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Abstract Collocation is widely used in physical geodesy.
Its application requires to solve systems with a dimension
equal to the number of observations, causing numerical prob-
lems when many observations are available. To overcome this
drawback, tailored step-wise techniques are usually applied.
An example of these step-wise techniques is the space-wise
approach to the GOCE mission data processing. The original
idea of this approach was to implement a two-step proce-
dure, which consists of first predicting gridded values at
satellite altitude by collocation and then deriving the geo-
potential spherical harmonic coefficients by numerical inte-
gration. The idea was generalized to a multi-step iterative
procedure by introducing a time-wise Wiener filter to reduce
the highly correlated observation noise. Recent studies have
shown how to optimize the original two-step procedure, while
the theoretical optimization of the full multi-step procedure is
investigated in this work. An iterative operator is derived so
that the final estimated spherical harmonic coefficients are
optimal with respect to the Wiener–Kolmogorov principle,
as if they were estimated by a direct collocation. The logical
scheme used to derive this optimal operator can be applied
not only in the case of the space-wise approach but, in gen-
eral, for any case of step-wise collocation. Several numerical
tests based on simulated realistic GOCE data are performed.
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The results show that adding a pre-processing time-wise filter
to the two-step procedure of data gridding and spherical har-
monic analysis is useful, in the sense that the accuracy of
the estimated geo-potential coefficients is improved. This
happens because, in its practical implementation, the grid-
ding is made by collocation over local patches of data, while
the observation noise has a time-correlation so long that it
cannot be treated inside the patch size. Therefore, the multi-
step operator, which is in theory equivalent to the two-step
operator and to the direct collocation, is in practice superior
thanks to the time-wise filter that reduces the noise correla-
tion before the gridding. The criteria for the choice of this
filter are investigated numerically.
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1 Introduction

GOCE (Gravity field and steady-state Ocean Circulation
Explorer) is a satellite mission designed by ESA (European
Space Agency) that will be launched in 2008 (ESA 1999;
Drinkwater et al. 2007). The main information delivered by
GOCE will be measurements of the second order derivatives
of the gravitational potential (gravity gradients), obtained
from the on-board gradiometer, and tracking data of the satel-
lite orbit from the GPS receiver. The goal of this mission is
the determination of a global model of the Earth gravitational
field with high accuracy and resolution (2 cm error in terms
of geoid undulation at 100 km resolution).

A consortium that comprises European universities and
research centres has been formed with the task to organize
the data analysis (Rummel et al. 2004). This analysis includes
effective pre-processing (Bouman et al. 2007), high-accuracy
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14 M. Reguzzoni, N. Tselfes

satellite positions and velocities estimation (Visser et al.
2007), gravitational field determination in terms of spherical
harmonic expansion, and delivery of other output data for
scientific applications (Gruber et al. 2007). Three methods
are applied for the estimation of the global model, namely
the direct approach (Bruinsma et al. 2004), the time-wise
approach (Pail et al. 2005) and the space-wise approach
(Migliaccio et al. 2004a). Other methods have been proposed
outside this consortium, e.g. see Klees et al. (2003).

In the space-wise approach, first the potential values are
estimated by the energy conservation method using the
derived satellite positions and velocities and the measured
non-gravitational accelerations (Jekeli 1999; Visser et al.
2003). Then, these potential values and the measured gravity
gradients are used for the computation of spherical grids of
potential and second order radial derivatives at satellite alti-
tude. The gridding is based on local patches of data, because
global gridding would be computationally impossible due
to the several millions of observations. From these gridded
data, the coefficients of the global model are estimated by
spherical harmonic analysis based on numerical integration
(Colombo 1981). Before the gridding, the observations are
filtered by a Wiener filter (Papoulis 1984) along the orbit
to reduce the heavily coloured noise of the gravity gradi-
ents. The procedure is iterated to achieve an optimal com-
bination of time-wise filtering and space-wise collocation
and also to take into account the attitude variations of the
gradiometer.

Recently, the sufficiency of two-step collocation proce-
dures with respect to the direct solution has been studied in
general (Reguzzoni et al. 2006). The specific case of the two-
step procedure consisting of gridding and numerical integra-
tion for spherical harmonic coefficients estimation has been
investigated in Migliaccio et al. (2007b), where it is also dis-
cussed how to choose the patch size of the data gridding
and which intermediate functionals to predict. The impact of
the Wiener filter to the final space-wise approach solution is
studied here.

In Sect. 2, the derivation of the Wiener filter is illustrated.
It is found that the covariances computed in a time-wise sense
do not represent properly the stochastic structure of the sig-
nal and consequently the computed filter is not optimal in the
sense of minimizing the estimation error variance (Wiener–
Kolmogorov principle). This must be taken into account in
the subsequent steps. Three questions are treated: 1) how the
optimal solution involving the Wiener filter can be obtained,
2) if the use of the filter is really necessary and, if this is
the case, 3) how this filter has to be chosen when the tar-
get is to achieve the best accuracy of the estimated spherical
harmonic coefficients. The first question is answered the-
oretically in Sect. 3, while the second and third questions
are answered by numerical experiments on simulated GOCE
data in Sect. 4.

Table 1 Data types and their
codes Data type Index i, j, k

T 0

Tξξ 1

Tξη 2

Tξr 3

Tηη 4

Tηr 5

Trr 6

2 The use of Wiener filter to GOCE data

The observations employed in the space-wise approach are
the gravitational potential, denoted as T , and six gravity gra-
dients denoted as Tξξ , Tξη, Tξr , Tηη, Tηr and Trr . These sym-
bols represent the second order derivatives of the potential
along the axes of the Local Orbital Reference Frame (LORF)
with ξ pointing almost along-track, η cross-track and r radial.
Note that, in a so-defined frame, the axis ξ would be exactly
along-track only if the orbit were circular.

The observations are considered as functions of time t and
are denoted as bi (t). The observations consist of the signal
yi (t) and the noise νi (t):

bi (t) = yi (t) + νi (t). (1)

The index i discriminates among the different data types, i.e.
the potential is labelled with 0 and the gravity gradients with
1 to 6 (see Table 1). When a combination of different data
types is used, then the indexes j and k will be introduced.

In order to reduce the noise νi (t), a time-wise Wiener filter
is applied. The derivation of this filter and its relation to the
gravitational field is presented in the following.

2.1 The derivation of the Wiener filter

A filtered version of every data type at time t0 is obtained by
applying:

ŷi
(
t0) =

∑

j∈J

+∞∫

−∞
b j (t)h

0
(i)( j)(t) dt, (2)

where ŷi
(
t0

)
refers to a single estimate at time t0 and

h0
(i)( j)(t) is the time-wise kernel that depends on the time t0.

