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Abstract Following our earlier definition of the rig-
orous orthometric height [J Geod 79(1-3):82–92 (2005)]
we present the derivation and calculation of the differ-
ences between this and the Helmert orthometric height,
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which is embedded in the vertical datums used in numer-
ous countries. By way of comparison, we also consider
Mader and Niethammer’s refinements to the Helmert
orthometric height. For a profile across the Canadian
Rocky Mountains (maximum height of ∼2,800 m), the
rigorous correction to Helmert’s height reaches ∼13 cm,
whereas the Mader and Niethammer corrections only
reach ∼3 cm. The discrepancy is due mostly to the rig-
orous correction’s consideration of the geoid-generated
gravity disturbance. We also point out that several of
the terms derived here are the same as those used in
regional gravimetric geoid models, thus simplifying their
implementation. This will enable those who currently
use Helmert orthometric heights to upgrade them to a
more rigorous height system based on the Earth’s grav-
ity field and one that is more compatible with a regional
geoid model.

Keywords Orthometric height · Geoid · Mean
gravity · Plumbline

1 Introduction

The orthometric height is defined as the metric length
along the curved plumbline from the geoid to the Earth’s
surface. To calculate an orthometric height from spirit-
levelling data and/or geopotential numbers requires that
the mean value of the gravity along the plumbline
between the Earth’s surface and the geoid should be
known. This mean value is strictly defined in an integral
sense (e.g. Heiskanen and Moritz 1967, p. 166).

In the past, three main approximations have been ap-
plied in practice to evaluate this integral-mean value of
gravity. The Helmert method, as described in Heiska-
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nen and Moritz (1967, chap. 4), applies the simplified
Poincaré–Prey vertical gradient of gravity, which uses
normal gravity and a Bouguer shell of constant topo-
graphic mass–density, to the observed gravity at the
Earth’s surface in order to obtain an approximated mean
value halfway down the plumbline. Niethammer (1932)
and Mader (1954) refined Helmert’s model by includ-
ing the effect of local variations in the terrain roughness
relative to the Bouguer shell. Mader (1954), considering
only the linear change of the gravimetric terrain correc-
tion with respect to depth, used the simple mean of the
terrain effect at the geoid and at the Earth’s surface,
whereas Niethammer (1932) used the integral mean of
terrain effects evaluated at discrete points along the
plumbline. Dennis and Featherstone (2003) evaluated
these three approximations, showing that the accuracy
is ordered Niethammer, Mader then Helmert, which
reflects the levels of approximation used.

In addition, the mean topographical mass–density
ρ0 = 2,670 kg m−3, used in the Helmert, Niethammer
and Mader approximations of the actual distribution of
topographical mass–density, is not sufficiently accurate
(in the original manuscript, Helmert (1890) refers to a
mass–density value of 2,400 kg m−3). Attempts to re-
fine the Helmert orthometric height in this regard have
included varying topographical mass–density data (e.g.
Sünkel 1986; Allister and Featherstone 2001) and bore-
hole gravimetry (Strange 1982) to better approximate
the integral-mean of gravity along the plumbline.

To the best of our knowledge, no attempts have been
made to include topographical mass–density data in the
Mader and Niethammer heights [even though Nietham-
mer (1932) already mentioned the necessity to use vary-
ing density information for a more rigorous treatment].

In this paper, we show that to arrive at a more rigor-
ous orthometric height, one must take into account not
only the effect of terrain roughness and normal gravity,
but also those additional effects coming from the masses
contained within the geoid (herein termed the geoid-
generated gravity) not accounted for by the Helmert ap-
proach and from the mass–density variations within the
topography. This is necessary because the mean value
of gravity along the plumbline between the geoid and
the Earth’s surface depends on all these quantities (cf.
Tenzer et al. 2005).

Mean gravity along the plumbline is thus evaluated
as the sum of the integral-mean values of the geoid-
generated gravity and the topography-generated
gravitational attraction. For practical evaluation, the
geoid-generated gravity is further divided into normal
gravity and the geoid-generated gravity disturbance, i.e.
the gravity disturbance in the so-called no-topography
(NT) space (cf. Vaníček et al. 2004). Likewise, the topog-

raphy-generated gravity is divided among the spherical
Bouguer shell, the terrain roughness residual to the
Bouguer shell, and the topographical mass–density
variations.

