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Abstract The Least-squares collocation (LSC) method is
commonly used in geodesy, but generally associated with
globally supported covariance functions, i.e. with dense
covariance matrices. We consider locally supported radial
covariance functions, which yield sparse covariance matrices.
Having many zero entries in the covariance matrice can both
greatly reduce computer storage requirements and the num-
ber of floating point operations needed in computation. This
paper reviews some of the most well-known compactly sup-
ported radial covariance functions (CSRCFs) that can be
easily substituted to the usually used covariance functions.
Numerical experiments reveals that these finite covariance
functions can give good approximations of the Gaussian,
second- and third-order Markov models. Then, interpolation
of KMS02 free-air gravity anomalies in Azores Islands shows
that dense covariance matrices associated with Gaussian
model can be replaced by sparse matrices from CSRCFs
resulting in memory savings of one-fortieth and with 90%
of the solution error less than 0.5 mGal.

Keywords Least-squares · Comactly supported covariance
functions · Large linear systems · Sparse matrices

1 Introduction

Least-squares collocation (e.g., Moritz 1989) is a flexible
and powerful technique to both interpolate and predict conti-
nuous fields, such as the anomalous gravity field of the Earth,
from any set of discretly and noisy observations of some
linear functionals of that field (gravity anomalies and height
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anomalies for instance). Moreover, one of the major key
success of LSC lies in the fact that it also gives access to
the prediction errors. To compute the LSC solution, one
has to solve a linear system with as many equations as the
number of data where the matrix is the covariance matrix
of the observations. Then, since most of geophysical cova-
riance models (e.g., Gaussian model, second- and third-order
Markov models) are globally supported, its covariance
matrices are generally dense in terms of not having any zero
entries, thus posing severe numerical problems in solution
feasibility.

To overcome that practical problem of LSC, various
methods have been proposed to reduce the computational
burden by introducing some zeros in the matrix of the linear
system. The objective is to get a sparse matrix, which gives
crucial advantages when dealing with massive datasets.
Firstly, sparse matrices give great savings in storage and
computation memory by not storing many zero entries. For
example, the storage requirement for an n × n full matrix is
8n2 bytes, if we use 8-bytes for real numbers and 4-bytes for
integers. A sparse matrix is stored as a list of its nonzero ele-
ments together with the row index and column pointer in the
so-called compressed sparse row format (e.g., Saad 1996).
Therefore, the storage requirement of an n × n sparse matrix
with nz nonzero entries is 12nz + 4n bytes, which can be
much less than 8n2 if nz/n2 is small.

Secondly, sparse matrix algorithms require much less
computation time than standard algorithms by avoiding arith-
metic operations on zero elements (e.g., Saad 1996). For
example, the complexity of solving a linear system is O(n3)

for a full n ×n matrix and is approximately O(n) for a sparse
matrix with certain structures.

Thus, if it is possible to use a covariance function with
a finite support, i.e. a covariance function that is identically
zero outside of a fixed distance, then the covariance matrix
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becomes sparse. This quest is supported by the fact that in
many statistical models correlations are negligible beyond a
certain distance when compared with the variance. Then, the
the choice of the compactly supported function becomes the
key point of the method. The first idea could be to truncate
the covariance function beyond a cut-off distance that is to
neglect small coefficients of the covariance matrix. Even if
that option can give satisfactory numerical results (Rygaard
et al. 1997; Tóth and Völgyesi 2007), this naive threshol-
ding very often destroys positive-definiteness of the trunca-
ted matrix so the solution of the sparse linear system may
not exist. Therefore, we should require that the compactly
supported function be also positive definite. This require-
ment can be fulfilled by either tapering (Furrer et al. 2005)
the globally supported covariance function C , i.e. by multi-
plying C with a locally supported covariance function Cd , or
to approximate C by a locally supported covariance function
˜C (Sansò and Schuh 1987).

An objection to tapering is that it may not be effective
even for a spatial covariance with short range correlations
since C and C × Cd would be very different. Thus, in line
with previous studies and experiments with compactly
supported spherical covariance functions (e.g., Arabelos and
Tscherning 1996; Schreiner 1997; Moreaux et al. 1999),
in the present contribution I will introduce compactly sup-
ported radial covariance functions (CSRCFs) with closed-
form expressions. By radial functions, I mean functions of
the Cartesian distance by opposition to the spherical dis-
tance. Such radial functions are commonly used in geodesy
in case of flat earth, i.e. in planar approximations. These
CSRCFs were introduced by Schaback and Wendland (1993)
and later expanded by Wu (1995). Further developments were
provided by Wendland (1995) and Gneiting (1999). Then,
Floater and Iske (1996) first adopted CSRBFs for multistep
scattered data interpolation. These CSRCFs have also been
successfully used in frameworks like environmental model-
ling (Wong et al. 1999), implicit surface registration (Morse
et al. 2001), medical images visualization (Fornefett et al.
1999; Wachowiak et al. 2004) and economy (Hon and Zhou,
2000).