The index i refers to the data being filtered and is fixed. The
index j refers to the observations that are used to filter the
data type i and takes the values of a set J . For example, if
the gravity gradients Trr are processed, then i is fixed to 6
and if the same Trr observations plus the observations of T
and of Tξξ are used to compute the filtered version of Trr then
J is {0, 1, 6}. Note that data are assumed to be continuous
in time, though in a real case only a finite, discrete series of
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Optimal multi-step collocation: the space-wise approach 15

observations is available. This is convenient for the following
derivations.

Assuming that signal and noise are random and stationary
processes with zero mean and known covariance function,
then the variance of the estimation error

ei
(
t0) = yi

(
t0) − ŷi

(
t0) (3)

is (Sansò and Sideris 1997):

σ 2
e

[{
h0

(i)(k)(t)
}]

= Cy(i)y(i)(0)

+
∑

j∈J

∑

k∈J

+∞∫

−∞

+∞∫

−∞
Cb( j)b(k)

(
t−t ′

)
h0

(i)(k)(t)h
0
(i)( j)(t

′)dt dt ′

−2
∑

k∈J

+∞∫

−∞
Cy(i)b(k)

(
t − t0)h0

(i)(k)(t) dt . (4)

The functions Cy( j)y(k)(τ ) and Cb( j)b(k)(τ ), with τ = |t−t ′|,
τ ∈ R1, are the covariance functions (for j = k) or the
cross-covariance functions (for j �= k) of the signal and
of the observations, respectively. The functions Cy( j)b(k)(τ )

are the cross-covariance functions between the signal and the
observations. If signal and noise are considered uncorrelated,
then the function Cy( j)b(k)(τ ) is equal to Cy( j)y(k)(τ ) and the
function Cb( j)b(k)(τ ) is equal to the sum of Cy( j)y(k)(τ ) plus
Cν( j)ν(k)(τ ). Note that the error variance depends on the ker-
nels h0

(i)(k)(t), ∀k ∈ J .
According to the Wiener–Kolmogorov principle, these

kernels are chosen so that the error variance is minimized.
In order to minimize an integral expression, the first varia-
tion of this expression with respect to each unknown function
must be set equal to zero (Bronshtein et al. 2004); therefore,
the minimum of Eq. (4) is obtained when, ∀k ∈ J , it holds
that:

∑

j∈J

+∞∫

−∞
Cb( j)b(k)

(
t−t ′

)
h0

(i)( j)

(
t ′
)

dt ′ = Cy(i)b(k)

(
t−t0).

(5)

This results in a system of equations with a dimension equal
to the number of elements of J . This system can be conve-
niently solved by Fourier methods (Sansò and Sideris 1997).

We define Sb( j)b(k)( f ) as the Fourier transform of the
corresponding covariance function (for j = k) or cross-
covariance function (for j �= k) of the observations and
Sy(i)b(k)( f ) as the Fourier transform of the corresponding
cross-covariance function between the signal and the obser-
vations. We also define H0

(i)( j)( f ) as the Fourier transform

of the function h0
(i)( j)(t). The Fourier transforms of covari-

ance functions are known as power spectra and are functions
of the frequency f (Blackman and Tukey 1958). The Fou-
rier transforms of cross-covariance functions are denoted as

power cross-spectra. Throughout the GOCE data treatment,
we assume that cross-covariance functions are symmetric,
since, after numerical tests, the imaginary part of the cor-
responding power cross-spectra is found to be negligible.
Therefore, all the power spectra and power cross-spectra are
real and from now on their imaginary parts will be ignored.
The system of Eq. (5) reads in the frequency domain as:
∑

j∈J

Sb( j)b(k)( f ) H0
(i)( j)( f ) = Sy(i)b(k)( f ) eι2π f t0

. (6)

Note that the time shift for t0 in Eq. (5) corresponds to a
multiplication by the term eι2π f t0

in the frequency domain,
where ι is the imaginary unit.

Now it is possible to define a function h(i)( j)(t) so that its
Fourier transform H(i)( j)( f ) has the property:

H0
(i)( j)( f ) = H(i)( j)( f ) eι2π f t0

. (7)

In other words, the optimal kernel is the same for every point
in time, with a proper time shift, i.e.:

h0
(i)( j)(t) = h(i)( j)

(
t − t0). (8)

If Eq. (8) is inserted into Eq. (2) and if t0 is now considered
as a variable instead of a fixed point in time, then the filtering
of every data type i for the complete time-series is actually
a sum of convolutions. To avoid matrix-vector notation, the
following line of thought is used: it is assumed that, fre-
quency by frequency, the matrix composed by the elements
Sb( j)b(k)( f ) for j, k ∈ J is invertible and the elements of
the inverse matrix are denoted as Sb( j)b(k)( f )−1. Inserting
Eq. (7) into Eq. (6) and simplifying the time shift term, it
holds that:

H(i)( j)( f ) =
∑

k∈J

Sb( j)b(k)( f )−1 Sy(i)b(k)( f ). (9)

This result is the same as in Sideris (1996) and Andritsanos
et al. (2001) for the so-called “two-input output system the-
ory method”.

The system of Eq. (5) is approximated with the avail-
able discrete data of constant and high sampling rate and
it becomes a typical collocation system with Toeplitz form
covariance matrices. Therefore, the kernels are practically
the same for all points and collocation in time is a convolu-
tion that can be more conveniently applied in the frequency
domain. However, the kernels are different for points at the
edges of the time-series; this is due to the fact that the inverse
of a Toeplitz matrix is not Toeplitz any more (Schuh 1996).
In other words, the spectral Wiener filter is a time-wise col-
location, except that it does not adapt to the edges of the
available time-series; in addition, there is the cyclical con-
volution error that can be eliminated by using zero-padding
schemes (Jekeli 1998).
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16 M. Reguzzoni, N. Tselfes

If one data type is used (no combinations are made) and
no correlation between signal and noise is considered, then
Eq. (9) degenerates to the classic definition of the Wiener
filter (Papoulis 1984):

H(i)(i)( f ) = Sy(i)y(i)( f )

Sy(i)y(i)( f ) + Sν(i)ν(i)( f )
. (10)

To conclude the Wiener filter analysis, expressions of the
error power cross-spectra are given, even though they are not
actually used in the space-wise approach implementation.
The error power cross-spectrum Se(i)e(l)( f ) is defined as the
Fourier transform of the cross-covariance function between
the estimation error (Eq. 3) of two different data types i and
l. Note that if i = l then we have the error power spectrum.
It holds that:

Se(i)e(l)( f ) = Sy(i)y(l)( f )

−
∑

j∈J

Sb(i)y( j)( f ) H(l)( j)( f )

−
∑

j∈J

Sy(l)b( j)( f ) H(i)( j)( f )

+
∑

j∈J

∑

k∈J

H(i)( j)( f ) Sb( j)b(k)( f ) H(l)(k)( f ).

