi−1, decreasing the index i to
(i − 1), and then continuing the Gram-Schmidt orthogonali-
zation process (7). For more details of algorithmic implemen-
tation of the LLL reduction method, the reader may refer to
Lenstra et al. (1982); Daudé and Vallée (1994); Jaldén et al.
(2008); Nguyen and Stehlé (2009) and Vetter et al. (2009).
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In the case of m = n and with the extra assumption
bi ∈ Z

m(i = 1, 2, . . . , m), Lenstra et al. (1982) reported
that the LLL reduction will finish in polynomial time
with an estimated number of O(m2 log bmax) iterations or
O(m3n log bmax) arithmetic operations, where bmax is the
maximum length of the lattice basis B. Daudé and Vallée
(1994) showed that an upper bound of number of iterations
depended only on the relative length of the lattice basis,
namely, O(m2 logδ{b∗

max/b∗
min}), where b∗

max and b∗
min are

the maximum and minimum lengths of the orthogonalized
basis B∗. Jaldén et al. (2008) proposed using the condition
number of B to replace (b∗

max/b∗
min). Substantial work has

since been focused on improving the complexity of the LLL
algorithm (see, e.g. Jaldén et al. 2008; Nguyen and Stehlé
2009; Vetter et al. 2009). Nguyen and Stehlé (2009) showed
that the LLL complexity can be significantly improved by
a factor of (log bmax) in terms of bit operations. In practical
applications of the LLL algorithm, a precise number of arith-
metic operations is impossible to know in advance, since it
cannot be determined by the size of a problem. In fact, the
number of arithmetic operations strongly depends on the flow
counter i and Lovász condition (8) which decides i to either
increase or to decrease by an increment of one. To avoid
such an unpredictable feature, fixed complexity algorithms
of approximate LLL reduction are also proposed by Vetter
et al. (2009).

Before finishing this subsection, we should like to note
that if the weight matrix W in (3) is not an identity matrix,
namely, W �= I, then reduction algorithms for lattice vec-
tors should be applied to W1/2B instead of B itself. Other-
wise, even if Br is completely orthogonal, the transformed
normal matrix Wr = BT

r WBr can be arbitrarily far from
diagonal after the integer transformation (6b). In fact, pre-
multiplying B by W1/2 is statistically equivalent to whit-
ening the color noise of the measurements y in (1). Also
if the number of data is much bigger than the rank of the
lattice, namely, n 
 m, as in the case of GNSS precise
positioning, then one should first compute W f and then

apply the LLL reduction algorithm to W1/2
f . By doing so,

the number of data n in the complexity of the LLL algorithm
can then be replaced by a much smaller number of lattice
rank m. Reduction of lattice vectors must not be directly
applied to Wf , however; otherwise, the almost orthogonal-
ity of Br in Wf = Br G−1 is simply useless for solving
the ILS problem (4), because the integer transformation (6b)
cannot be simultaneously done without destroying the sym-
metry of the elegant weighted integer least squares prob-

lem. After the LLL reduction and by substituting W1/2
f =

Br G−1 into (3) or (4), together with the integer transfor-
mation (6b), we obtain the LLL-reduced positive definite
matrix WL = BT

r Br , where the subscript L of WL is des-
ignated to emphasize that WL is obtained using the LLL
algorithm.

2.2 Parallel Cholesky-based reduction of positive definite
quadratic forms

Although the integer linear model (1) defines the noise-
contaminated lattice, the ILS or ML solution of z solely
depends on the ILS or the weighted closest point problem
(3), given a particular set of measurements y. Thus, instead
of applying lattice reduction to the lattice matrix B, we should
try to directly apply reduction techniques to (3). More specif-
ically, we should directly reduce the positive definite matrix
Wf of (4). Advantages of directly working on the reduction
of positive definite quadratic forms are obvious: (i) since the
dimension of Wf can be much smaller than the number of
the measurements y, at least, as in the case of GNSS precise
positioning, computational complexity of reduction should
accordingly decrease significantly; (ii) the weight matrix W
of y has been naturally part of Wf . No extra care is required
about W, as in the case of W1/2B; and (iii) as is well-known,
the ILS estimation of z has nothing to do with the scaling of
Wf , given the real-valued floating solution z f (Xu 2006).

Reduction of positive definite quadratic forms is to find a
unimodular matrix G such that the newly transformed posi-
tive definite matrix WN = GTWf G possesses certain desir-
able properties of optimality, for example, in the sense of a
minimum condition number or a minimum sphere covering
in the equivalent class of positive definite quadratic forms
of Wf . Actually, almost all reduction methods for positive
definite quadratic forms focus on the reduction domain or
cone defined by the corresponding positive definite matrix
Wf (see, e.g. Mahler 1938; Dickson 1972; Tammela 1976;
Tammela 1979, 1985; Ryshkov 1976; Gruber and Lekkerk-
erker 1987). For example, given a real-valued positive defi-
nite matrix Wf and an integer vector z, the positive definite
quadratic form

f (z) = zTWf z (9)

is called Minkowski-reduced (see, e.g. Mahler 1938; Tammela
1976; Tammela 1979; Gruber and Lekkerkerker 1987), if the
following inequalities

f (z) ≥ w
f

i i (10a)

hold true for any i , given all integer vectors z and with the
greatest common divisor of integer elements zi , zi+1, . . . , zm

of z being equal to unity, namely,

g.c.d. (zi , zi+1, . . . , zm) = 1, (10b)

where w
f

i i of (10a) is the ith diagonal element of Wf and
g.c.d.(·) in (10b) stands for greatest common divisor.

In particular, as part of a great number of inequalities
defined by (10a) in the sense of Minkowski’s reduction, we
have

w
f

i i ≤ w
f
j j , (i < j) (11a)
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and

|w f
i j | ≤ w

f
j j/2, (i �= j). (11b)

For more details of deriving the set of inequalities (11), the
reader can refer to Gruber and Lekkerkerker (1987).

As the second example of reduction, a positive definite
quadratic form can be said to be type-II Voronoi-reduced, if
the quadratic form (9) satisfies the following inequality:

V0 = {x | f (x) ≤ f (x − z), z ∈ Z
m}, (12)

(see, e.g. Dickson 1972). In fact, the subset V0 of (12) defines
exactly the Voronoi cell in association with the ILS problem
(3) (Xu 2006). Although the Voronoi theory of reduction is to
partition the space R

m , it is very important for the determina-
tion of the lattice sphere covering (Dickson 1968). One may
find the unimodular matrix G such that the radius of sphere
covering is minimized in the equivalent class of Voronoi cells
defined by Wf .