This contribution is organized as follows. I start in Sect. 2
by an overview about the most well-known CSRCFs in R

3.
In Sect. 3, I first show how to approximate Gaussian, second-
order and third-order Markov models by the finite cova-
riance functions previously introduced. Then, interpolations
of KMS02 (Andersen et al. 2004) free-air gravity anomalies
in the area of Azores Islands demonstrate that full systems
arising from the modelization of the emprical covariance
function by the Gaussian model can be satisfactorily, in terms
of memory saving and of differences between the “full” and
“finite” predictions, replaced by a sparse system deduced
from the use of CSRCFs. Finally, conclusions and perspec-
tives of this work are presented in Sect. 4.

2 Compactly supported radial covariance functions

In the sequel, I denote by Φ3 the class of all continuous func-
tions ϕ : [0,∞) → R such that ϕ(0) = 1 and the radially
symmetric function ϕ(‖.‖2) is positive-definite on R

3. Note
that functions of Φ3 are isotropic and yield covariance func-
tions in planar approximations.

Hereafter, L is the correlation-length of the covariance
function ϕ, i.e. the distance for which the function has decrea-
sed to half of its value at r = 0:

ϕ(L) = 1

2
ϕ(0). (1)

Moreover, in this contribution, ξ designates the so-called cur-
vature parameter as defined by Moritz (1989). For functions
with first radial derivatives which vanish at origin, the cur-
vature parameter is expressed by

ξ = − L2
cor

ϕ(0)

∂2ϕ

∂r2 (0). (2)

2.1 CSRCFs from Wendland

The starting point of Wendland’s (1995) work is the truncated
power function ϕl(r) = (1 − r)l+, which is a member of Φ3

if, and only if, l ≥ 2 (Askey, 1973). Since the truncated
power function is not smooth at zero, according to Kasper
(1971) who argued that covariance function shoud approach
zero at zero distance as gravity anomalies depend on the mass
distribution of the earth, which tends to be locally constant,
Wendland defined

ϕWe
l,k (r) = cl,k I kϕl(r), r ≥ 0, k = 0, 1, . . . , (3)

where the constant cl,k is such that ϕWe
l,k (0) = 1, and where

Iϕ(r) =
∞

∫

r

t ϕ(t) dt, r ≥ 0, (4)

I kϕ = I
(

I k−1ϕ
)

, k ≥ 1. (5)

Then, ϕWe
l,k is a member of Φ3 if, and only if, l ≥ k + 2.

Moreover, there exists a real polynomial pl,k of degree k
such that

ϕWe
l,k (r) = (1 − r)l+k+ pl,k(r), (6)

so ϕWe
l,k is smooth, 2k differentiable at zero, possesses k+l−1

continuous derivatives around one and has compact support
[0; 1]. From Eqs. (3) and (4), we can deduce that Wendland’s
functions satisfy the following properties:

∂ϕWe
l,k

∂r
(0) = 0,

∂ϕWe
l,k

∂r
(1) = 0, ∀l ≥ 1, ∀k ≥ 1, (7)

ϕWe
l,k ≥ 0, ∀l ≥ 0, ∀k ≥ 0. (8)
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Fig. 1 Examples of Wendland’s CSRCFs

Below, I list ϕWe
l,k (·, c) ≡ ϕWe

l,k (./c) functions of Φ3 for k =
1, 2, 3; for examples, functions corresponding to l = k + 2
with c = 100 km are depicted in Fig. 1.

ϕWe
3,1(r, c)=

(

1− r

c

)4

+

(

1 + 4
r

c

)

, (9)

ϕWe
4,1(r, c)=

(

1− r

c

)5

+

(

1 + 5
r

c

)

, (10)

ϕWe
4,2(r, c)=

(

1− r

c

)6

+

[

1 + 6
r

c
+ 35

3

(r

c

)2
]

, (11)

ϕWe
5,2(r, c)=

(

1− r

c

)7

+

[

1 + 7
r

c
+ 16

(r

c

)2
]

, (12)

ϕWe
5,3(r, c)=

(

1− r

c

)8

+

[

1+8
r

c
+25

(r

c

)2+32
(r

c

)3
]

. (13)

From Eqs. (6) and (7), the curvature parameter ξWe
l,k of the

Wendland’s function ϕWe
l,k is given by

ξWe
l,k = −

(

LWe
l,k

c

)2
[

(l + k − 1)(l + k)pl,k(0)

−2(l + k)p′
l,k(0) + p′′

l,k(0)
]

