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Abstract This article provides a survey on modern
methods of regional gravity field modeling on the
sphere. Starting with the classical theory of spherical
harmonics, we outline the transition towards space-local-
izing methods such as spherical splines and wavelets.
Special emphasis is given to the relations among these
methods, which all involve radial base functions. More-
over, we provide extensive applications of these meth-
ods and numerical results from real space-borne data of
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recent satellite gravity missions, namely the Challenging
Minisatellite Payload (CHAMP) and the Gravity Recov-
ery and Climate Experiment (GRACE). We also derive
high-resolution gravity field models by effectively com-
bining space-borne and surface measurements using a
new weighted level-combination concept. In addition,
we outline and apply a strategy for constructing spatio-
temporal fields from regional data sets spanning differ-
ent observation periods.

Keywords Regional gravity modeling · Spherical
radial base functions · Multi-resolution representation ·
Spherical wavelets · Challenging Minisatellite Payload
(CHAMP) and Gravity Recovery and Climate
Experiment (GRACE)

1 Introduction

At the time when the new global Earth Gravity Model
EGM06, i.e., a spherical harmonic expansion of the geo-
potential up to degree and order 2160 (Pavlis et al. 2005),
will become available, it makes sense to highlight some
appropriate approaches for regional gravity modeling.
Although technically the analysis and synthesis may be
possible for ultra-high expansions when using tailored
stable algorithms for the evaluation of the associated
Legendre functions, it is well-known that spherical har-
monic models cannot represent terrestrial data of het-
erogeneous density and quality in a proper way.

On the other hand, gravity field modeling in terms
of spherical (radial) base functions has long been con-
sidered as an alternative to this classical procedure.
Regional gravity models have been routinely developed
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based on terrestrial (surface) data using either regu-
lar predefined systems of spherical base functions, like
those generated by point masses and higher-order mul-
tipoles (e.g., Cui 1995), or data-driven irregular systems
as within the least-squares collocation (LSC) technique
(e.g., Sansò and Tscherning 2003) or with sequential
multipole methods (e.g., Marchenko 1998). Regarding
data-driven irregular point systems, Mautz et al. (2004)
estimate the positions of locally supported base func-
tions using global optimization methods.

Discrete approximation methods with spherical,
radial-symmetric harmonic base functions arise natu-
rally from the discretization of integral operators (e.g.
the Stokes operator) that relate geodetic observables to
the disturbing potential or the surface-layer density, if
we restrict ourselves to the sphere. However, there are
more general ways to introduce an operable concept
of spherical base functions through discretizing spheri-
cal convolution integrals. This idea follows Freeden and
Schreiner (1995) and Freeden and Windheuser (1996)
and opens the door to space-discrete spherical wavelet
approximations of the gravity field and the implemen-
tation of multi-resolution techniques in spherical base
function modeling. Thus, this work is largely based on
the results of Freeden et al. (1998a), Freeden (1999) as
well as Freeden and Michel (2004).

The application of such techniques to real space-
borne and surface gravity data came only recently
into fruition, e.g., Fengler et al. (2004a,b) and Schmidt
et al. (2005a,b, 2006). Besides gravity field modeling, the
application of scalar, vector and tensor spherical wave-
lets has become more and more popular in other fields
of geodesy and geophysics, e.g., the analysis of mea-
surements of the surface air temperature (Li 1999), the
Earth’s magnetic field (Holschneider et al. 2003, Maier
2005, Panet et al. 2005), the modeling of ionospheric cur-
rents (Mayer 2004), atmospheric flows (Fengler 2005)
and oceanographic flows (Freeden et al. 2005).

The objective of this article is to provide a consistent
overview about several modern methods of regional
gravity field modeling. To achieve this, we present an
extensive study in theory and application of the eval-
uation of real gravity data from the Challenging Mini-
satellite Payload (CHAMP) and Gravity Recovery and
Climate Experiment (GRACE) satellite missions in
order to constitute regional gravity models using series
expansions in spherical splines and wavelets. In addition,
we construct a regional high-resolution gravity model
from satellite and surface data applying a specific com-
bination concept and introduce an appropriate strategy
for implementing the time-dependency into the repre-
sentation.

We discuss and apply numerical integration techni-
ques and parameter estimation methods, considering
both space-borne and surface data. Regarding the deter-
mination of model parameters from estimation methods,
the potentially large number of base functions and the
size of the resulting linear equation systems may hamper
application in practice, but in this way one cannot only
provide statistical information for the estimated param-
eters, but also apply data-driven concepts in regulari-
zation, data combination and coefficient thresholding.
In view of discretizing a spherical convolution integral,
we place special emphasis on the choice of the point sys-
tems, the choice of the base functions, as well as practical
questions like data combination.

This work is organized as follows: In the Sect. 2,
we present fundamental concepts involving spherical
harmonics and spherical base functions. We largely
follow the notation of Freeden et al. (1998a), and out-
line the relationship to spherical convolutions. Model-
ing concepts based on spherical splines and wavelets
are treated, as well as the multi-resolution represen-
tation of a given input signal. The third section deals
with two evaluation methods in order to determine the
coefficients of the spherical base function representa-
tion. Starting with numerical integration techniques, we
point out the link to appropriate parameter estimation
procedures. In order to demonstrate the power of spher-
ical base function modeling, we present in the Sect. 4
different regional representations of the gravity field for
the northern part of South America computed from real
CHAMP and GRACE data as well as from surface data.

2 Spherical modelling

2.1 Spherical harmonics

Let x = (x1, x2, x3)
T and y = (y1, y2, y3)

T be vectors of
the three-dimensional Euclidean space R

3. Then xTy =
∑3

i=1 xiyi is referred to as the inner product. The cor-
responding norm is given by |x| = √

xTx. Any vector
x ∈ R

3 \ {0} is uniquely represented as x = r ξ , where
r = |x| and |ξ | = 1. Furthermore, let �int

R and �ext
R

denote the inner and outer space of the sphere �R with
radius R;�ext

R is defined as�ext
R = �ext

R ∪�R and�1 =: �
means the unit sphere.

As customary, the space of all real square-integrable
functions F on �R is called L2(�R). L2(�R) is a Hilbert
space with the inner product

〈F, G〉L2(�R)
=

∫

�R

F(x)G(x)d�R(x) (1)
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for F, G ∈ L2(�R) and the associated norm ‖F‖L2(�R)
=√〈F, F〉L2(�R)

; d�R(x) denotes the surface element on
the sphere �R.

The real-valued (surface) spherical harmonics Yn,m(ξ)

of degree n and order m form a complete orthonor-
mal basis of L2(�), e.g., Heiskanen and Moritz (1967).
Hence, each function (signal) F ∈ L2(�) can be uniquely
written in L2(�)-sense as Fourier series

F(ξ) =
∞∑

n=0

n∑

m=−n

Fn,m Yn,m(ξ) (2)

with ξ ∈ �. The Stokes coefficients Fn,m are comput-
able via the spherical Fourier transform Fn,m = 〈F,
Yn,m〉L2(�). As another important ingredient, we require
the Legendre polynomials Pn(t) of degree n which are,
e.g., obtainable via the Rodriguez formula

Pn(t) = 1
2nn!

dn

dtn
(t2 − 1)n, t ∈ [−1, 1]. (3)

Altogether, we end up at the spherical addition theorem

n∑

m=−n

Yn,m(ξ) Yn,m(η) = 2n + 1
4π

Pn(ξ
Tη) (4)

with ξ , η ∈ � connecting the spherical harmonics and
the Legendre polynomials (Freeden et al. 1998a). Equa-
tion (4) forms the foundation in formulating scaling
functions and wavelets on the sphere; see also the com-
ments in the context of Eq. (19). Moreover, we gather
the 2n + 1 spherical harmonics Yn,m(ξ) of degree n and
order m = −n, . . . , n into the finite-dimensional Hilbert
space Hn(�), and consequently, all spherical harmonics
Yn,m(ξ) of degree n = 0, . . . , n′ and order m = −n, . . . , n
into the Hilbert space H0,...,n′(�) of dimension

dim(H0,...,n′(�)) = (n′ + 1)2 =: n. (5)

