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Abstract The calculation of topographic (and iso-
static) reductions is one of the most time-consuming
operations in gravity field modelling. For this calcu-
lation, the topographic surface of the Earth is often
divided with respect to geographical or map-grid lines,
and the topographic heights are averaged over the
respective grid elements. The bodies bounded by sur-
faces of constant (ellipsoidal) heights and geographical
grid lines are denoted as tesseroids. Usually these ellip-
soidal (or spherical) tesseroids are replaced by “equiva-
lent” vertical rectangular prisms of the same mass. This
approximation is motivated by the fact that the volume
integrals for the calculation of the potential and its deriv-
atives can be exactly solved for rectangular prisms, but
not for the tesseroids. In this paper, an approximate solu-
tion of the spherical tesseroid integrals is provided based
on series expansions including third-order terms. By
choosing the geometrical centre of the tesseroid as the
Taylor expansion point, the number of non-vanishing
series terms can be greatly reduced. The zero-order term
is equivalent to the point-mass formula. Test computa-
tions show the high numerical efficiency of the tesseroid
method versus the prism approach, both regarding com-
putation time and accuracy. Since the approximation
errors due to the truncation of the Taylor series decrease
very quickly with increasing distance of the tesseroid
from the computation point, only the elements in the
direct vicinity of the computation point have to be sepa-
rately evaluated, e.g. by the prism formulas. The results
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are also compared with the point-mass formula. Further
potential refinements of the tesseroid approach, such as
considering ellipsoidal tesseroids, are indicated.

Keywords Topographic reduction · Newton’s
integral · Tesseroid · Prism method · Point-mass
modelling

1 Introduction

Modelling the effect of mass distributions on gravity-
field-related quantities is one of the central issues in
physical geodesy. In the classical Stokes’s theory of geoid
determination (e.g. Heiskanen and Moritz 1967), the
effect of the topographic masses above the geoid, as
well as the isostatic balance masses on gravity observed
on the Earth’s surface, has to be calculated. Besides this
topographic–isostatic reduction of gravity, the indirect
effect on the gravitational potential has to be consid-
ered for a proper determination of the geoid, which is
a surface situated inside the Earth’s masses below the
continents.

Even in the theory of Molodensky et al. (1962), al-
though originally free of any mass reductions (e.g. Moritz
1980), the terrain reduction enters as a correction term
G1 in the first-order solution of Molodensky’s series.
In many modern local and regional gravity field mod-
elling concepts, the residual terrain modelling (RTM)
approach is often applied in the framework of the
remove-compute-restore (RCR) technique for smooth-
ing the gravity field (Forsberg and Tscherning 1997);
here, the masses between the Earth’s surface and a
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smoothed boundary surface have to be taken into ac-
count for both in the remove and in the restore step.

Although the basic analytical formulas for the calcu-
lation of mass effects on gravity and on the gravitational
potential look very simple, a precise evaluation is very
time-consuming due to the irregular structure of the sur-
faces bounding the masses (e.g. Earth’s topographic sur-
face). Computation time is still an issue nowadays when
high-resolution digital terrain models (DTMs) with a
resolution of up to 30” (e.g. Rodriguez et al. 2005)
– potentially in connection with digital density models –
are used, since volume integrals have to be solved that,
in principle, extend over the whole globe in horizontal
extension.

In geodesy and geophysics, many procedures for an
efficient calculation of the topographical mass effects
have been proposed and adapted to the computational
tools available at those times. The traditional procedure
of splitting the topographic masses into a Bouguer plate
and the residual terrain (Heiskanen and Vening Meinesz
1958) exactly serves this purpose: the major part of the
topographic reduction, attributed to an infinite planar
Bouguer plate or spherical shell of constant density, can
be calculated very easily. On the other hand, the terrain
reduction is generally smaller, except in mountainous
areas, and the integration can be restricted to the neigh-
bourhood of the computation point due to the strong
decrease of the topographical effect with increasing dis-
tance; often the terrain reduction has been completely
neglected in geophysical prospecting applications.

Since an infinite planar Bouguer plate approximates
the shape of the topography very poorly, many authors
advocate the use of a more realistic spherical Bouguer
shell (e.g. Smith et al. 2001; Vaniček et al. 2001, 2004;
LaFehr 1991a); the relationship between the planar and
the spherical Bouguer corrections was discussed, e.g. by
LaFehr (1991b) and Hackney and Featherstone (2003).

In order to get simple computation formulas for the
terrain reduction, the terrain can also be subdivided into
concentric circles and their radii related to the com-
putation point (Hammer 1939; Heiskanen and Moritz
1967, p 130; Nowell 1999). The calculation of the terrain
reduction using concentric circle templates, also known
as Hammer charts, is very time-consuming due to the
fact that for each computation point, the process of
estimating mean elevations over the surface elements
bounded by circles and horizontal radii has to be started
anew. This procedure was widely used in the pre-com-
puter era (Jung 1961) and has been replaced by another
approach based on DTMs provided in files of different
grid size. The respective topographic cells in a DTM are
bounded either by geographic or planar (e.g. UTM) grid
lines.

Assuming a constant topographic height and mass-
density in each cell, the resulting bodies are often
approximated by rectangular prisms having the same
volume as the original columns over the cells. It is an
advantage of the rectangular prisms that the respec-
tive volume integrals for calculating the effects on grav-
ity and potential can be solved analytically – although
the evaluation of these formulas requires the numerical
calculation of several logarithmic and arctan functions
(Mader 1951; Nagy 1966; Forsberg 1984; Tsoulis 1999;
Nagy et al. 2000, 2002). Furthermore, the prisms are
inclined with respect to the local vertical and shifted
with respect to the horizontal plane at the computation
point, due to the (approximate) sphericity of the Earth.
These effects have to be taken into account for distant
prismatic elements (Grüninger 1990; Kuhn 2000; Smith
2000, 2002).

In the vicinity of the computation point, the flat-
topped prism is only a rough approximation of the topo-
graphic surface, resulting in discontinuities in the DTM
surface. A better approximation is provided by a prism
topped by an inclined plane (Koch 1965; Grüninger
1990) or by a bilinear surface (Smith 2000; Smith et al.
2001; Tsoulis et al. 2003). The approach based on these
inclined-top prisms can be easily extended to general
polyhedral bodies (Talwani and Ewing 1960; Paul 1974;
Petrović 1996; Tsoulis 1999; Tsoulis et al. 2003), apply-
ing Gauß’s divergence theorem; this procedure requires
the numerical calculation of a 1D line integral, which
can efficiently be solved by numerical methods.

Considering the gravity-field-related quantities of
geodetic interest, the integration over the vertical coor-
dinate in the respective volume integrals can be
performed analytically, if a constant or laterally-varying
topographic density is postulated. In this way, 2D inte-
grals over the infinite plane or a spherical reference sur-
face have to be evaluated numerically (Martinec 1998;
Novák et al. 2001; Heck 2003a; Vaniček et al. 2004) since
the integral kernels are rather complicated.