. (14)

Furthermore, since the real polynomial pl,k of degree k satisfy

pl,k(0) = 1, p′
l,k(0) = l + k, (15)

the curvature parameter expression simplifies to

ξWe
l,k =

(

LWe
l,k

c

)2
[

(l + k + 1)(l + k) + p′′
l,k(0)

]

, (16)

where the correlation length LWe
l,k of all the previously lis-

ted functions is between c/4 and c/3. For more details on
these functions, we refer to Wendland (1995) and Wendland
(1998).
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Fig. 2 Examples of Wu’s CSRCFs

2.2 CSRCFs from Wu

The construction of the CSRCFs due to Wu (1995) starts with

fl(r) =
(

1 − r2
)l

+ , l ≥ 0, (17)

then takes univariate derivatives of convolutions

ϕWu
l,k =cl,k Dk ( fl ∗ fl) (r)≡cl,k DkϕWu

l,0 , 0≤k ≤ l, (18)

for D = − 1
r

d
dr

and where the constant cl,k is such that

ϕWu
l,k (0) = 1. It is straightforward to show that ϕWu

l,k belongs
to Φ3 for k ≥ 1 and possesses 2(l −k) derivatives. Moreover,
there exists a unique real polynomial q2l−k of degree 2l − k
such that

ϕWu
l,k (r) = (1 − r)2l−k+1+ q2l−k(r). (19)

Based on Eqs. (17) and (18), it is easy to show that:

∂ϕWu
l,k

∂r
(0) = 0, (20)

∂ϕWu
l,k

∂r
(1) = 0, ∀l ≥ k + 1, (21)

ϕWu
l,k ≥ 0, ∀l ≥ 0, ∀k ≥ 0, (22)

ϕWu
l,k ∈ C2(l−k) around 0, ϕWu

l,k ∈ C2l−k around 1. (23)

The following equations give explicit formulae of Wu’s
(1995) functions ϕWu

l,k (·, c) ≡ ϕWu
l,k (·/c) (k = 1, 2) which can

be visualized for arbitrary values of k = 1 and c = 100 km
in Fig. 2.
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ϕWu
1,1 (r, c)=

(

1 − r

c

)2

+

(

1 + 1

2

r

c

)

, (24)

ϕWu
2,1 (r, c)=

(

1 − r

c

)4

+

[

1 + 4
r

c
+ 3

(r

c

)2 + 3

4

(r

c

)3
]

,(25)

ϕWu
2,2 (r, c)=

(

1 − r

c

)3

+

[

1 + 9

8

r

c
+ 3

8

(r

c

)2
]

, (26)

ϕWu
3,1 (r, c)=

(

1 − r

c

)6

+

[

1+6
r

c
+ 82

6

(r

c

)2 + 12
(r

c

)3

+ 5
(r

c

)4 + 5

6

(r

c

)5
]

, (27)

ϕWu
3,2 (r, c)=

(

1 − r

c

)5

+

×
[

1 + 5
r

c
+ 6

(r

c

)2+ 25

8

(r

c

)3 + 5

8

(r

c

)4
]

.

(28)

From Eqs. (19) and (20), and as the polynomial q2l−k of
degree 2l −k satisfies q2l−k(0) = 1, the curvature parameter
of ϕWu

l,k is expressed by

ξWu
l,k = −

(

LWu
l,k

c

)2
[

(2l − k + 1)(2l − k)

−2(2l − k + 1)p′
2l−k(0) + p′′

2l−k(0)
]

(29)

where the correlation length LWu
l,k for (l, k) ∈ {(1, 1), (2, 1)}

is between c/3 and c/2 whereas it is between c/4 and c/3
for (l, k) ∈ {(2, 2), (3, 1), (3, 2)}.

To conclude on Wu’s functions, Wendland (1995) shown
that these functions are connected with the so-called Euclid’s
Hat X2l+1 by ϕWu

l,k (r)
.= I lk X2l+1(r) with theoperator I

as defined by Eq. (4) and where
.= means equality up to

a constant.

