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Abstract In collocation applications, the prior covariance
matrices or weight matrices between the signals and the
observations should be consistent to their uncertainties; other-
wise, the solution of collocation will be distorted. To balance
the covariance matrices of the signals and the observations,
a new adaptive collocation estimator is thus derived in which
the corresponding adaptive factor is constructed by the ratio
of the variance components of the signals and the obser-
vations. A maximum likelihood estimator of the variance
components is thus derived based on the collocation func-
tional model and stochastic model. A simplified Helmert
type estimator of the variance components for the colloca-
tion is also introduced and compared to the derived maximum
likelihood type estimator. Reasonable and consistent cova-
riance matrices of the signals and the observations are arri-
ved through the adjustment of the adaptive factor. The new
adaptive collocation with related adaptive factor constructed
by the derived variance components is applied in a trans-
formation between the geodetic height derived by GPS and
orthometric height. It is shown that the adaptive collocation
is not only simple in calculation but also effective in balan-
cing the contribution of observations and the signals in the
collocation model.
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1 Introduction

Collocation is usually applied in approximation in gravity
field (Tscherning 1978). It can also be applied in coordi-
nate transformation (You and Hwang 2006) and height datum
transformation (Featherstone and Sproule 2006). To control
the outlier influences, robust collocation is studied (Schaffrin
1986; Yang 1992). In the transformation of different height
systems, the collocation method can also be applied to fit the
errors that remained after the functional transformation of
the two height systems or in a synthetic transformation pro-
cess combining the functional transformation (trend-fitting)
and stochastic fitting. The covariance function of the signals
(stochastic part of the transformation) is, however, a key pro-
blem in the synthetic height transformation procedure (Yang
1992). Once the covariance function is chosen, the coeffi-
cients of the function are then determined by the observa-
tions and/or the known values of the parameters. The prior
determined covariance elements are usually not changed in
the collocation process.

Similar approach is kriging, which has also been widely
researched and applied (Journel and Huijbregt 1989; Robe-
son 1997; Karniefi 1990; Oliver and Webster 1990; Felus
et al. 2005). In theory, the kriging and collocation are equiva-
lent from the expressions. The kriging evaluates the parame-
ters and signals simultaneously; the dimension of the normal
equation is larger than that of collocation, because the collo-
cation estimates the trend parameters and signals separately.
Furthermore, the collocation is only suitably applied in the
smooth and stable stochastic fields to estimate the parameters
and signals (Bian and Menz 2000).

123
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The collocation results are sometimes distorted. This is
due predominantly to the well-known distortions of the prior
weight matrix of the measurements and the fitted covariance
matrix of the signals. In theory, the weight matrices bet-
ween the measurements and signals should be consistent to
their actual contributions to the unknown parameters and
signal estimates. In other words, the covariance matrices
of the measurements and signals should reflect their actual
uncertainties. Otherwise, the collocation results for the height
transformation will be distorted.

Incomplete knowledge of variance matrix of the obser-
vations occurs in many geodetic application (Teunissen and
Amiri-Simkooei 2008). In collocation, the incomplete know-
ledge of variance matrices of the measurements and signals
will result in systematic errors similar to the influences of
the functional model errors in the error effect point of view.
Refitting of the residuals of the collocation is a way to reduce
the systematic error influences (Yang and Liu 2002). In the
view point of stochastic model error influences, the errors of
the covariance elements of the signals can partly be adjusted
through the variance factor. Thus, the variance component
estimation can be employed in adjusting the ratio of the
prior weights of the signals and the measurements (Koch and
Kusche 2002; Shen and Liu 2002; Xu et al. 2006; Yang and
Xu 2003). Following Koch and Kusche’s idea to use the ratio
of the variance components to overcome the ill-conditioned
problem, we employ the ratio of the variance components of
measurements and signals to adjust their weight matrices.