On the other hand, Seysen (1993) defined a new concept
of so-called S-reduction for positive definite quadratic forms.
A positive definite matrix Wf is said to be S-reduced, if the
following inequality

S(Wf ) ≤ S(GTWf G) (13)

holds true for all unimodular matrices G, where the function
S(Wf ) is defined by

S(Wf ) =
m∑

i=1

w
f

i i w̃
f

i i , (14)

with w̃
f

i i being the ith diagonal element of the inverse of
Wf . The S-reduction method is to find a unimodular matrix
G such that the function S(GTWf G) is minimized. Intui-
tively, one may alternatively minimize the condition number
of (GTWf G) to construct the optimal unimodular matrix G.

Since the objective function S(GTWf G) is highly non-
linear with respect to the elements of the unimodular matrix
G, finding the global optimal integer solution G to minimize
S(GTWf G) subject to the unimodularity constraint can be
difficult and time-consuming. As a result, a local optimiza-
tion algorithm was developed by Seysen (1993) by confining
G to a matrix of type (I − gi j Ei j ) (i �= j), where gi j is the
only unknown integer to be determined by minimizing Sey-
sen’s reduction objective function, Ei j is a zero matrix except
for the unity element at row i and column j , namely, ei j = 1.
This local algorithm was called S2-reduction. However, the
simulation results of LaMacchia (1991) conclude: (i) that it
can be an effective reduction method only for problems with
a low dimension up to 35 and (ii) that it cannot compete with
the LLL algorithm. For these reasons, it will not be included
for comparison in this paper.

A good unimodular matrix G, however, is only a means to
but surely not the goal of solving the closest point problem

(3). From this point of view, it is not desirable to spend too
much time in solving a highly nonlinear integer optimization
problem to attain the global optimal solution G in a certain
sense, not to mention that such a sense of optimality might
not be necessary to help quickly find the optimal solution to
(3). Therefore, as in the case of LLL reduction algorithms for
lattice vectors, it is more feasible to search for methods to
reduce positive definite quadratic forms, which should work
effectively and should be less complex computationally.

In the remainder of this section, we will develop a parallel
reduction algorithm for positive definite quadratic forms to
satisfy part of Minkowski’s constraint. More specifically, we
are only concerned with the Minkowski’s constraints (11a)
and (11b). Thus, we should obtain such a G much more eas-
ily than Minkowski’s optimal unimodular matrix. In the two-
dimensional case, the algorithm is equivalent to the Gaussian
reduction (see, e.g. Vallée 1991).

Starting with the Cholesky decomposition of Wf :

Wf = LDLT, (15)

the parallel Cholesky-based reduction algorithm to be devel-
oped in this paper consists of two basic components: (i) the
size reduction of the matrix L, and (ii) using different strat-
egies of sorting the diagonal elements of Wf in parallel for
achieving best results of reduction. Here D is diagonal with all
its elements being positive and L is lower-triangular, namely,

L =

⎡
⎢⎢⎢⎢⎢⎣

1
l21 1
l31 l32 1
...

...
...

. . .

lm1 lm2 lm3 . . . 1

⎤
⎥⎥⎥⎥⎥⎦ . (16)

Before we present the Cholesky-based reduction algo-
rithms for positive definite quadratic forms, we state the fol-
lowing proposition of size reduction.

Proposition 1 For any real-valued lower-triangular matrix
L of type (16), there exists a unimodular matrix G such that

L = GLμ, (17a)

where

Lμ =

⎡
⎢⎢⎢⎢⎢⎣

1
μ21 1
μ31 μ32 1
...

...
...

. . .

μm1 μm2 μm3 . . . 1

⎤
⎥⎥⎥⎥⎥⎦ , (17b)

and all the elements μi j satisfy

|μi j | ≤ 0.5, (i > j).

The logic proof of Proposition 1 can be simply described
in Algorithm 1. Note, however, that the elements of G are
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computed from the integer int L within the loop but are not
generated explicitly for output. Algorithm 1 also replaces
L with Lμ. Actually, when the LLL algorithm terminates
it naturally produces the size-reduced matrix Lμ (see, e.g.
Daudé and Vallée 1994; Lenstra et al. 1982; Schnorr 1987).
However, we note that the LLL algorithm dynamically size-
reduces L partially up to a changing row i and with a chang-
ing sub-basis before its termination, depending on the Lovász
condition. Our parallel reduction algorithm will repeatedly
perform the size reduction of the full matrix L all the time.
Inserting the integer transformation (17a) into (15) and ignor-
ing the unimodular matrix G, we obtain the reduced positive
definite matrix of Wf , which is denoted by WN and given as
follows,

WN = LμDLT
μ. (18)

Algorithm 1: Reducing L to Lμ

for i = m to 2 step -1
for j = i - 1 to 1 step -1

if |L(i, j)| > 0.5
intL = nearest integer to L(i, j);
L(i, j) = L(i, j) - intL;
Update the elements L(i, 1 : j − 1) by computing
L(i, 1 : j − 1) = L(i, 1 : j − 1) − intL ∗ L( j, 1 : j − 1);

end
end

end

Now we will focus on the second component of the paral-
lel reduction algorithm, namely, the strategies of sorting the
diagonal elements of Wf to achieve a maximum effect of
size reduction. By comparing (16) with (17b), we may see
that the elements |li j | (i < j) should be as large as possible
in order to reduce the sizes of the (large) diagonal elements
of Wf quickly. Two intuitively attractive sorting techniques
to re-arrange the diagonal elements of Wf are: (i) to sort
the diagonal elements in natural ascending order, namely,
w

f
11 ≤ w

f
22 ≤ · · · ≤ w

f
mm , and (ii) the complete pivoting

by selecting the smallest diagonal element at each step in
the process of constructing the matrix L of (16). The for-
mer is straightforward and easy to implement, and the latter
can be summarized in Algorithm 2 for convenience of refer-
ence and implementation. Algorithm 2 has been shown to be
very effective in constructing suboptimal (approximate) solu-
tions to (1). It is now well-known as the sorted QR decom-
position in the MIMO literature (see, e.g. Wübben et al.
2001, 2003, 2004; Ling and Mow 2009; Waters and Barry
2005a,b), although it was first presented by Xu et al. (1995) to
reduce Wf by extending the Gaussian reduction to a general
m-dimensional case and further to derive a suboptimal inte-
ger solution for GPS ambiguity resolution. Keeping in mind
the popularity of the terminology of sorted QR decomposi-
tion, in this paper, we will refer to these two sorting strategies
as natural ascending and sorted QR orderings, respectively.

Algorithm 2: Cholesky-decomposition with complete minimum
pivoting

Set L to an identity matrix;
for i = 1 to m − 1

get the smallest w
f

kk among w
f
j j (i ≤ j ≤ m);

if i �= k
Swap L(i, 1 : i − 1) with L(k, 1 : i − 1);
Swap the elements of submatrix Wf (i : m, i : m),

both at the ith and kth row and column;
end
Compute L(i + 1 : m, i) = Wf (i + 1 : m, i)/w f

kk;
D(i, i) = w

f
kk;

Update Wf (i + 1 : m, i + 1 : m) with L(i + 1 : m, i) and w
f

kk ;
end
D(m, m) = Wf (m, m).