2.3 CSRCFs from Buhmann

If δ, ρ, λ and α are reals such that

0 < δ < 0.5, ρ ≥ 1, λ > 0, −1 < α ≤ 1

2
(λ − 1), (30)

then, from Buhmann (2000), the radial function

ϕBu
α,δ,ρ,λ(r) =

∞
∫

0

(

1 − r2

β

)λ

+

(

1 − βδ
)ρ

+ βα dβ (31)

is a member of Φ3. Furthermore, ϕBu
α,δ,ρ,λ is at least 1 +

�2α� times continuously differentiable. Here, �·� denotes the
largest integer not exceeding x . Moreover, from Eq. (31), it
is easy to show that Buhmann’s functions satisfy

∂ϕBu
α,δ,ρ,λ

∂r
(0) = 0,

∂ϕBu
α,δ,ρ,λ

∂r
(1) = 0, ϕBu

α,δ,ρ,λ ≥ 0, (32)
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Fig. 3 Examples of Buhmann’s and Gaspari and Cohn’s CSRCFs

for all α, δ, ρ, λ satisfying (30). For α = δ = 0.5, ρ = 1 and
λ = 2, from (31), we get the radial function

ϕBu
1/2,1/2,1,2(r, c) ≡ ϕBu

1/2,1/2,1,2(r/c) (33)

=
[

12
(r

c

)4
log

(r

c

)

− 21
(r

c

)4
(34)

+ 32
(r

c

)3 − 12
(r

c

)2 + 1

]

(

1 − r

c

)

+
which is twice continuously differentiable and illustrated by
Fig. 3 for c = 100 km. Buhmann (2000) shows that both
Wendland’s and Wu’s functions admit a convolution repre-
sentation of Eq. (31) for suitable α, δ, ρ and λ. Finally, after
straighforward computations,

ξBu
1/2,1/2,1,2 = 24

(

LBu
1/2,1/2,1,2

c

)2

(35)

with c
4 ≤ LBu

1/2,1/2,1,2 ≤ c
3 .

2.4 CSRCFs from Gaspari and Cohn

In the framework of meteorlogical data assimilation, Gaspari
and Cohn (1999) constructed some CSRCFs to approximate
the first three autoregressive functions, covariance functions
also known as the Gaussian (36), second-order (37) and third-
order (38) Markov models (Jordan 1972), respectively:

ϕGauss(r, D) = exp

(

− r2

2D2

)

, (36)

ϕMark2(r, D) = e− r
D

(

1 + r

D

)

, (37)

ϕMark3(r, D) = e− r
D

(

1 + r

D
+ r2

3D2

)

. (38)

By self-convolution of compactly supported functions
Bi (r, a, c) (i = 1, 2, 3) of length-scale a and support [0; c],
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Gaspari and Cohn obtained three families of CSRBFs ϕGC
i :

ϕGC
i (r, a, c) = (Bi ∗ Bi ) , (r, a, c). i = 1, 2, 3, (39)

with support [0; 2c]. Specially, for

B1(r, a, c) =

⎧

⎪

⎨

⎪

⎩

2(a − 1) r
c + 1 for 0 ≤ r ≤ c/2,

2a(1 − r
c ) for c/2 ≤ r ≤ c,

0 for r ≥ c,

(40)

Eq. (39) yields the fifth-order polynomial piecewise rational
function

ϕGC
1 (r, a, c)=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

p1(r, a) for 0≤r ≤c/2,

p2(r, a)+d2(a)
( c

r

)

for c/2≤r ≤c,

p3(r, a)+d3(a)
( c

r

)

for c≤r ≤3/2c,

p4(r, a)+d4(a)
( c

r

)

for 3/2c≤r ≤2c,

0 for r ≥2c,

(41)

with

pi (r, a) =
5

∑

l=0

bi,l(a)
(r

c

)l
(1 ≤ i ≤ 4), (42)

and where

b1,5(a) = −16
(

3 − 8a + 7a2
)

/3,

b1,4(a) = +16
(

1 − 2a + 2a2
)

,

b1,3(a) = +10
(

1 − 4a + 8a2
)

,

b1,2(a) = −40
(

1 − 2a + 8a2
)

, /3

b1,1(a) = 0,

b1,0(a) = 2 + 6a + 44a2,

b2,5(a) = +16
(

3 − 6a + 5a2
)

/3,

b2,4(a) = −8
(

2 − 10a + 8a2
)

,

b2,3(a) = +10,

b2,2(a) = +20
(

2 − 22a + 20a2
)

/3,

b2,1(a) = −5
(

4 − 26a + 36a2
)

,

b2,0(a) = 8 − 35a + 102a2,

b3,5(a) = +16a (2 − 3a) /3,

b3,4(a) = −16a (3 − 4a) , (43)

b3,3(a) = +40a (1 − a) ,

b3,2(a) = +40a (9 − 10a) /3,

b3,1(a) = −10a (27 − 22a) ,

b3,0(a) = a(189 − 122a),

b4,5(a) = +16a2/3,

b4,4(a) = −32a2,
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Fig. 4 Examples of Gaspari and Cohn’s CSRCFs

b4,3(a) = +40a2,

b4,2(a) = +320a2/3,

b4,1(a) = −320a2,

b4,0(a) = +256a2,

d2(a) =
(

−4 + 29a − 42a2
)

/6,

d3(a) = −a(243 − 230a)/6,

d4(a) = −128a2/3.