In the sequel, we mostly identify F with the gravita-
tional potential or the disturbing gravitational potential
of the Earth. Given F on the sphere�R, i.e., F ∈ L2(�R),
we can write the upward continuation by

F(x) =
∞∑

n=0

n∑

m=−n

Fn,m HR
n,m(x) (6)

with x = r ξ ∈ �ext
R and Fn,m = 〈F, HR

n,m〉L2(�R)
. The

functions

HR
n,m(x) = 1

R

(
R
r

)n+1

Yn,m(ξ) (7)

are known as outer or solid spherical harmonics. Con-
sequently, we define the space Hn(�

ext
R ) of all linear

combinations of the 2n + 1 outer spherical harmon-
ics HR

n,m(x) of degree n and order m = −n, . . . , n as

well as the space H0,...,n′(�ext
R ) of all outer spherical

harmonics HR
n,m(x) of degree n = 0, . . . , n′ and order

m = −n, . . . , n. Finally, we mention that the L2(�R)-
norm of a signal F ∈ L2(�R) can be interpreted as the
energy content or the global root-mean-square (RMS)
value of F. By a degree-wise decomposition of the
L2(�R)-norm, we obtain

‖F‖2
L2(�R)

=
∞∑

n=0

σ 2
n (F), (8)

where σ 2
n (F) = ∑n

m=−n F2
n,m are the well-known degree

variances of F, e.g., Heiskanen and Moritz (1967) or
Torge (2001). If we assume that the signal F(x) is band-
limited, i.e. F ∈ H0,...,n′(�ext

R ), we can rewrite Eq. (6) as

F(x) = h(x)Tf ∧ (9)

with x ∈ �ext
R . Herein f ∧ and h(x) denote n × 1 vectors

given by

f ∧ = (F0,0, F1,−1, . . . , Fn′,n′)T, (10)

h(x) =
(

HR
0,0(x), HR

1,−1(x), . . . , HR
n′,n′(x)

)T
. (11)

Unless otherwise noted in the following, we always
assume that F(x) is band-limited, i.e., F ∈ H0,...,n′(�ext

R ).

2.2 Spherical base functions

Writing Eq. (9) for altogether N position vectors x = xk
with k = 1, . . . , N and xk ∈ �R, the linear equation
system

f = H f ∧ (12)

results, wherein

f = (F(x1), F(x2), . . . , F(xN))
T (13)

is the N × 1 vector of the signal values F(xk), and

H = (h(x1), h(x2), . . . , h(xN))
T (14)

is an N×n matrix. If N exceeds the number n of unknown
Stokes coefficients, Eq. (12) can be solved via

f ∧ = (HTH)−1 HTf , (15)



20 M. Schmidt et al.

as long as the matrix H possesses full column rank; see
e.g., Koch (1999). In this case, the system

SN = {xk ∈ �R|k = 1, . . . , N} (16)

of points xk is called admissible. Even if the equality
N = n holds, the matrix H is regular and SN is called
fundamental (Freeden et al. 1998a). In the following,
we always assume that the point system SN is at least
admissible.

Substituting Eq. (15) into Eq. (9) yields the interpola-
tion formula F(x) = h(x)T(HTH)−1HTf , which can be
rewritten as

F(x) =
N∑

k=1

F(xk) Z(x, xk). (17)

The functions Z(x, xk) = h(xk)
T(HTH)−1 h(x) depend

not only on x and xk, but also – due to the matrix
H – on all points of the admissible system SN . One may
argue that, in addition, we cannot expect a decay of
Z(x, xk) as the computation point x moves away from
the data point xk. However, for regional or local rep-
resentations, we would prefer a “two-point” function
B(x, xk) that allows the computation of F(x)mainly just
from signal values given in the vicinity of x, i.e., which is
characterized by the ability to localize. For this purpose,
we introduce the representation

F(x) =
N∑

k=1

ck B(x, xk) (18)

of the band-limited function F in terms of spherical base
functions B(x, xk), k = 1, . . . , N defined by the Legendre
series

B(x, xk)=
n′

∑

n=0

2n + 1
4πR2

(
R
r

)n+1

Bn Pn(ξ
Tξk) (19)

with x = r ξ ∈ �ext
R and xk = R ξk ∈ �R.

The initially unknown coefficients ck in Eq. (18) play a
similar role as the Stokes coefficients Fn,m of the spheri-
cal harmonic approach. For x ∈ �R, i.e. r = R, the spher-
ical base function B(x, xk) depends only on the spherical
distance α = arccos(ξTξk). Thus, B(x, xk) is rotation-
ally symmetric and the spherical analogue to radial base
functions (Narcowich and Ward 1996). In the sequel, we
always will refer to spherical base functions, but having
radial base functions in mind.

Since the Legendre coefficients Bn in Eq. (19) reflect
the spectral behavior, the total L2(�R)-norm of B(x, xk)

is computable according to Eq. (8) and reads

‖B‖2
L2(�R)

=
n′

∑

n=0

σ 2
n (B) , (20)

wherein the degree variances

σ 2
n (B) = 2n + 1

4π R2 B2
n (21)

constitute the power spectrum of B(x, xk). For an alter-
native approach involving wavelet variances, see Free-
den and Michel (2004) and Fengler et al. (2006b).

With the two N × 1 vectors

c = (c1, c2, . . . , cN)
T, (22)

b(x) = (B(x, x1), B(x, x2), . . . , B(x, xN))
T (23)

of coefficients ck and spherical base functions B(x, xk),
Eq. (18) reads

F(x) = b(x)Tc. (24)

In order to guarantee that Eq. (24) equals Eq. (9) we
require

H0,...,n′(�ext
R ) = span{B(x, xk)|k = 1, . . . , N}. (25)

To clarify this statement, we introduce the n × n diag-
onal matrix B = diag(B0, B1, B1, B1, B2, . . . , Bn′) and
consider the addition theorem of spherical harmonics
(Eq. 4) in Eq. (19). With B(x, xk) = h(xk)

TB h(x) the
transformation

b(x) = H B h(x) (26)

states that Eq. (25) is fulfilled if both the point system SN
is admissible and the matrix B is positive definite, i.e. the
Legendre coefficients Bn are restricted to the condition
(Schmidt et al. 2005a)

Bn > 0 for n = 0, . . . , n′. (27)

Since usually the number N of admissible points
exceeds the number n (Eq. 5), only n functions B(x, xk)

are linearly independent. Substituting Eq. (26) into
Eq. (24) and comparing the result with Eq. (9) yields
the relation

f ∧ = B HTc. (28)

Hence, the Stokes coefficients Fn,m with n = 0, . . . , n′
and m = −n, . . . , n can be determined by means of the
coefficient vector c.
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The comparison of the vectors h(x) and b(x), defined
in Eqs. (11) and (23), exposes the difference between
the representations (Eqs. 9 and 24) of the function F(x)
in terms of spherical harmonics and spherical base func-
tions, respectively. Whereas the elements of h(x), i.e.,
the outer harmonics HR

n,m(x), depend on the degree n
and order m, the elements B(x, xk) of b(x) depend on
the spatial position vectors xk. Consequently, regional
or local structures of a function (input signal) F(x) are
better described by Eq. (18) in terms of spherical base
functions (e.g., Freeden and Michel 2004).

The choice of the spherical base functions depends
mainly on the application. A well-established strategy is
to construct spherical base functions B(x, xk) in a way
that their power spectrum corresponds to the power
spectrum of the signal F(x), which shall be modeled
according to Eq. (18). To be more specific, we start with
the energy representations (Eqs. 8 and 20) for the input
signal and the spherical base function, setσ 2

n (F) = σ 2
n (B)

for n = 0, . . . , n′ and obtain

Bn =
√

4πR2

2n + 1
σn(F). (29)

With this choice of the Legendre coefficients Bn, the
function B(x, xk) (Eq. 19) corresponds to the covariance
function used in LSC (e.g., Moritz 1980) and may be
considered as a harmonic spline function (e.g., Freeden
1981). If, instead, the Riesz representers of the obser-
vation functionals are used as base functions (which are
radial-symmetric for isotropic observation functionals),
our approach for representing the potential becomes
identical to LSC (Moritz 1980).