In addition, we have also explored the feasibility of using
the information on the diagonal elements of D to construct an
alternative sorting strategy for reduction. Simulations have
shown that re-arranging the diagonal elements of Wf accord-
ing to the ascending order of the diagonal elements of D
cannot be used as an independent sorting strategy. More on
this will be discussed in the next section on the experiments.
However, such information can be extremely useful to work
together with the natural ascending sorting as a perturbation
technique. More precisely, after the first iteration with the
natural ascending sorting of Wf , we switch to the ascending
ordering of D to re-arrange the matrix Wf in the second and
third iterations of reduction. Starting from the fourth itera-
tion, we return to the natural ascending sorting of Wf until
the algorithm terminates. This process will be referred to as
the (third) perturbed ascending sorting strategy.

By treating WN as Wf and repeating the above pro-
cedures of reduction with different sorting strategies until
|li j | ≤ 0.5, (i < j) for all the elements of L in (16), we can
finally attain the reduced positive definite matrix WN , with
part of the Minkowski’s constraints (11a) and (11b) automat-
ically satisfied.

We are now in a position to assemble the results of
Proposition 1, Algorithm 1 and the three sorting strategies
together for a test parallel Cholesky-based reduction algo-
rithm for positive definite quadratic forms. Focusing on the
final reduced positive definite matrix without the care of per-
mutations, the test algorithm can be described in Algorithm 3.
Since we will only compare the performances of reduction
by the proposed parallel Cholesky-based and LLL reduction
methods, it is not necessary to keep the information on the
permutations and G in this study, as is in the case of LLL
reduction. However, we should note that recording the per-
mutations and the final unimodular matrix G is important
in correctly reporting the solution to the ILS problem (3).
Algorithm 3 is said to be parallel, since each of the three
sorting techniques, as described in Steps 1A, 1B and 1C, can
be run independently in parallel. Finally, we should note that
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although each of the components of the parallel reduction
algorithm might be said to be known, the parallel reduction
algorithm by putting them together will be shown in Sect. 4.3
to be very successful and perform much better than any indi-
vidual component.

Algorithm 3: Parallel Cholesky-based reduction of Wf

Given a positive definite matrix Wf ;
Step 1A: Apply the natural ascending sorting for LDLT; or
Step 1B: Apply Algorithm 2 for LDLT; or
Step 1C: Apply the perturbed ascending sorting for LDLT;
Step 2: if |L(i, j)| ≤ 0.5 for all (1 ≤ j < i ≤ m)

Step 3: Terminate;
Step 4: end
Step 5: Apply Algorithm 1 to get Lμ;
Step 6: Overwrite Wf = LμDLT

μ;
Step 7: Goto Step 1.
Output the final reduced matrix Wf ;

2.3 Fixed complexity for the Cholesky-based reduction
method

According to Hadamard’s inequality, namely, det{Wf } ≤∏m
i=1 w

f
i i , it is trivial to prove that the Cholesky-based

reduction method with any of the three sorting strategies
converges, where det{·} stands for determinant. However,
given a particular problem in hand, we do not know exactly
when Algorithm 3 terminates. A fixed complexity version
can be obtained by setting a maximum number of itera-
tions before Step 1 to artificially terminate Algorithm 3. As
is well-known, each iteration of Algorithm 3 with one of
the sorting strategies will approximately take m3/3 arith-
metic operations to complete the Cholesky decomposition
LDLT and about the same arithmetic operations to recon-
struct Wf = LμDLT

μ for the next iteration. Reduction of L
could require about the same number of operations in the
beginning in the worst case. Thus if we set the maximum
number of iterations between m and 3m, we have a new
version of Algorithm 3 with a fixed complexity of O(m4)

arithmetic operations. Algorithm 3 can terminate naturally
as a result of Steps 2 to 4 before the maximum number of
iterations is hit, however. More importantly, the simulations
to be reported in Sect. 4.3 have shown that the probability
that the sorted QR ordering further improves the condition
numbers from the combination of the natural and perturbed
ascending sorting techniques by more than 50% is very small,
ranging from 0.0006 in the third experiment to 0.0037 in the
first experiment. Thus in the final codes of the parallel algo-
rithm, we implement 3m as the maximum number of iter-
ations without the sorted QR ordering of Step 1B. All the
results to be reported in Sect. 4.3 are based on this final fixed
complexity version of the parallel Cholesky-based reduction
algorithm.

3 Measures of reduction quality for performance
comparison

As is well-known, reduction methods are expected to achieve
two goals in an idealized situation: (i) the reduced lattice vec-
tors are the shortest; and (ii) they are mutually orthogonal.
However, in reality, given a set of independently linear lattice
vectors B, the idealized situation is either not expected for
the closest point problem due to the hardness of computing
the shortest vector or generally impossible to attain the com-
plete mutual orthogonality among the reduced lattice vec-
tors. There are two popular measures to evaluate the qual-
ity of reduced lattice vectors for a reduction method (see,
e.g. Vetter et al. 2009; Kannan 1987; Akhavi 2002; Schnorr
2006): one to measure length defects and the other to measure
orthogonality defects.

A length defect of a lattice basis can be defined by ‖b1‖/r1

(see, e.g. Akhavi 2002; Schnorr 2006), where r1 is the length
of the shortest non-zero lattice vector. The most widely used
measure of orthogonality defects is based on Hadamard’s
inequality. Given a lattice basis B, we always have

d(L) ≤
m∏

i=1

‖bi‖, (19)

where

d(L) =
√

det{BTB}
is invariant with respect to bases of the lattice L. Both sides
of Hadamard’s inequality (19) will become identical, if and
only if the basis vectors of the lattice are mutually orthog-
onal. As a result, a natural quality measure of reduction to
describe orthogonality defects can be defined as follows:

O(L) =
m∏

i=1

‖bi‖/d(L), (20)

(see, e.g. Kannan 1987; Akhavi 2002; Vetter et al. 2009).
However, usefulness of these two measures of reduction

quality in association with the ILS problem (3) seems ques-
tionable for two reasons: (i) since our major target is to solve
(3), we should avoid spending too much time in solving the
shortest vector problem of lattice, which is conjectured to be
NP-hard (see, e.g, Conway and Sloane 1999; Grötschel et al.
1988); and (ii) near orthogonality of lattice vectors does not
directly provide any useful information on the constrained
ellipsoid or sphere in which the solution of (3) is enclosed.
Even worse, the shape of the Voronoi cell associated with (3)
can be very sensitive to small changes in near orthogonality,
as clearly shown by Xu (2006).