Observe that from the definition of B0, the length-scale para-
meter a can get negative values. Furthermore, for some nega-
tive values of a, notice that ϕGC

1 (r, a, c) can be negative (cf.
Fig. 4). For a = 0 or a = 1/2, note that B0 is a triangular
function so expression of ϕGC

1 (r, a, c) simplifies considera-
bly. As stated in Gaspari et al. (2006), these functions have
two continuous derivatives at the origin and approximate the
first-order autoregressive function. Moreover, it is straight-
forward to show that

∂ϕGC
1

∂r
(0, a, c) = 0 ∀a,∀c. (44)

To approximate the second-order Markov model (Eq. 37),
Gaspari and Cohn proceeded to the convolution of

B2(r, a, c)=

⎧

⎪

⎨

⎪

⎩

√

a
(

1−e− 2c
a

)
−1

e− r
a for 0≤r ≤c,

0 for r ≥ c,

(45)

to get

ϕGC
2 (r, a, c) = α

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

ϕMark2(r, a)−e
r−2c

a

)

for 0≤r ≤c,
1
a (2c − r)e

−r
a for c≤r ≤2c,

0 for r ≥ 2c

(46)
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with α = 1/
(

1 − e
−2c

a

)

. The functions ϕGC
2 (r, a, c) are non-

differentiable at the origin, are always non-negative and tend
to the second-order Markov function as c tends to infinity.
Figure 3 shows ϕGC

2 (r, a, c) for arbitrary values of a = 1/2
and c = 50 km. Finally, setting

B3(r, a, c) =
{

e− r
a for 0 ≤ r ≤ c

0 for r ≥ c
(47)

in Eq. (39) and performing the integration leads to the family

ϕGC
3 (r, a, c) = 1

f0(a, c)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

f0(a, c) for r = 0,

f1(r, a, c) for 0 < r ≤ c,

f2(r, a, c) for c ≤ r ≤ 2c,

0 for r ≥ 2c

(48)

with

f0(a, c)=a2 −
[

a2 + 2c(c + a)
]

e− 2c
a (49)

f1(r, a, c)= r2 + 3ar + 3a2

3
e− r

a + 2a(c + a)2

r
e− 2c

a

−
[

2a(c + a)2

r
− 2ac − a2

]

e
r−2c

a (50)

f2(r, a, c)= 2

r

[

r(r + a)(2c − r)

2
+ (r − c)3 − c3

3

−a(c + a)(r − c + a)+a(c + a)2e
r−2c

a

]

e− r
a .

(51)

The third-order autoregressive model (Eq. (38)) is obtained
by taking the limit of ϕGC

3 (r, a, c) as c tends to infinity. While
ϕMark3 is four times continuously differentiable, the com-
pactly supported functionϕGC

3 is not even once differentiable
at r = 0. Moreover, note that any element of this class of
CSRCFs is always non-negative; Fig. 3 provides illustrations
of examples of such finite covariance functions for arbitrary
values of parameters a and c.

3 Computational experiments

This section performs several simulations to study the per-
formance of the CSRCFs presented in Sect. 2.

3.1 Comparisons with the Gaussian, second-
and third-order Markov models

These numerical tests begin by analysing the performances of
the CSRCFs of Sect. 2 to approximate three of the most popu-
lar planar covariance models: the Gaussian (Eq. (36)), the
second-order Markov (Eq. (37)) and the third-order Markov
(Eq. (38)) models.

To determine the finite covariance functions parameters
(a, c), three strategies have been investigated:

1. The first method consists in finding the model parame-
ters which minimize the sum of the absolute value of
the missfits (difference between the full and finite cova-
riance models) up to the correlation length, i.e.

min
∑

1≤i≤�Lfull�+1

|ϕfull(i) − ϕfinite(i)|, (52)

where subscripts f ull and f ini te stand for full and
finite covariance models, respectively.

2. With the second strategy, I seek local covariance func-
tions with correlation length equal to the correlation
length of the full covariance model.

3. The third method look for the CSRCF with same curva-
ture parameter ξ as the global covariance model to be
approximated.

Whereas the first two strategies have an unique solution for
each CSRCF model, the third method can give either more
than one solution set or no CSRCF with the same curvature
parameter as the full covariance model. Therefore, this last
method has been forsaken.

Moreover, since Gaspari and Cohn’s finite covariance
functions of Eqs. (46) and (48) tend to the second-order and
third-order Markov models, respectively, as c → ∞, these
strategies for the estimation of the CSRCFs parameters led
to finite functions with longest supports. Therefore, for com-
parison purposes, three values for the supports of Gaspari
and Cohn’s CSRCFS of Eqs. (46) and (48) are used. The first
two values have been chosen to be representatives of all the
supports estimated for the Wendland’s, Wu’s and Buhmann’s
functions. The last value, which is the largest, corresponds to
Gaspari and Cohn’s functions with correlation length equal to
the full covariance function’s correlation-length with a drop
tolerance of 0.01 km.