In geodetic applications, a lot of variance component esti-
mation methods have been proposed and researched, such
as minimum norm quadratic unbiased estimator (MINQUE)
(Rao 1971), best invariant quadratic unbiased estimates
(BIQUE) (Caspary 1987; Sjöeberg 1984), the maximum
likelihood estimates (Koch 1986) or the restricted maximum
likelihood estimation (Searle et al. 1992) and least
squares (LS) variance component estimation (Teunissen and
Amiri-Simkooei 2007). An often used variance component
estimation of Helmert type is analyzed with respect to trans-
lation invariance and unbiasedness, which is also genera-
lized into variance and covariance component estimation
(Grafarend 1980). The best invariance component estima-
tor is studied and its application to the generalized multiva-
riate adjustment of heterogeneous deformation observations
is proposed (Schaffrin 1981). Using the orthogonal comple-
ment likelihood function and rank factorization (Schaffrin
1983), an iterative procedure for the maximum likelihood
estimates of the variance and covariance components is deri-
ved (Koch 1986). It is shown that BIQUE, MINQUE and LS
variance component estimates are identical with Helmert’s
estimate under the Gaussian distribution (Amiri-Simkooei
2007; Ou 1989; Yu 1992). Bayesian inference for variance
components is researched by Koch (1987). Furthermore, the
variance component estimation is proposed to be applied in

the determination of gravity field by different types of obser-
vations and solving the regularization problems (Koch and
Kusche 2002; Xu et al. 2006), as well as in adaptive naviga-
tion (Yang and Xu 2003; Yang and Gao 2005).

This paper generalizes the maximum likelihood estima-
tion of the variance component to the collocation model and
employs the variance component ratio to set up an adaptive
factor to balance the contribution of the measurements and
prior signal information. Thus, a new adaptive collocation
procedure is derived by introducing the adaptive factor.

2 Least square collocation estimators

Assume that we have an n ×1 vector L of measurements, the
corresponding error vector e with the expectation E(e) = 0
and covariance matrix �e = σ 2

e P−1
e , an m × 1 vector X of

trend parameters, and a u ×1 signal vector S with prior cova-
riance matrix �S = σ 2

s P−1
S , which has functional relation

with measurements, where σ 2
e and σ 2

s are variance compo-
nents, Pe and PS are the weight matrices of e and S, respec-
tively. The observational equation is

L = AX + BS + e (1)

where A denotes an n × m design matrix with rank m and B
is an n × u coefficient matrix.

The corresponding error equation is

V = AX̂ + BŜ − L (2)

where X̂ is the estimated vector of the trend parameters and
Ŝ is the estimated signal vector.

If the signal vector S′, which has no relation with the
measurements, is correlated with the measured signal vector
S, that is, �SS′ = �T

S′S �= 0, and if the unmeasured signal
vector needs to be estimated, then Eq. 2 can be changed into

V = AX̂ + [B 0]
[

Ŝ
Ŝ′

]
− L

where 0 is a zero matrix. The covariance matrix between
the measured signals S and unmeasured signals S′ must be
evaluated at first, which is the task of covariance function
fitting.

Assume that the signals and the measurement noises are
uncorrelated, by using the least squares collocation principle
(Koch 1977; Krarup 1978; Moritz 1980)

V T PeV + ŜT PS Ŝ = min (3)

we get

X̂ = (AT PL A)−1 AT PL L (4)

and

Ŝ = �S PL(L − AX̂) (5)
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where

PL = (B�S BT + �e)
−1 (6)

The signal estimates at unmeasured stations are

Ŝ′ = �S′S PL(L − AX̂) (7)

3 Adaptive collocation estimators

It is different from the standard collocation that the object
function of the adaptive collocation is similar to the adaptive
Kalman filter (Yang et al. 2001; Yang and Gao 2006)

� = V T PeV + α ŜT PS Ŝ = min (8)

where α is an adaptive factor, which balances the contribution
of the measurements and signals to the parameter estimates.
By derivation we have[

AT Pe A AT Pe B

BT Pe A BT Pe B + αPS

] [
X̂

Ŝ

]
=

[
AT Pe L

BT Pe L

]
(9)

The stepwise estimators are

X̂ = (AT P̄L A)−1 AT P̄L L (10)

Ŝ = �̄S BT P̄L(L − AX̂) (11)

The signal estimator at the unmeasured stations is

Ŝ′ = �̄S′S�̄
−1
S Ŝ (12)

where P̄L , �̄S and �̄S′S denote the evaluated matrices by
using the adaptive factor, they are respectively expressed as

P̄L = (B�S BT/α + �e)
−1 = α(B�S BT + α�e)

−1 (13)

�̄S = 1

α

∑
S

(14)

�̄S′S = 1

α

∑
S′ S

(15)

Let

P̃L = (B�S BT + α�e)
−1 (16)

then we have

P̄L = α P̃L (17)

Substituting Eqs. (14)–(16) into Eqs. (10)–(12), we have

X̂ = (AT P̃L A)−1 AT P̃L L (18)

Ŝ = �S BT P̃L(L − AX̂) (19)

Ŝ
′ = 1

α
�S′S(

1

α
�S)

−1 Ŝ = �S S�
−1
S Ŝ (20)

Equations 7 and 20 have the same form, but the estimated
values are not equivalent, because the estimated signals Ŝ of

the measured stations is changed by the adaptive factor. If
the adaptive factor α = 1, the solutions provided by the two
formulae will be equal.

