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Abstract The gravitational potential of a constant density
general polyhedron can be expressed both in terms of a closed
analytical expression and as a series expansion involving
the corresponding spherical harmonic coefficients. The latter
can be obtained from two independent algorithms, which
differ not only in their algorithmic architecture but in their
efficiency and overall performance, especially when comput-
ing the coefficients of higher degree and order. In the pres-
ent paper a comparative study of all these three approaches
is carried out focusing on the numerical implementation of
the recursive relations appearing in the two algorithms for
the computation of the polyhedral potential harmonic coef-
ficients. The performed numerical investigations show that
the linear algorithm proposed by Jamet and Thomas
(Proceedings of the second international GOCE user work-
shop, ‘GOCE, The Geoid and Oceanography’, ESA-ESRIN,
Frascati, Italy, 8–10 March 2004, ESA SP-569, 2004), but
so far not implemented, achieves a reasonable accuracy at a
computational expense that opens to practical applications,
for instance in the field of satellite gravimetry/gradiometry
interpretation. The convergence behavior of the linear recur-
sion algorithm is studied thoroughly and a computational
procedure is proposed that enables the stable computation
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1 Introduction

The use of the general polyhedron can be found in a wide
range of applications in geodesy, geophysics and planetary
sciences. Its unique geometry, i.e., its construction from an
irregular number of faces, each built from a varying num-
ber of segments, defines an efficient and flexible modeling
tool for the computation, among others, of accurate terrain
effects (Tsoulis and Petrović 2001), or the representation of
entire planetary bodies and the evaluation of the correspond-
ing gravity signal (Simonelli et al. 1993; Werner and Scheeres
1996).

For the practical evaluation of the polyhedral gravity sig-
nal there exist, in principle, three computational strategies:
the direct numerical computation of closed analytical expres-
sions which are available for the potential, its derivatives and
the full gravity tensor for the case of the general polyhe-
dron of constant density, the evaluation of the potential har-
monic coefficients for the gravitational potential of the same
body and numerical quadrature methods that can be applied
directly to the corresponding integral expressions. The latter
possibility is not going to be considered here.

The analytical formulas are valid everywhere in space
including the polyhedron’s faces, edges or vertices, where
certain nonzero singularity terms have to be taken into
account (Petrović 1996; Tsoulis and Petrović 2001). The
fundamental property that is exploited for the derivation of
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the respective equations is the divergence theorem of Gauss,
which permits the stepwise transformation of the initial three-
dimensional integral to a summation of a number of line inte-
grals defined for the same number of segments building each
face and leads to the evaluation of transcendental expres-
sions involving the relative position of the coordinates of
each vertex with respect to the computation point. Although
the repeated application of the divergence theorem (for the
transition from volume to surface and from surface to line
integrals, respectively) produces the aforementioned results
in a straightforward manner, this is not the only way to
proceed. Equivalent procedures have been proposed in the
literature that are also valid everywhere but use different
parameterization for the problem, for example the defini-
tion of the so-called solid angle subtended by a face
when viewed from the field point (Werner 1994; Werner and
Scheeres 1996). Apart from that, the task of deriving an ana-
lytical expression for the polyhedral gravity field has been
dealt with from different algorithmic point of views by a
variety of authors, e.g., Pohanka (1988), Barnett (1976) and
many other contributions going back to the mid-1800s.

The computation of the potential harmonic coefficients of
the general constant density polyhedron, which is an alterna-
tive way of evaluating the polyhedral gravity signal, is based
on the expansion of its gravitational potential into an infinite
spherical harmonics series expansion. The potential expan-
sion in solid spherical harmonics has been always the pref-
erable means of modeling the gravity field of an observed
body in satellite-related applications. Thus, the polyhedral
modeling has been applied successfully in studies of the grav-
ity field of planetary objects for which satellite orbit pertur-
bations were available. Formulating the expression for the
potential in solid spherical harmonics and applying different
strategies for the integration over the surface of the observed
body, one can be led to the corresponding harmonic coeffi-
cients of the body’s gravitational potential. Thus, the spheri-
cal harmonic representation of the polyhedral gravity signal
has been applied up to now in modeling the gravity field of
planetary bodies such as asteroids or planets as a synthetic
counterpart of the corresponding satellite-range related mod-
els (Chao and Rubincam 1989; Martinec et al. 1989; Balmino
1994).

As far as the algorithmic procedure is concerned, two basic
approaches have been proposed so far for the spherical har-
monic coefficients of the gravitational potential of a constant
density general polyhedron. The first approach proposes the
use of the representation of the radius vector of the inte-
grand appearing in the general expression for the potential
of the polyhedral source in terms of a spherical harmonic
expansion. After introducing this expression into the respec-
tive equations which define the coefficients of the potential,
one may proceed to the computation of these coefficients
either numerically (Chao and Rubincam 1989) or analytically

(Martinec et al. 1989; Balmino 1994). The second approach
derives recurrent relations for the computation of these coef-
ficients. Werner (1997) elaborated the well-known recurrent
relations for the associated Legendre functions in the inte-
gral expressions defining the sought coefficients. The basic
geometric feature of his proposed algorithm is the partition-
ing of the polyhedron into a collection of simplices of tet-
rahedral shape. Then, the recurrent relations which he has
derived for the harmonic coefficients for point masses and
have to be integrated over the domain of the extended body,
are expressed analytically over each tetrahedron in terms of
certain trinomial expressions and then summed for each tetra-
hedron to give the final results for the harmonic coefficients.
The trinomial expressions that are used in these approach
are provided by the solution to the problem of integrating
Cartesian-coordinated polynomials on a polyhedral domain
as proposed by Lien and Kajiya (1984).

Both of the aforementioned approaches are restricted, each
for different reasons, to the computation of harmonic expan-
sions that are limited only to lower degrees. Werner’s method,
for example, requires the expansion of the respective poly-
nomial integrands, for which the number of the necessary
operations behaves as the square of the number of the har-
monic coefficients that are going to be computed. Another
method for the computation of the polyhedral potential har-
monic coefficients has been proposed by Jamet and Thomas
(2004). This method is also based on the division of the
polyhedral source into a number of distinct tetrahedra and
leads also to a recurrent solution. As for Werner’s approach,
the needed computational effort behaves thus linearly with
respect to the number of tetrahedral simplices that have to be
defined. However, in this case the recursions concern the inte-
grals that define the coefficients. This defines an algorithm
of linear complexity with respect to the number of computed
coefficients, a fact that permits the computation of higher
degrees. This latter algorithm was never implemented and
one of the scope of the present paper concerns its assessment.

The present work presents a detailed numerical survey
of the aforementioned recursive algorithms (Werner 1997;
Jamet and Thomas 2004). Their numerical implementation
revealed that even the linear algorithm of Jamet and Thomas
(2004) presented certain numerical deficiencies, when com-
puted for higher degrees. In order to overcome this prob-
lem the algorithm is expanded to its normalized counterpart,
something that increases the computational stability consid-
erably and permits the computation of coefficients up to
degree 400 and higher. The numerical implementation of
these algorithms enabled not only their quantification and
their direct comparisons with the closed analytical solution
which are presented in this paper, but also revealed or verified
numerically certain theoretical handicaps that are apparently
inherited with the linear algorithm of Jamet and Thomas
(2004). These numerical instabilities are documented in
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Recursive algorithms for the computation of the potential harmonic coefficients 927

detail both theoretically and numerically. Finally a
computational procedure is proposed that deals with these
problems and enables the stable computation of a polyhedral
gravity field for higher degrees. Using the shape model of
asteroid 433 EROS as a test body we managed to apply this
technique successfully and obtained a reproducible gravity
field up to degree 60.