The effect of distant masses in terms of surface or
volume integrals is often approximated by series expan-
sions of the respective integral kernels, neglecting, e.g.
second and higher order terms. This principle is the ba-
sis of the widely used terrain correction C of gravity
expressed as a planar or spherical integral of the type
(e.g. Moritz 1968; Forsberg 1984; Forsberg and Sideris
1989, and many subsequent papers)

C = 1
2

Gρ
∫∫

S

(
H′ − Hp

)2

�3
o

dS (1)

where H′ and Hp are the topographic heights of the inte-
gration and computation points, respectively, separated
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by the horizontal distance �o; G is Newton’s constant
of gravitation, ρ the (constant) mass density, and dS the
surface element of the (planar or spherical) reference
surface S.

The linear approximation given by Eq. (1) is the first
term of a series expansion converging for

∣∣(H′ − Hp
)
/�o

∣∣
< 1, i.e. for terrain slopes less than 45◦ (e.g. Martinec et
al. 1996; Jekeli and Serpas 2003). The integral in Eq. (1)
in the planar case can be expressed as convolutions of
H′ and

(
H′)2, allowing the application of 2D FFT tech-

niques (Forsberg 1984, 1985; Sideris 1985; Harrison and
Dickinson 1989; Schwarz et al. 1990; Klose and Ilk 1993;
Li and Sideris 1994).

As an alternative, Eq. (1) – understood as a spheri-
cal integral – can be calculated by a 1D convolution in
longitude (Smith 2002). In order to overcome the diffi-
culties with the aforementioned convergence criterion
in rough terrain, Tsoulis (1999) and Tsoulis and Tziavos
(2002) have proposed a combination of space- and fre-
quency-domain techniques.

In this contribution, an alternative space-domain ap-
proach to the calculation of topographic–isostatic reduc-
tions is presented, which is based on series expansions of
the kernel functions related to the gravitational effects
of so-called tesseroids; these elementary bodies result
from a subdivision of the ellipsoidal or spherical ref-
erence surface into elements bounded by geographical
grid lines and have a constant (ellipsoidal or spheri-
cal) height. The proposed procedure (cf. Seitz and Heck
2001) can be understood as an extension of MacMillan’s
idea (MacMillan 1930; Anderson 1976) to spherical or
ellipsoidal tesseroids, while MacMillan’s original formu-
las – related to rectangular prisms – refer to the planar
approximation of topographic or terrain reduction.

In Sect. 2, the prism method for mass reductions in
gravity field modelling is reviewed, and the series expan-
sion by MacMillan is derived in our terminology. In
Sect. 3, an analogous procedure is applied to the gravita-
tional field of a spherical tesseroid. Both sets of formulas
are compared with respect to precision and computing
time in Sect. 4, while Sect. 5 concludes with some pro-
posals for further extensions.

2 Review of the prism potential

The gravitational potential u of a right rectangular par-
allelopiped (prism) of homogeneous mass-density ρ is
described by Newton’s integral

u(x, y, z) = Gρ

z2∫

z1

y2∫

y1

x2∫

x1

dx′dy′dz′

�
(2)

Fig. 1 Geometry of the rectangular prism

where

� =
√
(x − x′)2 + (y − y′)2 + (z − z′)2 (3)

denotes the Euclidean distance between the computa-
tion point P(x, y, z) and the running integration point
Q(x′, y′, z′). The coordinate axes in Eq. (2) have been
assumed to be parallel to the edges of the prism, which
extends between the coordinate surfaces related to the
bounds x1, x2, y1, y2, z1, z2 (Fig. 1).

It is well known that the integral in Eq. (2) can be
solved analytically (Mader 1951; Grüninger 1990; Nagy
et al. 2000, 2002), resulting in the formula for the poten-
tial u(x, y, z)

u(x, y, z)

= Gρ
2∑

i=1

2∑
j=1

2∑
k=1

(−1)i+j+k

×
⎡
⎣(x − xi)

(
y − yj

)
ln

∣∣∣∣∣∣
z − zk + wijk√

(x − xi)
2 + (

y − yj
)2

∣∣∣∣∣∣

+(
y − yj

)
(z − zk) ln

∣∣∣∣∣∣
x − xi + wijk√(

y − yj
)2 + (z − zk)

2

∣∣∣∣∣∣

+(z − zk)(x − xi) ln

∣∣∣∣∣
y − yj + wijk√

(z − zk)
2 + (x − xi)

2

∣∣∣∣∣
−1

2

(
(x − xi)

2 arctan

(
y − yj

)
(z − zk)

(x − xi)wijk

+
(

y − yj

)2
arctan

(z − zk)(x − xi)(
y − yj

)
wijk

+(z − zk)
2 arctan

(x − xi)
(
y − yj

)
(z − zk)wijk

)]
, (4)

with wijk =
√
(x − xi)

2 + (
y − yj

)2 + (z − zk)
2 .
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The logarithmic terms in Eq. (4) have been trans-
formed with respect to Mader’s (1951) formula in order
to provide a better numerical stability (cf. Grüninger
1990). The direct application of Eq. (4) will fail when
the computation point P is situated on an edge or on
a corner of the prism; the respective limit values have
been derived by Nagy et al. (2000, 2002).

The gradient of the potential

grad u = ux�ex + uy�ey + uz�ez (5)

is related to the partial derivatives of u with respect to
the Cartesian coordinates x, y, z (�ex, �ey, �ez are the unit
vectors in the direction of the coordinate axes), where

ux(x, y, z) = Gρ
2∑

i=1

2∑
j=1

2∑
k=1

(−1)i+j+k

×
⎡
⎣(

y − yj
)

ln

∣∣∣∣∣∣
z − zk + wijk√

(x − xi)
2 + (

y − yj
)2

∣∣∣∣∣∣

+(z − zk) ln

∣∣∣∣∣
y − yj + wijk√

(x − xi)
2 + (z − zk)

2

∣∣∣∣∣
−(x − xi) arctan

(
y − yj

)
(z − zk)

(x − xi)wijk

]
.

(6)

Again, the logarithmic terms have been modified in or-
der to improve their numerical stability.

Equation (6) can be derived either by differentiating
the potential (Eq. (4)) with respect to x or by solving
directly the differentiated equation (2)

ux(x, y, z) = −Gρ

z2∫

z1

y2∫

y1

x2∫

x1

(
x − x′)dx′dy′dz′

�3 . (7)

The other two partial derivatives uy and uz can be ob-
tained from Eq. (6) by cyclic permutation. Limit values
of ux, uy and uz for the case that the computation point
is situated on an edge or a corner of the prism, are pro-
vided in Nagy et al. (2000, 2002).