Many other examples of spherical base functions are
listed in Freeden et al. (1998a) and in the references
within this textbook. Here, we refer to the end of Sect. 2.4
of this paper.

2.3 Spherical convolution

Equation (18) can also be embedded into the much more
general concept of spherical convolution. A spherical
convolution means the basic tool for low- and band-
pass filtering processes. In Sect. 2.4, we will apply it in
order to constitute a multi-resolution representation of
the input signal F(x).

To study the spherical convolution in more detail, we
first introduce the unique reproducing kernel

Krep(x, xk)=
n′

∑

n=0

2n + 1
4πR2

(
R
r

)n+1

Pn(ξ
Tξk) (30)

of the space H0,...,n′(�ext
R ) fulfilling the condition [e.g.

Moritz (1980) or Freeden (1999)]

F(x) = (Krep ∗ F)(x). (31)

In Eq. (31) the spherical convolution Krep ∗ F is defined
as

(Krep ∗ F)(x) = 〈
F, Krep( · , x)

〉
L2(�R)

. (32)

The substitution of Eq. (31) into Eqs. (18) and (24) yields

(Krep ∗ F)(x) =
N∑

k=1

ck B(x, xk) = b(x)Tc. (33)

Since F(x) is an element of H0,...,n′(�ext
R ), we rewrite

the convolution Krep ∗ F from the right-hand side of
Eq. (31) as a series expansion in spherical base func-
tions Krep(x, xk), i.e.,

(Krep ∗ F)(x) =
N∑

k=1

dk Krep(x, xk) = krep(x)Td. (34)

The N ×1 vectors d and krep(x) are defined analogously
to Eqs. (22) and (23). This result states that the original
representation (Eq. 18) of F(x) in spherical base func-
tions B(x, xk) can be replaced by Eq. (34) in terms of the
reproducing kernel (Eq. 30). Note, that we assume the
same admissible point system SN (Eq. 16) in Eqs. (33)
and (34).

Before discussing the relation between the two coeffi-
cient vectors c and d in more detail, we require a result
that is of great importance for low- and band-pass filter-
ing processes.

Theorem 1 Let F ∈ L2(�R) and

K(x, xk)=
∞∑

n=0

2n + 1
4πR2

(
R
r

)n+1

Kn Pn(ξ
Tξk) (35)

be a kernel with

Kn

{
�= 0 for n = 0, . . . , n′

= 0 for n > n′ . (36)

Assume further that for x = r ξ ∈ �ext
R and xk = R ξk ∈

SN ⊂ �R

(K ∗ F)(x) =
N∑

k=1

dk K(x, xk) (37)
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holds. If

L(x, xk)=
∞∑

n=0

2n + 1
4πR2

(
R
r

)n+1

Ln Pn(ξ
Tξk) (38)

is another kernel with

Ln = 0 for n > n′, (39)

then

(L ∗ F)(x) =
N∑

k=1

dk L(x, xk). (40)

The proof of this theorem can be found in Freeden et al.
(1998a). Hence, we conclude that if the coefficients dk
with k = 1, . . . , N are known, they can be used to calcu-
late any convolution of the signal F with kernel functions
L(x, xk) as defined in Eqs. (38) and (39). Note, that the
reproducing kernel (Eq. 30) is an example for the kernel
K(x, xk) defined in Eqs. (35) and (36).

In vector notation, Eq. (40) can be rewritten as

(L ∗ F)(x) = l(x)Td. (41)

In order to derive a relation between the N × 1 vectors
c and d, we equate the right-hand sides of Eqs. (33) and
(34) and obtain, under the consideration of Eq. (41),

b(x)T(c − d) = (krep(x)− b(x))T d

= �b(x)Td = (�B ∗ F)(x), (42)

wherein �b(x) denotes the N × 1 vector of spherical
base functions�B(x, xk) with k = 1, . . . , N.�B(x, xk) is
defined analogously to Eq. (19) as series expansion with
Legendre coefficients �Bn = 1 − Bn.

Writing Eq. (42) for the N position vectors x = xl
with l = 1, . . . , N of the admissible system SN (Eq. 16),
the linear equation system

X (c − d) = �X d (43)

follows, wherein X and �X are N × N matrices with
entries B(xl, xk) and �B(xl, xk), respectively. Due to
rank X = n the solution

c = (I − X+�X)d (44)

can be derived with X+ being the pseudoinverse of X
and I the N × N unit matrix. Hence, if the vector d is
known, the vector c can be computed via Eq. (44). Since
the deviation c−d depends on the Legendre coefficients

�Bn, the right-hand side of Eq. (18) is equivalent to the
convolution B ∗ F only if B(x, xk) = Krep(x, xk).

In the case of a non-band-limited input signal F(x),
the results derived above are only approximately valid.
In order to demonstrate this, we introduce the decom-
position F(x) = F(x) + S(x) with F ∈ H0,...,n′(�ext

R ) and
obtain with Eqs. (31) and (34)

F(x) = (Krep ∗ F)(x)+ S(x)

= krep(x)Td + S(x). (45)

The influence of neglecting the non-stochastic signal
S(x) (omission error) on the determination of the coeffi-
cient vector d is known as the aliasing error; see, e.g.,
Kusche (2002).

2.4 Multi-resolution representation

As shown before, spherical base functions are related
to spherical convolutions, i.e., the basic tool for low-
and band-pass filtering processes. The fundamental idea
of a multi-resolution representation (MRR) is to split
a given input signal into a smoothed version and a
number of detail signals by successive low-pass filter-
ing; this procedure, which provides a sequence of signal
approximations at different resolutions, is also known
as multi-resolution analysis (MRA) (e.g., Mertins 1999).
The detail signals are the spectral components or mod-
ules of the MRR because they are related to specific
frequency bands.

In order to explain this procedure in more detail we
identify the kernel L(x, xk), defined in Eqs. (38) and
(39), with the spherical scaling function

�j(x, xk) =
n′

j∑

n=0

2n + 1
4πR2

(
R
r

)n+1

�j;n Pn(ξ
Tξk) (46)

of resolution level (scale) j ∈ {0, . . . , J + 1}; the scalars
�j;n are the level−j Legendre coefficients of �j(x, xk)

restricted to the condition�j;n = 0 for all n > n′
j accord-

ing to Eq. (39) with n′ = n′
j. The MRR states that a

signal

Fj+1(x) = (�j+1 ∗ F)(x) (47)

can be decomposed into the smoother version

Fj(x) = (�j ∗ F)(x) (48)

and the detail signal

Gj(x) = (�j ∗ F)(x) (49)
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absorbing all the fine structures of Fj+1(x) missing in

Fj(x); x = r ξ ∈ �ext
R . Hence, the MRR of the band-

limited input signal F(x) = FJ+1(x) + �FJ+1(x) can be
written as

F(x) = Fj′(x)+
J∑

j=j ′
Gj(x)+�FJ+1(x) (50)

with j′ ∈ {0, . . . , J}.
If the scaling functions �j+1(x, xk) and �j(x, xk) act

as low-pass filters, the spherical wavelet function

�j(x, xk) =
n′

j+1∑

n=0

2n + 1
4πR2

(
R
r

)n+1

�j;n Pn(ξ
Tξk) (51)

of level j can be interpreted as a band-pass filter defined
by its Legendre coefficients

�j;n = �j+1;n −�j;n. (52)

The application of Eq. (52) is called the linear wave-
let approach, because it omits the computation of wave-
let coefficients. Its alternative, i.e., the bilinear wavelet
approach characterized by the computation of wavelet
coefficients, is described in detail e.g., by Freeden et al.
(1998a).