If the measurement outliers are taken into account, the
object function may further be expressed as

� =
n∑

i=1

Piρ(Vi ) + α ŜT PS Ŝ = min (21)

where ρ(Vi ) is convex, continuous and not decreased func-
tion of the residual Vi , Pi is the weight element of the weight
matrixPe. Equation 21 is called an adaptively robust collo-
cation object function, in which the robust object function
is employed for dealing with the measurement outliers and
adaptive factor α is introduced for balancing the prior weight
matrices of the measurements and the signals.

Similar to the robust collocation (Yang 1992) and adaptive
Kalman filter (Yang and Gao 2006), after taking the deri-
vatives of the object function with respect to the unknown
parameters, we have[

AT P̄e A AT P̄e B

BT P̄e A BT P̄e B + αPS

] [
X̂

Ŝ

]
=

[
AT P̄e L

BT P̄e L

]
(22)

where P̄e denotes the equivalent weight matrix of the mea-
surement vector which is determined by a weight function
(Yang 1991, 1992).

4 Adaptive factor determined by variance components

It has been explained in Sect. 1 that the weight matrices
of the signals and measurements should adapt to their pro-
per uncertainties. In actual computation, however, the cova-
riance matrix of the signals evaluated by the chosen cova-
riance function and the known data points and the priori
covariance matrix of the measurements may be inaccurate,
which result in the weight matrices of the measurements and
the signals unsuitable. Thus, we use an adaptive factor α to
adjust the weight matrices and balance the contribution of
the measurements and signals to the parameter estimates.
Different statistical principles have different variance com-
ponent estimators. In this section, two types of variance
component estimators are derived based on the maximum
likelihood estimation and Helmert estimation, respectively.
An adaptive factor is presented.

4.1 Maximum likelihood estimator of variance components

Assume that the measurement vector L follows normal dis-
tribution

L ∼ N (AX, �L) (23)
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where �L includes the variance components σ 2
s and σ 2

e of
the stochastic signals and observational errors, that is

�L = σ 2
s B Qs BT + σ 2

e Qe (24)

where Qs and Qe are the cofactor matrices of the signals
and measurements, respectively. Then the likelihood func-
tion of the unknown parameter vector X and the variance
components σ 2

s and σ 2
e is (Koch 1986; Ou 1989)

l(X, σ 2
s , σ 2

e |L) = (2π)−
n
2 |�L |− 1

2

× exp{−1

2
(L − AX)T�−1

L (L − AX)} (25)

Taking the logarithm of the Eq. 25 and neglecting the constant
terms, we have

ln l(x, σ 2
s , σ 2

e |L) = − ln |�L | − (L − AX)T�−1
L (L − AX)

= − ln |�L | − tr[�−1
L

×(L − AX)(L − AX)T] (26)

Taking the derivatives of Eq. 26 with respect to σ 2
s and σ 2

e ,
respectively, we obtain

∂ ln l

∂σ 2
s

= −tr(B QS BT�−1
L ) + tr[�−1

L B QS BT�−1
L

×(L − AX)(L − AX)T] (27)
∂ ln l

∂σ 2
e

= −tr(Qe�
−1
L ) + tr[�−1

L Qe�
−1
L

×(L − AX)(L − AX)T] (28)

Let the derivatives be equal to zeros and considering
�−1

L = PL , we get

tr[PL B QS BT PL(L − AX)(L − AX)T]
= tr(B QS BT PL) (29)

tr[PL Qe PL(L − AX)(L − AX)T] = tr(Qe PL) (30)

The right-hand term of Eq. 29 can be expressed as

tr(B QS BT PL) = tr(B QS BT PL�L PL)

= tr[B QS BT PL(B QS BTσ 2
s

+Qeσ
2
e )PL ]