Due to the decrease of gravitational effects with
increasing distance (Newton’s law), the rather complex
and time-consuming Eqs. (4) and (6) may be substituted
by much simpler expressions based on a Taylor expan-
sion of the integrand in Eq. (2) and subsequent integra-
tion. Maximum efficiency can be achieved if the Taylor
point is fixed at the geometrical centre of the prism, i.e.

xo = (x1 + x2)/2,

yo = (y1 + y2)/2, (8)

zo = (z1 + z2)/2.

Formally, the Taylor expansion of the integral kernel 1/�
can be expressed by

I = �−1 =
[(

x′ − x
)2 + (

y′ − y
)2 + (

z′ − z
)2

]−1/2

=
∑
i,j,k

Iijk
(
x′ − xo

)i(y′ − yo
)j(z′ − zo

)k (9)

where

Iijk := 1
(i + j + k)!

∂ i+j+k�−1

∂x′i∂y′j∂z′k

∣∣∣∣∣ x′=xo
y′=yo
z′=zo

. (10)

Inserting Eq. (9) into Eq. (2), it becomes obvious that
the integration with respect to each coordinate can be
reduced to integrals of the type

x2∫

x1

(
x′ − xo

)idx′ =
+�x/2∫

−�x/2

(
x′′)idx′′

= 1 − (−1)i+1

(i + 1)2i+1
(�x)i+1

=
{

0 if i odd
(�x)i+1/

[
(i + 1)2i

]
if i even,

(11)

where �x = x2 − x1 (and similarly �y = y2 − y1,�z =
z2 −z1). As a consequence, only those terms for which i,
j and k are even will remain in the resulting series, while
all other terms cancel out due to our specific choice of
the Taylor point Po(xo, yo, zo). This procedure is com-
parable to the classical Gauß mid-latitude formulas for
the equations of the geodesic (e.g. Heck 2003b, p. 210),
and produces a very fast numerical convergence.

The gravitational potential of the homogeneous rect-
angular prism, neglecting terms of order four and higher
in �x,�y,�z, is then given by MacMillan’s (1930) for-
mula (also see, Anderson 1976; Forsberg 1984)

u(x, y, z) = Gρ�x�y�z

×
[

1
�o

+ 3(xo − x)2 − �2
o

24�5
o

�x2

+3(yo − y)2 − �2
o

24�5
o

�y2

+ 3(zo − z)2 − �2
o

24�5
o

�z2+O
(
�4)

]
(12)

where �o denotes the Euclidean distance between the
computation point P and the geometrical centre Po of
the prism (see Fig. 2):

�o =
√
(xo − x)2 + (yo − y)2 + (zo − z)2.

The Landau symbol O(�m) in Eq. (12) indicates that
terms of the order m and higher are neglected.
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Fig. 2 Geometry of the MacMillan approximation

From Eq. (12) it is obvious that the zero-order approx-
imation is formally identical with the potential of a
point-mass at Po when the total mass of the prism m =
ρ�x�y�z is concentrated at its geometrical centre Po:

u(x, y, z) = Gρ�x�y�z
�o

[1 + O(�2)]. (13)

The residual terms in Eq. (12) take into account the
deviations from a point-mass and vanish for a cube, i.e.
when �x = �y = �z.

The first and higher order derivatives of the potential
can be simply found by differentiation with respect to
x, y and z. Numerical investigations concerning the con-
vergence of Eq. (12), as well as a generalization of the
MacMillan formulas for the non-homogeneous prism
based on a linear density model, have been presented
by Anderson (1976). The MacMillan (1930) formula
(Eq. 12) and its derivatives have also been implemented
in the TC software by Forsberg (1984) for prismatic
topographic elements situated in an intermediate zone,
while the point-mass approximation Eq. (13) is used for
large distances, and the exact prism formulas Eqs. (4)
and (6) are used for the near zone.

Due to the curvature of the Earth, the topocentric
Cartesian coordinate systems, attached to the direction
of the vertical at the computation point P – on the one
hand – and to the edges of the prismatic topographic ele-
ment – on the other hand – will not be parallel. Taking
into account the convergence of the plumbline direc-
tions, the situation is visualized in Fig. 3 where (X, Y, Z)
denote the Cartesian coordinates related to a global ter-
restrial (equatorial) reference frame and (x, y, z) and
(x∗, y∗, z∗) the local Cartesian coordinates related to the
edge system of the prism and to the local vertical refer-
ence frame at the computation point P, respectively.

The transformation of the components ux, uy, uz of
the effect on the gravity vector, described in the edge
system of the prism, into the local system at P is provided

by the respective basis transformations with respect to
the global equatorial system. Approximating the direc-
tion of the plumbline at the computation point P by
the ellipsoidal normal (geodetic latitude ϕ and longi-
tude λ) and the direction of the z-axis of the edge sys-
tem by the parameters ϕ′, λ′, the relations between the
orthonormal base vectors in the respective triads can be
expressed by the following formulas (Grüninger 1990;
Kuhn 2000)

(�ex, �ey, �ez)
T = P1 · R2

(
π

2
− ϕ′

)
· R3(λ

′) · (�eX , �eY , �eZ
)T

(14a)

(�e∗
x, �e∗

y, �e∗
z)

T = P1 · R2

(
π

2
− ϕ

)
· R3(λ) · (�eX , �eY , �eZ

)T.

(14b)

where R2 and R3 denote rotation matrices for rota-
tions about the 2- and 3-axes, respectively, while the
reflective matrix P1 has to be introduced for the transi-
tion between the right-handed global terrestrial frame
(�eX , �eY , �eZ) and the left-handed local terrestrial systems
(�ex, �ey, �ez) and (�e∗

x, �e∗
y, �e∗

z), oriented to geodetic north,
east and up.

From Eq. (14b), the formulas for the transformation
between the edge system of the prism and the local ver-
tical system at the computation point P result in

(u∗
x, u∗

y, u∗
z)

T = T(ϕ, λ;ϕ′, λ′) · (ux, uy, uz)
T (15)

T(ϕ, λ;ϕ′, λ′)

= P1 · R2

(
π

2
− ϕ

)
· R3(λ− λ′) · R2

(
ϕ′ − π

2

)
· P1,

(16)

where (ux, uy, uz) and (u∗
x, u∗

y, u∗
z) denote the coordinates

of the gravity vector grad u in the edge system and in
the local vertical system at P, respectively. The explicit
form of the transformation matrix T can be taken from
Kuhn (2000, p. 76) and Heck (2003b, p. 41). This trans-
formation has to be performed for any single prism. In
practical applications, the geodetic latitudes ϕ,ϕ′ may
be replaced by the geocentric latitudes.

In general, the dimensions of the prism have to be
derived from the dimensions of a tesseroid. In Sect. 4,
the relations are evaluated under the postulate of equal-
ity of the prism and tesseroid masses.