According to Eq. (41) the spherical convolution
(Eq. 47) can be rewritten as

Fj+1(x) = φj+1(x)
Tdj. (53)

Herein

φj+1(x) =
(
�j+1(x, xj

1),�j+1(x, xj
2), . . . ,�j+1(x, xj

Nj
)
)T

(54)

and

dj = (dj;1, dj;2, . . . , dj;Nj)
T (55)

are Nj × 1 vectors of scaling function values �j+1(x, xj
k)

and level-j scaling coefficients dj;k. Recall that the

points xj
k constitute an admissible system SNj = {xj

k|k =
1, . . . , Nj} of level j. Since the spherical wavelet function
(Eq. 51) fulfills Eq. (39), Eq. (49) can be rewritten as

Gj(x) = ψ j(x)
Tdj, (56)

wherein

ψ j(x) =
(
�j(x, xj

1),�j(x, xj
2), . . . ,�j(x, xj

Nj
)
)T

(57)

means an Nj × 1 vector of wavelet function values

�j(x, xj
k). Writing Eq. (53) for the next lower level j

yields

Fj(x) = φj(x)
Tdj−1 (58)

with φj(x) and dj−1 being the Nj−1 × 1 vectors of scal-

ing function values φj(x, xj−1
k ) and level-(j−1) scaling

coefficients dj−1;k related to the Nj−1 points xj−1
k of a

level-(j−1) admissible system SNj−1 = {xj−1
k |k = 1, . . . ,

Nj−1}.
Fortunately, the linear relation

dj−1 = W j−1 Kj dj (59)

allows us to connect the scaling coefficients of sub-
sequent levels, i.e., all scaling coefficient vectors dj−1
with j = j′ + 1, . . . , J are computable successively (Free-
den 1999). In Eq. (59) Kj means an Nj−1 × Nj matrix

with entries Krep(x
j−1
k , xj

l) for k = 1, . . . , Nj−1 and l =
1, . . . , Nj; W j−1 = diag(wj−1

1 , wj−1
2 , . . . , wj−1

Nj−1
) is an Nj−1×

Nj−1 diagonal matrix of the integration weights wj−1
k

associated with the points xj−1
k of the admissible system

SNj−1 ; an example of integration weights will be given in
Eq. (68).

According to Eq. (40) the spherical convolution in
Eq. (48) can also be evaluated by means of the scaling
vector dj used in Eqs. (53) and (56). However, this pro-
cedure would have the drawback that in each decompo-
sition step, the same admissible system is used, although
coarser structures are representable by fewer terms than
finer structures.

As shown in Fig. 1, the procedure for constituting the
MRR (Eq. 50), starts with the calculation of the vector
dJ in the initial step. Since the inequality Nj−1 < Nj
usually holds, the Nj−1 × Nj transformation matrix Kj
in Eq. (59) effects a downsampling process as the key
point of the pyramid algorithm (filter bank scheme).

Finally, we have to focus on the last term�FJ+1(x) of
the MRR (Eq. 50). Considering Eqs. (31) and (47) for
j = J we obtain

�FJ+1(x) = F(x)− FJ+1(x)

= ((Krep −�J+1) ∗ F)(x)

= (��J+1 ∗ F)(x) = �φJ+1(x)
TdJ (60)

according to Eq. (42). As mentioned in the context of
Eq. (44), the magnitude of Eq. (60) depends on the
Legendre coefficients��J+1;n = 1−�J+1;n of the spher-
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Fig. 1 Filter bank of the multi-resolution representation (MRR)

using wavelets. “
↓→ ” means a symbol for downsampling, e.g., from

level j to level j−1 by a factor Nj/Nj−1. The transformation from

the observation vector y into the scaling coefficient vector dJ is
explained in Sect. 3. The elements of the vectors dj, as well as the
signals Gj, Fj′ and�FJ+1, are computable via Eqs. (56), (58), (59)
and (60)

0

1

-4 -2 0 2 4

spherical distance

0

1

-4 -2 0 2 4

spherical distance
j = 8         j = 10 

Fig. 2 Selected Shannon scaling functions (left panel) and wave-
lets (right panel) of levels j = 8 and j = 10 with respect to the
spherical distance α (degrees); ordinate values are normed to 1,
the functions for j = 10 are shifted by −0.5 along the ordinate axis

ical base function ��J+1(x, xk). Further considerations
about this statement are given by Schmidt et al. (2005c).

The procedure described before can be applied to
global and regional (local) data sets. In the latter case,
the localization feature of the spherical base functions
reduces undesired boundary effects. This item will be
discussed in more detail in Sect. 3.1. Before concluding
this section, we would like to state some examples for
scaling functions and wavelets.

Since there exist many examples for spherical wave-
lets in the literature (e.g., Freeden 1999), we restrict
ourselves here to only four examples in dyadic repre-
sentation, i.e. the relation n′

j = 2j − 1 holds in Eq. (46).
We list the Legendre coefficients of the scaling func-
tions; the related wavelets are computable via Eqs. (51)
and (52).

1. The Shannon scaling function (Fig. 2; note that this
figure and all the following figures are colored in
the online version of this paper) possesses the sim-
plest representation, i.e. the Legendre coefficients
�j;n =: �Sha

j;n are given by

�Sha
j;n =

{
1 if n ∈ [0, 2j)

0 else
. (61)
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Fig. 3 Selected CuP scaling functions (left panel) and wavelets
(right panel) of levels j = 8 and j = 10 with respect to the spher-
ical distance α (degrees); ordinate values are normed to 1, the
functions for j = 10 are shifted by −0.5 along the ordinate axis
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Fig. 4 Selected Blackman scaling functions (left panel) and wave-
lets (right panel) of levels j = 8 and j = 10 with respect to the
spherical distance α (degrees); ordinate values are normed to 1,
the functions for j = 10 are shifted by −0.5 along the ordinate axis

2. The CuP scaling function (Fig. 3) is motivated by
smoothing the decay of the power spectrum by a
cubic polynomial (CuP). Its Legendre coefficients
�j;n =: �CuP

j;n are given by

�CuP
j;n =

{
(1 − 2−jn)2(1 + 2−j+1n) if n ∈ [0, 2j)

0 else
.

(62)

3. The Blackman scaling function (Fig. 4) is derived
from the Blackman window, which is often used in
classical signal analysis (e.g., Mertins (1999)). The
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Fig. 5 Selected Bernstein scaling functions (left panel) and wave-
lets (right panel) of levels j = 8 and j = 10 with respect to the
spherical distance α (degrees); ordinate values are normed to 1,
the functions for j = 10 are shifted by −0.5 along the ordinate axis,
axis of abscissae is zoomed out in comparison with Figs. (2) to (4)

Legendre coefficients �j;n =: �Bla
j;n are defined as

�Bla
j;n =






1 if n ∈ [0, 2j−1)

Aj(n) if n ∈ [2j−1, 2j)

0 else

, (63)

wherein

Aj(n) = 21
50

− 1
2

cos

(
2πn
2j

)

+ 2
25

cos

(
4πn
2j

)

. (64)

As can be seen from Figs. (2), (3) and (4), the Black-
man scaling function means some kind of compro-
mise between the Shannon and the CuP kernel, i.e.,
it possesses the appealing feature (depending on
the application) that the low-frequency signal con-
tent remains unfiltered. A more general version of
the Blackman scaling function will be defined in
Eq. (80).

4. The Bernstein scaling function (Fig. 5) possesses the
favorable property of a closed-form representation,
which makes it unique among all of the band-limited
scaling functions until now. Its Legendre coefficients
�j;n =: �Ber

j;n are given by

�Ber
j;n =

{
(2j)!(2j−1)!

(2j−n−1)!(2j+n)! if n ∈ [0, 2j)

0 else
. (65)

Its closed-form representation reads (Fengler et al.
2005)

�Ber
j (ξ , η) = 2j−2

π

(
1 + ξTη

2

)2j−1

, ξ , η ∈ �; (66)

Finally, we also want to mention the Gaussian ker-
nel, which is often used to smooth the input data (Jekeli

1981), e.g., for computing time-dependent gravity
fields from GRACE measurements; see e.g., Wahr
et al. 1998, Swenson and Wahr (2002) as well as Sect. 4.4
of this paper.