= tr(B QS BT PL B QS BT PL)σ 2
s

+ tr(B QS BT PL Qe PL)σ 2
e

(31)

The right-hand term of the Eq. 30 can be expressed as

tr(Qe PL) = tr(Qe PL B QS BT PL)σ 2
s

+ tr(Qe PL Qe PL)σ 2
e (32)

Combining the Eqs. 29–32 and expressing L − AX as the
residual vector V, we arrive at(

tr(B QS BT PL B QS BT PL) tr(B QS BT PL Qe PL)

tr(B QS BT PL Qe PL) tr(Qe PL Qe PL)

)

×
(

σ̂ 2
s

σ̂ 2
e

)
=

(
V T PL B QS BT PL V

V T PL Qe PL V

)
(33)

If B = I , then we get the estimator of the variance com-
ponents as

(
σ̂ 2

s
σ̂ 2

e

)
=

(
tr(QS PL QS PL) tr(QS PL Qe PL)

tr(QS PL Qe PL) tr(Qe PL Qe PL)

)−1

×
(

V T PL QS PL V
V T PL Qe PL V

)
(34)

It is interesting that the new estimators of variance compo-
nents make the calculation procedure simpler than the Hel-
mert type estimates, because they do not have the need to
calculate the normal matrix and its inverse.

After solving σ̂ 2
s and σ̂ 2

e , the adaptive factor α can be set
up like (Yang et al. 2001; Yang and Xu 2003; Yang and Gao
2005)

α = σ̂ 2
e /σ̂ 2

s (35)

in which σ̂ 2
s �= 0 must be satisfied. If the variance component

of the signals is large, that is, their weight matrix should
be reduced. The adaptive factor expressed by Eq. 35 just
adapts the weight matrix of the signals to its proper one and
also adapts the signals to their proper contributions to the
parameter estimates.

Having the adaptive factor α, we re-estimate the trend
parameter vector X̂ and the signal vectors Ŝ and Ŝ

′
by using

Eqs. 16 and 18–20.

4.2 Simplified estimator of variance components

If the signals are viewed as pseudo observations, then the
variance components with respect to the two kinds of obser-
vations can be obtained (Koch and Kusche 2002). We start
from the error equations

{
V = AX̂ + BŜ − L with Pe = �−1

e

VS = Ŝ − 0 with PS = �−1
S

(36)

where “0” denotes the prior expectation vector of the signals.
Then the corresponding Helmert type of variance component
estimator is like (Koch and Kusche 2002)

σ̂ 2
e = V T PeV

re
(37)

σ̂ 2
s = ŜT Ps Ŝ

rs
(38)

where re and rs are the partial redundancies, i.e., the contri-
butions of the observations L and the prior signal informa-
tion S to the overall redundancy r = n + u − m of the
model of Eq. 1. The partial redundancies are computed from
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(Koch and Kusche 2002)

re = n − tr

(
1

σ 2
e

N−1 Ne

)
(39)

rs = u − tr

(
1

σ 2
s

N−1 Ns

)
(40)

with

N =
⎡
⎣ 1

σ 2
e

AT Pe A 1
σ 2

e
AT Pe B

1
σ 2

e
BT Pe A 1

σ 2
e

BT Pe B + 1
σ 2

s
PS

⎤
⎦ ,

Ne =
⎡
⎣ 1

σ 2
e

AT Pe A 1
σ 2

e
AT Pe B

1
σ 2

e
BT Pe A 1

σ 2
e

BT Pe B

⎤
⎦ , Ns =

[
0 0

0 1
σ 2

e
PS

]

After solving the estimates of variance components σ̂ 2
s and

σ̂ 2
e as well as the adaptive factor α, we can re-estimate the

trend parameter vector X̂ and the signal vectors Ŝ and Ŝ
′

in
the same way as listed in Sect. 4.1.

The formulas above may be derived by the maximum like-
lihood method, by the best invariant quadratic unbiased esti-
mation or Helmert’s method (see Koch 2000, p. 146; Koch
and Kusche 2002).