3 Gravitational potential and attraction by tesseroids

As mentioned in Sect. 1, a tesseroid (this notion was
introduced by Anderson 1976) is an elementary body
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Fig. 3 Transformation
between the edge system of
the prism and the local
vertical reference frame at the
computation point P

bounded by geographical grid lines on the ellipsoidal
(or spherical) reference surface and surfaces of constant
ellipsoidal (or spherical) height. This type of mass ele-
ments is created quite naturally when DTMs are used
that are based on geodetic coordinates ϕ, λ. The bound-
ing surfaces of a tesseroid are (i) a pair of surfaces of
constant ellipsoidal height h1 = const, h2 = const, “par-
allel” to the reference ellipsoid; (ii) a pair of meridional
planes λ1 = const, λ2 = const; and (iii) a pair of coaxial
circular cones ϕ1 = const, ϕ2 = const.

In most cases, a spherical approximation of the ellip-
soidal tesseroid will yield sufficient results (Novák and
Grafarend 2005). Neglecting the ellipticity of the refer-
ence surface the surface pair (i) then consists of concen-
tric spheres with radii r1 = R + h1, r2 = R + h2, where
R denotes the chosen radius of the equivalent sphere.
The geometrical relations for a spherical tesseroid are
visualized in Fig. 4, since the following derivations are
restricted to spherical tesseroids.

The gravitational potential v of a spherical tesseroid
of homogeneous mass-density ρ is described by New-
ton’s integral

v(r,ϕ, λ) = Gρ

λ2∫

λ1

ϕ2∫

ϕ1

r2∫

r1

r′2 cosϕ′dr′dϕ′dλ′

�
(17)

where

� =
√

r2 + r′2 − 2rr′ cosψ (18)

denotes the Euclidean distance between the computa-
tion point P(r,ϕ, λ) and the running integration point
Q(r′,ϕ′, λ′) and ψ is the angle between the position vec-
tors of P and Q,

cosψ = sin ϕ sin ϕ′ + cosϕ cosϕ′ cos(λ′ − λ). (19)

In contrast to the gravitational potential of the prism
Eq. (2) the potential of the tesseroid cannot be solved
by elementary integration since elliptic integrals occur.
However, an approximate solution can be produced
by numerical integration of either the volume integral
Eq. (17) or the surface integral resulting from integra-
tion over the radial coordinate r′

v(r,ϕ, λ) = 1
2

Gρ

λ2∫

λ1

ϕ2∫

ϕ1

cosϕ′

×[
�
(
r′ + 3r cosψ

) + r2(3 cos2 ψ − 1)

×ln(�+ r′ − rcosψ)
]∣∣r′=r2

r′=r1
dϕ′dλ′, (20)

Fig. 4 Geometry of the tesseroid
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where the integration over r′ is analytically evaluated
(cf. Martinec 1998).

Equivalently to MacMillan’s (1930) expansion for a
prism, a series expansion of Eq. (17) can be used for
tesseroids at some distance from the computation point
P. Again, maximum efficiency is achieved by fixing the
point of the Taylor expansion at the geometrical centre
of the tesseroid, i.e. at

ro = (r1 + r2)/2,

ϕo = (ϕ1 + ϕ2)/2,

λo = (λ1 + λ2)/2. (21)

The Taylor expansion of the integral kernel r′2 cosϕ′/�
in Eq. (17) can be expressed by

K(r′,ϕ′, λ′) = r′2 cosϕ′

�

=
∑
i,j,k

Kijk
(
r′ − ro

)i(
ϕ′ − ϕo

)j(
λ′ − λo

)k (22)

where

Kijk := 1
(i + j + k)!

∂ i+j+kK(r′,ϕ′, λ′)
∂r′i∂ϕ′j∂λ′k

∣∣∣∣∣ r′=ro
ϕ′=ϕo
λ′=λo

. (23)

Inserting Eq. (22) into Eq. (17) yields integrals of the
type in Eq. (11), such that only terms with even powers
of i, j, and k will remain in the power series (Seitz and
Heck 2001; Kuhn and Seitz 2005)

v(r,ϕ, λ)=Gρ�r�ϕ�λ
[

K000+ 1
24

(
K200�r2+K020�ϕ

2

+K002�λ
2
)
+O

(
�4)] (24)

where�r = r2−r1 = h2−h1,�ϕ = ϕ2−ϕ1,�λ = λ2−λ1
denote the dimensions of the tesseroid. In Eq. (24),
the Landau symbol O

(
�4) indicates that terms of or-

der four in �r,�ϕ,�λ are omitted. The coefficients
Kijk in Eq. (24) depend on the relative positions of the
computation point P(r,ϕ, λ) and the geometrical centre
Po(ro,ϕo, λo) of the tesseroid (Taylor point):

K000 := r2
o cosϕo

�o
, �o =

√
r2 + r2

o − 2rro cosψo (25)

cosψo = sin ϕ sin ϕo + cosϕ cosϕo cos(λo − λ). (26)

The second-order coefficients K200, K020 and K002 are
given in Appendix A1.

Considering the total mass of the tesseroid

m = ρ

λ2∫

λ1

ϕ2∫

ϕ1

r2∫

r1

r′2 cosϕ′dr′dϕ′dλ′

= ρ

3

(
r3

2 − r3
1

)
(sin ϕ2 − sin ϕ1)�λ (27)

and the respective series expansion at Po(ro,ϕo, λo)

m = ρr2
o cosϕo�r�ϕ�λ

×
[

1 + 1
12

(
�r
ro

)2

− 1
24
(�ϕ)2 + · · ·

]
(28)

it becomes evident that the zero-order approximation
of Eq. (24)

v(r,ϕ, λ) = Gm
�o

[
1 + O

(
�2)]

= Gρ�r�ϕ�λK000

[
1 + O

(
�2)] (29)

is formally identical with the potential of a point mass m
placed at Po, concentrating the total mass of the tesse-
roid at Po. The residual terms in Eq. (24) essentially
take into account the deviations of the tesseroid from a
point-mass.

