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Abstract This study emphasizes that the harmonic
downward continuation of an external representation
of the Earth’s gravity potential to sea level through
the topographic masses implies a topographic bias. It is
shown that the bias is only dependent on the topographic
density along the geocentric radius at the computation
point. The bias corresponds to the combined
topographic geoid effect, i.e., the sum of the direct and
indirect topographic effects. For a laterally variable
topographic density function, the combined geoid effect
is proportional to terms of powers two and three of the
topographic height, while all higher order terms vanish.
The result is useful in geoid determination by analytical
continuation, e.g., from an Earth gravity model, Stokes’s
formula or a combination thereof.

Keywords Analytical continuation · Downward
continuation · Stokes’s formula · Topographic effects

1 Introduction

Physical geodesy primarily deals with the external grav-
ity field of the Earth, implying that the gravitational
potential and acceleration are harmonic functions down
to the surface of the Earth (if we disregard the mass
of the atmosphere). However, a main goal of physical
geodesy is to determine the geoid from gravity-related
observables on and/or outside the Earth’s surface. As
the geoid is roughly related with the undisturbed sea
level and its continuation inside the continents, the
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harmonic or analytical downward continuation of the
external harmonic observables of gravity to the geoid
will be biased in continental areas.

Analytical continuation could be used as a tool
to determine the quasi-geoid (Bjerhammar 1962;
Heiskanen and Moritz 1967, Sect. 8.10), but if the same
procedure is used to estimate the geoid inside the topog-
raphy, the estimator will experience the topographic
bias. By analytical continuation, we mean a mathemati-
cal process (calculation) that extends the operation valid
on and above the Earth’s surface to points within or
below the topographic masses. The harmonic downward
continuation thus treats the potential of the Earth as if
it were harmonic also inside the topographic masses,
which obviously is in error and leads to the topographic
bias. This means that there is no topographic bias for
the downward continuation to any point located at the
Earth’s surface or even in a narrow drill hole.

We will not address the possible error committed
by the specific method used for the analytical contin-
uation. (Examples of such methods are Taylor expan-
sion, solid spherical harmonic expansion and solving
Poisson’s integral equation.) In other words, we will
assume that the downward continuation of the poten-
tial by a harmonic function is achieved without error,
or at least without significant error. This assumption is
justified, e.g., by the approximation theorems of Runge
(Krarup 1969) and Keldysh–Lavrentieff (Landkof 1972,
p. 341; Bjerhammar 1974). The fictitious potential field
so obtained, being harmonic also within the topographic
masses, experiences the above topographic bias. In prac-
tice, however, there will usually be an additional error
related with the method chosen for downward contin-
uation. This error/bias is thus not part of the present
study.
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Sjöberg (1977) showed that the topographic bias at
sea level of an external type series of solid spherical har-
monics of the geopotential can be expressed as a vol-
ume integral over the topographic masses, which can be
approximated by a power series of topographic height.
This study included also numerical estimates of errors
of the low-degree spherical harmonic coefficients (com-
plete to degree and order 16) of the external poten-
tial series when applied at sea level; also see Martinec
(1998). Later, Sjöberg (1996a,b, 2000, 2001) and Ågren
(2004) showed that this bias can also be expressed as the
negative sum of the downward-continued direct topo-
graphic effect on the geoid and the (primary) indirect
topographic effect.

However, when using this type of spherical harmonic
representation of a power series of topographic eleva-
tion, the solution becomes an unstable asymptotic series,
whose convergence or divergence with an increasing
degree of the spherical harmonic expansion is an open
question (see Ågren 2004). Although the standard pro-
cedure to determine the geoid by Stokes’s formula is to
remove the effect of the topography from surface grav-
ity prior to Stokes’s integration and to apply the indirect
effect afterwards, the topographic bias seen as the neg-
ative sum of the direct and indirect effects is closely
related with such methods. Finally, the method of apply-
ing Stokes’s formula with additive corrections of Sjöberg
(2003a) relies directly on the topographic bias as being
the negative of the combined topographic effect.

The goal of the present study is to derive the topo-
graphic bias with clarity. This will be described in two
steps: first, we derive the biases for the Bouguer shell and
a symmetric cap of finite height on the sphere. Then, we
will present the general solution. Similar to our general
solution, Wang (1990) divided the topographic bias into
the contributions from a Bouguer shell and a residual
terrain model. However, the downward continuation of
the residual topographic potential by a Taylor series, as
used by Wang (1990), is not very fruitful, as the truncated
series also contains a truncation error, which cannot be
separated from the possible topographic bias (cf. the
approach by spherical harmonics above). The solution
presented here will not suffer from such a problem.