3 Model parameter determination

3.1 Numerical integration

In “classical wavelet analysis”, the computation of scal-
ing and wavelet coefficients is performed by discretizing
the spherical convolution integrals by means of quadra-
ture rules; see Freeden et al. (1998a) and Freeden (1999).
FFT-based algorithms allow the rapid evaluation glob-
ally by involving tensor-product-based integration grids.

A well-known example of a level-j admissible point
system SNj (Eq. 16) is the standard longitude–latitude

grid, i.e. the Nj grid points xj
k , k = 1, . . . , Nj on the

sphere �R, with

xj
k =: xj

i,l = R
(

cosβ j
l cos λj

i, cosβ j
l sin λj

i, sin β j
l

)T
(67)

defined by the discrete spherical coordinates λj
i = iπ/Lj

and β j
l = −π/2 + lπ/(2Lj) in longitude λ and latitude β

with i = 0, . . . , 2Lj − 1, l = 0, . . . , 2Lj and Nj = (2Lj +
1) · 2Lj. The corresponding integration weights

wj
k =: wj

i,l

= 2πR2

L2
j

sin

(
lπ
2Lj

) Lj−1∑

k=0

1
2k + 1

sin

(
(2k + 1) lπ

2Lj

)

(68)

are merely latitude-dependent (Driscoll and Healy
1994). For other types of grids such as spiral, icosahedral,
Reuter, Brandt, or Corput-Halton grids (e.g., Freeden
1999) or irregularly distributed points, the fast compu-
tation can be performed adaptively by aid of spherical
panel clustering (Freeden et al. 1998b). If the function
(input signal) F is given at the positions xJ

k of the admissi-
ble system SNJ of the highest level J, the components dJ;k
of the coefficient vector dJ (Eq. 55) with k = 1, . . . , NJ
are computable from (e.g. Freeden et al., 1998a)

dJ;k = wJ
k F

(
xJ

k

)
. (69)

The successive application of Eq. (59) yields all
remaining scaling coefficient vectors shown in Fig. 1;
therein the observation vector y is defined as y = (F(xJ

1),
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F(xJ
2), . . . , F(xJ

NJ
) )T. Note, that we do not consider mea-

surement errors of the input data in Eq. (69).
Moreover, numerical integration has the advantage

that no (ill-conditioned) linear system has to be solved,
and, more importantly in case of regional solutions,
the approximations show nearly no blurring due to the
Gibbs phenomenon. However, until now, the drawback
of numerical integration is that the classical spherical
wavelet analysis is bounded to the sphere or at least
to regular surfaces or subdomains of it. This is due to
the lack of appropriate cubature formulae to the whole
exterior of the sphere �R.

This problem can be overcome by applying the
approaches presented before in Sects. 2.2, 2.3 and 2.4
successively, i.e., the representation (Eq. 24) in spherical
base functions (splines) (Eq. 19) can be used to consider
the non-sphericity of the satellite orbits and the spheri-
cal wavelets (Eq. 51) for providing the multi-resolution
properties on the sphere (Fengler et al. 2004a). An alter-
native approach is given in Fengler et al. (2006a), where
multi-resolutions are defined via cascades of spline
approximations. Nevertheless, spherical wavelets have
probably their greatest impact in the solution of inverse
problems by aid of regularization wavelets; e.g., Tik-
honov regularization wavelets are treated in Freeden
(1999), Fengler et al. (2004a) and Schneider (1996).

To be more specific, here we investigate an example
that is discussed in more detail in Sect. 4.2, namely the
regional recovery of the Earth’s gravity field from Faye
gravity anomalies given within the Colombian region
(Fig. 13). For better comparison, we computed recon-
structions of the given data using all four wavelet types
introduced at the end of Sect. 2.4. We observe that the
reconstruction depends on the shape of the kernel func-
tion used.

From Figs. 2, 3 and 4 we note that due to the spatial
localization the Shannon, Blackman and CuP kernels
cover approximately only a spherical cap of two degrees
at level j = 8, which decreases nearly by half if the
level is increased by one, e.g., we note from Figs. 2, 3
and 4 a support diameter of about 0.5 degree for level
j = 10. This strong spatial localization effectively detects
the small terrain-correlated details in the Faye anomaly
data set.

However, we also note small differences between the
approximations of the CuP and Blackman reconstruc-
tion process and the Shannon approximations. From
Fig. 2, we note many ripples of the Shannon kernel that
introduce a characteristic blurring into the approxima-
tions given in Fig. 6; see particularly the panels of the
detail signals G9(x) and G10(x). This effect is also known
as spectral ringing from classical Fourier theory.

Interestingly, Figs. 7 and 8 show that this ringing can
be minimized or even avoided by taking a smooth kernel
into account. Optimal smoothness in the sense that the
kernel shows no (micro-)oscillations is guaranteed by
the Bernstein kernel (Fig. 9). However, as Fig. 5 shows,
the spatial localization increases slower than that of the
other three examples. The consequence is a larger sup-
port of the kernel leading to boundary effects. Such
boundary effects can occur as ripples or as a sudden
decay to the boundary if the kernel has a support that
is much greater than the regional details to be inves-
tigated. Since boundary effects are of special interest
for the detail signals of the lower levels, they disappear
when increasing the level (not shown here).

3.2 Parameter estimation

Following Eqs. (24) and (34), the function F(x) can gen-
erally be modeled as

F(x) = a(x)Tβ, (70)

wherein the N × 1 vector a(x) ∈ {b(x), krep(x)} contains
the values of the spherical base functions.

In order to estimate the unknown N × 1 coefficient
vector β = c for a(x) = b(x) or β = d for a(x) =
krep(x) , we need values F(xp) =: Fp of the function F(x)

in altogether P discrete observation points xp ∈ �ext
R

with p = 1, . . . , P and P ≥ N.
Since geodetic measurements y(xp) =: yp are always

affected by measurement errors ep := e(xp), i.e. Fp =
yp + ep, Eq. (70) can be rewritten as

yp + ep = aT
p β (71)

with a(xp) =: ap. Introducing the P × 1 vectors y =
(y1, y2, . . . , yP)

T and e = (e1, e2, . . . , eP)
T of the obser-

vations and the measurement errors, respectively, the
P × N coefficient matrix A = (a1, a2, . . . , aP)

T and the
P × P covariance matrix D(y) of the observations, the
linear model

y + e = A β with D(y) = σ 2
y P−1

y (72)

is established. Herein σ 2
y and Py are denoted as the vari-

ance factor and the weight matrix, respectively; see Koch
(1999).

Analogous to the matrix H (Eq. 14) and depending
on the distribution of the observation sites, the matrix
A is at most of rank n, i.e., a rank deficiency of at least
N − n exists. In the following, however, we will assume
that rankA = n holds.
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Fig. 6 Approximations of Faye anomalies in South America using Shannon scaling functions and wavelets of levels j = 8, . . . , 12 (mGal)

Besides the rank deficiency problem, the normal
equation system following from the application of the
least-squares method to the linear model (Eq. 72) might
be ill-conditioned. If we, e.g., want to compute the grav-
ity field at the Earth’s surface only from satellite data,
this inverse problem requires regularization. Here, we
solve both problems, the rank deficiency and the regu-
larization, together.

If we assume that prior information for the expec-
tation vector E(β) = µβ and the covariance matrix
D(β) = P−1

β of the vector β is available, the additional
linear model

µβ + eβ = β with D(µβ) = σ 2
β P−1

β (73)

can be formulated. Herein, eβ is defined as the error
vector of the prior information and σ 2

β the correspond-
ing unknown variance factor. The combination of the
two models (Eqs. 72 and 73) gives an extended linear
model with unknown variance components σ 2

y and σ 2
β ,

namely

[
y
µβ

]

+
[

e
eβ

]

=
[

A
I

]

β with

D
( [

y
µβ

])

= σ 2
y

[
P−1

y 0
0 0

]

+ σ 2
β

[
0 0
0 P−1

β

]

.