Figure 5 (resp. 6 and 7) illustrates that the Gaussian (resp.
second-order and third-order Markov) model can be very
closely approximated by the compactly supported functions
from Wendland, Wu, Buhmann, and Gaspari and Cohn. In
these figures as well as in Table 1 which shows corresponding
CSRCFs parameters and approximation errors, for each finite
function family, I only present the function giving the best fit
of the globally supported model. In Table 1,


1 =
∑

0≤i≤�Lfull�+1

|ϕfull(i) − ϕfinite(i)|, (53)


2 =
∑

0≤r≤�5001

|ϕfull(i) − ϕfinite(i)|. (54)
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Fig. 5 Comparisons of CSRCFs of Eqs. (13), (27), (33) and (41) with the Gaussian model
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Fig. 6 Comparisons of CSRCFs of Eqs. (10), (28), (33) and (46) with the second-order Markov model
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Fig. 7 Comparisons of CSRCFs of Eqs. (10), (28), (33) and (48) with the third-order Markov model
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Table 1 Comparison between locally supported approximations of glo-
bal covariance models

Model Strategy c Lcor Error

# (km) (km) 
1 
2

Gaussian (D = 825 km) – – 971.4 – –

Wendland 53 1 3851 972.3 0.33 7.50

Wendland 53 2 3847 971.4 0.44 8.12

Wu 31 1 3151 968.8 0.26 23.25

Wu 31 2 3159 971.4 0.72 21.90

Buhmann 1 3382 1009.5 8.46 59.99

Buhmann 2 3254 971.4 13.47 36.23

G&C 1 (a = 0.25) 1 3196 983.4 3.24 13.24

G&C 1 (a = 0.25) 2 3156 971.4 4.80 13.39

Markov 2 (D = 250 km) – – 419.6 – –

Wendland 41 1 1526 403.6 3.38 68.17

Wendland 41 2 1587 419.6 5.77 58.11

Wu 32 1 1271 396.7 5.46 89.94

Wu 32 2 1344 419.6 8.88 76.76

Buhmann 1 1351 403.3 3.33 71.72

Buhmann 2 1406 419.6 5.77 61.61

G&C 2 – 1270 398.0 4.76 73.10

G&C 2 – 1590 413.1 1.32 39.93

G&C 2 – 3000 419.6 0.00 2.47

Markov 3 (D = 400 km) – – 932.1 – –

Wendland 41 1 3507 927.4 1.09 65.00

Wendland 41 2 3525 932.1 1.64 61.83

Wu 32 1 2905 906.6 3.88 117.07

Wu 32 2 2987 932.1 7.86 102.16

Buhmann 1 3106 927.1 1.24 73.14

Buhmann 2 3123 932.1 1.81 69.78

G&C 3 – 3000 872.6 16.43 130.55

G&C 3 – 3600 910.7 5.36 67.85

G&C 3 – 7000 932.1 0.01 1.66

Note that by definition the first method to estimate the
CSRCFs parameters minimizes 
1 whereas smallest values
of 
2 are obtained with the second estimation strategy.
Therefore, these first numerical experiences demonstrate that
the Gaussian, second-order and third-order Markov models
can be accurately approximated by at least one of the CSRCFs
of Sect. 2. Note that all of these CSRCFs have simple ana-
lytical expressions and provide a large set of quite different
functions depending on its parameters. Moreover, observe
that the first and second strategy to estimate these parame-
ters give similar results but should be avoided for the second
(Eq. (46)) and third (Eq. (48)) Gaspari and Cohn’s functions.
For these two later finite covariance functions, an alternative
to the method used to estimate the third parameters sets could
be to compute a and c such that the maximum of the missfit

Table 2 Statistics on de-trended free air gravity anomaliies in the
Azores Islands

Number Min Max Mean Std
of points (mGal) (mGal) (mGal) (mGal)

2,601 −55.57 63.66 0.10 11.96

5,776 −56.24 66.39 0.02 13.07

10,201 −56.68 66.39 0.02 13.47

with either the global model or the empirical covariances be
equal to a prescribed value.

3.2 Interpolation of free air gravity anomalies

The performance of the CSRCFs is assessed using simulated
data from the global marine gravity field KMS02 (Andersen
et al. 2004). Free-air gravity anomalies have been computed
for the area situated near the Azores Islands with the coor-
dinate centre (ϕc, λc) at a Northern latitude of 42◦ and a
Western longitude of 30◦. The size of the area is 4◦-by-4◦
(see Fig. 8).