2 The topographic bias for the Bouguer shell and the
symmetric cap

Let us first consider a Bouguer shell with constant mass-
density ρ, of internal radius R and external radius rs =
R + H = constant with respect to the geocenter. H =
rs − R is the topographic height. Then, the potential of
the shell at any point P of geocentric radius rP can be

written as

VB
P = 2πµ

rs∫

r=R

π∫

ψ=0

2π∫

α=0

dα sinψdψ
lP

r2 dr

= 2πµ
rP

rs∫

R

(r + rP − |r − rP|)r dr (1)

= 2πµ

{ 2
3rP

(
r3

s − R3) if rP ≥ rs

r2
s − 2R3

3rP
− r2

P
3 if R ≤ rP < rs

,

where lP =
√

r2
P + r2 − 2rPr cosψ , (r,ψ ,α)= (radius, geo-

centric angle, azimuth) are spherical coordinates, and
µ = Gρ, with G being the gravitational constant.

If we continue the external potential (i.e., the solution
for rP ≥ rs) to sea level with radius rP = R, we obtain
(

VB
P

)∗ = C/R, (2a)

where

C = 4πµ
(

r3
s − R3

)
/3, (2b)

and it differs from the internal (correct) potential at sea
level

VB
g = 2πµ(r2

s − R2) (3)

by the bias

VB
bias =

(
VB

P

)∗ − VB
g = 2πµ

(
H2 + 2

3
H3

R2

)
. (4)

It can be seen from Eq. (1) that the bias is caused by
the term |rP − r| under the integral, and this term causes
discontinuities at the Earth’s surface of the radial deriv-
atives of the topographic potential.

It should be noted that the downward-continued
potential of the Bouguer shell in Eq. (2a) can be cor-
rectly determined by a Taylor expansion of the external
potential at the point P with rP ≥ rs. This is so, because
the series becomes
(

VB
P

)∗ =
∞∑

k=0

(−HP)
k

k!

(
∂kVB

P

∂rk
P

)
, (5)

where HP = rP − R, and by inserting VB
P for rP ≥ rs

from Eq. (1), we arrive at

(
VB

P

)∗ = C
rP

∞∑
k=0

(
HP

rP

)k

= C
rP − HP

= C
R

, (6)

which agrees with Eq. (2a).
We now turn to the case with a homogeneous cap of

height H = rs − R = constant, of constant mass-density
and geocentric angle ψ0 on top of the sphere of radius
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R, yielding the potential Vc
P at any point P of radius rP

along its axis:

Vc
P =2πµ

ψ0∫

0

rs∫

R

r2dr sinψdψ
lP

= 2πµ
rP

rs∫

R

(lP0−|rP−r|)r dr,

(7)

where lP0 =
√

r2
P + r2 − 2rPr cosψ0. This potential has

the following solutions in the exterior space and at the
sphere of radius R:

Vc
P = 2πµ

rP

(
I(rP)− rP

r2
s − R2

2
+ r3

s − R3

3

)
if rP ≥ rs,

(8a)

and

Vc
g = 2πµ

(
I(R)

R
− H2

2
− H3

3R

)
if rP = R, (8b)

where

I(rP) =
rs∫

R

lP0r dr

=
[

l3P0

3
+ rPt0

{
r − rPt0

2
lP0 + r2

P

2

×
(

1 − t20
)

ln 2(r − rPt0 + lP0)
}]r=rP

r=R
(8c)

Again, similar to the case with the Bouguer shell, it is
only the term |rP − r| under the integral of Eq. (7) that
causes the bias in the downward continuation of the
external representation of the gravitational potential.
This implies that the downward-continued external type
solution of Eq. (8a) becomes for rP = R:

(
Vc

P

)∗ = 2πµ
(

I(R)
R

+ H2

2
+ H3

3R

)
, (9)

and the topographic bias becomes

Vc
bias = 2πµ

(
H2 + 2H3

3R

)
, (10)

which is exactly the same as for the Bouguer shell
Eq. (4).

To help in understanding why the shell and cap biases
are the same, consider that Vc

P can be written as

Vc
P = VB

P −
(

VB
P − Vc

P

)
(11)

As the potential VB
P − Vc

P is generated by a Bou-
guer shell with a conic hole of geocentric angle ψ0 with
respect to the radial axis through point P, it follows that
this potential has no topographic bias, i.e., the external
potential at P can be downward-continued unbiasedly

to the level rP = R. Hence, it follows that Vc
bias = VB

bias,
and it also follows that the bias is independent of the
choice of the geocentric angle ψ0 > 0 of the spherical
cap used.