2 The linear algorithm

The fundamental formula for the present discussion is the
expression for the gravitational potential of an extended body
as an infinite series expansion in solid spherical harmonics

V (r, θ, λ)

= G M

r

{
1 +

∞∑
n=1

(a

r

)n n∑
m=0

Pn,m(cos θ)

× [
Cn,m cos(mλ) + Sn,m sin(mλ)

] }
(1)

where G is the gravitational constant, M stands for the total
mass of the body and a denotes a reference distance, often
chosen as the radius of the smallest sphere centered at the
origin which circumscribes the extended body. (r, θ, λ) are
the spherical coordinates of the field point (radius, colati-
tude and longitude, respectively, cf. Fig. 2a) with respect to
the coordinate origin and Pn,m are the Legendre polynomials
(for m = 0) or associated Legendre functions (for m > 0) as
defined by Heiskanen and Moritz (1967).

For the dimensionless coefficients Cn,m and Sn,m the fol-
lowing integral expression holds[

Cn,m

Sn,m

]
= 2 − δ0,m

Man

(n − m)!
(n + m)!

∫ ∫ ∫
Q∈U

hn,m(Q)du(Q)

(2)

where du(Q) is the volume element of the total volume U
at point Q(rQ, θQ, λQ) and the vector hn,m(Q) has been
inserted to denote the product between the radial distance of
point Q with the associated Legendre functions according to

hn,m(Q) = rn
Q Pn,m(cos θQ)

[
cos(mλQ)

sin(mλQ)

]
(3)

Thus, hn,m(Q) defines a ‘vector function’ whose elements
are functions of the spherical coordinates of point Q with
respect to the coordinate origin. The computation of Eq. 2,
or equally the integration of function hn,m(Q) over the vol-
ume of a known polyhedral source of constant density is the
scope of the contributions of Werner (1997) and Jamet and
Thomas (2004). The common tool for both approaches is
the division of the total volume U of the polyhedron into

a collection of simplices (tetrahedra), each having one ver-
tex at the origin and the opposite face taken from one of
the polyhedral faces (Fig. 2b). With this geometrical decom-
position the volume integral of Eq. 2 can be expressed as
the algebraic sum of the integrals over each simplex of the
body U , where an integral is counted as positive if the outer
normal to the polyhedron lies outside the simplex and nega-
tive otherwise. Thus, the sign of the respective contributions
to the final value of the coefficients Cn,m and Sn,m depends
on the relative position of each polyhedral face with respect
to the respective tetrahedron.

To explain this we may consider the example of a cube.
Its division into six simplices (one for each of its faces) of
volume U j leads according to the distinction made above
to the expression of its volume as U = ∑

δ jU j , with δ j

equal to +1 for cases 4–6 and −1 for cases 1–3, giving thus
U = −U1 −U2 −U3 +U4 +U5 +U6 (see Fig. 1). After cal-
culating the coefficients of all simplices, we will get for the
harmonic coefficients of the cube the corresponding expres-
sion

[
Cn,m

Sn,m

]
=

∑
δ j

[
Cn,m( j)
Sn,m( j)

]
(4)

with δ j obtaining the same values as above.
In the following we will consider that U denotes the

volume of a simplex (tetrahedric element). Any polyhedron
is decomposed into a set of such simplices (tetrahedra). The
four faces building each one of these simplices will be
denoted by σk , with k = 0, . . . , 3, σo being the face that
belongs to the polyhedron surface and σk , with k = 1, . . . , 3,
the faces which share the origin as common vertex. The three
edges of face σo will be noted as εk , k = 1, . . . , 3, where
εk is the common edge between face σo and face σk . The
numbering of the edges is performed in the standard coun-
terclockwise fashion, according to which the normal vectors
to the corresponding faces will point in the outgoing direc-
tion of the respective tetrahedron. The normal vector to each
face σk will be denoted by nk and the direction unit vec-
tor of each edge εk will be noted tk . Finally, the involved
spherical coordinates are defined by the standard expres-
sions

x = r sin θ cos λ

y = r sin θ sin λ (5)

z = r cos θ

while the unit vector bases of the local spherical and cartesian
frames will be given by (ur , uθ , uλ) and (ux , uy, uz), respec-
tively. An overview of all involved geometrical quantities is
given in Fig. 2.
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Fig. 1 Algorithmic
representation of a prismatic
source through a number of
simple tetrahedra. The harmonic
coefficients for the potential of
the prism computed at point P
according to the recurrent
procedure of the linear
algorithm will be obtained by
partitioning the prism into the
six tetrahedra shown here, all
having the common vertex P .
The final values for the
coefficients will be obtained
algebraically according to
U = −U1 − U2 − U3 + U4 +
U5 + U6

U
P

P P

P P

P

U U

U U U

1 2 3

4 5 6

Fig. 2 Coordinate systems (a) and basic geometric definitions (b) (face
and edge numbering) for the tetrahedron representation

We may introduce, for the sake of simplicity, the follow-
ing parameter for the representation of the three-dimensional
integral in the right-hand side of Eq. 2

Hn,m =
∫ ∫ ∫

Q∈U

hn,m(Q)du(Q) (6)

with boldface denoting again a vector function, the simple
notation Hn,m representing the three-dimensional integral of
either component hn,m of the vector hn,m .

Taking into account the equality

∇ ·
(

1

n + 3
r hn,m ur

)

= 1

r2

∂

∂r

(
r3hn,m

n + 3

)

= 1

r2

∂

∂r

(
rn+3

n + 3
Pn,m(cos θ)

[
cos(mλ)

sin(mλ)

])

= rn Pn,m(cos θ)

[
cos(mλ)

sin(mλ)

]
= hn,m (7)

and applying the divergence theorem of Gauss to Eq. 2 gives

Hn,m =
∫ ∫ ∫

U

hn,mdu = 1

n + 3

∫ ∫
σo

r hn,m ur · nodσ

(8)

Equation 7 transforms now at a first instance the three-
dimensional integral at the right-hand side of Eq. 2 to a sole
surface integral, which expresses the flow of the vector field
r hn,m ur through the triangular face that belongs to the poly-
hedral surface σo and defines the specific tetrahedron, with ur

expressing the unit vector along the radial coordinate of the
local spherical coordinate system, and hn,m denoting either
component of the ‘vector function’ hn,m . The derivation of
Eq. 7 expresses also the fact that vector ur is per definition
orthogonal to all three normal vectors nk , k = 1, . . . , 3, of
the three tetrahedral faces not belonging to the polyhedron.
Since all three faces building each simplex share the origin
as common vertex, the direction vector ur will be always
orthogonal to the normal vectors nk of each face.

From the geometrical setup of Fig. 2b the following
relation can also be obtained directly

r(Q) ur (Q) · no = do, ∀Q ∈ σo (9)

123



Recursive algorithms for the computation of the potential harmonic coefficients 929

where do is the distance of the origin from the plane defined
by face σo. This leads to the expression

Hn,m = do

n + 3

∫ ∫
σo

hn,mdσ (10)

A subsequent application of the Stokes theorem can reduce
each of these surface integrals into a set of three line integrals,
each defined along the perimeter of the triangular polyhedral
face.

Using the identity

∇ ×
⎡
⎣ yhn,m

−xhn,m

0

⎤
⎦ = (n+m)

⎡
⎣xhn−1,m

yhn−1,m

zhn−1,m

⎤
⎦ − (n + 2)

⎡
⎣ 0

0
hn,m

⎤
⎦

= (n + m)rhn−1,mur − (n + 2)hn,muz

(11)

permits the application of the Stokes theorem for every seg-
ment εk of the face σo. With

[
yhn,m − xhn,m0

]
being the

corresponding vector function the theorem of Stokes leads
for face σo to the expression

3∑
k=1

∫
εk

⎡
⎣ yhn,m

−xhn,m

0

⎤
⎦ · tkdl = (n + m)

×
∫ ∫

σo

r hn−1,m ur · nodσ

−(n + 2)

∫ ∫
σo

hn,m uz · nodσ (12)

with uz denoting the unit vector in the direction of the third
coordinate of the cartesian frame, no the unit vector perpen-
dicular to face σo, do the distance between the origin and
the plane of the face σo, tk the direction unit vector (tangent
vector) of each edge εk and dl the infinitesimal line element
denoting the integration along these edges. Finally, x and y
simply describe the two coordinates of the local cartesian
frame (see Fig. 2a).