(11)

Since the filters used are those according to Eq. (9), then
Eq. (11) reads simply:

Se(i)e(l)( f ) = Sy(i)y(l)( f )

−
∑

j∈J

∑

k∈J

Sy(i)b( j)( f ) Sb( j)b(k)( f )−1 Sb(k)y(l)( f ). (12)

2.2 Limitation of the Wiener filter along the orbit

Equations of Sect. 2.1 hold for any signal yi (t) for t ∈ R1.
However, this is not the case for the gravity field, which is
a space-related and not time-related signal. There is some
similarity between time distances and spherical distances
of the satellite positions for short arcs; in this sense, the
time-wise gravity signal covariance function is appropriate
(Albertella et al. 2004). However, after half an orbit, the satel-
lite spherical distance with respect to a certain reference point
decreases, while the time distance does not, so this similarity
is lost. Also, the orbit may vary in such a way that the satellite
does not return close to the reference point at regular time
intervals. Therefore, the time-wise signal covariance func-
tion does not describe the real signal correlation. In fact, an
empirical signal covariance function computed from the data
in a time-wise fashion is too smooth after a certain time dis-
tance and local maxima of the covariance function (caused
by the satellite returning to the same areas) are missing.

Moreover, the covariance matrix derived from the time-
wise signal covariance function is Toeplitz in the case of

constant sampling rate. However, since the signal cannot be
considered stationary in time after half an orbit, a Toeplitz
matrix is only a limited approximation of the true covariance
matrix. For example, if the satellite passes 100 times over
the same area, then the 99 local covariance maxima of the
satellite returning are lost, and this is a poor (at the level of
1%) approximation of the true covariance matrix.

On the basis of this consideration, signal and noise power
spectra are smoothed by a convolution with a window func-
tion (Blackman and Tukey 1958) that forces the correspond-
ing covariance functions to zero after a quarter of an orbit. In
this way, the time-wise filtering is only applied on points of
the same arc and, in particular, over an interval not exceed-
ing half an orbit. The corresponding signal covariance matrix
is now band-diagonal, i.e. covariance blocks away from the
diagonal are ignored (as if the observations did not exist)
instead of being poorly approximated. Also the noise covari-
ance matrix is made band-diagonal, i.e. the noise correlation
of distant points is not considered. The resulting filter is thus
localized but without splitting the data sets into parts.

In the case of GOCE observations, the noise is considered
as a time-correlated phenomenon (ESA 1999; Pail et al. 2005;
Reguzzoni 2003) and, therefore, a time-wise noise covari-
ance function is appropriate. Nevertheless, due to the time-
wise approximation of the signal covariance functions, the
applied Wiener filter is not optimal and this must be taken
into account in the sequel. Also the error propagation is not
proper because all the signal correlations between distant
points in time cannot be propagated. This problem can be
overcome as explained in Sect. 3.

3 Optimization of the multi-step collocation procedure

3.1 Two-step optimal solution

First, an important result about step-wise procedures is briefly
recalled (Reguzzoni et al. 2006). According to the Wiener–
Kolmogorov principle, the optimal solution would be to
estimate the spherical harmonic coefficients of the gravita-
tional potential directly with a global collocation (Tscherning
2001):

x̂ = CxbC−1
bb b, (13)

where b are the observations, x̂ are the coefficient estimates,
Cbb is the covariance matrix of the observations and Cxb is
the cross-covariance matrix between the coefficients and the
observations.

Assume that intermediate grid values z are first estimated:

ẑ = CzbC−1
bb b, (14)

where now Czb is the cross-covariance matrix between the
grid values and the observations. If the functionals predicted
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Optimal multi-step collocation: the space-wise approach 17

on the grid are considered to be a linear combination of the
coefficients that is realized by the matrix A of full column
rank (in a band-limited approximation), then the relation

z = Ax (15)

can be inverted:

x =
(

AT A
)−1

AT z = Bz. (16)

The use of Eq. (16) to estimate the coefficients x gives rise to
the same solution of the direct collocation, i.e. no information
is lost in this two-step procedure:

ˆ̂x = Bẑ = BCzbC−1
bb b = CxbC−1

bb b = x̂ . (17)

In the case of GOCE, there are so many observations that
a direct collocation to estimate the spherical harmonic coef-
ficients is not possible and therefore an intermediate grid is
computed. For the same reason, the gridding cannot be made
by a unique collocation system, but it is realized by means
of many localized systems, i.e. using local patches of data.
Therefore, information is lost because of the patch-wise col-
location (Migliaccio et al. 2007b). Moreover, the signal is
not band-limited in reality, though the gradiometer signal at
satellite altitude (about 250 km) and above a certain spherical
harmonic degree (e.g. 360) is not significant with respect to
the noise level.

The linear operator B, which is used to transform gridded
data to spherical harmonic coefficients (Eq. 16), is imple-
mented by numerical integration (Colombo 1981) and is not
exact because of discretization errors. These errors are not
significant when high resolution grids are used (Migliaccio
et al. 2007b).

However, how is the optimal estimation found when
another filter (in this case the Wiener filter along the orbit) is
first applied to the data? Is there information lost because of
this filter? These questions are answered in the next section.

3.2 Iterative multi-step optimal solution

We define the matrix W as the Wiener filter for all the used
data types in the time domain, i.e. W is a block matrix, where
each block is Toeplitz, representing the convolution opera-
tor by the kernels h(i)( j)(t). Therefore all the data filtered
together are:

ŷ = W b. (18)

The optimal solution for the grid is:

ẑ = Czy W T
(

WCyy W T + WCννW T
)−1

ŷ, (19)

under the assumption that:

Cbb = Cyy + Cνν . (20)

input
data

final
model

Wiener
filter

complementary
Wiener filter

gridding

harmonic
analysis

along-orbit
synthesis test

Fig. 1 Basic flow-chart of the space-wise solution

It can be verified that if Eq. (18) is substituted in Eq. (19), then
the classic collocation formula is obtained (Eq. 14), under the
hypothesis that W is invertible. In general, it is possible that
the original data are projected onto a smaller space, i.e. W
is not invertible (Basilevsky 1983). In such a case, some fre-
quencies vanish and information is lost; in other words the
filtered data would be linear combinations of fewer Fourier
base functions than the original data.