3 The topographic bias in the general case

In the general case, we assume that the laterally vari-
able topographic density (times gravitational constant)
isµ = µ(�, r), where� = (θ , λ) and r, θ , λ are the spher-
ical coordinates (radius, co-latitude and longitude).
Then, the topographic potential at any point P can be
expressed as the Newton integral

Vt
P =

∫∫

σ

rs∫

R

µr2d r dσ√
r2

P + r2 − 2rPr cos ψ
, (12)

where rs = R+H, H = H(�) varies laterally (as doesµ),
and σ is the unit sphere. Based on Eq. (12), Proposition
1 follows.

Proposition 1 Let P0 denote a point at sea level (with
radius R) along the geocentric radius through an arbi-
trary point P. Then the topographic bias at P is given
by

Vt
bias = 4π

rQ∫

R

µP(r)
(

r2

R
− r

)
dr, (13)

where Q is the point at radius rQ = rs(�P) along the
geocentric radius through P, and µP(r) = µ(�P, r).

Proof Let us decompose Vt
P in the form

Vt
P = V̄B

P + δVt
P, (14a)

where

V̄B
P =

∫∫

σ

rQ∫

R

µP(r)r2 d r dσ√
r2

P + r2 − 2rPr cosψ

= 2π

rQ∫

R

µP(r)r2

π∫

0

sinψ dψ√
r2

P + r2 − 2rPr cosψ
dr (14b)

is the contribution from a Bouguer shell with a radial
symmetric density µP(r), and δVt

P is the residual
topographic potential generated by the remaining topo-
graphic masses. Equation (14b) can be further simplified
to

V̄B
P = 2π

rQ∫

R

µP(r)
rP

(rP + r − |rP − r|)r dr, (15)
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from which the external case solution becomes

V̄B
P = 4π

rP

rQ∫

R

µP(r)r2 dr, rP ≥ rQ, (16)

and for rP ≤ R(internal case), the solution becomes

V̄B
P = 4π

rQ∫

R

µP(r)r dr, rP ≤ R. (17)

Hence, the topographic bias at sea level with rP = R
becomes

Vt
bias =

(
V̄B

P

)∗ + (
δVt

P

)∗ − V̄B
rP=R − δVt

rP=R, (18)

and, as there are no topographic masses along the radial
axis at P after the removal of the Bouguer shell, it must
hold that
(
δVt

P

)∗ = δVt
rP=R. (19)

Hence, Eqs. (16), (17) and (19) inserted into Eq. (18)
yield Eq. (13) as postulated in the proposition. ��
Corollary 1 If the topographic density along radius vec-
tor at P is µP(r) = µP =constant, then the topographic
bias becomes

Vt
bias = 2πµP

(
H2 + 2H3

3R

)
, (20)

where H is the topographic height at the computation
point. This result follows directly from the proposition.

Corollary 2 The topographic bias at any point P with
R ≤ rP < rQ becomes

(Vt
rP
)bias = 4π

rQ∫

rP

µP(r)
(

r2

rP
− r

)
dr. (21)

In particular, for µP(r) = µP = constant, it follows that

(
Vt

P

)
bias = 2πµP

[
(�HP)

2 + 2(�HP)
3

3rP

]
, (22a)

where

�HP =
{

rQ − rP if rQ > rP
0 otherwise

. (22b)

The corollary follows directly from the proposition.

Note The important Eq. (19) can be seen as a result of
that, after the removal of the Bouguer shell, there is a
hole of infinitesimal width in the topography from the
surface down to sea level. Along this hole δVt

P obeys
Laplace’s equation, and Eq. (19) follows.

4 Implications in physical geodesy

As will be shown next, the topographic bias is of basic
importance in physical geodesy. Two applications will
be presented: geoid determination by an Earth gravity
model, and geoid determination by Stokes’s formula. In
both cases, the external type of harmonic representa-
tion of the geopotential or gravity anomaly needs to be
downward continued to the geoid.

4.1 Application to an Earth gravity model

In applying the external type representation of the geo-
potential to the continental geoid, the correction for the
topographic bias is the negative of Eq. (13). In the case of
a spherical harmonic Earth gravity model, the harmonic
representation of the external gravity field is truncated
at some upper degree and order nmax. Consequently, the
geoid correction δNt

P for the topographic bias in such a
satellite-derived spherical harmonic model of the geo-
potential will also be limited to the degree of truncation,
i.e.,

δNt
P =−2π

γ

nmax∑
n=2

n∑
m=−n

[(
µH2)

nm + 2
(
µH3)

nm

3R

]
Ynm(P),

(23)

where Ynm is the fully normalized spherical harmonic
function of degree n and order m with coefficients

(
µHν

)
nm = 1

4π

∫∫

σ

µHνYnm dσ , (24)

and γ is normal gravity on the reference ellipsoid. Again,
we have assumed that the topographic density (µ) is only
laterally variable.