As a result, Xu (2001) used the concept of condition num-
bers to measure the quality of reduction methods. For the
noise-contaminated lattice model (1) with a weight matrix
W, we can compute the condition number of Wf , which is
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denoted by κB and given as follows:

κB = λmax/λmin, (21)

where λmax and λmin are the maximum and minimum eigen-
values of Wf (= BTWB), respectively. Accordingly, with the
reduced positive definite matrix WN after applying a reduc-
tion method either to the lattice basis (W1/2B) or to the pos-
itive definite matrix Wf , we can also compute the condition
number of WN as follows:

κN = λN
max/λ

N
min, (22)

where λN
max and λN

min are the maximum and minimum eigen-
values of WN , respectively. Note, however, that if Wf is diag-
onal, or equivalently, if the basis vectors of the lattice are
already mutually orthogonal, then no methods of reduction
can reduce the condition number of Wf . Fortunately, in this
idealized case, it is trivial to find the exact solution to the ILS
problem (4) (Taha 1975) without the need of reduction.

Geometrically, a condition number represents the most
important information on the shape of the ellipsoid to con-
tain the solution of the ILS problem (3) and can significantly
affect the efficiency of finding the solution. Ideally, if κN =
1, then the reduced positive definite matrix WN completely
defines a sphere, and the solution to (3) is trivial to obtain. For
a general problem (κN �= 1), if one would directly search for
the global optimal integer solution within an ellipsoid, one
can readily use the combination of algorithms developed by
Fincke and Pohst (1985) and Schnorr and Euchner (1994).

To illustrate how a condition number affects the time of
searching for the global optimal integer solution, let us take
the searching within a sphere (or sphere searching) as an
example. Assuming that an ellipsoid defined by Wf requires
an initial length of r f in the minor axis to contain, at least,
one integer point inside the ellipsoid, then we will have
to search for the solution within a sphere with the mini-
mum radius of r f κ

1/2
B , where r f can either be obtained using

Babai’s (1986) technique or simply derived from the ellip-
soidal equation xTWf x = c f by setting z f to its nearest inte-
ger, namely, c f = F(�z f �). After reduction, the minimum
radius of the corresponding searching sphere is then equal to
rN κ

1/2
N , where rN can be readily found in the similar man-

ner to r f . In general, rounding the real-valued solution to its
nearest integer after reduction should be more reliable and,
as a result, rN should be closer to the shortest length for the
ellipsoid to contain, at least, one integer point. A condition
number obviously reflects directly the complexity of find-
ing the solution to (3) in sphere searching. The smaller the
condition number κN , the better the corresponding reduction
method. Geometrically, a good reduction method should turn
a (badly-shaped) ellipsoid into a sphere as much as possible,
as illustrated in Fig. 1. As a result, it is more advantageous
to use condition numbers to measure the quality of reduc-
tion in association with the weighted closest point problem

Fig. 1 Illustration of successful reduction: blue solid line—the original
ILS problem corresponding to a badly shaped ellipsoid; green dotted
line—the shape of ellipsoid after a successful reduction. The centers of
the ellipsoids have been shifted for a clear display

(3) than the measures of length and orthogonality defects.
More examples and consequences to support the use of con-
dition numbers can be found, e.g. in Xu (2001); Artés et al.
(2003) and Luk and Tracy (2008). Thus, in this contribution,
we will compare different reduction methods on the basis of
condition numbers.

4 Experiments and simulation results

4.1 Experiment design

Experiment examples in this section should serve three pur-
poses: (i) to investigate the effect of sorting on reduction;
(ii) to demonstrate the parallel Cholesky-based reduction
method; and (iii) to compare the performances of the LLL
algorithm and the parallel Cholesky-based reduction method.
In order to avoid the effect of a particular example on per-
formance comparison, we will have to simulate a great num-
ber of random examples. To begin with the experiments, we
need to simulate the design matrix B and the weight matrix
W. Since the weight matrix W has either been incorporated
into the lattice vectors W1/2B in the case of the LLL algo-
rithm or the normal matrix Wf in the case of reduction of
positive definite quadratic forms, without loss of generality,
we can set W = I in our simulations. Thus we will focus
on randomly designing the matrix B such that the noise-
contaminated integer linear model (1) could reflect a wide
range of problems. More specifically, the basic ingredients
of designing B include the number of integer unknowns and
the condition number of the matrix Wf . Additionally, we
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should also allow the number of measurements y to vary
over a fairly wide range.

As a result of all the above considerations, we design three
scenarios of experiments, each with 10,000 random exam-
ples, as follows:

• the first set of examples is randomly generated, with
the number of integer unknowns z uniformly varying
between 3 and 20 and the number of measurements y
uniformly between 200 and 1,000. Each random matrix
B is first generated using the standard Gaussian normal
distribution N (0, 1) and decomposed using the singular
value decomposition technique. Then the singular values
of B are replaced by the positive random numbers from a
uniform distribution to reconstruct B such that the condi-
tion number of Wf randomly falls into [100, 40,000].
Roughly speaking, this set of examples may be com-
pared to kinematic positioning with all satellite navigation
systems such as American GPS, European Galileo and
Chinese COMPASS in operation. The maximum number
of iterations is set to 3m to terminate the parallel reduction
algorithm, if it does not stop naturally;

• the second set of examples is designed with the same set-
ting as the first set of examples, except for the number of
integer unknowns z to uniformly distribute between 21
and 50; and

• finally, the last set of examples is to simulate highly ill-
conditioned problems. This set of examples is motivated
by the reported bad consequences of ill-conditioning on
decoding by Artés et al. (2003) (see also Xu et al. 1999)
and used to demonstrate how the issue of ill-conditioning
can be overcome by lattice reduction of vectors and/or
positive definite quadratic forms. As in the second set
of examples, the dimension of z for this set of examples
is between 21 and 50. However, the numbers of mea-
surements range from 21 to 1,000 under the condition of
n ≥ m, and the condition numbers fall randomly between
104 and (1.5 × 109).

4.2 The effect of sorting on reduction

Sorting has been shown to play an important role in finding
an improved suboptimal solution to the integer unknowns z
of the integer linear model (1). The basic idea is to optimally
design an ordering of integer parameters for a sequential esti-
mation of each integer. The two most widely used techniques
of sorting are the sorted QR decomposition (see, e.g. Xu et al.
1995; Wübben et al. 2001) and the BLAST ordering (see, e.g.
Waters and Barry 2005b). The former can either be applied
directly to Wf (Xu et al. 1995) or to the geometrical struc-
ture of the system (1), namely, the B matrix of (1) (see, e.g.
Ling and Mow 2009; Wübben et al. 2001), while the latter is
essentially equivalent to finding the optimal index/ordering

such that the corresponding real-valued, sequential estimate
of each integer unknown has the minimum conditional vari-
ance (see, e.g. Waters and Barry 2005b).

Unlike suboptimal integer estimation techniques which
try to maximally use the most precise (conditional) informa-
tion at each stage to sequentially estimate integers, lattice
reduction attempts to whiten the colored noise of the (real-
valued) floating solution z f and thus indirectly increases
the conditional probability of sequential integer estimation.
Waters and Barry (2005a) showed that a simple implemen-
tation of lattice reduction can significantly improve the per-
formance of a suboptimal estimator/detector. The effect of
sorting is less obvious for lattice reduction than for subopti-
mal integer estimation, however.