In order to obtain the optimal estimation on the grid,
Eq. (19) should be applied. However, this is not possible
because, as stated before, a global collocation with all the data
is computationally impossible. The application of Eq. (19) on
local patches is computationally impossible as well, because
of the matrix WCyy W T . The problem is that the computation
of WCyy W T on a local patch requires to compute Cyy on a
larger area, because the elements of the matrix WCyy W T

are linear combinations of the original signal covariances.
In particular, since the filter kernels are generally long up
to half an orbit, the computation of the matrix WCyy W T ,
even for a local patch, requires to analytically evaluate sig-
nal covariances of points covering an hemisphere. This is
computationally impossible, especially if repeated for all the
local patches required for the gridding.

To overcome these difficulties, an iterative space-wise
approach was proposed (Migliaccio et al. 2004a), see Fig. 1.
This approach is based on Wiener filtering, gridding in
patches, spherical harmonic analysis by numerical integra-
tion and iterative reduction of the Wiener filter effect by the
complementary filter, defined as:

W c = I − W, (21)

where I is the identity matrix. The operator W c, even though
represented with a huge matrix, can be applied spectrally in
an easy numerical way because it is a time-wise convolution
with the complementary kernels, defined in the frequency
domain as:

Hc
(i)( j)( f ) = δ(i)( j) − H(i)( j)( f ), (22)
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18 M. Reguzzoni, N. Tselfes

where δ(i)( j) is the Kronecker delta. By means of the opera-
tor W c the filtered data are completed by the values coming
from the spherical harmonic coefficients estimated at each
iteration (see Fig. 1).

The resulting iterative procedure corresponds to a com-
plicated, yet linear, operator applied to the data. If the fil-
ter W were optimal, then by iterations there could not be
any improvement by any linear operator, or, from a the-
oretical point of view, the application of any other linear
operator, after the application of the optimal one, cannot be
justified. However, there is improvement and this is because
the applied filter W is not optimal, as explained in Sect. 2.2.

Here it is shown how this iterative scheme can be used
to theoretically achieve the solution with respect to the
Wiener–Kolmogorov principle, without the need to estimate
the covariance of the estimation error after the Wiener filter.
The operator S to be applied to the filtered data at every step
for the estimation of spherical harmonic coefficients is con-
sidered unknown and its derivation is made so that the final
estimates be optimal.

Assume a band-limited space that is described by the coef-
ficients vector x . Then the signal y is a linear synthesis of
the coefficients x represented by the matrix M . So the noisy
observations are:

b = y + ν = Mx + ν. (23)

The filtered observations at iteration zero are:

ŷ0 = W b = W Mx + Wν. (24)

A vector of coefficients is estimated by gridding and spheri-
cal harmonic analysis represented by the operator S:

x̂0 = SW Mx + SWν. (25)

The synthesis along the orbit is made so that we have a new
set of “observations”:

b̂0 = Mx̂0 = M SW Mx + M SWν. (26)

Then the observations are updated according to the comple-
mentary filter scheme and new coefficients are obtained:

ŷ1 = W b + (I − W ) b̂0 = W b + (I − W ) Mx̂0, (27)

x̂1 = S ŷ1 = SW b + S (I − W ) Mx̂0. (28)

Generalizing for any iteration n, we get:

ŷn = W b + (I − W ) Mx̂n−1, (29)

x̂n = S ŷn = SW b + S (I − W ) Mx̂n−1. (30)

For many iterations and given that the procedure converges,
i.e. that the matrix S(I − W )M has norm smaller than one
(Migliaccio et al. 2004a), then we get: x̂n ≡ x̂n−1 ≡ x̂ .
Therefore, Eq. (30) reads:

x̂ = (I − S (I − W ) M)−1 SW b. (31)

At this point one can impose that this estimate be equal to the
theoretical optimal solution, i.e. the solution with minimum
error variance for every coefficient if global collocation were
numerically possible, that is:

x̂ = Cxy
(
Cyy + Cνν

)−1
b. (32)

Setting the two operators of Eqs. (31) and (32) equal to each
other, we get:

(I − S(I − W )M)−1 SW = Cxy
(
Cyy + Cνν

)−1

⇒ SW
(
Cyy + Cνν

) = (I − S(I − W )M) Cxy

⇒ S
(
WCyy + WCνν

) + S(I − W )Cyy = Cxy, (33)

where the following covariance propagation formula is used:

MCxy = Cyy . (34)

So we have:

S
(
WCyy + WCνν + Cyy − WCyy

) = Cxy

⇒ S
(
WCνν + Cyy

) = Cxy

⇒ S = Cxy
(
Cyy + WCνν

)−1
. (35)

This is the operator that must be applied in order to obtain
the theoretically optimal result.

Practically the iterative operator S is implemented by first
predicting grid values z by collocation and then applying
the numerical integration operator B (Eq. 16) to derive the
spherical harmonic coefficients. This corresponds to rewrit-
ing Eq. (35) as:

S = BCzy
(
Cyy + WCνν

)−1
, (36)

where the following covariance propagation formula is used:

BCzy = Cxy . (37)

Note that, since the gridding is made in local patches of
data, the applied operator S is not exactly the theoretical
one (Eq. 36); therefore the final result is sub-optimal and
still depends on the filter W . Note also that WCνν can be
computed in the frequency domain by:

Q(i)( j)( f ) =
∑

k

H(i)(k)( f ) Sν(k)ν( j)( f ), (38)

for each couple of data types i , j .
The matrix Cyy + WCνν has to be invertible (Eq. 36).

Assuming that the covariance matrix Cyy is positive definite,
a sufficient condition is that WCνν is positive definite too. In
order to satisfy this condition, the following approximations
are implemented. First of all, smoothed noise spectra and
cross-spectra are used (as already done for the Wiener filter,
see Sect. 2.2), because the original noise spectra and cross-
spectra can lead to a numerically non-invertible covariance
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Optimal multi-step collocation: the space-wise approach 19

matrix Cνν . Then, Eq. (38) is modified:

Q(i)( j)( f ) = Q(i)( j)( f ) + Q( j)(i)( f )

2
(39)

so that the resulting WCνν is symmetric. Finally, for each
frequency f , the matrix composed by the elements
Q(i)( j)( f ), with i and j the row and column indexes respec-
tively, is forced to be positive definite by reducing by a factor
α (with 0 < α < 1) the elements outside the diagonal. In this
way the corresponding WCνν results to be positive definite.

Typically, when filtered data are used as input to a colloca-
tion procedure, a covariance function of the error of these fil-
tered data has to be available. Correlation between this error
and the signal is commonly neglected. On the contrary, the
use of the resulting operator S is very advantageous, because
no error covariance function after the filtering has to be esti-
mated, nor any correlation of signal with error after filtering
has to be modelled. This property can be used in any step-
wise collocation procedure.