From the KMS02 grid of resolution 2′-by-2′, I randomly
formed three sets of 2,601, 5,776 and 10,201 observation
points, respectively. After removing a fifth order polyno-
mial trend from the data (Fig. 9; Table 2) to get a Gaussian
data distribution, an empirical covariance function of the
de-trended residuals was computed and modelled by two ana-
lytical models: one with an infinite support: Gaussian model
(36) for D = 10 km, and one with a finite support: Gaspari
and Cohn model (41) for a = 0 km and c = 35 km (see
Fig. 10). These covariance model parameters have been esti-
mated by the first strategy of Sect. 3.1, i.e. to give the best
fit of the empirical covariances up to its correlation length.
All the CSRCFs presented in this paper have been tested
to approximate the empirical covariances. The Gaspari and
Cohn model (41) has been selcted as it was the model which
gave the smallest missfit to both the empirical covariances
and the Gaussian model.

Assuming an uncorrelated noise with standard deviation
representing 0–1–5% of the signal variance, I predicted free-
air gravity anomalies on a regular grid with both the globally
(Gaussian) and locally (Gaspari and Cohn) supported cova-
riance functions. The number of prediction points is equal
to the number of observations, so is equal to 512 = 2,601,
762 = 5,776 and 1012 = 10,201, respectively. Thus, for
each subset and each regularization value α, I first computed
gravity anomalies vector with the Gaussian covariance model
and then compared it with the corresponding vectors from
the finite covariance function of Gaspari and Cohn (41). As
seen from Fig. 9, free air gravity anomalies interpolated from
locally and globally supported covariance models are almost
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Fig. 8 KMS02 free-air gravity anomaly field from 10,201 observation points (top: original; bottom: de-trended)

Fig. 9 Left: prediction of free-air gravity anomalies with Gaussian model. Right: difference between predictions with Gaussian and Gaspari and
Cohn (41) models and without regularization

identical and largest differences are observed in area with
few observations. Moreover, from Table 3, we notice that the
differences between the full and sparse solutions decrease
with both increasing observation points number and increa-
sing regularization value. Observe that covariance matrices

associated with the finite function require around one fortieth
of the full system storage space. Furthermore, histograms
(see Fig. 11 as example) indicate that more than 70% (resp.
90%) of the differences between the full and finite predictions
are less than 0.25 mGal (resp. 0.5 mGal).
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Table 3 Results of free-air gravity anomalies mGal predicted with full
(Gaussian) and finite (Gaspari and Cohn) covariance functions

Number Noise Full Finite Full
of points (%) (Gaussian) (G&C 1) - Finite

2,601

0

min −51.06 −50.64 −3.82

Max 60.44 62.46 5.30

Mean 0.04 0.03 0.01

Std 13.74 13.67 0.79

1

min −50.80 −50.75 −2.90

Max 61.15 62.07 3.87

Mean 0.04 0.03 0.04

Std 13.60 13.56 0.53

5

min −50.18 −49.88 −1.55

Max 60.15 61.00 2.71

Mean 0.04 0.03 0.01

Std 13.28 13.28 0.26

Nonzero % 100 2.42 –

5,776

0

min −54.81 −54.95 −3.26

Max 65.88 66.43 2.66

Mean 0.00 0.01 −0.01

Std 13.82 13.80 0.37

1

min −54.66 −55.11 −2.61

Max 65.58 66.27 2.25

Mean 0.00 0.01 −0.01

Std 13.78 13.76 0.35

5

min −54.23 −54.99 −1.75

Max 65.79 66.29 1.60

Mean 0.01 0.02 −0.01

Std 13.66 13.64 0.32

Nonzero % 100 2.39 –

10,201

0

min −56.26 −56.22 −2.83

Max 65.87 66.34 2.09

Mean 0.00 0.01 0.00

Std 13.82 13.82 0.21

1

min −56.00 −56.11 −2.29

Max 65.61 66.29 2.22

Mean 0.01 0.01 0.00

Std 13.80 13.80 0.25

5

min −55.62 −55.75 −1.83

Max 66.00 66.63 1.85

Mean 0.01 0.02 −0.01

Std 13.74 13.73 0.29

Nonzero % 100 2.40 –

As stated in the Introduction, the main advantage of the
solution with a finite covariance function is the sparseness
of the covariance matrix. A key point is that the Cholseky
factor of the sparse matrix will also be sparse. In fact, if
the sparse covariance matrix is properly ordered, then its
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Fig. 10 Normalized covariance functions of free-air gravity anomalies
in Azores Islands

Fig. 11 Differences between 10,201 free-air gravity anomalies pre-
diected with the Gaussian and Gaspari and Cohn model without regu-
larization