The effect of the tesseroid mass on the gravity vector
at the computation point P(r,ϕ, λ) can be calculated by
differentiating the integral kernel 1/�o in Eqs. (17) or
(20) with respect to r,ϕ and λ. The reduction for the
gravitational effect results from

δg = −∂v(r,ϕ, λ)
∂r

= Gρ

λ2∫

λ1

ϕ2∫

ϕ1

r2∫

r1

r′2(r − r′ cosψ
)

cosϕ′dr′dϕ′dλ′

�3 . (30)

Again, integration of Eq. (30) results in elliptic inte-
grals that cannot be solved analytically. Performing the
integration with respect to r′ the volume integral in
Eq. (30) is reduced to the surface integral (cf. Martinec
1998)

δg= Gρ
r

λ2∫

λ1

ϕ2∫

ϕ1

cosϕ′
[

r′3

�
−�(r′+3r cosψ

)−r2(3 cos2 ψ−1
)

× ln(�+ r′−rcosψ)

]∣∣∣∣
r′=r2

r′=r1

dϕ′dλ′. (31)

Equations (30) and (31) can be evaluated numeri-
cally. As an alternative, the gravitational effect of distant
tesseroids can be calculated from a Taylor expansion of
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the integral kernel of Eq. (30) at Po(ro,ϕo, λo)

L(r′,ϕ′, λ′) = r′2(r − r′ cosψ
)

cosϕ′

�3

=
∑
i,j,k

Lijk
(
r′ − ro

)i(
ϕ′ − ϕo

)j(
λ′ − λo

)k (32)

where

Lijk := 1
(i + j + k)!

∂ i+j+kL(r′,ϕ′, λ′)
∂r′i∂ϕ′j∂λ′k

∣∣∣∣∣r′=ro
ϕ′=ϕo
λ′=λo

. (33)

Due to our specific choice of the Taylor point Po, only
the terms with even powers of i, j and k remain in the
series expansion, which results from inserting Eq. (32)
into Eq. (30)

δg(r,ϕ, λ)=Gρ�r�ϕ�λ
[

L000+ 1
24

(
L200�r2+L020�ϕ

2

+L002�λ
2
)
+O

(
�4)] . (34)

The coefficients Lijk in Eq. (34) depend on the posi-
tions of the computation point P(r,ϕ, λ) and the Taylor
point Po(ro,ϕo, λo). The zero-order coefficient is

L000 := r2
o(r − ro cosψo) cosϕo

�3
o

= −∂K000

∂r
. (35)

The second-order coefficients L200 = − ∂K200
∂r , L020 =

− ∂K020
∂r and L002 = − ∂K002

∂r are presented in Appendix
A2.

Again, the zero-order approximation of Eq. (34)

δg(r,ϕ, λ) = Gm
�3

o
(r − ro cosψo)

[
1 + O

(
�2)]

= Gρ�r�ϕ�λL000

[
1 + O

(
�2)] (36)

is essentially identical with the effect of a point-mass
m located at Po on gravitation at P, while the residual
terms in Eq. (34) represent the deviations of the tesse-
roid from a point-mass.

Analogously, the derivatives of the gravitational po-
tential v(r,ϕ, λ) with respect to ϕ and λ will provide the
formulas for the (topographic–isostatic) reduction of the
vertical deflections at P. It should also be noted that the
complete set of formulas derived in this section is valid
for computation points situated outside the tesseroid
only.

Comparing the sets of formulas for the gravitational
effects of a rectangular prism (Sect. 2) and a tesseroid
(this section), it becomes clear that – in the case of the
tesseroid formulas – no further transformation between
different local coordinate systems will be necessary, since

the result is already given in the local topocentric sys-
tem at P; in this respect, the resulting equations are more
compact. As such, integration over the complete surface
of the Earth or large parts of it can be performed quite
efficiently.

The numerical efficiency can even be improved fur-
ther by calculating the effects of the tesseroids along lat-
itude bands, related to a constant value of ϕo (cf. Smith
2002), where the number of trigonometric function eval-
uations is reduced greatly. This band-wise approach even
allows us to take the Earth’s ellipticity into account, just
by considering a latitude-dependent Earth radius in ro:
Instead of the mean radius R the prime vertical radius
No

No := a√
1 − e2 sin2 ϕo

(37)

(a: semi-major axis, e: first numerical eccentricity of the
Earth ellipsoid) in the latitude band ϕo = const can be
used. In the ellipsoidal case, ϕ and ϕo are geodetic lati-
tudes.

4 Numerical investigations

To get an impression of the advantage using tesseroids
instead of prisms or point-masses, several numerical
tests have been performed. The comparisons refer to
the required computation time, the achievable precision
and the approximation error, considering gravitational
potential and attraction.

According to Eq. (28), the dimensions of the “equiv-
alent” rectangular prism are computed from the dimen-
sions of the tesseroid. This implies mass equivalence of
the first-order under the further assumption that the
tesseroid and the prism have the same constant mass-
density ρ:

mtesseroid = mprism

ρr2
o cosϕo�r�ϕ�λ

[
1 + 1

12

(
�r
ro

)2

− 1
24
(�ϕ)2 + · · ·

]

= ρ�x�y�z. (38)

Neglecting terms of order O
(
�2)and identifying the

spherical height of the tesseroid with the height of the
prism

�z = �r (39a)

the horizontal dimensions of the prism are fixed as

�x = ro�ϕ (39b)

�y = ro cosϕo�λ. (39c)
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Fig. 5 Comparison of the computation time using tesseroid, prism
or point mass to compute potential and gravitational attraction

The approximation error induced by neglecting terms
of order O(�2) in Eq. (38) depends on the size of the
tesseroid; the maximum relative error in the volume,
gravitational potential and gravitational acceleration of
a tesseroid can be estimated as 10−5 for |�ϕ| = 1◦ and
10−7 for |�ϕ| = 5′ and |� r| ≤ 9,000 m.

To compare the respective computation time the
JGP95E global DTM (Lemoine et al. 1998, Chap. 2) was
used as a realistic test field. It is related to a 5′ ×5′ global
grid in geodetic coordinates (here assumed spherical)
and consists of 2, 160 × 4, 320 = 9, 331, 200 tesseroids.
At each centre point on the upper surface of a grid ele-
ment, the effect of all tesseroids on potential and gravity
has been computed. It is obvious from Fig. 4 that the
topography (r1 = R, r2 = R + H) or the residual topog-
raphy (r1 = R + H1, r2 = R + H2) can be modelled with
the aid of tesseroids, for example, in the framework of
terrain reduction. The following test computations have
been carried out for terrain reductions; here, the differ-
ence between ellipsoidal and orthometric heights (i.e.
the geoid height) has been neglected.

For each computation point P, the tesseroids are
bounded in the vertical direction by concentric spheres
of radii r1 = R+HP and r2 = R+Hij, where Hij denotes
the topographic height of the DTM grid element (i, j).
As a consequence, there is no contribution from the cen-
tral element (HP = Hij;�r = 0) to the terrain reduc-
tion. The comparison among the required computation
times for the evaluation of the gravitational potential
and gravitational acceleration from a tesseroid, prism
and point-mass from the JGP95E DTM is visualized in
Fig. 5

Concerning the computation time required to evalu-
ate the potential values, one can notice from Fig. 5 that
the algorithm applied for the computation of the po-
tential of the tesseroids runs 10 times faster than that

implemented for the prisms. This remarkable differ-
ence is caused by time-consuming 24 log and 24 arctan
function calls per prism. With respect to the point-mass
approximation, the tesseroids are slower only by a factor
of two. In extensive numerical evaluations, the point-
mass approximation may be used to compute the far
zone contributions, but in general the tesseroids should
be preferred.