The assumption that the vector x is finite is not necessary
for the derivation of Eq. (35). Since the coefficient estimates
converge to zero for increasing degree, because of the reg-
ularization imposed by collocation, the synthesis operator
M can be applied up to a certain maximum degree and be
reasonably considered as an infinite operator. Then the oper-
ator M is also propagated to covariances (Eq. 34), which can
be computed up to infinite degree with closed expressions
of converging degree variance series (Tscherning and Rapp
1974).

The assumption that the vector x is finite is however nec-
essary for the derivation of Eq. (36). In fact, both Eqs. (36)
and (37) hold only if Eq. (15) can be inverted, i.e. AT A is
invertible (see Eq. 16). Since the vector z is finite, a necessary
condition to invert Eq. (15) is that the vector x is finite too and
dim(x) ≤ dim(z) (Reguzzoni et al. 2006). Since in reality x
is infinite, then there is aliasing and loss of information. How-
ever, at satellite altitude above a certain spherical harmonic
degree (e.g. 360), the power of the signal is not significant
with respect to the noise level, so that the high-degree infor-
mation is practically cancelled out by the collocation grid-
ding. Therefore, a proper choice of dim(z), i.e. of the grid
resolution, can significantly reduce aliasing. Again it has to
be noted that loss of information is also present because of
the patch-wise gridding.

3.3 Iterative solution with rotation corrections

In this section, the multi-step optimal operator (Eq. 35) is
revised by taking into account that the gravity gradient ten-
sor is measured in the Gradiometer Reference Frame (GRF),
which is slightly different from LORF. GRF is known to
oscillate, i.e. it is moving almost periodically, and this could
have a negative effect in terms of stationarity of the signal

(Migliaccio et al. 2006). Also, it is numerically much more
convenient to perform the gridding in LORF than in GRF,
because LORF is closer to the local East North Up (ENU)
frame and the signal covariances for second-order derivatives
are first derived in ENU and then rotated to the considered
frame (Tscherning 1993).

The original observations, i.e. the gravity gradients in
GRF, are now denoted as:

g = Gx + ε, (40)

where the operator G represents the synthesis of all six grav-
ity gradients in GRF and ε is the original observation noise.
The corresponding gravity gradients l in LORF are:

l = Rg = RGx + Rε, (41)

where R is the rotation matrix from GRF to LORF. Since
two of the off-diagonal gravity gradients are known to be
very noisy, the rotation matrix R would spread their noise
onto all gravity gradients. For this reason, the elements of
the matrix R acting on the very noisy gravity gradients are
forced to zero, obtaining a new matrix denoted by R1. The
ignored terms are assembled in another matrix, denoted by
R2, so that:

R = R1 + R2. (42)

Note that the elements of R2 are small, because the two
frames GRF and LORF are close to each other, however, they
are not equal to zero and their effect cannot be completely
neglected (Migliaccio et al. 2006).

The matrix M for the synthesis of all gravity gradients in
LORF can be divided into two parts as well, i.e.:

M = RG = R1G + R2G = M1 + M2. (43)

Since only the incomplete rotation R1 is applied to the gravity
gradients in GRF, the actually used observations are:

b = R1g = M1x + ν, (44)

where now the noise ν is:

ν = R1ε. (45)

In order to account for the missing part, at every iteration n
the rotation correction term M2 x̂n−1 is added to the filtered
data ŷn in Eq. (29), where also M1 is used instead of M .
So the new solution, given that there is convergence, is like
Eq. (31), with the further term SM2:

x̂ = (I − S (I − W ) M1 − SM2)
−1 SW b. (46)

At this point, the optimal global solution is Eq. (32) with
Cxy = Cxx MT

1 and Cyy = M1Cxx MT
1 . Setting the opera-

tors of Eqs. (46) and (32) equal to each other and applying
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simplifications (like in the previous derivation), we get:

S = Cxy
(
Cyy + M2Cxy + WCνν

)−1

= Cxy

(
(M1 + M2)Cxx MT

1 + WCνν

)−1
. (47)

Note that the difference of this solution with respect to
Eq. (35) is the term M2Cxy . However the signal covariance
matrix M1Cxx MT

1 is very difficult to compute, because M1

corresponds to a functional of the gravitational potential that
has no clear physical meaning. Therefore, in practice, the
operator S is implemented as follows:

S = Cxx (M1 + M2)
T

×
(
(M1 + M2)Cxx (M1 + M2)

T + WCνν

)−1

= Cxx MT
(

MCxx MT + WCνν

)−1
, (48)

where the use of the matrix M corresponds to considering
the input data to the operator S as gravity gradients in LORF
(Eq. 43). Since LORF differs from the ENU frame by only
one rotation around the Up axis, this means that computing
the covariances of Eq. (48) is feasible (Tscherning 1993).
Note that for M2 ≡ 0 then Eqs. (47) and (48) are the same.
However this is a deviation of the implemented method from
the theoretical optimal solution.

4 Numerical experiments

4.1 Test data description

A time-series of sixty days of simulated realistic GOCE data
is used for numerical tests. The observations of this time-
series are corrupted by realistic in-flight calibration noise
(Catastini et al. 2007). The signal is based on EGM96
(Lemoine et al. 1998) up to degree and order 360.

First the gravitational potential is estimated by the energy
conservation method, using the satellite positions and veloc-
ities, as well as the non-gravitational accelerations measured
by the accelerometers of the gradiometer. A calibration
procedure is implemented (Migliaccio et al. 2007a) so that
simulated biases in the non-gravitational accelerations
measurements are removed. From the potential data, a spher-
ical harmonic model up to degree and order 50 is created
by collocation gridding in patches and then numerical inte-
gration, i.e. the two-step procedure. The observational func-
tionals, namely the gravity gradients and the potential, are
computed from this reference model and subtracted from the
data so that the long wavelength effects are largely removed.
Then the gravity gradients are calibrated for trends by spline
interpolation (Migliaccio et al. 2007a). These reduced and
calibrated data are then used for the subsequent processing

energy
conservation

gridding

harmonic
analysis

along-orbit
synthesis

spline
interpolation

low-degree
ref. model

gradiometric
observations

satellite tracking
observations

reduced
potential

reduced
gravity-gradients

data
preparation

Fig. 2 Flow-chart of the data pre-processing and of the low-degree
reference model computation

Table 2 Noise standard devia-
tion of the observations, i.e. the
potential T obtained from energy
conservation (units are m2s−2)
and the gravity gradients after the
calibration (units are Eötvös =
10−9s −2)

Data type Noise std

T 1.6026

Tξξ 0.1356

Tξη 0.2715

Tξr 0.0897

Tηη 0.0952

Tηr 0.3604

Trr 0.1202

steps. A flow-chart of this data pre-processing step is shown
in Fig. 2. Error statistics are reported in Table 2.