Thus our major question of concern is how sorting would
affect reduction. We investigate this question through numer-
ical simulations. More precisely, we will compare the effects
of the three sorting strategies in Sect. 2.2 on reduction,
namely, (i) the natural ascending sorting; (ii) the sorted QR
ordering or the Cholesky-decomposition with complete piv-
oting detailed in Algorithm 2; and (iii) the perturbed ascend-
ing sorting. For convenience of comparison, we will use the
abbreviations ASCE, SEQR and PERT to denote these three
sorting strategies, respectively.

With the implementation of the sorting strategies ASCE,
SEQR and PERT in Algorithm 3, we can then compute and
obtain the condition numbers after reduction for all the ran-
dom examples in each of the three experiments. In the case of
the first experiment with the 10,000 low-dimensional random
examples, for instance, we have 10,000 condition numbers
for each of the sorting strategies ASCE, SEQR and PERT,
which are denoted by the vectors κACE, κSQR and κPRT,
namely,

κACE = (κ1
ACE, κ2

ACE, . . . , κ
10,000
ACE ), (23a)

κSQR = (κ1
SQR, κ2

SQR, . . . , κ
10,000
SQR ), (23b)

and

κPRT = (κ1
PRT, κ2

PRT, . . . κ
10,000
PRT ), (23c)

respectively. If κ i
J < κ i

K , we say that strategy J performs
better than strategy K for the ith example, where the sub-
scripts J and K stand for one of the strategies ASCE, SEQR
and PERT. As a result, when comparing strategy J with
strategy K with the first experiment of 10,000 examples,
we can count the total numbers of examples either satis-
fying κ i

J < κ i
K or κ i

J > κ i
K , which are denoted by nb

and nw, respectively. Accordingly, we can readily compute
the percentage of examples with which strategy J performs
better than strategy K by nb/10,000 × 100 and the per-
centage of examples with which strategy K performs bet-
ter than strategy J by nw/10,000 × 100, respectively. In
the same manner, we can obtain the same statistics for the
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Table 1 Performance statistics of the effects of sorting strategies ASCE,
SEQR and PERT on reduction

Experiment Methods ASCE_SEQR ASCE_PERT PERT_SEQR

1 BExamples 40.52 20.04 41.21

WExamples 27.21 21.63 26.64

2 BExamples 79.91 48.52 80.03

WExamples 20.08 47.06 19.96

3 BExamples 85.88 49.69 86.10

WExamples 14.12 50.31 13.90

Experiments 1, 2 and 3 are referred to the first, second and third sets of
random examples, respectively. BExamples—number of examples with
an improved smaller condition number (in %); WExamples—number
of examples with a deteriorated larger condition number (in %)

second and third experiments of 10,000 examples. All the
statistics are listed in Table 1. It is obvious from columns
ASCE_SEQR and PERT_SEQR of Table 1 that the sorting
strategies ASCE and PERT consistently perform much bet-
ter than the strategy SEQR for all the three experiments. In
particular, in the second and third experiments, the sorting
strategies ASCE and PERT are able to produce a smaller
condition number than the sorting strategy SEQR for 79.91
to 86.10% of the examples. Nevertheless, the strategy SEQR
still performs better than ASCE and PERT with examples
from 13.90% in the third experiment to 27.21% in the first
experiment. However, these numbers drop to a maximum of
0.95% in the first experiment, 1.63% in the second exper-
iment and 1.14% in the third experiment, respectively, if
we only count all the examples such that SEQR is able to
improve the condition numbers from ASCE or PERT by
50%, namely, κSQR ≤ 0.5κACE or κSQR ≤ 0.5κPRT. Further-
more, if we assemble the sorting strategies ASCE and PERT
to construct a parallel reduction algorithm, then the prob-
ability for κSQR ≤ 0.5κAPT significantly drops to 0.0006
in the third experiment to 0.0037 in the first experiment,
where κAPT is the reduced condition number from the par-
allel reduction algorithm with the sorting techniques ASCE
and PERT.

As for the sorting strategies ASCE and PERT, they perform
about equally well in all the three experiments (compare col-
umn ASCE_PERT of Table 1). Since sorting by arranging the
diagonal elements of D in (15) in ascending order as a pertur-
bation component of PERT has been shown from the above
simulations to produce satisfactory results of reduction, one
may ask whether it is feasible to fully implement this sorting
technique as an independent sorting strategy for reduction;
this full version of sorting the diagonal elements of D will be
referred to as SRTD in the remainder of this section. Indeed,
we have tried to repeat all the test computations with SRTD
in the three experiments. Among all the 10,000 examples in
the first experiment, SRTD has performed slightly better than

ASCE, SEQR and PERT by 4.74, 16.51 and 3.92 more per-
cent of the examples, respectively. However, a deep analysis
has shown that SRTD has a much bigger chance to produce a
bigger condition number than ASCE, SEQR and PERT. Actu-
ally, the probabilities for κSTD ≥ 1.5κACE, κSTD ≥ 1.5κSQR

and κSTD ≥ 1.5κPRT are equal to 0.079, 0.050 and 0.082,
while those for κSTD ≤ 0.5κACE, κSTD ≤ 0.5κSQR and
κSTD ≤ 0.5κPRT are merely 0.018, 0.046 and 0.017, respec-
tively, where κSTD is the condition number after reduction
with the sorting SRTD. In the second experiment, SRTD has
significantly worsened the condition numbers of 58.51% of
the original problems, with a maximum deterioration of con-
dition number by an order of magnitude 12.247. Even worse,
this sorting strategy completely failed with the first example
in the third experiment (dimension: 49 and condition num-
ber: 5.1352×106) at the iteration of 58, because the condition
number at this intermediate stage of reduction becomes far
too big such that the Cholesky decomposition breaks down.
Because of its instability and poor performance, we do not
implement this sorting technique as an independent sorting
strategy for reduction.