The gain of efficiency is reduced when the necessary
computation time regarding the gravitational attraction
is compared (Fig. 5). The computation of the attraction
by a prism takes only half of the time in comparison with
the gravitational potential of a prism. This is caused by
the fact that the number of function calls decreases; to
compute the attraction of a prism in the local coordinate
system of the computation point 12 log and 24 arctan
function calls per prism are required. In comparison to
the tesseroids, there is still a factor of four.

The absolute accuracy of the respective discretisation
approach (prism, tesseroid, point-mass) and the asso-
ciated approximation error for gravitational potential
and attraction can only be analysed in comparison with
a mass distribution where an analytical solution exists.
This is the case for a spherical cap of constant thick-
ness d = r2 − r1, constant mass-density ρ and constant
radius ψc, centred at the computation point. The spher-
ical angle ψ counts from the geocentric direction of the
computation point P(r,ψ = 0◦), which actually coin-
cides with the origin of the spherical coordinate system.

The formulas for the gravitational potential of a cap
at the computation point p(r,ψ = 0◦) are

v(r; r1, r2,ψc)

= 2πGρ
{

1
3r
�′3c + 1

2
�′c cosψc

(
r′ − r cosψc

)

+ 1
2

r2 cosψc sin2 ψc ln
(
�′c + r′ − r cosψc

)}∣∣∣∣
r′=r2

r′=r1

+ 2πGρ
(

+ 1
3r

r′3 − 1
2

r′2
)∣∣∣∣

r′=r2

r′=r1

{+1 r � r2
−1 r � r1 ,

(40)

where �′c = √
r2 + r′2 − 2rr′ cosψc, and for the gravita-

tional attraction of a cap, they are

δg(r; r1, r2,ψc)

= − ∂v(r; r1, r2,ψc)

∂r

= 2πGρ
{
− 1

3r2 �
′3
c + 1

r
�′c

(
r − r′ cosψc

) − 1
2
�′c cos2 ψc

+1
2

cosψc
(
r′ − r cosψc

) r − r′ cosψc

�′c
+r cosψc sin2 ψc ln

(
�′c + r′ − r cosψc

)
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Fig. 6 Geometry of a spherical zonal band and a tesseroid

+1
2

r2 cosψc sin2 ψc
r − (

�′c + r′) cosψc

�′c
(
�′c + r′ − r cosψc

)
}∣∣∣∣∣

r′=r2

r′=r1

+2πGρ
(

− 1
3r2 r′3

)∣∣∣∣
r′=r2

r′=r1

{ +1, r � r2
−1, r � r1

, (41)

see the derivation in Appendices A3 and A4.
From the analytical solutions of the gravitational po-

tential (Eq. 40) and gravitational attraction (Eq. 41) of
a spherical cap, where the computation point is located
at the origin of the spherical polar coordinate system,
the potential and attraction of a spherical zonal band
between the spherical distances ψi and ψi+1 (Fig. 6) can
be derived from

v(r; r1, r2,ψi,ψi+1)=v(r; r1, r2,ψi+1)−v(r; r1, r2,ψi)

(42a)

δg(r; r1, r2,ψi,ψi+1)=δg(r; r1, r2,ψi+1)−δg(r; r1, r2,ψi).

(42b)

In the following, the analytical solutions for the po-
tential and attraction of spherical ring zones of constant
height and band-width �ψ are used as absolute values
for comparison.

The numerical solutions resulting from the point-
mass, prism and tesseroid approximations for these zonal
bands are compared in Figs. 7a, b with the analytical

values from Eq. (42a), respectively. The tesseroid dimen-
sions in each spherical zonal band of band-width �ψ =
ψi+1 − ψi = 5′ with 0 � ψi < ψi+1 � π have been
chosen as �α = 5′ (azimuthal difference) and d = H =
r2 − r1 = 1, 000 m (height). Due to the rapid decrease
of the approximation errors with spherical distance ψi,
the results are plotted in logarithmic scale. Besides the
absolute values of the approximation errors, the analyt-
ical values of the contribution of each concentric spher-
ical zonal band is plotted (dashed line in Fig. 7) to show
the relative accuracy.

Remark The prism formulas (Eqs. 4 and 6) are exact
analytical solutions for a homogeneous prism. However,
under the assumption of mass equality, the dimensions
of the prisms have to be calculated from the extension
of the tesseroids, since in practice a DTM is mostly
given in geodetic coordinates (here assumed spherical).
Therefore, the prism method also produces an approx-
imation error in the present test example of spherical
ring zones, caused by the different geometry of a prism
and a tesseroid on the one hand and – to a minor ex-
tent – the approximated mass balance (Eq. (39b)) on
the other hand. In particular, for small distances ψi,
the shapes of a tesseroid and a prism of equal volume
are very different; in the direct vicinity of the compu-
tation point, the tesseroid degenerates and has a trian-
gular base shape. For details, see Grüninger (1990) and
Kuhn (2000).

The analytical solution of the gravitational potential
and attraction of a concentric spherical zonal band com-
posed of the difference between two successive spherical
caps shows a nearly constant behaviour in the plotted
region 0 � ψi � 10◦, the near-zone of the computation
point. This can be explained by the fact that the mass
within a spherical zonal band (here, �ψ = 5′ = const)
is increasing in a nearly linear manner with increas-
ing distance ψi to the computation point. However, the
reciprocal decrease of the potential with increasing dis-
tance counteracts this behaviour; the result is an approx-
imately constant contribution of each concentric zonal
band up to a spherical distance of about ψi = 10◦ (see
Fig. 7, upper curve).

The reasoning for the behaviour of the gravitational
attraction is analogous: the decrease with the square
of the distance is counteracted by the linearly increas-
ing volume in the calculation of the vertical component
of the gravitational attraction at the computation point
(Fig. 7b, upper curve). It can be recognized from Fig. 7a,
b that the decay of the approximation error with increas-
ing distance of the spherical ring zone is much faster for
the tesseroid in comparison with the prism and point-
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Fig. 7 a Analytical solution
and approximation error of
the potential of a zonal band
(�ψ = 5′) using tesseroid,
prism or point-mass
(�α = 5′, H = 1, 000 m).
b Analytical solution and
approximation error of the
gravitational attraction of a
zonal band (�ψ = 5′) using
tesseroid, prism or point-mass
(�α = 5′, H = 1, 000 m)
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mass approximations. When the spherical distance is
greater than about 1.5◦, the error is mainly induced
by rounding errors of the computer (single precision
IEEE arithmetic). In contrast, the prism and point-
mass approximations still produce significant errors for
ψi = 10◦ (potential) and 5◦ (attraction). The behaviour
of the point-mass approximation at ψi ≈ 7◦ can be ex-
plained by a change of sign of the error from positive to
negative values.