4.2 Noise covariance estimation

For the Wiener filter application, the signal and noise power
spectra, i.e. the Fourier transforms of the corresponding
covariance functions, are needed (Eq. 9). The signal power
spectra are approximated empirically (Blackman and Tukey
1958) by the values obtained from an a-priori model, e.g.
the EIGEN-GL04C model (Förste et al. 2007), to which the
reference model up to degree and order 50 has been pre-
viously subtracted. The signal plus noise power spectra is
empirically computed by using the values of the observations
(Migliaccio et al. 2006). However, when an a-priori model
is used to approximate the signal power spectrum, then it is
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Fig. 3 True noise covariance function of Tξξ . The approximation from
the a-priori model at this scale is practically overlapped. E = Eötvös
(10−9s−2)
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Fig. 4 True noise cross-covariance function of Tξξ and Trr . The
approximation from the a-priori model at this scale is practically over-
lapped

explicitly assumed in the Wiener filter that the noise power
spectrum is equal to the power spectrum of the observations
minus the power spectrum from the a-priori model. This is
done also for power cross-spectra.

In order to improve the quality of this approximation, the
trace of the observed gravity-gradient tensor, i.e. the sum of
the diagonal components of the tensor, is computed. This
sum is different from zero because of the observation noise
and this can be used to calibrate the estimated power spectra
and cross-spectra. In particular, the power spectrum of the
trace error can be computed empirically from the data and,
also, derived by propagation from the estimated noise power
spectra and cross-spectra. By demanding that the propagated
power spectrum is equal to the empirical one, a scale factor
for each frequency f can be determined. These scale factors
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Fig. 5 True noise covariance function of Tξξ (solid black line). At this
zoomed view, the difference of the approximated noise covariance (grey
dashed line) is visible

are then applied to all the estimated noise power spectra and
cross-spectra.

This approximation turns out to be of sufficient quality for
our purposes, for both power spectra and power cross-spectra,
as shown in Figs. 3, 4 and 5. Here the EIGEN-GL04C model
is used as an a-priori model, which is different from EGM96.
Note that the modelled noise refers to Eqs. (44) and (45).

A flow-chart of this estimation procedure is displayed in
Fig. 6. Its main advantage is that noise covariances and cross-
covariances for all the data types are estimated. In this way
all the available data, including off-diagonal second order
derivatives, can be used in the gravity field processing. The
modelled Cνν can be also used for error propagation pur-
poses with, for instance, Monte–Carlo methods (Alkhatib
and Schuh 2007) and this is dealt with in Migliaccio et al.
(2007c).

4.3 Wiener filter implementation and results

According to Sect. 2.2, the signal and the observations (sig-
nal plus noise) power spectra have to be modified for the
Wiener filter application (Fig. 7) so that the corresponding
covariance functions get zero after a short time interval. The
power spectra are thus convolved by a taper cosine function
(Blackman and Tukey 1958) so that the resulting power spec-
tra are smoothed. The length of this function, and thus the
time interval after which the covariances get zero, has to be
chosen. The Wiener filter is applied and the trace error of
the filtered data is computed. This is repeated by using taper
cosine functions of different length and a selection based on
the minimum trace error variance is made. It results that the
window chosen, for varying filter combinations (i.e. vary-
ing index set J of Eq. 2) and for varying data intervals (the
whole sixty days of data or smaller parts), is always such
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Fig. 6 Flow-chart of the power spectra estimation of the noise and of
the observations
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Fig. 7 Empirical power spectrum of Trr observations (black) and the
corresponding smoothed power spectrum (grey dashed). The low values
at the beginning of the empirical power spectrum (black) are due to the
splines calibration (Migliaccio et al. 2007a)

that the resulting covariances vanish at around one quarter
of an orbit (Fig. 8). This is expected from the considerations
made in Sect. 2.2. Anyway, the window length is not a criti-
cal parameter, in the sense that the results of the filtering are
almost the same even for a window with double or half the
optimal length.

Error statistics of the filtered data are reported in Table 3.
Two filtering scenarios are considered. In the first scenario,
one-input data (1D) filters are used, according to Eq. (10).
In the second scenario, two-input data (2D) filters are used,
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Fig. 8 Covariance function of Trr observations (black) and the corre-
sponding covariance function after smoothing the power spectrum (grey
dashed). The covariance function gets zero at about 1,300 s, that is close
to a quarter of 5,300 s (i.e. one GOCE orbit)

Table 3 Estimation error standard deviation of the filtered observa-
tions, i.e. the potential T (units are m2s−2) and the gravity gradients
(units are Eötvös = 10−9s−2), for 1D and 2D filters

Data type Error std 1D Error std 2D

T 0.0487 0.0438

Tξξ 0.0020 0.0018

Tξη 0.0138 0.0138

Tξr 0.0030 0.0030

Tηη 0.0081 0.0044

Tηr 0.0283 0.0283

Trr 0.0097 0.0046

by also exploiting the potential for the filtering of the gravity
gradients and the second radial derivatives Trr for the fil-
tering of the potential. This means that the index set J of
Eq. (2) is equal to {i, 0} for the gravity gradients, i.e. for
i = 1, 2, . . . 6, while J is equal to {0, 6} for the potential. In
this way, the low-frequency content of the gravity gradients
that is dominated by noise (Migliaccio et al. 2006) is cor-
rected by using the potential and vice versa. Note that any
combination is possible, since every data type i is treated
independently from the other data types. For example T is
used to filter Tξξ , but Tξξ is not used to filter T .

Some comments are due on the choice of the filtering
scenario. It is numerically verified that 2D filters lead to a
singular matrix W , while 1D filters do not. This happens
because the information of the potential dominates at low
frequencies, where the gravity gradients measurements are
very noisy. This causes the 2D filtering to cancel those fre-
quencies of the gravity gradients and use only the information
of the potential, i.e. a projection to a smaller space is made.
Since the matrix W is not invertible (and not even symmet-
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Fig. 9 The filter H(6)(6)( f ) applied to Trr . It can be seen that the filter
is equal to 1 where the signal dominates (see Fig. 10)

ric), then the matrix WCνν must be regularized as explained
in Sect. 3.2, while this regularization is not necessary in the
case of 1D filters. This is an argument to choose the 1D
filtering, although this argument is not definitive, since the
optimal solution is not achieved anyway because of the grid-
ding in patches. On the other hand, when 2D filters are used,
the filtered data have a higher accuracy (see Table 3), thus
implying the choice of 2D filters. A final decision should
depend on the accuracy of the estimated spherical harmonic
coefficients at the end of the multi-step procedure. From the
experiments performed, which are not reported here for brev-
ity, the 2D filters perform slightly better in the majority of
the cases and therefore these filters are used in the sequel.