To investigate the practical running behaviors of the three
sorting strategies ASCE, SEQR and PERT, we have recorded
their numbers of iterations for each example in all the three
experiments, which are denoted by IACE, ISQR and IPRT,
respectively. Thus for each experiment, we can compute
the iteration indices, namely, αACE = IACE/Imax, αSQR =
ISQR/Imax and αPRT = IPRT/Imax, for each of the sorting
strategies ASCE, SEQR and PERT, where Imax is the maxi-
mum number of iterations and is set to 3m in the simulations.
Based on the 10,000 iteration indices αACE, αSQR and αPRT

from each experiment, we estimate their cumulative distribu-
tion functions (cdf), which are plotted in Fig. 2. The reduc-
tion with any of the three sorting strategies ASCE, SEQR and
PERT terminates in less than m iterations for all the 10,000
examples in the first experiment (compare panel a of Fig. 2).
The sorting SEQR converges most quickly with a probability
of 0.95. Although SEQR performs almost as well as ASCE for
almost all the examples in the second experiment (compare
the green and red lines in panel b of Fig. 2), it takes a signifi-
cantly larger number of iterations to terminate, though with a
very small probability, as shown by the long tail of the green
line in panel b. Nevertheless, all the 10,000 examples con-
verge in 2m iterations with SEQR. In the third experiment,
SEQR runs the fastest with a probability slightly bigger than
0.5 but quickly turns out to become the slowest for about
30% of the examples. It does not terminate naturally but has
to be stopped by the set maximum number of iterations 3m
(compare the green line of panel c in Fig. 2) with a probabil-
ity of 0.055. The perturbed sorting strategy PERT generally
takes more iterations than ASCE to converge or terminate,
as can be clearly seen from the red and black-dotted lines of
panels a, b and c of Fig. 2).
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Fig. 2 The cumulative distribution functions of the iteration indices
αACE, αSQR and αPRT computed from the 10,000 random examples for
each of the three experiments using the sorting strategies ASCE, SEQR
and PERT, respectively. panel a—the first experiment; panel b—the

second experiment; panel c—the third experiment; red solid line—the
sorting strategy ASCE; green solid line—the sorting strategy SEQR; and
black dashed line—the sorting strategy PERT.

Table 2 Performance statistics of comparing the Cholesky-based
reduction with one of the sorting strategies ASCE, SEQR and PERT
with the LLL algorithm

Experiment Methods ASCE_LLL SEQR_LLL PERT_LLL

1 BExamples 54.21 48.27 54.46

WExamples 25.98 31.69 25.55

2 BExamples 72.46 39.49 72.45

WExamples 27.54 60.51 27.55

3 BExamples 98.38 87.44 98.43

WExamples 1.62 12.56 1.57

All the statistical indices and notations shown in this table are the same
as in Table 1

Now we will briefly compare Algorithm 3 with one of the
three sorting techniques with the LLL algorithm. Exactly in
the same manner as in Table 1, we list the comparative perfor-
mance statistics in Table 2. Generally speaking, when com-
pared with the LLL algorithm, Algorithm 3 with the sorting
strategy ASCE or PERT performs much better than that with
the sorting strategy SEQR, which is consistent with the above
comparison among the three sorting strategies themselves. It

is also clear from columns ASCE_LLL and PERT_LLL of
Table 2 that they produce significantly better results than the
LLL algorithm in all the three experiments. The LLL algo-
rithm only wins both ASCE and PERT for about a quarter of
examples in the first two experiments. The reduction with the
sorting strategy SEQR is satisfactorily better than the LLL
algorithm in the first experiment and overwhelmingly bet-
ter in the third experiment. However, it is surprisingly much
worse than the LLL algorithm in the second experiment, with
60.51% of the problems ending up with a bigger condition
number.

4.3 Performance analysis of the parallel Cholesky-based
reduction algorithm

Let Wf , WL and WN be the original ILS positive definite
matrix of (4) and the reduced positive definite matrices after
applying the LLL algorithm and the parallel Cholesky-based
reduction method with the sorting techniques ASCE and
PERT, respectively. Their corresponding condition numbers
are denoted by κB, κL and κN , respectively. With the 10,000
random examples in hand for each of the three experiments,
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Fig. 3 The cumulative distribution functions of the condition numbers
κN and κL after reduction, together with those of the problems κB , each
cdf curve computed from the 10,000 random examples. The condition
numbers are all shown in logarithm. Panels a, b and c correspond to

the first, second and third experiments, respectively, with the blue solid
line—κN after the Cholesky-based reduction, the green line —κL after
the LLL reduction, and the red line—κB for the original ILS problems

we can accordingly obtain 10,000κB of Wf , 10,000κL of
WL and 10,000κN of WN , respectively, namely,

κ B = (κ1
B, κ2

B, . . . , κ
10,000
B ), (24a)

κ L = (κ1
L , κ2

L , . . . , κ
10,000
L ), (24b)

and

κ N = (κ1
N , κ2

N , . . . , κ
10,000
N ), (24c)

where the superscript i of each element of the vectors stands
for the ith random example.

The cdf curves of κB, κL and κN are shown in Fig. 3. It is
obvious from this figure that both the parallel reduction and
the LLL algorithm are very successful in reducing the condi-
tion numbers of the examples in all the three experiments. The
parallel reduction method has performed significantly better
than the LLL algorithm. It enables to reduce the condition
numbers of the original examples below 102 with a proba-
bility of 0.954 in the first experiment, below 2 × 103 with a
probability of 0.955 in the second experiment, and below 104

with a probability of 0.941 in the third experiment, respec-
tively. In the case of the LLL algorithm, the corresponding
probabilities reduce to 0.846 in the first experiment, 0.849

in the second experiment, and 0.479 (about half of 0.941) in
the third experiment, respectively.

Although the cdf curves of Fig. 3 are very informative
to show the performance of the parallel reduction method
and the LLL algorithm, they do not provide the information
on direct comparison of the simulated random examples. In
order to analyze the performance of the parallel Cholesky-
based reduction algorithm against Wf in detail, we compute
the differences of condition numbers between κ N and κ B ,
which is denoted by δκNW and given as follows:

δκNW = log κ N − log κ B, (25)

where log stands for the operation of logarithm to base 10.
We then divide all these 10,000 elements of δκNW into two
groups, depending on whether δκ i

NW < 0 or δκ i
NW > 0. The

elements of the two groups are collected into the (sub)vectors
δκ1

NW and δκ2
NW, respectively. In other words, the parallel

Cholesky-based reduction method is successful to reduce the
condition numbers for all the examples in group 1 but wors-
ens all the examples in group 2 by outputting even bigger con-
dition numbers. Assuming that the numbers of elements in
each of the two groups are equal to n1 and n2, we can compute
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Table 3 Performance statistics of the parallel Cholesky-based reduc-
tion method and the LLL reduction algorithm from the first 10,000
random simulated examples in the first experiment with a low dimen-
sion up to 20

Methods Chol_Wf LLL_Wf Chol_LLL

BExamples 99.94 99.46 59.49

WExamples 0.06 0.54 20.59

MeanImprove −1.801 −1.719 −0.181

MaxImprove −4.148 −4.148 −0.865

MeanWorsen 0.064 0.089 0.081

MaxWorsen 0.139 0.260 0.493

BExamples—number of examples with an improved (smaller)
condition number (in %); WExamples—number of examples with a
deteriorated (larger) condition number (in %); MeanImprove—mean
improvement of condition numbers for the examples in group 1
(in logarithm); MaxImprove—maximum improvement of condition
numbers for the examples in group 1 (in logarithm); MeanWorsen—
mean deterioration of condition numbers for the examples in group 2 (in
logarithm); MaxWorsen—maximum deterioration of condition num-
bers for the examples in group 2 (in logarithm)

the performance statistics: (i) (n1/10,000 × 100) to show
the percentage of examples with which the parallel Chole-
sky-based reduction method produces better results; and (ii)
(n2/10,000 × 100) to show the percentage of examples with
which the parallel Cholesky-based reduction method wors-
ens the condition numbers of the original problems, as in the
case of Table 1. In addition, we further compute four more
statistics: (iii) the mean value of δκ1

N W for all the elements
in group 1; (iv) the minimum value of δκ1

NW to show the
maximum improvement in condition numbers; (v) the mean
value of δκ2

NW to show the average deterioration of condition
numbers after applying the parallel Cholesky-based reduc-
tion method; and finally, (vi) the maximum value of δκ2

NW to
show the maximum deterioration of condition numbers. All
these six performance indices are listed in column Chol_Wf

of Table 3, respectively. Following the same procedure, we
compute the same performance statistics and list them in
column LLL_Wf of Table 3 to compare the LLL algorithm
against Wf and in column Chol_LLL to compare the parallel
Cholesky-based reduction method with the LLL algorithm,
respectively.