Using Eqs. 8 and 10, Eq. 12 becomes

Hn,m = do(n + m)

(n + 3)(uz · no)
Hn−1,m

− do

(n + 2)(n + 3)(uz · no)

3∑
k=1

∫
εk

⎡
⎣ yhn,m

−xhn,m

0

⎤
⎦ · tkdl

(13)

Equation 13 demonstrates that it is possible to compute the
three-dimensional integrals appearing on the right-hand side
of Eq. 2 in terms of a recurrence over degree n. At each
step of this recurrence scheme the evaluation of three line
integrals along the edges of face σo is necessary. Jamet and
Thomas (2004) showed that it is possible to evaluate each of

these remaining line integrals through a set of recurrence rela-
tions as well. This leads finally to a nested recurrence scheme
which delivers the integrals Hn,m . In order to comprehend
the link between these two recursions, the recursive schema
which can be developed for the computation of the line inte-
grals appearing in the right-hand side of Eq. 13 is going to
be presented briefly in the following.

If one defines the curvilinear abscissa s along each edge as
a new parameter, choosing as an origin for its computation
the point ok on εk that minimizes the distance d from the
origin of the spherical coordinate frame then we obtain the
geometrical definitions (see Fig. 2b)(

ox , oy, oz
) ≡ ok , the cartesian coordinates of the origin

of the edge

d ≡
√

o2
x + o2

y + o2
z , the distance from ok origin of the

frame(
tx , ty, tz

) ≡ tk , the cartesian components of vector tk ,
smin, smax, the bounds of the integration domain

along the edge

and furthermore

x = ox + tx s (14)

y = oy + ty s (15)

z = oz + tz s (16)

r = d2 + s2 (17)

Through these definitions the line integrals of the right-hand
side of Eq. 13 become

∫
ε

⎡
⎣ yhn,m

−xhn,m

0

⎤
⎦ · tdl = (

tx oy − tyox
) ∫

ε

hn,mdl (18)

Let us now use the symbol In,m to denote the integral on the
left-hand side of Eq. 18 and In,m for the corresponding 2×1
matrix, according to the notation used so far. It will hold

In,m =
∫
ε

hn,mdl (19)

Similarly we define two additional integrals in matrix form
which enter the subsequent calculations, namely

Jn,m =
∫
ε

s hn,mdl (20)

and

Kn,m =
∫
ε

s2 hn,mdl (21)

The link to the recurrence computation of these integral
forms is obtained from the stable recurrence relation of the
associated Legendre polynomials (Press et al. 1992, p. 253)
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(n − m)Pn,m(ξ) = ξ(2n − 1)Pn−1,m(ξ)

−(n + m − 1)Pn−2,m(ξ) (22)

with ξ = cos θ . Multiplying first both sides of this equation

by rn
[

cos mλ

sin mλ

]
and then integrating with respect to ε, we

finally get, by incorporating also expressions (5), (16) and
(17), following recurrence formula

(n − m) In,m = (2n − 1) ozIn−1,m − (n + m − 1) d2In−2,m

+ (2n − 1) tzJn−1,m − (n + m − 1) Kn−2,m

(23)

In order to be able to compute the recurrence scheme of
Eq. 23, which relates In,m with Jn,m and Kn,m , we need addi-
tional information. Indeed, if we calculate the first derivative
of hn,m with respect to s we get(

d2 + s2 − (oz + tzs)2
) ∂

∂s
hn,m

= (n + m)
(

tzd2 − ozs
)

hn−1,m

= −n
(

tzoz −
(

1 − t2
z

)
s
)

hn,m

= +m
(
tx oy − tyox

) [
0 1

−1 0

]
hn,m (24)

Integrating both sides of this equation for ε gives

(n + 2)
(

1 − t2
z

)
Jn,m

=
∣∣∣(d2 + s2 − (oz + tzs)2

)
hn,m

∣∣∣smax

smin

+ (n + 2) tzozIn,m − m
(
tx oy − tyox

) [
0 1

−1 0

]
In,m

− (n + m) tzd2In−1,m + (n + m) ozJn−1,m (25)

Following the same approach for the derivative of shn,m with
respect to s leads to the additional recursive relation

(n + 3)
(

1 − t2
z

)
Kn,m

=
∣∣∣(d2 + s2 − (oz + tz .s)

2
)

shn,m

∣∣∣smax

smin

−
(

d2 − o2
z

)
In,m + (n + 4) tzozJn,m

−m
(
tx oy − tyox

) [
0 1

−1 0

]
Jn,m

− (n + m) tzd2Jn−1,m + (n + m) ozKn−1,m (26)

Equations 23, 25 and 26 offer the complete recursion scheme
for the computation of the line integrals in Eq. 13 through
quantities I, J and K. The two major comments regarding
these relations are (a) the strong dependencies between the
three integrals, which leads to a nested computation of all
three formulas and (b) the recurrent relationships apply to

the degree n, with the order m remaining constant. One con-
sequence of (a) is of computational nature. When a general
polyhedron is considered, part of the calculations giving the
contributions of each resulting tetrahedron can be performed
independently, which can facilitate a parallel computation.
The consequence of (b) has an impact on the initializations
of the recursive algorithm. Since 0 ≤ m ≤ n, the computa-
tion has to be initialized with the values In,n , Jn,n , Kn,n and
Hn,n for every n smaller than the maximum degree that is to
be computed. Taking m = n and setting all terms for which
m > n equal to zero, we verify that Eqs. 13, 25 and 26 are
valid. The same holds for Eq. 23 for m = n − 1.

For the initialization of In,n we can use the identity

Pn,n(ξ) = (2n − 1)
√

1 − ξ2 Pn−1,n−1(ξ) (27)

to derive a relation between hn,n and hn−1,n−1 according to

hn,n = rn Pn,n(ξ)

[
cos nλ

sin nλ

]
= (2n − 1) sin θrn−1 Pn−1,n−1(ξ)r

×
[

cos λ − sin λ

sin λ cos λ

] [
cos n(λ − 1)

sin n(λ − 1)

]

= (2n − 1)

[
x −y
y x

]
hn−1,n−1 (28)

Recalling the coordinate definition given by Eq. 5 and inte-
grating Eq. 28 along ε we get the sought iteration for In,n

In,n =
[

ox −oy

oy ox

]
In−1,n−1 +

[
tx −ty

ty tx

]
Jn−1,n−1 (29)

where Jn−1,n−1 can be obtained directly from Eq. 25 using
only In−1,n−1, with terms In−2,n−1 and Jn−2,n−1 being null.

By initializing the diagonal and subdiagonal terms in the
recursions for the integrals I, J and K one can compute all
the other terms recursively for degree n for a certain order m.
Each step of these recurrences only requires the evaluation
of the function h at the vertices of the tetrahedron. With all
In,m finally available one can calculate the volume integrals
Hn,m by the recurrence relationship 13 and deduce the values
for the harmonic coefficients Cn,m and Sn,m .

3 Expansion of the linear algorithm to the normalized
case

If one increases n and m considerably then the Pn,m obtain
extremely large values and the coefficients Cn,m and Sn,m

become very small. To avoid these numerical problems and
permit the computation of high degree and order terms
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one can introduce the normalization factor [Heiskanen and
Moritz 1967, Eqs. (1–73)]

Nn,m =
√

(2 − δ0,m)(2n + 1)
(n − m)!
(n + m)! (30)

with

δ0,m =
{

1, m = 0,

0, m �= 0.

The normalized coefficients and the normalized associated
Legendre functions can then be computed according to[

Cn,m

Sn,m

]
=

[
Cn,m/Nn,m

Sn,m/Nn,m

]
(31)

and

Pn,m = Pn,m Nn,m, (32)

respectively. The inclusion of the normalization factor pro-
duces new recurrent relations for the linear algorithm pre-
sented in the previous section and these relations are going
to be presented in the present section.