As an example, the computed function H(6)(6)( f ) (see
Eq. 9) is shown in Fig. 9. The filter acts like a scale factor
in the frequency domain, i.e. it is close to 1 at those fre-
quencies where the signal dominates (Fig. 10), otherwise it
approaches to zero. The filter does not consider the oscil-
lations of the power spectra because of the used smoothing
window. In terms of time covariances, this means that the fil-
ter is not adapted to the long period oscillations of the noise
covariance function (see Figs. 3 and 4).

4.4 Gridding implementation

A unique global signal covariance function is used for the
gridding, based on a finite number of degree variances, up to
degree 360, which is the same maximum degree used in the
simulation of the test data. The covariances are modelled by
series of Legendre polynomials (Tscherning 1976a,b). The
potential is used together with the gravity gradients and there-
fore the derivation of the cross-covariances between potential
and gravity gradients in a rotated reference frame is needed
(Tscherning 1993). The degree variances used are those com-
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Fig. 10 Time-wise power spectrum of the Trr observations (black,
same as Fig. 7) and a-priori time-wise power spectrum of the Trr signal
(grey). It can be seen that at some frequencies the signal power spec-
trum is as high as that of the observations. This means that at those
frequencies the noise is low and the signal dominates

ing from EGM96 minus the reference model up to degree 50.
The problem of estimating degree variances from data is not
considered here; the related issue of global or local signal
covariance modelling is not addressed either.

In principle, the noise covariance functions estimated as
described in Sect. 4.2 should be used for the gridding. As a
matter of fact, the corresponding covariance matrix Cνν is
not invertible, even for a local patch. This is mainly due to
the very long correlation of the gradiometer noise. For this
reason, the noise covariance functions are derived from the
smoothed noise power spectra (the same already used for the
Wiener filter).

Two different spherical grids at mean satellite altitude are
computed, namely one for T and one for Trr , because they
give rise to different results in terms of spherical harmonic
coefficient estimates (Migliaccio et al. 2007b). These esti-
mates are then combined with weights determined from the
error degree variances, though their optimal combination is
still an open issue and can be achieved by full error covari-
ance matrix estimation.

The size of the patches of data for the local gridding
is 6◦ × 6◦ with 2◦ of overlap; this choice is a trade-off
between the number of data contained in the patch and the
time required for the collocation solution. The overlap is nec-
essary to reduce the discontinuities among different patches.
The grid resolution is 0.2◦ in both latitude and longitude; with
such a high resolution, discretization errors of the spherical
harmonic analysis by numerical integration are negligible.

As input to the gridding procedure the potential T and the
four most accurate gravity gradients, namely Tξξ , Tξr , Tηη

and Trr (see Table 3), are jointly used. The two less accurate
gravity gradients, Tξη and Tηr , are not used because the time
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needed to obtain a solution including these two components
increases, but the accuracy of the solution does not improve
at all.

A decimation before the gridding is applied, i.e. only
one out of twelve observations is used; this makes the solu-
tion much faster. In order to obtain a more homogeneous
spatial distribution, a higher sampling rate is considered
in the equatorial area, where the data are less dense. In
fact, it is demonstrated that a proper data distribution can
improve spherical harmonic coefficient recovery (Arabelos
and Tscherning 2007).

Due to the orbit inclination of the GOCE satellite (about
96.5◦) the polar caps are not covered with data. In Migliaccio
et al. (2007a), grid values on the polar caps were extrapolated
and the results were of good quality, in terms of controlling
the error of the low-order coefficients. These coefficients are
those mainly affected by missing data at the poles (Sneeuw
and van Gelderen 1997). In fact, covering all the sphere with
data is required so that a relation like Eq. (16) is numerically
well-defined for the low-order coefficients as well. Other-
wise the matrix AT A in Eq. (16) would have eigenvalues
close to zero. Note that since the extrapolation is realized by
collocation, then the finally resolved coefficients correspond
to approximating the global collocation solution using the
original observations (Eq. 13). In any case, the estimated
low-order coefficients are inevitably of poor quality.

4.5 Two-step solution versus iterative multi-step solution

First a direct gridding (with patches as defined in Sect. 4.4)
without applying the Wiener filter and without any iterations
is performed. Spherical harmonic coefficients are then esti-
mated by numerical integration. This procedure corresponds
to the two-step solution (see Sect. 3.1) and leads to a geoid
commission error of 27.0 cm up to degree and order 200 in
the latitude interval from −80◦ to 80◦ (Fig. 11).
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Fig. 11 Geoid error (degree & order 200), computed without the
Wiener filter

Then the gravity field solution is performed with the Wie-
ner filter and iterations according to Sect. 3.2 and Sect. 3.3.
The 2D filters defined in Sect. 4.3 are used. The geoid error up
to degree and order 200 inside the latitude interval from −80◦
to 80◦ at iteration zero is 10.5 cm. After four iterations, the
error decreases to 5.6 cm (Fig. 12). This result is a numerical
justification of the use of the Wiener filter.

The flow-chart of the implemented two-step solution is
shown in Fig. 13, while the one of the iterative multi-step
solution is shown in Fig. 14.

Note that the spherical harmonic coefficients estimated
by numerical integration are not regularized, in the sense
that the error power goes beyond the signal power at high
degrees (Fig. 15). This happens because the gridding by col-
location is performed in patches (Migliaccio et al. 2007b)
and it is corrected by a posterior combination of the esti-
mated model with a set of spherical harmonic coefficients
all equal to zero, i.e. with error degree variances equal to the
signal degree variances. This produces a regularization, just
like collocation.

The two tests are repeated. Now a reference model for the
high degrees is subtracted, i.e. the EIGEN-GL04C model is
removed from degree 51 to 360. Signal covariance is recom-
puted according to the residual degree variances. The appli-
cation of the two-step solution (see Fig. 13) results to a com-
mission geoid error of 12.8 cm for a solution up to degree
and order 200 in the latitude interval from −80◦ to 80◦
(Fig. 16).