5 An actual computation and analysis

Three hundred and sixty two GPS/leveling stations in the
area of Southern China with two different heights are cho-
sen for the height transformation (see Fig. 1), in which the
geodetic heights are referenced to the geocentric reference
frame ITRF97 and the normal heights are referenced to the
Chinese height datum 1985 defined by the mean sea surface
of Huanghai Sea determined by tide gauge observations at
Qingdao. To check the accuracy of the applied transforma-
tion methods, 332 stations are employed for computing the
transformation parameters and the signals, and the rest 30
stations are served as checking stations, that is, the geodetic
heights of the 30 stations are transformed into the orthome-
tric heights, then compared with the observed orthometric
ones and the discrepancies as well as the RMS are obtained.

The polynomial model is chosen as the functional model
to express the trend of the height differences. Considering
the stochastic part, we employ the following error model

Vi =
K∑

m=1

m∑
n=0

α̂mndBm−n
i dLn

i + Ŝi − (hi − Hi ) (41)

where Vi is the residual of i th pseudo-observation (hi − Hi ),
which is also defined in Eq. 2; α̂mn denotes the estimated
unknown coefficients, which construct the unknown para-
meter vector in Eq. 2; dBi and dLi are the centered lati-
tude and longitude coordinates, which construct the design
matrix in Eq. 2; hi and Hi denote the ellipsoidal height and

Fig. 1 Distribution of common stations with the heights of two sys-
tems (The blue triangles are the reference data stations, the red stars
denote the checking stations, which do not take part in the collocation)

orthometric height of the i th GPS/leveling station; and K
denotes the order of the polynomial model. The Gaussian
covariance function of the signals is chosen (Moritz 1980;
You and Hwang 2006)

C(d) = C0e−k2d2
(42)

where C0 and k are unknown parameters to be estimated and
C(d) denotes the covariance between the i th point and the
j th point with distance d. A method proposed by Mikhail and
Ackermann (1976) to fit the empirical covariance function is
employed. Firstly, the data stations (332 reference stations)
are divided into m groups, each of which with nearly equal
distance di (i = 1, . . ., m). Secondly, the initial covariance is
obtained by the mean of all possible products li l j with the
distance di

C(di ) = 1

ni

ni∑
i, j

li l j (43)

where ni denotes the number of pseudo-observations in the
i th group; C(di ) is regarded as the covariance at the distance
di , and the pseudo-observations are expressed as

li = (hi − Hi ) −
K=2∑
m=1

m∑
n=0

α̂mndBm−n
i dLn

i (44)

Thirdly, we get the unknown parameter estimates in the cho-
sen Gaussian function, C0 = 0.0123, k = 0.0162, based on
the m covariance elements by using least squares estimation.
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Table 1 Root mean square residuals of heights at data stations (m)

σ 2
0 Scheme Minimum Maximum RMS

σ 2
0 = 1 XLS −0.385 0.304 0.105

XC −0.375 0.307 0.100

XMAC −0.329 0.296 0.085

XHAC −0.326 0.295 0.085

σ 2
0 = 0.1 XC −0.339 0.296 0.088

XMAC −0.329 0.296 0.085

XHAC −0.326 0.295 0.085

The root mean square residuals calculated by the differences of the fitted
height values by collocation methods and the measurements

The RMS of the transformed orthometric heights from the
checking stations is computed by

RMS =
[

1
n

n∑
i=1

(�Hi )
2

]1/2
(45)

where n = 30 is the number of checking stations and �Hi is
the difference between the computed and known orthometric
height at the i th checking station. The smaller the RMS is,
the better the transformation scheme is.

In the computation, following four schemes are perfor-
med:

Scheme 1: Least squares estimation based on a polynomial
model, expressed as XLS

Scheme 2: Collocation, expressed as XC

Scheme 3: Adaptive collocation based on maximum likeli-
hood estimates of variance components, expres-
sed as XMAC

Scheme 4: Adaptive collocation based on Helmert type
estimates of variance components, expressed
as XHAC.

To show how the adaptive collocation proposed in this
paper adapts to the weight ratios of the measurements and
signals, the initial scale variance is supposed as 1.0 and
0.1, respectively. Table 1 shows the minimum, maximum

Table 2 RMS of the heights at checking stations (m)

σ 2
0 Scheme Minimum Maximum RMS

σ 2
0 = 1 XLS −0.209 0.197 0.102

XC −0.197 0.171 0.096

XMAC −0.194 0.111 0.070

XHAC −0.192 0.105 0.069

σ 2
0 = 0.1 XC −0.195 0.128 0.076

XMAC −0.194 0.111 0.070

XHAC −0.192 0.105 0.069

The root mean square errors calculated from the differences of the fitted
height values by collocation methods and the known values which do
not take part in the collocation, by using Eq. (45)