Definition From Eqs. 2 and 31, the values of normalized
harmonic coefficient of the contribution of volume U to the
potential obey the following relation[

Cn,m

Sn,m

]
= 1

Nn,m

2 − δ0,m

Man

(n − m)!
(n + m)!

×
∫ ∫ ∫

Q∈U

hn,m(Q)du(Q) (33)

In order to simplify further the calculations, let us define the
normalization factor Fn,m as

Fn,m ≡ 1

Nn,m

2 − δ0,m

Man

(n − m)!
(n + m)!

= 1

Man

√(
2 − δ0,m

)
(n − m)!

(2n + 1) (n + m)! (34)

as well as the subsequent normalized quantities, in accor-
dance with the definitions of the previous section

hn,m ≡ Fn,mhn,m

Hn,m ≡ Fn,mHn,m

In,m ≡ Fn,mIn,m (35)

Jn,m ≡ Fn,m

a
Jn,m

Kn,m ≡ Fn,m

a2 Kn,m

As well as previously, nonbold face letters will represent
either component of the corresponding ‘vector function’.

We will also need the following ratios

Rm
n,n−1 ≡ Fn,m

Fn−1,m
= 1

a

√
(2n − 1) (n − m)

(2n + 1) (n + m)
(36)

Rm
n,n−2 ≡ Fn,m

Fn−2,m
= 1

a2

√
(2n − 3) (n − m) (n − m − 1)

(2n + 1) (n + m) (n + m − 1)

(37)

Normalized recurrent relationships With the previous
definitions, the harmonic coefficients of the contribution of
one simplex are[

Cn,m

Sn,m

]
=

∫ ∫ ∫
Q∈simplex

hn,m(Q)du(Q) = Hn,m

The multiplication of Eq. 13 by factor Fn,m yields

Hn,m = Rm
n,n−1do(n + m)

(n + 3)(uz · no)
Hn−1,m

− do

(n + 2)(n + 3)(uz · no)

3∑
k=1

∫
εk

⎡
⎣ yhn,m

−xhn,m

0

⎤
⎦ · tkdl

(38)

where

∫
εk

⎡
⎣ yhn,m

−xhn,m

0

⎤
⎦ · tkdl = (

oytx − ox ty
) ∫
εk

hn,m (s) ds

= (
oytx − ox ty

)
In,m

The derivation of recurrent relationships between the In,m ,
Jn,m and Kn,m proceeds the same way, as for Eqs. 23, 25 and
26. We obtain

(n − m) In,m = (2n − 1) Rm
n,n−1ozIn−1,m

− (n + m − 1) Rm
n,n−2d2In−2,m

+ (2n − 1) a Rm
n,n−1tzJn−1,m

− (n + m − 1) a2 Rm
n,n−2Kn−2,m (39)

and similarly

(n + 2)
(

1 − t2
z

)
Jn,m

=
∣∣∣∣1

a

(
d2 + s2 − (oz + tzs)2

)
hn,m

∣∣∣∣
smax

smin

+ (n + 2)
tzoz

a
In,m

−m

(
tx oy − tyox

)
a

[
0 1

−1 0

]
In,m

− (n + m) Rm
n,n−1

tzd2

a
In−1,m

+ (n + m) Rm
n,n−1ozJn−1,m (40)
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and

(n + 3)
(

1 − t2
z

)
Kn,m

=
∣∣∣∣ 1

a2

(
d2 + s2 − (oz + tzs)2

)
shn,m

∣∣∣∣
smax

smin

−d2 − o2
z

a2 In,m + (n + 4)
tzoz

a
Jn,m

−m

(
tx oy − tyox

)
a

[
0 1

−1 0

]
Jn,m

− (n + m) Rm
n,n−1

tzd2

a
Jn−1,m

+ (n + m) Rm
n,n−1ozKn−1,m (41)

Equations 38, 40 and 41 require that n > m, while Eq. 39
applies for n >m+1. Though, as stated by Jamet and Thomas
(2004), these recurrent relationships do extend to every pair
(n, m) of degree and order with n ≥ m, by setting equal to
zero all terms for which the degree n is smaller than the order
m.

4 Werner’s method

An alternative iteration algorithm for the computation of the
spherical harmonic coefficients for the potential of a poly-
hedral mass with constant density has been proposed by
Werner (1997). In his approach Werner treats at a first level
the general expression of the potential in spherical harmonics
incorporating the standard recurrent relations for the associ-
ated Legendre functions as well for their fully normalized
integrals. The obtained recurrences correspond to the inte-
grands of Cn,m and Sn,m defined for individual point masses.
In order to expand this formulation to an extended polyhedral
body Werner implemented the polynomial integration tech-
nique over a polyhedral domain, proposed by Lien and Kajiya
(1984). For the algorithmic details of the method the reader
is referred to Werner (1997). His algorithm has been imple-
mented here numerically in order to perform an independent
test of our own derivations. Our calculations showed that the
central transformation taking place in this procedure, i.e., the
polynomial change of variables of the polyhedron’s vertices,
expresses one of the main handicaps of Werner’s method,
which creates a practically unbearable computational effort
when attempting to compute coefficients of increasing degree
and order.

5 Comparative tests for simple case studies

5.1 Background

In order to assess the two recursive algorithms, the one pro-
posed by Werner (1997) and the one presented here, we

set up some simple case studies of simple constant density
tetrahedra and compare the harmonic expansion to the direct
computation of closed analytical formulas. While the direct
comparison between the two approaches is straightforward,
the assessment of their accuracy though the comparison of
the numerical value obtained from the series expansion of the
potential with analytical values is more problematic. Series
expansions yield band limited approximations of the value
of the potential at a given point that are not directly com-
parable to the analytical values. To cope with this issue, we
performed several numerical investigations.

The fundamental property which underlines all our exper-
iments is the behavior of the kernel 1/rP , which defines the
decay of the potential with increasing distance of the com-
putation point from the attracting source. Furthermore, for
the present case of the expression of the potential in a spher-
ical harmonic expansion the numerical behavior of V is also
fundamentally affected by the ratio (rQ/rP )n , where rQ and
rP are, respectively, the distance from the origin of the frame
of the points Q of the attracting source and of the compu-
tation point P . As rP becomes larger the convergence rate
for the series expansion increases. As rP becomes smaller
the series convergence is not guaranteed. More precisely, the
series converges for all Ps located outside a sphere enclosing
all masses (rQ < rP ); for rP < rQ the area of convergence
is again a sphere, such that the mass distribution is nowhere
included or intersected (Tsoulis 1999).

The above well-known theoretical assets of spherical
harmonic expansions led us to set up a first experiment aim-
ing at assessing the convergence of the series expansion with
respect to (a) increasing degree and order and (b) increasing
values of rP . The second experiment consists in studying the
convergence of the series through the computation of high
degree and order expansions, and will sketch an integrated
view on the accuracy of the coefficients.

Both these experiments apply only to the normalized
Jamet and Thomas’s algorithms presented in this paper, as
stated below. We will thus previously perform a direct com-
parison of both methods at low degrees.