Sjöberg (1977) computed the coefficients normalized
according to Rµ0H2

nm/(4πGM), where R is the mean
Earth radius, µ0 = Gρ0, ρ0= 2,670 kg/m3 is a constant
topographic density and GM is the geocentric gravita-
tional constant, to nmax = 16. Martinec (1998, Sect. 7.4)
computed the coefficients of Ynm of Eq. (23) for the con-
stant density ρ0 to degree and order 20. If the series goes
to infinity, the topographic geoid correction becomes

δNt
P = −2πµP

γ

(
H2 + 2H3

3R

)
, (25)

which agrees with Corollary 1. The magnitude of δNt
P

increases rapidly with topographic elevation. For Mt.
Everest it is of the order of −9 m.
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4.2 Application to Stokes’s formula

Stokes’s formula for geoid determination, extended with
possible zero- and first-degree harmonic terms of the
disturbing potential (T0 and T1), can be written (e.g.,
Sjöberg 2000)

N = T0

γ
+ T1

γ
+ R

4πγ

∫∫

σ

S(ψ)�g∗ dσ + δNt
comb, (26)

where δNt
comb (the combined topographic effect) is the

sum of the direct topographic effect and the (primary)
indirect effect on the geoid. The integral of
Eq. (26) is the original Stokes formula with the surface
gravity anomaly �g downward-continued to sea level
(denoted �g∗). This integral implies a biased represen-
tation of the geoid height due to the analytical continua-
tion of the gravity anomaly through the topography, and
the bias is compensated by the combined topographic
effect.

Using Bruns’s formula, we can thus postulate that
the combined topographic effect on the geoid height
becomes

δNt
comb = −Vt

bias

γ
. (27)

Equation (27) can be verified as follows. As the direct
topographic effect is the negative of Eq. (26) with T0 =
(Vt

P)0 = V̄B
P + (

δVt
P

)
0, T1 = (Vt

P)1 = (δVt
P)1, where the

subscripts denote degrees of harmonics, and (�g)∗ =(
�gt

)∗, this implies that Stokes’ integral for the direct
effect becomes

δNt
dir = −

(
Vt

P

)∗
0 + (

Vt
P

)∗
1

γ
− R

4πγ

∫∫

σ

S(ψ)
(
�gt)∗ dσ

= −
(
Vt

P

)∗

γ
= −

(
V̄B

P

)∗ + (
δVt

P

)∗

γ
, (28)

where the integral contributes with all harmonics from
degree 2 to infinity.

Here we have used the fact that r�gt (based on the
boundary condition of physical geodesy; Heiskanen and
Moritz (1967), Sect. 2.14) is harmonic exterior to the
topography and also when downward-continued (by an
harmonic operation) to sea level, and (�gt)∗ therefore
satisfies Stokes’s formula (in contrast to the real gravity
anomaly inside the topographic masses).

Considering Eq. (19), we obtain

δNt
dir = −

(
V̄B

P

)∗ + δVt
rP=R

γ
, (29)

and by adding the direct effect and indirect effect given
by

δNI =
Vt

rp=R

γ
= V̄B

rP=R
+ δVt

rP=R

γ
, (30)

we finally arrive at:

δNt
comb = δNt

dir + δNt
I = −(

V̄B
P

)∗ + V̄B
rP=R

γ
= −Vt

bias

γ
,

(31)

and we have thus proved Eq. (27)
In the past, Sjöberg (1977, 1996a,b, 2000, 2001) and

Ågren (2004) presented the combined topographic
geoid effect as a power series of topographic height with
the first two terms of this series represented by Eq. (20).
The present study proves that only these terms con-
tribute to the effect, while all higher power terms van-
ish. Importantly, only local topographic data is needed
to compute the effect. In other words, as suggested in
Sjöberg (2000, 2001), all other topographic contribu-
tions to the direct and indirect topographic effects can-
cel in the combined effect. This cancellation does not
completely occur when one considers only the masses
outside the local cap, as shown in Smith (2002). Nor
was this the case in Ågren (2004), whose spherical har-
monic approach turned out to be very unstable at higher
degrees.

It should be emphasized that the application of
Eq. (26), i.e., Stokes’s formula with additive correc-
tions (Sjöberg 2003a), is not the standard method of
using Stokes’s formula. The direct downward continua-
tion of the unreduced gravity anomaly to �g∗ is usually
an unstable procedure, but Sjöberg (2003b) avoids this
reduction by using a method for directly computing its
effect as an additive correction to the preliminary geoid
height.

5 Concluding remarks

We have derived an exact formula for the topographic
bias or combined topographic effect in gravimetric geoid
determination. This bias is purely local, and the formula
is remarkably simple for a constant or only laterally
variable topographic density model, as it is then propor-
tional only to terms of second and third power of topo-
graphic height of the computation point (Corollary 1).
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