(74)

The application of the least-squares method to this
model yields the normal equations

(ATPy A + λPβ) β̂ = ATPy y + λPβ µβ (75)

with the regularization parameter λ := σ 2
y /σ

2
β . The

method of estimating variance components (e.g., Koch
1999) allows the computation of an estimator of λ by
means of

σ̂ 2
y = (̂eTPy ê)/ry , (76)

σ̂ 2
β = (̂eT

βPβ êβ)/rβ . (77)
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Fig. 7 Approximations of Faye anomalies in South America using CuP scaling functions and wavelets of levels j = 8, . . . , 12 (mGal)

Herein ê and êβ denote the residual vectors as well as
ry and rβ the partial redundancies, i.e., the contributions
of the observations and the prior information to the
total redundancy r = ry + rβ = P of the linear model
(Eq. 74).

Thus, the unbiased estimator

β̂ = (ATPy A + λPβ)−1 (AT Py y + λPβ µβ) (78)

with the covariance matrix

D(β̂) = σ 2
y (A

TPy A + λPβ)−1 (79)

is obtained from Eq. (75) if the variance component esti-
mation converges. In the case β = d = dJ , the estimator
d̂J is the starting point of the MRR as mentioned in the
context of Fig. 1. Note, that the covariance matrices of
all coefficient vectors dj and all detail signals Gj(x) are
calculable from the covariance matrix D(β̂) applying the
law of error propagation.

The procedure described here allows the combination
of different kinds of measurements, e.g., gravity anoma-
lies and potential values. Then additional operators, like
the Stokes operator, have to be considered in the vector
ap of Eq. (71). In opposite to that the numerical integra-
tion, discussed in the previous subsection, is restricted
to one single type of observation, e.g., gravity anomalies
(e.g., Torge 2001).

A theoretical study on the condition number of the
(regularized) normal matrix in Eq. (75) and its depen-
dency from the chosen point system and the base func-
tion type, has been conducted by Kusche (2002).

One also may desire an estimation of the detail signals
Gj(x) for j = j′, . . . , J directly from Eq. (50). However,
it follows from Eq. (52), that e.g., in the Blackman case
(Eqs. 63 and 64) the wavelet functions �Bla

j (x, xk) and

�Bla
j+1(x, xk) of two consecutive levels j and j + 1 over-

lap in the spectral domain. Thus, according to Eq. (49)
the corresponding detail signals Gj(x) and Gj+1(x) are
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Fig. 8 Approximations of Faye anomalies in South America using Blackman scaling functions and wavelets of levels j = 8, . . . , 12
(mGal)

not independent of each other and cannot be estimated
together without introducing additional constraints.

4 High-resolution gravity field modeling

In this section, we present four different regional geo-
potential models based on spherical wavelet or spline
theory, respectively, and computed from measurements
of two space missions, namely CHAMP and GRACE.
Furthermore, the second example presents a combina-
tion of satellite and surface data.

4.1 CHAMP-only model

The energy balance approach and its application to
low-Earth-orbiting (LEO) satellites like CHAMP and
GRACE goes back to the 1960s (e.g., Bjerhammer 1967)
and was rediscovered by Jekeli (1999), van Loon and

Kusche (2005), )) and many other authors. An extensive
treatise of this topic can be found in Han (2003).

Here, kinematic CHAMP orbits, kindly provided by
D. Švehla from the Technical University of Munich and
covering a 2-year time-span, were converted via the
energy balance approach into residual geopotential val-
ues δV = V − V, using the accelerometry and altitude
data products from GFZ (GeoForschungsZentrum)
Potsdam; for details see van Loon and Kusche (2005)
as well as Schmidt et al. (2005b).

The expression “residual” means that we study the
geopotential V with respect to EGM96 (Lemonie et al.
1998) complete to degree and order n = 120 as the ref-
erence model V. Since at a certain time t = tp CHAMP
is located at position x(tp) = xp along its orbit, the resid-
ual geopotential value δV(x(tp)) = δV(xp) =: δVp cor-
responds to the CHAMP in situ potential observation
yp as introduced in Eq. (71). Figure 10 shows the input
data set of observations δVp over the northern part of
South America.
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Fig. 9 Approximations of Faye anomalies in South America using Bernstein scaling functions and wavelets of levels j = 8, . . . , 12
(mGal)

We identify the right-hand side of the observation
equation (Eq. 71) with the right-hand side of Eq. (34),
i.e., we set aT

pβ =: krep(xp)
Td. For the MRR of the input

data, we select the Blackman scaling function defined
by its Legendre coefficients

�j;n =: �Bla
j;n =






1 if n ∈ [0, bj−1)

Aj(n) if n ∈ [bj−1, bj)

0 else

, (80)

wherein

Aj(n) = 21
50

− 1
2

cos

(
2πnj

bj

)

+ 2
25

cos

(
4πnj

bj

)

(81)

with nj = n+�bj�−2 · �bj−1�, bj = 2 · (bj −bj−1) and b ∈
R

+. Recall that in Eq. (63) the Blackman scaling func-
tion was already presented for b = 2. Due to Eq. (52)
each Blackman wavelet functionψBla

j (x, xk) is related to

a specific frequency band Bj := {n | bj−1 ≤ n < bj+1}
and therefore strictly band-limited. With b = 1.55 and
J = 11, the level-11 wavelet function covers the fre-
quency range between spherical harmonics n = 80 and
n = 192, i.e., we solve for signal parts up to degree
n = n11 = 192 and set n′ = n11 in Eq. (30).

We relate the coefficients dk of the vector d = β to the
points xk (Eq. 67) of a standard longitude–latitude grid
within the computation window shown in Fig. 10. The
spacing of the grid points is chosen such that the corre-
sponding global point system SN11 is admissible accord-
ing to Eq. (16).

Since we expect less variability in the residual geo-
potential for oceanic regions than for the continents, we
subdivide the vector β into a sub-vector β1 collecting
the coefficients dk related to the grid points xk of the
oceanic area and a second sub-vector β2 for the corre-
sponding coefficients over land; note that as an option,
the coastal area might be considered by a third sub-
vector. We want to emphasize explicitly that splitting
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Fig. 10 Satellite input data set: CHAMP in situ potential over
the northern part of South America; EGM96 up to degree and
order n = 120 is subtracted. In order to reduce boundary effects,
the real data window is a little bit larger than the computation
window shown here. The data was computed and kindly provided
by J. van Loon, Technical University of Delft

the prior information into different spatial subregions
means a space-dependent regularization.

We introduce the prior information µβ1
= 0 and

µβ2
= 0 for the expectation vectors as well as Pβ1 = I

and Pβ2 = I for the inverse covariance matrices. We use
a fast Monte-Carlo implementation of the iterative max-
imum likelihood variance component estimation (Koch
and Kusche 2001) and obtain the estimators β̂ = d̂, σ̂ 2

y ,
σ̂ 2
β1

and σ̂ 2
β2

following Eqs. (76) to (78). The estimator
σ̂ 2
β2

is about twenty times larger than the estimated var-
iance component σ̂ 2

β1
, i.e., as expected the linear model

(Eq. 73) for the prior information causes a much stron-
ger regularization for the oceanic regions than for the
continent. Furthermore, from Eq. (79), we obtain an
estimation of the covariance matrix D(̂d).

As mentioned before, the estimated coefficient vector
d̂ = d̂11 is the input quantity of the MRR shown in Fig. 1.
The estimated detail signals Ĝj(x) up to level j = 11
(not shown here) are computed according to Eq. (56)
and transferred into the detail signals ζ̂j(x) =: ζ̂ cha

j (x) of
height anomalies following Molodensky’s theory (e.g.,
Heiskanen and Moritz 1967). The corresponding covari-
ance matrices are calculable as mentioned in the context
of Eq. (79).
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Fig. 11 Estimated residual height anomalies δζ̂ cha(x) from the
CHAMP Blackman wavelet model: residual to EGM96 to degree
and order n = 120

Figure 11 shows the estimated residual height anom-
alies

δζ̂ cha(x) =
11∑

j=2

ζ̂ cha
j (x). (82)

By adding the corresponding height anomalies ζ (x) from
EGM96 up to degree n = 120 we finally obtain the esti-
mated height anomalies ζ̂ cha(x) = ζ (x)+ δζ̂ cha(x).