5.2 Direct comparison

For the numerical implementation of the aforementioned
tests a simple prismatic source as the one shown in Fig. 2b has
been defined. It is a simple tetrahedron, since both existing
recurrence algorithms for the evaluation of the potential har-
monic coefficients (Werner’s approach and the linear algo-
rithm presented previously) refer to a tetrahedral geometry.
Furthermore it is identical to the test body used by Werner
(1997) for the numerical assessment of his own recursive
algorithm. This choice has been made deliberately, in order
to draw a first immediate conclusion on the validity of our
approach. Following Werner (1997) the constant density of
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the tetrahedral mass has been also taken equal to 5.52 g/cm3

and the origin of the local coordinate system has been defined
as one of the four vertices. The two matrices needed for the
implementation of the linear algorithm presented here are
the coordinates of the four vertices and their linkage, which
forms an extra topology matrix with the precondition that the
order of the vertices will be such, that the normal vector to
each of the corresponding planes will point outside the tet-
rahedron. Thus, the two matrices G and H read for our test
tetrahedron correspondingly

G =

⎡
⎢⎢⎣

−2 −1 1
1 0 1
0 1 1
0 0 0

⎤
⎥⎥⎦ , H =

⎡
⎢⎢⎣

1 2 3
1 4 2
3 4 1
2 4 3

⎤
⎥⎥⎦ (42)

The obtained numerical values for the coefficients Cn,m and
Sn,m up to degree 4 applying the linear recursive algorithm
read

C=

⎡
⎢⎢⎢⎢⎣

1.6727272727 0 0 0 0
0.2851622661 −0.0950540886 0 0 0
0.0463802081 −0.0401664385 0.0200832192 0 0

0 −0.0086628747 0.0124520069 −0.0030501063 0
−0.0033967950 0.0021180637 0.0042791349 −0.0024016585 −0.0002830382

⎤
⎥⎥⎥⎥⎦ (43)

and

S=

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0.0200832193 0 0
0 0.0023626022 0.0124520069 −0.0091503189 0
0 0.0027232248 0.0040651782 −0.0072049755 0.0039625344

⎤
⎥⎥⎥⎥⎦ (44)

where we have used a matrix notation, with rows expressing
the degree n and columns the order m. These values are iden-
tical with those given by (Werner, 1997, Table 1) down to the
numerical level of 1e-16, which corresponds to the intrinsic
precision of the personal computer.

Although both methods produce identical results, they
perform differently in terms of computational efficiency. For
degrees n <10 the required CPU time for both is comparable.
However, when computing the higher degrees the differences
become very significant. Taking the same tetrahedron and
computing its potential harmonic coefficients for increasing
degree and order using both methods we get a similar evolu-
tion of the required CPU time, which increases exponentially
with respect to the increased degree. However, this exponen-
tial behavior refers to different order of magnitudes. Thus,
the linear algorithm requires 16 s in order to produce the
coefficients of the aforementioned tetrahedron up to degree

and order 360, whereas the Werner method consumes about
350 s of CPU time for the computation of the coefficients
only up to degree and order 50. The increase of CPU time
behaves exponentially, almost approximating a function of
degree four. Thus, the necessary computer time becomes
very quickly unmanageable, leading approximately to 9.4e5 s
(approximately 11 days) of required CPU time for the com-
putation of the coefficients up to degree and order 360 of a
single tetrahedron on the same standard contemporary PC.
The introduction of the coordinate mapping through the cor-
responding polynomials which enables the final integration
step in the Werner method, produces an enormous compu-
tational effort and makes the method inapplicable for higher
degrees and more complicated bodies.

Hence, from both available recurrent algorithms the lin-
ear integration algorithm proves to be a much more effi-
cient method, though producing the same level of accuracy
as the method proposed by Werner. The linear algorithm
is superior in terms of required CPU time for the lower

degrees and is the only applicable method for the higher
degrees. When applied to a complex body, for which a decom-
position into a number of simple tetrahedra as many as the
body’s faces is necessary, the corresponding CPU time would
increase linearly as to the total number of these faces. On the
same computer the expansion up to degree 400 requires 22 s
for a single tetrahedron, and would require approximately
100 days for the expansion up to the same degree of the
potential of a body counting 400,000 faces—for instance a
DTM at the resolution 25 km over the whole Earth. This still
represents a heavy computation burden, but would become
manageable if shared among a few tens of CPUs. Hence, our
recursive approach may allow some applications at the scale
of the whole Earth, such as, for instance, an exact removal
of the effect of the topography from the gravity signal of the
future GOCE satellite, which would enhance our interpreta-
tion capabilities.
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Table 1 Comparison between
analytical and series expansion
solutions for varying distance of
the computation point with
respect to the attracting source
for two different maximum
degrees of the respective
expansion (unit is m2s−2)

Distance from the origin (A) Analytic (B) Nmax = 2 (C) Nmax = 10 (A) − (B) (A) − (C)

2.45 9.2503e-8 9.3980e-8 9.2528e-8 −1.4768e-009 −2.5253e-011

2.69 8.5082e-8 8.6111e-8 8.5092e-8 −1.0292e-009 −9.8991e-012

2.94 7.8695e-8 7.9429e-8 7.8699e-8 −7.3325e-010 −4.0011e-012

3.18 7.3156e-8 7.3690e-8 7.3158e-8 −5.3343e-010 −1.6853e-012

3.43 6.8316e-8 6.8712e-8 6.8317e-8 −3.9568e-010 −7.4149e-013

3.67 6.4056e-8 6.4355e-8 6.4056e-8 −2.9877e-010 −3.4049e-013

3.92 6.0282e-8 6.0512e-8 6.0283e-8 −2.2930e-010 −1.6282e-013

4.16 5.6919e-8 5.7097e-8 5.6919e-8 −1.7860e-010 −8.0857e-014

4.41 5.3903e-8 5.4044e-8 5.3903e-8 −1.4099e-010 −4.1581e-014

4.65 5.1186e-8 5.1299e-8 5.1186e-8 −1.1267e-010 −2.2083e-014

4.90 4.8726e-8 4.8817e-8 4.8726e-8 −9.1047e-011 −1.2081e-014

5.3 Comparison to analytically derived values

In order to assess the precision of the derived recurrent algo-
rithm one has to compare it with the corresponding analyti-
cal solution at a given point P . A detailed evaluation should
investigate the main factors that define the recurrent rela-
tionships numerically, namely the maximum degree of the
expansion and the position of the computation point with
respect to the attracting source. As a general rule of thumb
it holds that a higher degree of expansion into spherical har-
monics produces potential values that are closer to the (exact)
analytical ones. Furthermore, as stated before, the further the
computation point gets with respect to the attracting source

the smaller the numerical value of the ratio
(

rq
rp

)n
becomes,

Q symbolizing any point of the attracting source. This well-
known numerical asset of spherical harmonics implies that
higher degree coefficients are more important to the precision
of the corresponding potential values the closest one gets to
the attracting source. On the contrary, one should expect that
a small number of coefficients would suffice for reaching
the desired agreement with the analytical solution when the
computation point is located in a fairly large distance from
the prismatic source.

To assess more precisely this effect, we compare the con-
vergence with increasing rP of the series truncated at a given
degree with the convergence of the series obtained for a point
mass located at the center of mass of the studied tetrahedron.
As any body with a certain spatial extent should generate a
potential with more energy in the low frequencies than a point
mass, we expect that the point mass convergence should be
better for series truncated at a very low degree, and should
get worse for series truncated some higher degree.

Table 1 presents the comparison of the tetrahedron trun-
cated potential series expansions at points P of increasing
distance rP from the origin of the frame with analytical val-
ues. The corresponding exact numerical value for the poten-

tial of the source tetrahedron at every location of P is evalu-
ated through the closed analytical expressions for the general
constant density polyhedron, which are valid everywhere in
space including all possible singularity terms, as given by
Tsoulis and Petrović (2001).

We use again the model body of Fig. 2b, with Eq. 42
describing its geometry. The series expansion, expressed by
Eq. 1 with rp playing the role of r , is actually an expan-
sion in powers of 1/rp. For increasing rp the convergence
of the series becomes better, for smaller rp this convergence
cannot be guaranteed. With the origin of the local coordi-
nate system being situated at vertex 4 of the tetrahedron we
studied the aforementioned expansion for degrees 2 and 10
using the coefficients obtained by the presented recursive
linear algorithm. The computations took place at eleven dis-
tinct points, namely starting at [−2 −1 −1] and gradually
getting at point [−4 −2 −2] with respect to the same coor-
dinate system. Table 1 summarizes these results giving also
the respective analytical values and the corresponding dif-
ferences. The obvious remark taken from these values is that
when the distance from the tetrahedron increases the expan-
sion becomes more precise for the same degree, with the
differences between these two specific degrees decreasing in
value for the same point as this moves away from the tet-
rahedron. This observation proves the expected behavior of
the harmonics Cn,m and Sn,m to obtain smaller numerical
values both for increasing n and for increasing distance rp.
Consequently, the closer the computation point P and the
attracting point Q get, the higher is the difference between
the contributions of the same degree, in other words one has
to use a higher degree expansion to be as accurate.