The aim of this paper is to provide the theoretical
background and practical methods with which to con-
vert Helmert orthometric heights [as described in, e.g.
Heiskanen and Moritz (1967, chap. 4)], which are used
as the height system embedded in the vertical datum
adopted in numerous countries, to the more rigorous
orthometric heights presented in Tenzer et al. (2005).
With this in mind, we have presented some preliminary
derivations and results for various components of the
correction in Vaníček et al. (2001) and in Tenzer and
Vaníček (2003). Kingdon et al. (2005) present a numer-
ical evaluation over a part of Canada. This paper now
presents and reviews the complete methodology.

1.1 Notation and terminology

In the sequel, the dummy argument � represents the
geocentric spherical coordinates φ and λ of a point
[ φ ∈ 〈−π/2, π/2〉 , λ ∈ 〈0, 2π〉] and r denotes its geo-
centric radius. The radius of a point is a function of loca-
tion being represented by r = r(�). The symbols rg(�)
and rt(�) represent the geocentric radii of the geoid and
the Earth’s surface, respectively, and will be abbreviated
to rg and rt where there is no ambiguity. The orthomet-
ric height of a point is also a function of location, and is
represented by HO(�).

The gravity at a point is a function of both the
radius and the horizontal geocentric coordinates �,
being represented by g(r(�),�) or in a simplified form
used throughout the paper as g(r,�). The remaining
gravity-related notation used throughout this paper is
summarized in Table 1. Where relevant, overbars will
be used to denote the integral-mean quantities between
the geoid and the Earth’s surface.

We use the term terrain roughness to represent the
irregular part of topography with respect to the Bou-
guer shell, i.e.the geometric variations in the shape of
topography. There are many other terms found in the
literature to indicate the same, such as topographical
roughness or simply terrain, but here we choose the
terminology of ‘terrain roughness’.

2 Recapitulation of the rigorous orthometric height

The orthometric height HO(�) of a point on the Earth’s
surface (rt,�) is defined as the length of the curved
plumbline between the geoid rg(�) and the Earth’s sur-
face rt(�) ∼= rg(�) + HO(�), and is given by [e.g.
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Table 1 Gravity-related notation used throughout this paper

g(r,�) Gravity at an arbitrary point

gNT(r,�) Gravity generated by masses contained within the geoid, i.e. with the topography removed and in the NT-space
gT(r,�) Gravitation generated by masses contained within the topography only, i.e. those between the geoid and Earth’s surface
gδρ(r,�) Effect on gravitation due to lateral mass–density variations inside the topography with respect to the reference value of

ρ0 = 2,670 kg m−3

γ (r,�) Normal gravity generated by the geocentric reference ellipsoid
δgNT(r,�) Gravity disturbances generated by masses contained within the geoid
gT

B(r,�) Gravitation generated by a spherical Bouguer shell
gT

R(r,�) Gravitation generated by the terrain roughness, i.e. topographical undulations relative to the spherical Bouguer shell
εg(�) Correction to Helmert’s approximation of integral-mean gravity along the plumbline
εHO (�) Correction to Helmert’s orthometric height to convert it to the rigorous orthometric height (Tenzer et al. 2005)

Heiskanen and Moritz 1967, Eqs. (4)–(21)]

HO(�) = C(rt,�)
g(�)

(1)

where ḡ(�) is the integral-mean value of gravity along
the plumbline between the geoid and the Earth’s surface

ḡ(�) = 1
HO(�)

rt∫

rg

g(r,�)dr (2)

and C(rt,�) is the geopotential number, which is
the difference between the Earth’s gravity potential
W0 [= constant] at the geoid and W(rt,�) at the Earth’s
surface

C(r,�) = W0 − W(r,�). (3)

Concerning ḡ(�), since the actual value of gravity
g(r,�) along the plumbline cannot be measured at all
points, the integral-mean gravity ḡ(�) generally has to
be computed from the observed surface gravity g(rt,�),
together with some realistic and physically meaningful
model of g(r,�) along the plumbline. This computation
can be achieved in practice by reducing the observed
gravity according to some accepted model of terrain
roughness and the topographical mass–density distribu-
tion between the geoid and the Earth’s surface.