In a further test, the computation point is located at
the equator P(r,ϕ = 0◦, λ = 0◦), the integration area
is defined as −1◦ = ϕmin � ϕij � ϕmax = +1◦ and
−1◦ = λmin � λij � λmax = +1◦. The height of the mass
element is equal to the height of the computation point,
hP = hij = 100 m. In this test example, an exact ana-
lytical solution for the calculation of the gravitational
potential and gravitation of the 2◦ × 2◦ mass configura-
tion is not available. As such, only the numerical results
for the tesseroid, prism and point-mass approximations
can be compared.

In order to check the approximation error due to the
truncation of the Taylor series expansion (Eqs. 24 and
34), the integration area was gridded with tesseroids of
various grid sizes. The results obtained, depending on
the regular grid spacing �ϕ = �λ, are shown in Fig. 8
From Fig. 8a, it can be stated that a spacing less than
�ϕ = �λ = 60” causes errors in the potential less than
0.1 m2/s2 for the total 2◦ × 2◦ block. A coarse spacing of
0.5◦ or 1◦ causes unacceptable errors for the point-mass
and tesseroid modelling.

The behaviour of the gravitational attraction is shown
in Fig. 8b. The computed attraction for the prisms con-
verge very fast to a fixed value for a spacing less than
60”. The results for point masses and tesseroids converge
very slowly when the grid size decreases.

As can be concluded from Fig. 9, where the four ele-
ments located in the immediate vicinity of the computa-
tion point are eliminated, the approximation error due
to the truncation of the Taylor expansion decreases very
quickly depending on the distance to the computation
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Fig. 8 a Computation of the gravitational potential at PEquator
induced by the area −1◦ = ϕmin � ϕij � ϕmax = +1◦ and −1◦ =
λmin � λij � λmax = +1◦(H = 100 m) depending on the grid
size �ϕ = �λ. b Computation of the gravitational attraction at
PEquator induced by the area −1◦ = ϕmin � ϕij � ϕmax = +1◦ and
−1◦ = λmin � λij � λmax = +1◦(H = 100 m) depending on the
grid size �ϕ = �λ

point. It is evident that the slow convergence demon-
strated in Fig. 8 is caused by the error induced by the
elements located in the direct vicinity of the computa-
tion point.

The reason for this behaviour can be found in the
redistribution of the mass when the tesseroid is replaced
by an “equivalent” point mass or prism. This effect is
larger when the distance of the mass element to the
computation point decreases, and is much more pro-
nounced for point masses. Furthermore, the approxima-
tion errors for the prismatic bodies are partly induced
by replacing the curved upper and lower surfaces of
the tesseroid by planes. A part of the difference for
small grid size, visualized in Fig. 9, is due to the trun-
cation error in the tesseroid formulas (Eqs. 24 and 34),
resulting from the Taylor expansion. In this test example,
the results for the tesseroid and prism approximations
are quite similar, which can be explained by the fact
that the geometrical shape of these bodies is nearly the
same.
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Fig. 9 a Computation of the gravitational potential at PEquator
induced by the area −1◦ = ϕmin � ϕij � ϕmax = +1◦ and −1◦ =
λmin � λij � λmax = +1◦(H = 100 m) omitting the four elements
nearest to the computation point. b Computation of the gravita-
tional attraction at PEquator induced by the area −1◦ = ϕmin �
ϕij � ϕmax = +1◦ and −1◦ = λmin � λij � λmax = +1◦(H =
100 m) omitting the four elements nearest to the computation
point

5 Conclusions

By partitioning the topographic (or isostatic) masses
into tesseroids, i.e. geometrical bodies bounded by geo-
graphic grid lines and surfaces of constant height, an
efficient procedure has been proposed for mass reduc-
tions in gravity field modelling. Since the volume inte-
grals for the calculation of the gravitational potential
and attraction effects cannot be evaluated analytically,
a Taylor series expansion of the integral kernels is used.
By choosing the geometrical centre of the tesseroid as
the Taylor point, the number of non-vanishing series
terms is greatly reduced.

A comparison of the tesseroid formulas with the tra-
ditional prism method shows that the calculation speed
is improved by a factor of 10 for the gravitational poten-
tial and a factor of 4 for gravitational acceleration. For
global numerical evaluations, the efficiency can be in-
creased further by working in latitude bands and
considering recurrence formulas for the calculation of
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trigonometric functions. The sphericity of the Earth is
automatically taken into account in the tesseroid ap-
proach, while the curvature effect and the inclination of
the mass elements have to be considered separately in
the prism approach in an approximate manner.

Reducing the series expansion to the zero-order term
results in the point-mass formula; the additional sec-
ond-order terms represent the relative dimensions of
the tesseroid. In some respects, the proposed procedure
resembles MacMillan’s (1930) approach, which is based
on similar series expansions for prismatic bodies, where
the zero-order term is also equivalent to the point mass
formula.

The precision of the tesseroid procedure has been
checked with the aid of a test scenario based on the
gravitational potential and attraction of a spherical cap
of constant mass-density and thickness. If the computa-
tion point is situated on the symmetry axis of the spheri-
cal cap, the volume integrals for the potential and gravity
can be analytically (i.e. exactly) solved. The dependence
of the precision on the distance of the mass elements has
been evaluated by considering the effect of concentric
zonal bands, arising from the difference between the
caps of subsequent radii.

From this, while the approximation error for the sec-
ond-order tesseroid formula decreases very quickly with
increasing distance to the computation point, the decay
is much slower for the prism method and for the point-
mass formula. Close to the computation point, the re-
sults are sensitive to the shape of the model body used. In
the direct vicinity of the computation point, the “rectan-
gular” tesseroid degenerates and possesses a triangular
base shape; the approximation of those bodies by rect-
angular prisms or point-masses produces large errors.
For increasing distance from the computation point, the
point-mass and prism approximations become better
and better. It should be noted that the prism routine
breaks down for large distances, due to the loss of sig-
nificant digits when the required functions are evaluated
for nearly the same arguments, and differences are taken
as required.

In a second experiment, the computation point was
placed at the equator, at the centre of a 2◦ × 2◦ mas-
sive block. Here, the tesseroids in the neighbourhood
of the computation point have a nearly quadratic base,
and the approximation by prisms produces rather good
results, in particular for DTM side lengths less than 60”.
From this numerical experiment, it becomes clearly vis-
ible that the use of the second-order tesseroid formula
produces unacceptable errors, in particular for the calcu-
lation of the effect on gravitational attraction; the errors
induced by the point-mass formula are even larger. As a
conclusion, the effect of the mass elements in the vicin-

ity of the computation point should be calculated using
the prism formulas.