The convergence with increasing rP of these series trun-
cated at a given degree is compared to the convergence of
identically truncated series expansion of the potential of a
mass point located at the center of mass of the tetrahedron in
Table 2. The spherical harmonic expansion of the potential
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Table 2 Comparison between
relative errors of truncated
errors of series expansions
(A, C) for the tetrahedron
(recursive algorithm) and (B, D)
for a point mass (analytical
expansion) (unit is m2s−2)

Distance from (A) Tetrahedron (B) Point mass (C) Tetrahedron (D) Point mass
the origin Nmax = 2 (%) Nmax = 2 (%) Nmax = 10 (%) Nmax = 10 (%)

2.45 1.60 0.75 0.027 0.015

2.69 1.21 0.57 0.012 0.014

2.94 0.93 0.45 0.005 0.013

3.18 0.73 0.36 0.002 0.012

3.43 0.58 0.29 0.001 0.011

3.67 0.47 0.24 0.001 0.010

3.92 0.38 0.20 0.000 0.009

4.16 0.31 0.16 0.000 0.008

4.41 0.26 0.14 0.000 0.008

4.65 0.22 0.12 0.000 0.008

4.90 0.19 0.10 0.000 0.008

of a mass point is derived after the well-known expression
(Heiskanen and Moritz 1967)

1

PQ
= 1

rP

(
1 +

+∞∑
n=1

(
rQ

rP

)n

Pn

(
cos P̂Q

))

where PQ is the distance between P and Q, and where P̂Q
is the angle between the directions of P and Q at the origin
of the frame. Table 2 presents, for each value of rP , the error
of the truncated series at degrees 2 and 10 in percentage to
the analytical value of the potential. As expected, we observe
that, at degree 2, the series of the tetrahedron converges more
slowly with rP than the corresponding series of the point
mass, while at degree 10, the series of the tetrahedron does
converge more quickly. While this experiment does not allow
to quantify the accuracy of the individual coefficients of the
series, it shows that the implemented algorithm does behave
as expected, allowing thus to assess the correctness of the
implementation at low degrees.

5.4 Convergence at high degrees

Table 1 reveals a certain trend for the potential as the location
of the computation point increases. In order to underline this
trend and furthermore demonstrate the role of the distance
between P and the tetrahedron for the convergence of the cor-
responding series expansions we proceeded to the numerical
tests summarized in Figs. 3, 4 and 5. The computations take
place at two locations, namely [−4 −4 0] (Fig. 3) and [−2
−2 0] (Figs. 4, 5). In these graphs the relation between the
expansion degree and the precision with respect to the analyt-
ical values becomes more evident. For an increased distance
from the tetrahedron and a given degree the spherical har-
monic expansion for the potential becomes more accurate.
The series convergence is also affected by the relative posi-

1 2 3 4 5 6 7 8 9 10
4.468

4.469

4.47

4.471

4.472

4.473

4.474

4.475

4.476

4.477

4.478
x 10

−8

degrees

V
 (

m
2  s

−
2 )

low degrees expansion vs analytical solution

Fig. 3 Assessment of the recursive algorithm for the polyhedral poten-
tial harmonic coefficients for the degree range 1–10 for case study 1
versus the analytical solution (straight line)

tion of P with respect to the tetrahedron. The more distant
point (Fig. 3) causes a rapid convergence of the series which
coincides with the analytical solution already by degree 6
at the 2e-13 level and from degree 7 upwards at the 1e-15
level. On the other hand, the nearest location of the compu-
tation point leads to a series expansion that converges only
after degree 25. Up to that degree the series expansion for
the potential oscillates around the analytical solution show-
ing a much slower convergence as Fig. 4 and the first part of
Fig. 5 demonstrate. The agreement between the series expan-
sion and the analytical solution is 9e-14 for degree 25 and
it oscillates around 1e-15 from degree 30 up to degree 50
(Fig. 5, right part).

The magnitude of these differences, especially the oscil-
lating behavior of the series expansion solution with respect
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Fig. 4 Assessment of the recursive algorithm for the polyhedral
potential harmonic coefficients for the degree range 1–10 for case study
2 versus the analytical solution (straight line)
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Fig. 5 Assessment of the recursive algorithm for the polyhedral poten-
tial harmonic coefficients for the degree range 10–50 for case study 2
versus the analytical solution (straight line)

to the analytical solution for increasing degree, intrigued us
to explore their development for even higher degrees. Thus,
we extended these comparisons for the same positions of P
incorporating coefficients Cn,m and Sn,m up to degree and
order 360. This led to a very interesting numerical finding.
The levels of accuracy obtained for the two cases are namely
not identical. The accuracy, or equally the level of agree-
ment between series expansion and analytical solution, that
is achieved for the ‘near’ situated point ([−2 −2 0]) is less
than the one obtained for the ‘far’ point ([−4 −4 0]), the
actual values being 1e-17 and 1e-22, respectively. Further-
more, these upper accuracy bounds are reached at different
degrees. The 1e-22 accuracy level is obtained for the more
distant point already by degree 30, while the 1e-17 accuracy

level is reached at the nearest point only after degree 100.
This finding quantifies a bit more precisely the numerical
accuracy of the recurrent scheme. The computation of the
series expansion at the ‘near’ point yield an estimate of the
accuracy of the series at degree and order 100, while the same
computation at the ‘far’ point yields an estimate of the accu-
racy of the series at degree and order 30: the energy of the
potential at higher degrees appears to be lesser than the accu-
racy of the algorithm at the given locations. As expected, the
accuracy gets worse as the expansion is computed for higher
degrees and orders. Though, the increase of the error keeps
reasonable with respect to the intrinsic accuracy of the com-
puter itself.

5.5 Divergence cases

All of the aforementioned results referred to a specific choice
for the origin of the local coordinate system, namely one of
the corners of the tetrahedron. In order to test the method in a
more general case, namely to mimic the case of the computa-
tion of the spherical harmonic decomposition of the potential
of a geological structure, we chose to keep our test tetrahe-
dron and to move the origin of the frame relatively to it. For
these computations the tetrahedron is handled as a four-faced
prismatic source with the final value of the coefficients being
obtained according to Eq. 4. Thus, the source tetrahedron
is divided each time into 4 simplices all of which have the
origin as their common vertex and the computation proceeds
according to Fig. 1 and Eq. 4.

Our numerical investigations revealed that the choice of
the origin is mostly critical for the overall stability of the pro-
cess. In simple words, any displacement of the origin away
from its initial location makes the method immediately diver-
gent.

This fact is demonstrated briefly in Fig. 6. The position
of both the source tetrahedron and the computation point
remain unaltered relative to each other. This implies that the
corresponding potential values should be insensitive to the
actual location of the origin of the local coordinate system.
We then start to move gradually the origin from its original
location (vertex 4) along the x-axis. As Fig. 6 demonstrates,
the deviation of the series expansion from the analytical value
is abrupt. This instability characterizes all degrees, although
Fig. 6 deals with a maximum degree and order of 360.

Thus, the linear recursive algorithm which permits an effi-
cient and accurate computation of the spherical harmonic
coefficients that describe the gravitational potential of a con-
stant density polyhedron is inherited with severe numerical
instabilities, that cause immediate divergence of the method,
depending on the location of the origin of the local coordinate
system. This instability has a solid theoretical explanation
and is linked with the actual orientation of the tetrahedral
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Fig. 6 Effect of changing the location of the coordinate origin. The
series expansion has been computed up to degree 360

faces with respect to the coordinate system, as will be dem-
onstrated in the following section.