In order to check the quality of the wavelet repre-
sentation, we compare the CHAMP Blackman wave-
let model (Eq. 82) with the corresponding values of
the GRACE-only EIGEN-GRACE02S global spheri-
cal harmonic model from GFZ (Reigber et al. 2005).
As can be seen from Figs. 11 and 12, there is a very
good agreement between the two models; the RMS
value of the differences amounts 0.5 m, the correlation is
approximately 0.72. We believe the main reason for
these promising results is the space-dependent regu-
larization mentioned before instead of the frequency-
dependent regularization usually performed within the
spherical harmonic approach.

A similar study of the same input data set was per-
formed by Schmidt et al. (2005b). In contrast to our
investigations here, they used numerical integration
techniques and did not apply a regularization pro-
cedure. They derived a so-called multi-level wavelet
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Fig. 12 Residual height anomalies computed from GFZ’s
GRACE-only EIGEN-GRACE02S gravity field model (EGM96
up to degree n = 120 is subtracted)

representation of geoid undulations, i.e. they introduced
different “highest” resolution levels for the oceans and
the continent, respectively.

4.2 Combined model from CHAMP and surface data

In order to establish a high-resolution gravity model, we
have to combine satellite data with surface data, since
different measurement types generally cover different
parts of the frequency spectrum (e.g., Kern et al. 2003).
Satellite data provide the low- and medium-frequency
information of the geopotential, whereas local or
regional surface data cover the medium- and remain-
ing high-frequency parts.

As surface data, we analyze a high-resolution data set
containing 2′ × 2′ mean Faye gravity anomalies referred
to ground level (Fig. 13). This data set has been derived
from terrestrial and aerial gravity measurements
(Sánchez 2003) and complemented by altimetry grav-
ity anomalies of Sandwell and Smith (1997) [gravity
data (2′ × 2′ grid), version 10.2] in marine areas. Again,
EGM96 complete to degree n = 120 is removed as the
reference field (Fig. 13). Recall that this data set was
already used in Sect. 3.1 for studying the different scaling
and wavelet functions introduced at the end of Sect. 2.4.

By means of FFT-based numerical integration tech-
niques, already mentioned in Sect. 3.1, the decomposi-
tion into detail signals ζ sur

j (x) of height anomalies for
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Fig. 13 Surface input data set: 2′ × 2′ mean Faye gravity anoma-
lies over Colombia; EGM96 up to degree n = 120 is subtracted

levels j = 9, . . . , 18 (not shown here) is performed again
using the Blackman wavelet function with b = 1.55.
Hence, the detail signal of level j = 18 contains signal
parts up to degree n = 4, 133. As mentioned before, a
level-combination strategy has to be applied in order
to derive the high-resolution gravity model, generally
formulated as

ζ(x) = ζ (x)+
J∑

j=j′
wcha

j ζ̂ cha
j (x)+

J∑

j=j′
wsur

j ζ sur
j (x) (83)

for the height anomaly ζ(x).
The level weights wcha

j and wsur
j are restricted to 0 ≤

wcha
j ≤ 1, 0 ≤ wsur

j ≤ 1 and

wcha
j + wsur

j = 1 for j = j′, . . . , J. (84)

Using the degree variances σ 2
n (F), introduced in the con-

text of Eq. (8), and the corresponding error degree vari-
ances ε2

n(F), the Wiener filter curve values pn(F) of a sig-
nal F are defined as pn(F) = σ 2

n (F)/(σ
2
n (F)+ε2

n(F)) (e.g.,
Wang 1993, Kern et al. 2003). Here we use the Wiener
filter curve of GFZ’s EIGEN-CHAMP03S model and
determine the satellite level weights wcha

j for j = 9, 10, 11
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Fig. 14 Level weights wcha
j (circles) and wsur

j (triangles) of the
detail signals in Eq. (83) with j′ = 1 and J = 18
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Fig. 15 High-resolution gravity field model [in terms of height
anomalies (m)] of Colombia computed according to Eq. (83) with
j′ = 2 and J = 18. The model contains signal parts up to degree
n = 4, 133

according to the formula

wcha
j =




n′

∑

n=0

pn(F) �Bla
j;n




/




n′

∑

n=0

�Bla
j;n



 ; (85)

Figure 14 displays the numerical values of the level
weights wcha

j and wsur
j according to Eqs. (84) and (85).

Figure 15 shows the height anomalies ζ(x) of the high-
resolution gravity field model of Colombia according to
Eq. (83) with j′ = 2 and J = 18.

In contrast to the procedure described before,
Schmidt et al. (2005b) computed a high-resolution grav-
ity field model without applying a combination strategy.
In other words, they chose level weights wcha

j = 1 and

wsur
j = 0 for the satellite part as well as wcha

j = 0 and
wsur

j = 1 for the remaining levels computed from surface
data.

4.3 GRACE-only model

The approach presented here for deriving a geopotential
model from GRACE data is based on a combined repre-
sentation of spherical harmonics and harmonic splines
as space-localizing base functions. It integrates a global
gravity field recovery with regional gravity field refine-
ments tailored to the local gravity field features. In a first
step, the gravity field up to a moderate spherical har-
monic degree is recovered; the individual gravity field
characteristics in areas of rough gravity field signals are
modeled subsequently by space localizing base functions
in a second step.

The observation equation is based on an adjustment
of the functional model that has been successfully applied
to CHAMP data (Mayer-Gürr et al. 2005). It is a Fred-
holm integral equation of the first kind in the time
domain, which represents a solution of a boundary-value
problem to Newton’s equation of motion for short arcs
of the satellite orbit. For GRACE, the observations are
precise inter-satellite measurements as ranges or range-
rates. Therefore, the mathematical model can be derived
by projecting the equations of relative motion to the
line-of-sight connection (Mayer-Gürr et al. 2006).

The following recovery results refer to one month of
range-rate measurements in August 2003. From this data
set, first a global solution was calculated up to degree n =
90. For the regional refinement solutions, the same math-
ematical model as used for the global solution has been
applied except for the gravity field representation. The
disturbing potential is now modeled by space-localizing
base functions according to Eq. (18), with the unknown
coefficients ck of the N × 1 vector c = β. The base
functions, as given by Eq. (19), are located on a regular
grid generated by a uniform densification of an icosahe-
dron of 20 spherical equal-area triangles. This densified
grid has a mean distance between the nodal points of
approximately 160 km.

According to Eq. (19), the Legendre coefficients Bn

represent the frequency behavior of the base functions.
As already explained in the context of Eq. (29), these
coefficients can be related to the power spectrum of the
signal that is to be modeled. Consequently, up to degree
n = 90, the error degree variances ε2

n(F), as introduced
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Fig. 16 Differences in geoid heights between the GRACE spline
solution of August 2003 and EIGEN-CG03C; the RMS value of
the differences amounts to 7.1 cm

in the context of Eq. (85), of our global solution were
used for Bn as they represent the signal that is still in the
data in addition to the global solution. Above n = 90,
the degree variances σ 2

n (F) were calculated according
to Kaula’s (1966) rule of thumb. The maximum degree
n′ should correspond to the envisaged maximum reso-
lution expected for the regional recovery; thus, in the
following examples this maximum degree is selected as
n′ = 120, i.e.

Bn =






√
4πR2

2n+1 εn(F) if n ∈ [0, 90]
GM

√
4π

2n+1
10−5

n2 if n ∈ [91, 120]
0 else

(86)

with GM being the product of the gravitational constant
and the total mass of the Earth. To account for the ill-
posedness of the downward continuation procedure, the
method of estimating variance components is applied as
already explained in Sect. 3.2 and applied in Sect. 4.1.