Table 3 The error region of the fitted heights at check stations

σ 2
0 Scheme <5 cm [5 cm,10 cm] >10 cm

σ 2
0 = 1 XLS 9 (30%) 12 (40%) 9 (30%)

XC 10 (33%) 12 (40%) 8 (27%)

XMAC 17 (57%) 9 (30%) 4 (13%)

XHAC 17 (57%) 10 (33%) 3 (10%)

σ 2
0 = 0.1 XC 16 (53%) 8 (27%) 6 (20%)

XMAC 17 (57%) 9 (30%) 4 (13%)

XHAC 17 (57%) 10 (33%) 3 (10%)

In table 3, the percentages reflect the absolute error region of the fitted
height values by collocation methods

values and root mean squares of residuals of height measu-
rements at reference stations for different schemes, respecti-
vely. Figure 2 presents distribution of residuals of the heights
at the reference stations. The minimum and maximum values
and RMS of the transformed heights at the checking stations
are shown in Table 2, and the intervals of the corresponding
discrepancies between the transformed orthometric heights
and the original ones are shown in Table 3. If the scale fac-
tor σ 2

0 = 1 is chosen, then the adaptive factor α = 50.61
after three iterations, by using Scheme 3; while α = 50.60
after four iterations, by using Scheme 4. If σ 2

0 = 0.1 is cho-
sen, then the adaptive factor α = 5.04 after three iterations,

Fig. 2 Residual distribution of
the measured stations (σ 2

0 equals
1.0 and 0.1, respectively)
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Fig. 3 Iterative adaptive
factors (σ 2

0 equals 1.0 and 0.1,
respectively)
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by using Scheme 3; while α = 5.03 after three iterations,
by using Scheme 4. The adaptive factor α corresponding
to different schemes are shown in Fig. 3. It shows that the
priori variance scale will not influence the adaptive collo-
cation results, but it will affect the nonadaptive collocation
results.

From the computation results, the following facts have
been drawn:

1. The initial value of scale factor σ 2
0 has significant

effects on the transformed heights for both of the colloca-
tion method and least squares polynomial fitting method,
which has been reflected by the residuals of the measured
stations and the discrepancies of the transformed heights of
the checking stations. It means that the inconsistent variance
components between the measurements and the signals will
result in systematic errors of the transformed heights.

2. In theory and practice, the weight matrices of the
measurements and signals should reflect their uncertainties
when applying collocation. In actual computation, however,
it may have errors in the fitted variance–covariance matrix
of the signals, which may lead to a biased variance scale
of the signals, thus, leading to inconsistent weight matrices
for the measurements and the signals. Thus, it is reasonable
to employ the variance components to construct an adaptive
factor, to adapt the ratio of the weight matrices of the signals
and measurements to their proper value, and in turn to adjust
their contributions to the parameter estimates.

3. For the two kinds of adaptive collocation, the different
initial values of σ 2

0 do not influence transformed heights,
since the adaptive factor plays a role in balancing the contri-
butions of the stochastic models between the measurements
and signals according to their actual uncertainties, which
keeps the weight matrices between the measurements and
signals in a reasonable ratio, and keeps the collocation results
stable.

4. The RMS of the checking stations shows that the adap-
tive collocation based on the ratio of the estimated variance
components is superior to the standard collocation and the

polynomial fitting in transforming the geodetic heights to the
orthometric heights.

6 Conclusions

The determination of the covariance function is a key pro-
blem in collocation. If the prior weight matrices of the signals
and the measurements inversed from the related covariance
matrices are consistent, in other words, the two weight
matrices reflect their uncertainties of the measurements and
signals, the collocation results are stable and reliable. Other-
wise, the standard collocation results will be distorted.
Usually, it is difficult to make the prior weight matrices of
the signals and the measurements consistent in practice; thus,
the standard collocation may be influenced in some cases.

The adaptive collocation by introducing an adaptive fac-
tor α, which makes the weight matrices of the signals and
measurements consistent, balances the contributions of the
measurements and signals to the estimated parameters.

It should be pointed that the adaptive factor α determined
by variance component estimates may be influenced by the
preliminary values of the prior covariance matrices. Thus,
the preliminary covariance matrices should be as precise as
possible.
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