The results presented here for spherical tesseroids can
easily be transferred to the ellipsoidal case: the Earth’s
ellipticity can be taken into account by considering a
latitude-dependent Earth radius, e.g. the prime vertical
radius of the ellipsoid. This procedure can be combined
with the calculation on latitude bands, as mentioned ear-
lier.
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Appendix A

A1 Second-order coefficients K200, K020 and K002
according to Eq. (24)

K200 = r2 cosϕo

�5
o

{
2�2

o − 3r2
o sin2 ψo

}
(43)

K020 = r2
o

�5
o

{
− cosϕo

(
r2+r2

o

) [
r2 + r2

o − rro sin ϕ sin ϕo

]

+r2r2
o cosϕo
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sin2 ϕ

(
3 − sin2 ϕo

)
− cos2 ϕ
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2−sin2 ϕo
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cos2 δλ
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3−sin2 ϕo
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(44)

K002 = − rr3
o cosϕ cos2 ϕo

�5
o

×
{
�2

o cos δλ− 3rro cosϕ cosϕo sin2 δλ
}

(45)

with δλ = λo − λ.

A2 Second-order coefficients L200, L020 and L002
according to Eq. (34)

L200 = −∂K200

∂r

= r cosϕo

�3
o

{
2 − 3ro

�2
o

[
5ro − (2r + 3ro cosψo) cosψo

]

+15r3
o

�4
o

sin2 ψo(ro − r cosψo)

}
(46)

L020 = −∂K020
∂r
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=
(

ro

�o

)3
cosϕ

(
1 − 2 sin2 ϕo

)
cos δλ

+ r2
o

�5
o

{
−r

(
r2 + r2

o

)
cosϕo

+ro sin ϕ
[

− rro (sin ϕ cosϕo − cosϕ sin ϕo cos δλ)

+ sin ϕo cosϕo

(
2r2 + 4r2

o − 3rro sin ϕ sin ϕo

)]

+r2
o cosϕ cos δλ

(
1 − 2 sin2 ϕo

)

× [ro + r cosϕ cosϕo cos δλ]

+rr2
o cosϕ sin ϕo cosϕo cos δλ

[3 sin ϕ cosϕo − 4 cosϕ sin ϕo cos δλ]
}

+5rr3
o

�7
o

{
−r

(
r2 + r2

o

)
sin ϕo

+r2
o cosϕ sin ϕo cosϕo cos δλ

× (ro + r cosϕ cosϕo cos δλ)

+ro sin ϕ
[
2r2 − r2

o − rro cosψo + sin2 ϕo

×
(

r2 + 2r2
o − rro sin ϕ sin ϕo

)]}

× (sin ϕ cosϕo − cosϕ sin ϕo cos δλ) (47)

L002 = −∂K002

∂r

=
(

ro

�o

)3

cosϕ cos2 ϕo

×
{

cos δλ− 3r
�2

o

[
2ro cosϕ cosϕo sin2 δλ

+ (r − ro cosψo) cos δλ
]

+ 15r2ro

�4
o

cosϕ cosϕo (r − ro cosψo) sin2 δλ

}

(48)

A3 The gravitational potential v(r; r1, r2,ψc) of a
spherical cap

The gravitational potential v of a spherical cap of homo-
geneous mass-density ρ is described by Newton’s inte-
gral

v(r; r1, r2,ψc) = Gρ

2π∫

0

ψc∫

0

r2∫

r1

r′2 sinψ ′dr′dψ ′dα′

�
(49)

where the Euclidean distance � between the compu-
tation point P(r,ψ = 0◦) and the running integration
point Q(r′,ψ ′,α′) is defined in Eq. (18). Integration with
respect to the azimuth α′ for the rotationally symmetri-

cal cap results in

v(r; r1, r2,ψc) = 2πGρ

ψc∫

0

r2∫

r1

r′2 sinψ ′dr′dψ ′√
r2 + r′2 − 2rr′ cosψ ′ (50)

and integration with respect to the spherical distance ψ ′
yields

v(r; r1, r2,ψc) = 2πGρ
r

r2∫

r1

{√
r2 + r′2 − 2rr′ cosψc

− ∣∣r − r′∣∣
}

r′dr′. (51)

Finally, after the radial integration, the formula for
the gravitational potential of a spherical cap is given by
(cf. Papp and Wang 1996; Martinec 1998)

v(r; r1, r2,ψc)

= 2πGρ
{

1
3r
�′3c + 1

2
�′c cosψc

(
r′ − r cosψc

)

+1
2

r2 cosψc sin2 ψc ln
(
�′c + r′ − r cosψc

)}∣∣∣∣
r′=r2

r′=r1

+2πGρ
(

+ 1
3r

r′3 − 1
2

r′2
)∣∣∣∣

r′=r2

r′=r1

{+1 r � r2
−1 r � r1

,

(52)

where �′c = √
r2 + r′2 − 2rr′ cosψc.

If the extension of the cap tends in the limit toψc = π ,
the gravitational potential of a spherical shell of constant
mass-density ρ follows from Eq. (52) (cf. Vaniček et al.
2001, 2004):

v(r; r1, r2) =
{ 4πGρ

3r

(
r3

2 − r3
1

)
, r � r2

2πGρ
(
r2

2 − r2
1

)
, r � r1 .

(53)

A4 The gravitational attraction δg(r; r1, r2,ψc)of a
spherical cap

The gravitational attraction at the computation point
P(r,ψ = 0◦) caused by the spherical cap can be derived
from Eq. (52) by differentiation with respect to the radial
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direction r:

δg(r; r1, r2,ψc)

= −∂v(r; r1, r2,ψc)

∂r

= 2πGρ
{
− 1

3r2 �
′3
c + 1

r
�′c

(
r−r′ cosψc

) − 1
2
�′c cos2 ψc

+1
2

cosψc
(
r′ − r cosψc

) r − r′ cosψc

�′c
+r cosψc sin2 ψc ln

(
�′c + r′ − r cosψc

)

+1
2

r2 cosψc sin2 ψc
r − (

�′c + r′) cosψc

�′c
(
�′c + r′ − r cosψc

)
}∣∣∣∣∣

r′=r2

r′=r1

+2πGρ
(

− 1
3r2 r′3

)∣∣∣∣
r′=r2

r′=r1

{+1, r � r2
−1, r � r1 .

(54)

The gravitational attraction of a spherical shell results
from Eq. (54) withψc = π (cf. Vaniček et al. 2001, 2004):

δg(r; r1, r2) = −4πGρ
3r2

{
r3

2 − r3
1, r � r2

0, r � r1 .
(55)

If terms of the order d/r and H/r with d = r2 − r1
and H = r − r1 are neglected, the gravitational attrac-
tion of a spherical shell with constant mass-density ρ is
approximated by

δg(r; r1, r2)=̇ − 4πGρd, r � r2 > r1 . (56)

This is twice the effect of an infinite planar Bouguer
plate (Vaniček et al. 2001).
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