On the other hand, when the multi-step solution with the
Wiener filter is used (see Fig. 14), the geoid error at iteration
zero is 5.2 cm. After four iterations the error drops to 4.2 cm
(Fig. 17). This confirms that the Wiener filter is useful even
when a reference model is subtracted. The difference of the
two solutions is also visible when the error degree variances
are compared (Fig. 18).
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Fig. 12 Geoid error (degree & order 200), computed with the Wiener
filter and with the optimal iterative operator
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Fig. 13 Flow-chart of the
implemented two-step solution.
The blocks called as “data
preparation” and “spectra
estimation” are described in
details in Figs. 2 and 6,
respectively. The use of the
high-degree reference model is
optional

low-degree
ref. model

final
model

signal
cov.

data
preparation

spectra
estimation

along-orbit
synthesis

gridding
harmonic
analysis

high-degree
ref. model

spectra
smoothing

gradiometric
observations

satellite tracking
observations

inv. Fourier
transform

reduced
gravity
gradients

reduced
potential

low-degree
ref. model

high-degree
ref. model

noise spectra

noise
cov.

a-priori model

Fig. 14 Flow-chart of the
implemented iterative multi-step
solution. The blocks called as
“data preparation” and “spectra
estimation” are described in
details in Figs. 2 and 6,
respectively. The use of the
high-degree reference model is
optional
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Regarding the spatial distribution of the geoid error, the
two-step solution is characterized by significant features with
a regular pattern covering large areas (see Figs. 11, 16). These
features are related to the long correlations (both of signal and
noise) that are not considered when only gridding in patches
is performed. The use of the Wiener filter before the grid-

ding, in the framework of the iterative multi-step procedure,
allows to eliminate these error features (see Figs. 12, 17).
The remaining error shows a clear topographic signature,
e.g. with higher values in the Himalayas or in the Andes (see
Fig. 17). This effect is characteristic of collocation methods
because the estimation error is correlated with the signal.
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Fig. 15 Error degree variances of the solutions computed with (grey)
and without (black) the Wiener filter. The signal degree variances of
EGM96 are in dashed grey
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Fig. 16 Geoid error (degree & order 200), using EIGEN-GL04C as
reference model, without the Wiener filter
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Fig. 17 Geoid error (degree & order 200), using EIGEN-GL04C as
reference model, with the Wiener filter and with the optimal iterative
operator
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Fig. 18 Error degree variances of the solutions using EIGEN-GL04C
as reference model, with (grey) and without (black) the Wiener filter.
The signal degree variances of EGM96 are in dashed grey

4.6 A-priori model and reference model iterations

The noise power spectra estimation and calibration with the
trace error is repeated (see Sect. 4.2), but now the model com-
puted with the Wiener filter and EIGEN-GL04C as reference
is used, instead of an a-priori model. The improvement is sig-
nificant (see Fig. 19). The reference model that is removed
from the data before the gridding is also updated: a synthesis
of a grid of the gravitational potential, again from the model
estimated with the Wiener filter and EIGEN-GL04C, is com-
puted at ground level (so that no downward continuation
problems arise). Then the peaks of this grid are statistically
selected, some smoothing is applied (for preventing Gibbs
effects) and finally a spherical harmonic analysis by numeri-
cal integration is performed; see Migliaccio et al. (2004b) for
details. In this way, a reference model describing the inhomo-
geneities of the gravitational field is obtained. By using the
new noise spectra and the new reference model, the accuracy
of the resulting space-wise solution at the end of the iterative
multi-step procedure is 2.6 cm of geoid error.

The noise power spectra estimation and calibration is
performed for a third time (without significant improvement),
the peaks reference model is computed again and the space-
wise solution now gives rise to a geoid error of 2.4 cm
(Fig. 20). The small improvement is due to the better homo-
geneity of the residual field. Note that over the whole sphere
the error is 17.2 cm due to the polar gap effects (Fig. 21).

In these tests the convergence of the iterative multi-step
procedure (Fig. 14) is fast, i.e. three iterations lead to below
0.1 mm difference in geoid heights between the last two solu-
tions.

The computer used to perform these numerical experi-
ments is a 3 GHz bi-processor with 4 GB RAM. The time
required for each processing of the sixty day data set with
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Fig. 19 True noise covariance function of Tξξ (solid black line) and its
approximation based on the estimated model instead of EIGEN-GL04C
(grey dashed line). Notice the different scale compared to Fig. 5
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Fig. 20 Geoid error (degree & order 200), using an improved reference
model, with the Wiener filter and with the optimal iterative operator

the iterative scheme of Fig. 14, performing three or four iter-
ations to reach convergence, is about three days. In this sense
the method can be considered numerically efficient.

5 Conclusions and outlook

The space-wise approach for GOCE data analysis is a multi-
step collocation technique. It comprises the Wiener filter,
gridding by collocation, spherical harmonic analysis by
numerical integration; all the steps are applied iteratively.
The scope of this work is the theoretical optimization of
this multi-step collocation technique, which is achieved in
a way that it is also, to some extent, numerically applica-
ble. The logical scheme used to optimize the space-wise
approach can be applied to any kind of step-wise collocation
procedure.
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Fig. 21 Geoid error (degree & order 200), using an improved reference
model, with the Wiener filter and with the optimal iterative operator.
Over the whole sphere the error at the poles dominates

The complexity of the space-wise approach is due to the
Wiener filter. This filter is a fast time-wise collocation.
However, it is seen that the signal covariance functions are
poorly approximated. Therefore, this filter is not optimal
and its error estimates are not consistent. A modification is
made so that the filter is valid for short time periods only.
Then, the original plan of the space-wise approach is revised
in such a way that the iterative scheme based on the
complementary Wiener filter is equivalent to the direct col-
location solution, i.e. to the optimal solution according to
the Wiener–Kolmogorov principle. This is proved theoreti-
cally, however some approximations are needed for numer-
ical reasons, like performing the gridding in patches, and
therefore the final solution is only sub-optimal. The con-
vergence of the implemented iterative scheme is tested
numerically.

Experiments on simulated GOCE data are performed to
assess the impact of the Wiener filter in a collocation proce-
dure to estimate spherical harmonic coefficients of the gravi-
tational potential. Since the gridding by collocation is applied
inside limited patches of data, the long correlation of the noise
cannot be handled. This is the main reason why the tapering of
the Wiener filter is useful. The better performance of the col-
location solution when the Wiener filter is used, compared to
the solution without the filter, is verified numerically in terms
of accuracy of the recovered spherical harmonic coefficients
and accuracy of the computed geoid.

The general remark is that any step-wise procedure should
be studied so that it leads to a well-defined solution based
on optimality criteria. In particular, any step-wise colloca-
tion method should be based on two principles: to model
the statistical characteristics of the data as good as possible
and apply the Wiener–Kolmogorov principle as accurately
as possible.
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