6 Method assessment

The severe numerical instabilities that were outlined through
the computations of the coefficients of the tetrahedron for var-
ious origins of the local coordinate system can be interpreted
as a numerical assessment of patent theoretical weaknesses
of the linear method. In this section, we show that the recur-
rent scheme initially proposed by Jamet and Thomas (2004)
and normalized previously is inherently unstable.

6.1 Volume integrals

Assuming that the line integrals In,m are properly estimated,
the volume integrals Hn,m are derived from the scalar auto-
regressive relation (38). The stability of this computation is
ensured if and only if the propagation factor αn =
Rm

n,n−1
d0(n+m)

(n+3)(uz .n0)
is smaller than 1. This factor verifies the

relation

αn =
√

(2n − 1)
(
n2 − m2

)
(2n + 1) (n + 3)2

d0

a

1

uz · no
<

d0

a

1

uz · no
(45)

where d0 is the distance between the origin of the frame
and the plane of the considered face of the polyhedron, uz ·no

the cosine of the angle between the normal to this face and
the vertical direction and a is the chosen reference distance.

For large degrees n, αn approaches its upper limit as

lim
n→+∞ αn = d0

a

1

uz · no

The computation of large degrees is thus only possible for
the faces of the considered polyhedron that verify

d0

a

1

uz · no
< 1.

For a given tetrahedron with a horizontal upper face such
as our test body, there always exists a rotation around the
origin of the frame for which uz · no becomes as small as
wished, that is for which αn > 1. In other words, the recur-
rent relationship linking the volume integrals does not allow
the computation of the spherical harmonic coefficient for any
given face geometry and orientation.

Moreover, the reference distance a is generally chosen as
small as possible, since a is also the smallest distance r to the
origin for which the series of spherical harmonic represent-
ing the potential (Eq. 1) converges. In practical applications,
a defines the smallest sphere enclosing all masses of the con-
sidered body. The ratio d0

a is thus very likely to be very close
to 1 for at least one face of the considered polyhedron. Con-
sequently the recurrent scheme will only apply when theses
faces are horizontal in the chosen reference frame.

For theses reasons, the proposed algorithm will only apply
to restricted cases of tetrahedra (the reference frame being
given). In particular, it can be applied to any tetrahedron
whose face opposite to the origin is horizontal.

6.2 Line integrals

The computation of the line integrals makes use of more
complex recurrent relationships. Let Vn,m be the 6 compo-
nent vector defined as

Vn,m =
⎡
⎣ In,m

Jn,m

Kn,m

⎤
⎦ (46)

where In,m , Jn,m and Kn,m are the 2 component vectors
corresponding to the line integrals defined by Eq. 35. The
recurrent relationships (39), (40) and (41) can then be writ-
ten in matrix form as follows

Vn,m = M0Vn,m + M1Vn−1,m M2Vn−2,m + Dn (47)

where M0, M1 and M2 are three 6 × 6 matrices defined as
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M0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0

tzoz
a(1−t2

z )
− m

n+2
(tx oy−tyox)

a(1−t2
z )

0 0 0 0

m
n+2

(tx oy−tyox)
a(1−t2

z )
tzoz

a(1−t2
z )

0 0 0 0

− 1
n+3

d2−o2
z

a2(1−t2
z )

0 n+4
n+3

tzoz
a(1−t2

z )
− m

n+3
(tx oy−tyox)

a(1−t2
z )

0 0

0 − 1
n+3

d2−o2
z

a2(1−t2
z )

m
n+3

(tx oy−tyox)
a(1−t2

z )
n+4
n+3

tzoz
a(1−t2

z )
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(48)

M1 = Rm
n,n−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2n−1
n−m oz 0 2n−1

n−m atz 0 0 0
0 2n−1

n−m oz 0 2n−1
n−m atz 0 0

− n+m
n+2

tzd2

a(1−t2
z )

0 n+m
n+2

oz
1−t2

z
0 0 0

0 − n+m
n+2

tzd2

a(1−t2
z )

0 n+m
n+2

oz
1−t2

z
0 0

0 0 − n+m
n+3

tzd2

a(1−t2
z )

0 n+m
n+3

oz
1−t2

z
0

0 0 0 − n+m
n+3

tzd2

a(1−t2
z )

0 n+m
n+3

oz
1−t2

z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(49)

M2 = −n+m+1

n−m
Rm

n,n−2

⎡
⎢⎢⎢⎢⎢⎢⎣

d2 0 0 0 a2 0
0 d2 0 0 0 a2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(50)

and where Dn,m is a 6 component vector of inputs at each
step of the recurrence.

The 6 component vectorial second order recurrent rela-
tionship of Eq. 47 can be expressed as a 12 component vec-
torial recurrent relationship of order 1 as follow[

Vn,m

Vn−1,m

]
=

[
(1 − M0)

−1 M1 (1 − M0)
−1 M2

1 0

]

×
[

Vn−1,m

Vn−2,m

]
+

[
Dn

0

]

≡ A

[
Vn−1,m

Vn−2,m

]
+

[
Dn

0

]
(51)

The stability of this recurrent scheme depends on the eigen-
values of the matrix A as defined by Eq. 51. Theses eigen-
values do not have a simple analytical expression, and we
cannot derive a general theory about the divergences of the
recurrent computations. Considering that the computation of
the volume integrals applies mainly to horizontal faces, and
that the method should apply to faces lying close to the sphere
of radius a, we focus on the situation when

tz = 0 (horizontal case)

d ≈ a (edge close to the tangent to the convergence sphere)

and investigate the behavior of the eigenvalues of matrix A
for large degree and order.

Setting the ratio n
m as a constant, one can show that matrix

A∞ ≡ limm→+∞ A depends on three parameters:

the ratio da ≡ d

a
∈ [0, 1]

the ratio k ≡ n

m
∈ [1,+∞[

a position factor f ≡
√

d2 − o2
z

a
∈ [0, 1]

The ratio da indicates whether the line carrying the consid-
ered edge of the body is close (small ratio) to the origin of
the frame or not (high ratio). The ratio k increases though the
recurrent steps of the computation (k = 1 at initialization).
The position factor f is linked with the position of the line
carrying the edge; oz is the z coordinate of the closest point
of this line to the origin of the frame. f is small when the
edge is close to the poles of the convergence sphere of radius
a and it increases as the edge comes closer to the equator.

Figure 7 plots the maximum eigenvalue of matrix A∞, for
da = 1, as a function of k and f . It shows that for small values
of k, that is for the first steps of the recurrence, the recurrence
is always divergent (with a maximum eigenvalue greater
than 1), whatever the position of the edge might be. Figure 7
also shows that the recurrence relationships tend to become
stable as the ratio k = n

m increases. This test computation of
the eigenvalues of the recurrence matrix illustrates the behav-
ior of the process for very large values of the computed order,
and for edges nearly tangential to the convergence sphere of
radius a.

For the test tetrahedron presented in the previous section,
we ran a computation of the spherical harmonic coefficients
with a random perturbation of the last significant digit of the
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Fig. 7 Maximum eigenvalue λ of the recurrence matrix A∞ as a

function of the ratio n
m (from 1 to 10) and the position factor

√
d2−o2

z
a

(from 0 to 1)

input values of Eqs. 40 (computation of Jn,m ) and 41 (compu-
tation of Kn,m). The comparison between the values issued
from this perturbated computation and the values obtained
without perturbation yields a numerical estimate of the sta-
bility of the line integral recurrence procedure (the computa-
tion of the volume integral for a horizontal face being stable).
Figure 8 presents an estimate of the relative accuracy of the
coefficients obtained this way (ratio of difference between
perturbated and not perturbated results and the result itself).
The two diagonals (dashed lines) correspond to the coeffi-
cients Cn,n and Sn,n (initialization of the recurrence), and the
recurrent computation is processed along the verticals of the

drawing. One can notice that the computation errors increase
at the beginning of the recurrence, for low values of the ratio
n
m , and then decrease as the degree n increases for any given
order m. This observation is in complete agreement with the
behavior of the eigenvalues of the matrix A∞ shown in Fig. 7.