Figure 16 shows the differences in geoid heights of a
regional refined spline solution calculated from 1 month
of GRACE data compared to GFZ’s combination model
EIGEN-CG03 (Förste et al. 2005). The latter is based on
one year of GRACE data, additional CHAMP and sur-
face data. Thus, although considerably less data has been
used for our spline solution, an RMS value of 7.1 cm for
the differences is rather small.
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[cm]
10 20 30

Fig. 17 Differences in geoid heights between GFZ’s GRACE
solution for August 2003 and EIGEN-CG03C; the RMS value of
the differences amounts to 9.3 cm

Figure 17 displays as a comparison the differences
between the EIGEN-CG03C and a monthly solution
calculated by GFZ for August 2003; the corresponding
RMS value amounts 9.3 cm. The stripes apparent in the
residual fields may result from time-variable effects, e.g.,
caused by the atmosphere, that have not been modeled
sufficiently. Also, due to the GRACE measurement con-
figuration, random noise results in stripes.

Subsequently, regional refinements with an altogether
global coverage can be merged by means of quadrature
methods to obtain a globally refined solution without
any stability problems; see Eicker et al. (2006). Using
regional “zoom-ins” to calculate a global gravity field
is a reasonable alternative to the direct computation of
the potential coefficients since the regionally adapted
recovery procedure allows for extra information to be
extracted out of the given data set. In particular, it has
to be pointed out that – according to Eq. (75) – the reg-
ularization parameter λ is individually determined for
each regional solution. A global regularization causes
an overall filtering of the observations leading to a mean
dampening of the global gravity field features. By a
regionally adapted regularization, it is possible to extract
more information out of the given data than would
be possible with a global gravity field determination.
Regions with a smooth gravity field signal for instance
can be regularized more strongly without dampening
the signal. In addition, the resolution of the gravity field
determination can be chosen for each region individu-
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ally according to the spectral behavior of the signal. This
kind of space-dependent regularization was already dis-
cussed in Sect. 4.1.

4.4 Spatio-temporal GRACE-only model

In Sect. 4.1, we analyzed residual geopotential values
δV(x(tp)) derived from CHAMP applying the energy
balance approach. Assuming now that at time t = tp the
two GRACE satellites are located at the positions x1(tp)
and x2(tp) along their orbits, the difference �V1,2(tp) =
δV(x1(tp))−δV(x2(tp))means the GRACE in situ poten-
tial difference observation. Here, we define the resid-
ual geopotential values δV(xi(tp)) with i ∈ {1, 2} as the
difference between the geopotential V at position xi(tp)
and the corresponding value V of the complete expan-
sion of the GGM01C gravity model (Tapley et al. 2004a)
chosen as the reference.

As explained by Han et al. (2006) in detail, the poten-
tial difference �V1,2(t) can be computed by combining
the inter-satellite range-rate, the position, velocity and
acceleration data of the two GRACE satellites again
through the energy balance approach. The observation
equation for a single observation �V1,2(tp) =: y(tp) is
given by Eq. (71) with ap = krep(x1(tp))−krep(x2(tp)) =:
a1,2 and β = d(tp), i.e.

y(tp)+ e(tp) = aT
1,2 d(tp) . (87)

As mass variations due to atmosphere, tidal and non-
tidal ocean variabilty are considered during the pre-
processing steps, the observations y(tp) should mainly
reflect the variations in continental water storage.

Our objective is now the computation of time-depen-
dent geoid undulations δN(x, t). Analogous to Eq. (82),
we introduce the spatio-temporal MRR

δN(x, t) =
J∑

j=j′
Nj(x, t) (88)

with detail signals Nj(x, t). By adding the corresponding
values N(x) of the static reference model GGM01C, we
obtain the geoid undulations N(x, t) = N(x)+ δN(x, t).

Our study is again related to the northern part of
South America, including the Amazon basin. The data
covers the time span between February and December
2003, except June 2003. In the following, the procedure
to estimate the detail signals Nj(x, t) from the GRACE
data is described briefly; for more details see Schmidt et
al. (2006).

First, we choose again the Blackman scaling function
defined in Eqs. (80) and (81) with b = 2.3 and highest

Table 1 Level-dependent observation period, total number of
observations within the corresponding time-span and highest
degree value n related to the level−j Blackman scaling function
with base b = 2.3 according to Eqs. (80) and (81)

Level Observation Number of Highest
j period observations degree

2 10 days ≈ 5,000 12
3 1 month ≈ 15,000 27
4 3 months ≈ 25,000 64

resolution level J = 4, i.e. we solve for signal parts until
degree n = 64. Hence, in Eq. (87), we have to choose
the reproducing kernel (Eq. 30) with n′ ≥ 64. In con-
trast to the procedure described in Sect. 4.1, we want to
estimate the detail signals Nj(x, t) of Eq. (88) for levels
j = 2, 3, 4 from different data sets.

The idea stems from the fact that the determination of
finer structures of the gravity field needs a denser distri-
bution of satellite tracks than the computation of coarser
structures. Hence, the estimation of the level-4 detail
signal N4(x, t) should be based on a longer observation
period then the level-3 detail signal N3(x, t). Table 1
shows the selected information to create the different
data sets for establishing the desired MRR (Eq. 88).

For each data set, the parameter estimation is per-
formed in the same manner as described in subsec-
tion 4.1, i.e., the data sets altogether provide time-series
for the estimators of the scaling coefficient vectors d2,
d3 and d4 with a temporal resolution of 10 days, 1 month
and 3 months, respectively. The estimated detail signals
are computed according to Eq. (56) and transformed
into the detail signals N̂j(x, t) =: N̂gra

j (x, t) by applying
Bruns’s theorem (e.g., Heiskanen and Moritz, 1967).

As an example, Fig. 18 shows the estimated detail
signals N̂gra

3 (x, t) computed from ten data sets each cov-
ering an observation period of one month according to
Table 1. Similar results can be obtained for the remain-
ing levels j = 2 and j = 4 (not shown here).

Seasonal variations of the estimated geoid undula-
tions with respect to the GGM01C reference model
are clearly detectable in Fig. 18. The results agree very
well with other studies on this topic; see e.g., Tapley et
al. (2004b) and Han et al. (2005). We want to empha-
size that in our approach, the Gaussian kernel (see the
remark at the end of Sect. 2) is replaced by the Blackman
kernel defined in Eqs. (80) and (81).

According to Eq. (88), the estimated variations of
the gravity field can be transformed, e.g., into so-called
equivalent water heights or height deformations.
Schmidt et al. (2006), among others, compare these
results with hydrological models and GPS time-series
of height variations.
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Fig. 18 Monthly solutions for detail signal N3(x, t) of the residual geoid undulations δN(x, t) according to Eq. (88); the results are
computed from GRACE data using the Blackman wavelet function with base b = 2.3

5 Summary and conclusions

We have demonstrated that spline and wavelet tech-
niques can be successfully applied to regional satellite
data collected from the current CHAMP and GRACE
gravity missions. We also addressed the combination of
satellite and surface gravity data sets by using an appro-
priate weighting scheme, as well as the establishment
of a spatio-temporal approach. In order to demonstrate
the power of such modeling, different regional gravity
representations of the northern part of South America
have been derived and discussed.

One important result is the improvement of the grav-
ity field using regional techniques in comparison with
the corresponding parts of global spherical harmonic
modeling. It was demonstrated that a regional wave-
let CHAMP-only model fits the corresponding part of
a global spherical harmonic GRACE-only model very
well. The reason can be seen in the spatial regularization
instead of the classical regularization in the frequency-
domain. In addition, regional models with a global
coverage can be merged to obtain a globally refined
solution.

The multi-resolution representation allows the
construction of the gravity field by detailed signals or
modules. These modules are basically computable by
different data sets. In spatio-temporal modeling, this
procedure allows the computation of detailed signals
from data sets both covering different parts of the fre-
quency spectrum and spanning different observation

intervals. Hence, this procedure means a model improve-
ment with respect to the usual computation of time-var-
iable gravity fields spanning fixed time intervals of, e.g.,
1 month.
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