It is clear from Table 3 that both the parallel Chole-
sky-based reduction method and the LLL algorithm are
highly successful in reducing the condition numbers of Wf

for almost all the examples in the first experiment with a
low dimension up to 20, with an average improving fac-
tor of 101.801(= 63.241) for the former method and 101.719

(= 52.360) for the latter, respectively. In the best case, both
methods can reduce the condition number of Wf by a factor
of 14050.766 (compare row MaxImprove in Table 3). How-
ever, both methods have worsened the condition numbers
of 6 (or 0.06%) and 54 (or 0.54%) examples, respectively.

Nevertheless, the extent of deterioration is quite small for
both methods, as can be clearly seen from the small mean
values of the increased condition numbers (compare row
MeanWorsen of Table 3). To give the reader a clear impres-
sion on the significant improvements of both methods, we
plot the estimated probability density functions (pdf) of
(log κN − log κB), (log κL − log κB) and (log κN − log κL)

in Fig. 4. Both the horizontal axes of panels a and b basically
take negative values, indicating that the condition numbers of
the examples have been successfully reduced by the parallel
reduction method and the LLL algorithm.

It is also clear from the last column, namely, column
Chol_LLL of Table 3, that the parallel Cholesky-based reduc-
tion method generally performs significantly better than the
LLL algorithm. The conclusion can also be immediately con-
firmed after a look at the pdf of (log κN − log κL) in panel c
of Fig. 4. Statistically, of these 10,000 examples in the first
experiment with a low dimension up to 20, the parallel Chole-
sky-based reduction method performs better than the LLL
algorithm with 59.49% of the examples, with a maximum
improvement factor of 7.32 in condition numbers. However,
the opposite is true only with 20.59% of the examples, about
one third of the former. If we confine ourselves to the exam-
ples satisfying κL ≤ 0.5κN , such a percentage of improve-
ment drops to 0.25%.

By keeping the same experimental setting as in the first set
of examples but increasing the dimensions of the problems
to change uniformly between 21 and 50, we repeat the same
experiment and obtain all the condition numbers κB, κL and
κN for the second experiment of 10,000 random examples.
The same performance indices as in the first experiment are
computed and listed in Table 4 and the estimated probability
density functions of (log κN − log κB), (log κL − log κB) and
(log κN − log κL) are shown in Fig. 5. Generally speaking,
the parallel Cholesky-based reduction method and the LLL
algorithm still perform quite satisfactorily for this second set
of examples, as can be seen from Table 4 and panels a and b
of Fig. 5. They have significantly reduced the condition num-
bers for 82.08 and 67.59% of the simulated examples, respec-
tively. However, the mean and maximum improving factors in
condition numbers are now only 4.22 and 368.98 for the par-
allel Cholesky-based reduction, and 3.44 and 206.06 for the
LLL algorithm, respectively. These values are significantly
smaller than those in the first experiment. With the increase
of dimensions m, the number of examples whose condition
numbers have been worsened has also increased significantly,
up to 17.90% of the total number of examples in this exper-
iment for the Cholesky-based method and 32.41% for the
LLL algorithm (compare row WExamples of Table 4). On
average, the condition numbers of the examples in group 2
have been deteriorated by 50.5 and 78.6% for both meth-
ods, respectively. The parallel Cholesky-based reduction
method obviously performs significantly better than the LLL
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Fig. 4 The probability density functions of the differences of condi-
tion numbers for the first experiment, with a low dimension of z up
to 20. panel a—(log κN − log κB) to compare the parallel Cholesky-
based reduction with the original problems, panel b—(log κL − log κB)

to compare the LLL reduction with the original problems, and panel
c—(log κN − log κL ) to compare the parallel Cholesky-based reduction
with the LLL algorithm

Table 4 Performance statistics of the parallel Cholesky-based reduc-
tion method and the LLL reduction algorithm with the second experi-
ment of 10,000 random simulated examples

Methods Chol_Wf LLL_Wf Chol_LLL

BExamples 82.08 67.59 84.44

WExamples 17.90 32.41 15.56

MeanImprove −0.625 −0.536 −0.255

MaxImprove −2.567 −2.314 −1.252

MeanWorsen 0.178 0.252 0.094

MaxWorsen 0.836 1.177 0.479

The dimensions of z vary between 21 and 50. All the statistical indices
and notations shown in this table are the same as in Table 3

algorithm, as can also be seen from the statistics listed in the
last column of Table 4, which is consistent with the results in
the first experiment. The probability for κL ≤ 0.5κN is only
0.004, while the probability for κN ≤ 0.5κL is 0.294. Actu-
ally, the better performance of the parallel Cholesky-based
reduction over the LLL algorithm has also been clearly shown
by the pdf of (log κN − log κL) in panel c of Fig. 5.

Finally, let us examine the third experiment of the 10,000
randomly simulated examples with a large condition number.

The experiment setting has been explained in Sect. 4.1 and
will not be repeated here. As in the first two experiments,
we compute all the performance indices from these 10,000
examples and show them in Table 5. The estimated probabil-
ity density functions of (log κN − log κB), (log κL − log κB)

and (log κN − log κL) for this experiment are plotted in
Fig. 6. Although the numbers of integer unknowns of the
problems are also uniformly (but independently) distributed
over 21 and 50, as in the second experiment, the condition
numbers have been significantly increased by a maximum
factor of (4 × 104). In this experiment, both the parallel
Cholesky-based reduction method and the LLL algorithm
have performed extremely well, which can also be immedi-
ately observed from the performance statistics in Table 5 and
panels a and b of Fig. 6. The maximum improving factors
are all in the order of magnitude six to seven for both meth-
ods. It is rather safe to say that the ill-conditioned nature of
these problems has been successfully removed. After a care-
ful examination of the remaining small fraction of examples
with a worsened condition number, we found that all these
examples are with a dimension higher than 40 and with a
condition number of Wf in the order of 104. This phenome-
non, however, is well consistent with what we have observed
in the second experiment. It is interesting to see from column
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Fig. 5 The probability density functions of the differences of condi-
tion numbers for the second experiment, with a relative large dimen-
sion of z between 21 and 50. panel a—(log κN − log κB) to compare
the parallel Cholesky-based reduction with the original problems, panel

b—(log κL − log κB) to compare the LLL reduction with the original
problems, and panel c—(log κN − log κL ) to compare the Cholesky-
based reduction with the LLL algorithm