7 Application

We conclude from the previous analysis that, while the vol-
ume recurrent computation can be made stable by choosing
a proper reference frame in which the face of the tetrahedron
opposite to the origin is horizontal, the line recurrent compu-
tations are essentially divergent. Nevertheless, considering
that (i) the proposed algorithm is linear and thus computa-
tionally much more efficient that other existing approaches,
and (ii) that the perturbation method presented in the previ-
ous section seems to allow the computation of a reasonable
estimate of the accuracy loss due to this instability, we pro-
pose in this section a computational strategy for deriving the
spherical harmonic coefficients of the potential of a constant
density polyhedron based on the present recurrent relation-
ships, and assess the results obtained for a test body.

7.1 Computational strategy

The approach we implemented proceeds as follows. The con-
sidered polyhedral body is triangulated and divided into tet-
rahedra having each one vertex at the origin of the reference
frame, and a face coinciding with one triangular face of the
body.

Fig. 8 Relative accuracy
(logarithmic gray scale) of the
estimates of the potential
harmonic coefficients of the test
tetrahedron, expressing the
comparison with values obtained
after perturbating the inputs of
the line integral recurrence
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The spherical harmonic coefficients of the potential of
each tetrahedron are computed up to a given degree and order
N in a local frame rotated around the origin of the reference
frame in such a way that the considered face of the body will
be horizontal. This computation is performed twice, once
without perturbation, and once with a perturbation of the
last significant digit of the input values of the line integrals
recurrent relationships. All the coefficients for which the two
estimates differ by more that 10−2 of the estimated values
are set to zero.

The harmonic coefficients of the potential of the whole
body in the initial reference frame are then obtained by cumu-
lating the individual face contributions after rotating the
spherical harmonic decomposition of each face from its own
frame to the initial reference frame. In order to avoid the com-
putation of a spherical harmonic rotation matrix for each face
of the body, this rotation is achieved through the computation,
for each degree n ≤ N , of the total potential of the whole
body at 3 (2n + 1) points homogeneously distributed on a
sphere of radius a. This degree n potential is then inverted into
a spherical harmonic decomposition at degree n (on the basis
of the 2n + 1 spherical harmonic functions of order m ≤ n).

7.2 Test body

The results presented here were computed for a triangu-
lated shape model of the asteroid 433 EROS (approximate
size 13 × 13 × 33 km), which was mapped by the NEAR
Shoemaker probe from April to October 2000. Several mod-
els of this body at various resolutions have been made avail-
able through the internet by the Planetary Science Institute
(USA). We used the model ‘eros001708’ consisting of 1,708
faces, presented in Fig. 9 and available at http://www.psi.
edu/pds/archive/shape.html.

Fig. 9 433 EROS: shape model consisting of 1,708 faces (axes labeled
in km)

7.3 Results

The spherical harmonic coefficients of the used shape model
of 433 EROS were computed with a reference distance a set
to the radius of the smallest sphere enclosing all the verti-
ces of the body (a ≈ 17.5 km), and up to degree and order
100. In order to assess their accuracy, we ran two kinds of
experiments.

First, as done previously for the simple tetrahedron, we
studied the convergence of the spherical harmonic series
through comparison with analytical values of the potential.
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Fig. 10 Evolution with degree of the relative differences (in
logarithmic scale) between the spherical harmonics expansion at degree
n and the analytical value of the total potential, estimated as the root
mean square of a set of 10,000 uniformly distributed random points at
distance a of the origin of the frame (recurrent computation of the line
integrals)

0 10 20 30 40 50 60 70 80 90 100
−5

−4

−3

−2

−1

0 

1 

degree n 

Lo
g(

di
ffe

re
nc

e)

Fig. 11 Evolution with degree of the relative differences (in logarith-
mic scale) between the spherical harmonics expansion at degree n and
the analytical value of the total potential, estimated as the root mean
square of a set of 10,000 uniformly distributed random points at distance
a of the origin of the frame (numerical integration of the line integrals)
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Fig. 12 Correlation coefficient as a function of the degree between the
potential at degree n derived from the computed coefficients (recurrent
computation of the line integrals) and the potential at degree n derived
from the coefficients computed through a numerical integration of the
line integrals

The total potential was computed from its analytical formula
on a set of 10,000 points randomly distributed on a sphere of
radius a. Figure 10 presents the evolution of the root mean
square relative difference for this set of points, between the
total potential and its series expansion at degree n derived
from the coefficients obtained with our algorithm—the rel-
ative difference being defined as the ratio of the absolute
difference to the variance of the total potential on this set
of points. The relative differences are plotted in logarithmic
scale.

The series expansion converges down to a relative accu-
racy (in term of representation of the total potential) of 10−4

at degree 68. Afterwards, the accuracy gets slightly worse.
This increase in error for the higher degrees shows that the
error control strategy we chose for this experiment can still
be improved. Though, the results do not show any explicit

divergence (at least up to degree 100), which tends to confirm
that the chosen method for estimated ill computed coefficient
is adequate.

This kind of convergence test only gives a broad evalua-
tion of the whole series of the computed potential harmonic
coefficients. In order to assess more precisely the individual
coefficients, and assuming that the computation errors are
mainly due to the line integral recurrences, we computed the
spherical harmonic coefficients of the potential of the body
through the same process, applying however for the com-
putation of the line integrals a numerical integration proce-
dure. Figure 11 shows the evolution of the root mean square
of the relative difference between the total potential and its
series expansion at degree n, evaluated for the same 10,000
test points, similarly to Fig. 10, but expressing coefficients
obtained with a numerical integration of the involved line
integrals.

With the numerical integration, the series expansion con-
verges steadily toward the analytical values as degree n
increases. This offers an additional confirmation of the pre-
vious interpretations: the failure of the computation at high
degrees is linked indeed to the recurrent scheme proposed
for the computation of the line integrals.

Figure 12 presents finally a synthetic comparison between
the series expansion obtained with the recurrent computa-
tion of the line integrals and the series expansion obtained
with a numerical integration of the line integrals. Plotted in
this figure, for each degree n, is the correlation coefficient
between the potential at degree n derived from the coeffi-
cients obtained with our algorithm (recurrent computation
of the line integrals) and the potential at degree n derived
from the coefficients obtained though a numerical integra-
tion of the line integrals.

The recurrent computation appears to apply up to degree
62, with a correlation with the numerical integration method
greater than 0.99. Figure 13 presents a more detailed com-
parison between the recurrent scheme and the results of the

Fig. 13 Decimal logarithm
of the relative differences
between the coefficients
computed with the complete
recurrent scheme, and the
coefficients computed through a
numerical integration of the
involved line integrals
(vertically degree n;
horizontally order m, positive
orders indicate the coefficients
Cn,m and negative orders the
coefficients Sn,−m )
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numerical integration, by showing the relative difference map
(in logarithmic scale) between theses two computations.
There is clearly a limit around degree 60, after which the
two computations differ considerably.

8 Concluding remarks

The linear recursive algorithm for computing potential har-
monic coefficients of constant density polyhedral sources has
been revisited and expanded to the normalized case. It has
been implemented and tested on a simple body. The algo-
rithm is very efficient and works nicely for high degree and
order coefficients, in contrast to the other existing recur-
rent algorithm known to us, which proved to be inapplicable
numerically for increasing degree and order. However, the
linear algorithm is connected to certain numerical instabili-
ties emerging from the existing theoretical limitations of the
linear recurrent method. Although the approach works per-
fectly for horizontal tetrahedral faces, it becomes unstable for
every other orientation of the faces. We showed that a per-
manent evaluation of the appropriate rotation matrix which
can link each case to the horizontal configuration can solve
this problem and thus facilitate the method to be used for
other applications, such as DEM-related potential quantities,
airborne or satellite applications.
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