Cholesky factor is sparse while the inverse of the sparse
covariance matrix is not necessarily sparse. To increase the
efficiency in terms of memory and CPU time of using sparse
covariance matrices (i.e. locally supported covariance func-
tions), one has to order the covariance matrix so it and its
Cholesky factor have the smallest number of nonzero entries.
Three commonly used techniques of ordering are natural
ordering, the reverse Cuthill–McKee algorithm (Cuthill and
McKee 1969) and the minimum degree reordering algorithm
(George and Liu 1989). The matrix structures after reordering
are plotted in the first column of Fig. 12, while the pattern of
the nonzero entries of the corresponding Cholesky factors are
depicted by the second column of Fig. 12. These matrices cor-
respond to the matrices associated with the 10,201 KMS02
observation points.

The natural ordering is the simpliest and easiest way
to build the covariance matrix. It consists in numbering the
observation points from the bottom-left corner to the top-right
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Fig. 12 Influence of ordering on structure of normal matrices (left) and corresponding Cholesky factors (right). The first row is for a natural
numbering, the second row is after a reverse Cuthill-McKee reordering, the last after a minimum-degree reordering
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corner, i.e. by ascending latitude and ascending longitude.
Therefore, this ordering scheme is particularly adapted to
gridded data points. However, it produces a covariance matrix
with the biggest bandwidth when compared with two others
ordering techniques. Moreover, this band contains a non-
negligible number of zeros. The reverse Cuthill–McKee algo-
rithm produces a matrix with a narrow bandwidth and
generally makes nonzero elements display along the main
diagonal. The minimum degree procedure produces a struc-
ture with large blocks of continuous zeros, as shown in the
third row of Fig. 12. Note that the Cholesky factor has at least
the same nonzeros as the lower triangular part of the cova-
riance matrix, but usually some new nonzero entries arise
in the Cholesky factor. This new nonzero elements are fill-
in elements. To reduce the amount of fill-in elements, the
most popular solution consists to replace the estimation of
the exact or complete Cholesky decomposition by the compu-
tation of an incomplete factorization of the covariance matrix
(George and Liu 1981; Saad 1996). For more details on orde-
ring strategies to reduce fill-in in Cholesky factorization of
geodetic covariance matrices, see Jonge de (1992).

4 Conclusions and discussion

In this study, I have demonstrated that compactly supported
radial covariance functions from Wendland, Wu, Buhmann
and Gaspari and Cohn (see Sect. 2) with simple analytical
expressions can accurately approximate three of the most
well-known planar covariance models: the Gaussian, second-
order and third-order Markov functions (cf. Sect. 3.1). Then,
interpolations of KMS02 free-air gravity anomalies by both
global (Gaussian) and local (Gaspari and Cohn) covariance
functions have shown the capability of CSRCFs to be suc-
cessfully (in terms of both prediction differences and memory
savings) substituted to globally supported covariance models.
Furthermore, these numerical experiments (see Sect. 3.2)
have also pointed out that differences between predictions
with global and local models decrease with increasing the
number of observation points as well as with increasing the
magnitude of the regularization term.

However, such good results strongly depend on the
CSRCFs parameterization as well as on the ordering scheme
of the sparse covariance matrix. Moreover, note that this
strategy can only be applied if the empirical or global model
covariances are negligible with respect to the variance beyond
a fixed distance. To be effective, sparse linear solvers should
not be used with matrices for which the number of non-
zero elements exceeds 3%. For practical purposes, I recom-
mend to estimate the CSRCFs parameters in order to get
the locally supported covariance function which has its
correlation-length equal to the correlation-length of either
the empirical or the global model covariances.

Therefore, the use of CSRCFs makes a variety of applica-
tions that were previously impractical with globally suppor-
ted covariance functions on personal computers. Meanwhile,
further testing is required before we can defintely status on
the goodness of this method in geodesy. Until know, finite
covariance functions have only been tested in the framework
of interpolation problems with homogeneous data (i.e. data
associated with the same functional of the anomaly gravity
field). Thus, in a forthcoming paper, following the approach
of Weber and Talkner (1993), I will begin by extending these
CSRCFs to the spherical case, compare its performances with
the globally supported spherical models from Tscherning and
Rapp (1974) as well as with existing finite covariance func-
tions from Sansò and Schuh (1987) and Moreaux (2001),
and then address its use with heterogeneous data. Based on
the idea from Arabelos and Tscherning (1999), in this next
paper, finite covariance functions will also be used to approxi-
mate not only the signal but also the error covariance matrix.
Finally, this strategy should also be compared with other
techniques such as optimal interpolation, sampling methods
(Achlioptas et al. 2002) and multizone decomposition
(Fieguth et al. 1995) which enable to deal with large datasets
on standard computers.
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