Table 5 Performance statistics of the parallel Cholesky-based reduc-
tion method and the LLL reduction algorithm with the third set of 10,000
random simulated examples

Methods Chol_Wf LLL_Wf Chol_LLL

BExamples 99.99 98.77 99.55

WExamples 0.01 1.23 0.45

MeanImprove −3.062 −2.264 −0.832

MaxImprove −6.981 −6.405 −2.623

MeanWorsen 0.108 0.245 0.088

MaxWorsen 0.108 0.875 0.329

The condition numbers of these problems are between 104 and (1.5 ×
109). All the statistical indices and notations shown in this table are the
same as in Table 3

Chol_LLL of Table 5 that the parallel Cholesky-based reduc-
tion method performs overwhelmingly better than the LLL
algorithm for almost all the examples in this experiment (also
compare panel c of Fig. 6). This may indicate that the former
is much more suitable for solving the ill-conditioned nature
of problems than the LLL algorithm.

Before closing the analysis and comparison of the simu-
lated results, we would like to briefly discuss the effect of a
different maximum number of iterations on the performance

of the parallel Cholesky-based reduction algorithm. More
specifically, we set a new maximum number of iterations to
m for the parallel reduction algorithm and repeat the second
and third experiments. The first experiment is not repeated,
since all of its 10,000 examples terminate naturally in less
than m iterations, as has been seen in panel a of Fig. 2. To
start the performance comparison with the different max-
imum numbers of iterations m and 3m, let us denote the
10,000 condition numbers with the maximum number of iter-
ations m by κ N (m). After comparing κ N (m) with κ N of
(24c) in the second experiment, we found that κ N (m) and
κ N are essentially the same, except for only three examples.
The differences of condition numbers of these three exam-
ples are also very small. The maximum difference is −0.101
in logarithm. As for the third experiment, we plot the cdf
of {log κN − log κN (m)} in Fig. 7. We may conclude from
Fig. 7 that: (i) the results from using two different numbers
of iterations for termination are not significantly different.
In this experiment, 56.3% of the examples have exactly the
same results. Nearly 90% of the 10,000 examples produce
the condition numbers of κN and κN (m) within a range of
difference by 50%; and (ii) the increase of iterations tends to
further improve the condition numbers κN (m). The improve-
ment seems to be not significant, because the probability of
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Fig. 6 The probability density functions of the differences of condi-
tion numbers for the third experiment with the 10,000 ill-conditioned
problems. panel a—(log κN −log κB) to compare the parallel Cholesky-
based reduction with the original problems, panel b—(log κL − log κB)

to compare the LLL reduction with the original problems, and panel
c—(log κN − log κL ) to compare the Cholesky-based reduction with
the LLL algorithm

improvement is only 0.076 for κN ≤ 0.5κN (m). However,
the increase of iterations does not always result in a smaller
condition number, as clearly shown by the upper-right part
of the cdf curve in Fig. 7.

5 Conclusion

The integer linear model (1) is highly interdisciplinary (see,
e.g. Agrell et al. 2002; Artés et al. 2003; Banihashemi and
Khandani 1998; Brunetti and Daurat 2003; Grafarend 2000;
Regev 2009; Joux and Stern 1998; Gardner et al. 1999;
Teunissen 1993; Xu et al. 1995; Xu 2006). As a statistical
model, (1) is fundamentally different from a standard (real-
valued) linear model well documented in the statistical liter-
ature in that the unknown parameters in (1) are integers but
not real-valued. Actually (1) has received almost no atten-
tion in statistics. As a pure mathematical and/or engineering
problem, mathematicians and engineers have either focused
on the geometry of numbers or numerically estimating the
integers z from the noise-contaminated measurements y. The
error probability and its lower bound of correctly estimat-
ing integers were given by Shannon (1959). Tighter upper
and lower probabilistic bounds were recently derived by Xu
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Fig. 7 The cumulative distribution function of the differences of con-
dition numbers {log κN −log κN (m)} from the 10,000 random examples
of the third experiment. The condition numbers κN and κN (m) are com-
puted using the parallel Cholesky-based reduction with the maximum
numbers of iterations set to two different values, namely, 3m and m,
respectively

(2006) on the basis of best fitting of the Voronoi cell. How-
ever, statistical inference such as integer hypothesis testing
and quality control on the integer linear model (1) and/or
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the mixed integer linear model (2) has not yet been paid due
attention (see, e.g. Xu 2006). When the least squares and/or
ML principles are applied to (1), estimating the integers z
from y is equivalent to numerically solving the weighted
closest point or ILS problem (3). In this aspect, reduction of
lattice vectors and positive definite quadratic forms has been
widely used to aid finding the suboptimal or optimal integer
solution of z in the integer linear model (1).

We have proposed a parallel reduction method of positive
definite quadratic forms for solving the ILS problem (3),
which consists of two basic components: Cholesky decom-
position and reduction of the L matrix. Actually, the parallel
Cholesky-based reduction method implements two versions
of decomposition: (i) by simply arranging the diagonal ele-
ments of Wf in ascending order; and (ii) by perturbing the
sorting strategy (i) with the ascending ordering of the diag-
onal elements of D in the beginning of reduction. Reduction
with either of the sorting strategies runs independently in
parallel. Our reduction method directly works on the positive
definite matrix in association with (3).

We have shown that the parallel Cholesky-based reduction
method satisfies part of the inequalities required by Minkow-
ski’s reduction of quadratic forms. It is of fixed complexity
of O(m4) arithmetic operations by limiting the maximum
number of iterations up to 3m. The simulations of 30,000
randomly generated examples, with varying dimensions and
varying condition numbers up to (1.5 × 109), have clearly
shown that: (i) the parallel reduction method and the LLL
algorithm can work very well practically to reduce the con-
dition number of Wf ; and (ii) the parallel Cholesky-based
reduction performs significantly better than the LLL algo-
rithm in terms of producing a smaller condition number.
Our reduction method has also been shown to be extremely
powerful in removing the ill-conditioned nature of problems.
Finally, we would like to note that although the sorted QR
ordering is very powerful in constructing suboptimal solu-
tions to (3), it is least effective for reduction when compared
with the other two sorting strategies, as clearly shown by
the simulations. A suboptimal solution is sensitive to the
sequential ordering of integer parameters z according to the
conditional variances of the real-valued solution z f , while
reduction is more sensitive to simultaneously reducing both
the diagonal and off-diagonal elements of Wf .
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