3 Decomposition of actual gravity

In order to formulate the corrections to Helmert’s
orthometric height in a way that can be computed from
the datasets currently available (i.e. terrestrial gravity
observations, a digital elevation model (DEM) and
lateral density variations interpreted from geological
maps or databases), we use the following decomposi-
tion of gravity. The primary pragmatic benefit of this
approach is that these are the same data used to com-
pute a gravimetric geoid model, thus making the rigor-
ous orthometric heights more compatible with the geoid

Fig. 1 A (very simple) conceptual decomposition model of actual
gravity into the geoid-generated component (internal white area)
and the topography-generated component (dark area); the topog-
raphy is exaggerated for the sake of clarity

model, provided of course the same corrections have
been computed from the same data.

The gravity acceleration at a point g(r,�) can be
decomposed into two terms; one comprising gravity
generated by the masses inside geoid gNT(r,�), i.e. in
the NT-space (Vaníček et al. 2004), and another com-
prising the gravitational attraction generated by topog-
raphy gT(r,�),

g(r,�) = gNT(r,�)+ gT(r,�). (4)

Figure 1 schematically shows a simplistic cross section of
the Earth with the decomposition in Eq. (4), where the
white internal area shows the contribution that comes
from all masses within the geoid and the dark area shows
the contribution due to the topographic masses.

The geoid-generated gravity can be further decom-
posed into the contribution from normal gravity and the
gravity disturbance caused by only the masses inside the
geoid, the so-called NT gravity disturbance (cf. Vaníček
et al. 2004). Likewise, the topography-generated grav-
itation can be further decomposed into the Bouguer
shell contribution and the terrain roughness term resid-
ual to this shell. These two terms can also be adapted to
include (lateral) topographical mass–density variations
from the standard value of ρ0 = 2,670 kg m−3 (Sect. 5.5),
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this being the way in which topographic mass–density
data is normally derived from geological maps.

The geoid-generated gravity is represented by the
sum of normal gravity γ (r,�) and the geoid-generated
gravity disturbance δgNT(r,�)

gNT(r,�) = γ (r,�)+ δgNT(r,�). (5)

The topography-generated gravitational acceleration is
represented by the sum of that generated by Bouguer
shell gT

B(r,�), the terrain roughness residual to the
Bouguer shell gT

R(r,�), and the lateral variations
in mass–density from the assumed average
(ρ0 = 2,670 kg m−3) within the topography gδρ(r,�)

gT(r,�) ≈ gT
B(r,�)+ gT

R(r,�)+ gδρ(r,�). (6)

Inserting Eqs. (5) and (6) into Eq. (4) gives a complete
expression representing the total gravity as (cf. Tenzer
et al. 2005)

g(r,�) ≈ γ (r,�)+ δgNT(r,�)+ gT
B(r,�)

+ gT
R(r,�)+ gδρ(r,�). (7)

The approximation sign reflects the fact that two addi-
tional effects are omitted from Eqs. (6) and (7): the grav-
itational effects of atmospheric masses and the radial
variation of the topographic mass–density. The former
is omitted here because it is very small (cf. Tenzer et al.
2005, Appendix B) but will be reintroduced in Sect. 5.3;
the latter is very difficult to quantify because there is
not enough reliable information on the radial distribu-
tion of mass–density within the topography. As such,
we shall only consider lateral topographic mass–density
variations (cf. Martinec 1993; Sjöberg 2004). This is also
consistent with the treatment of the geoid in the Stokes–
Helmert scheme (e.g. Vaníček and Martinec 1994).

Finally, the integral-mean gravity along the plumbline
ḡ(�), given by the integral-mean of g(r,�) according to
Eq. (2) when applied to Eq. (7), is

g(�) ≈ γ (�)+ δg
NT
(�)+ gT

B(�)+ gT
R(�)+ gδρ(�).

(8)

4 Helmert’s and other approximations
of the orthometric height

By way of comparison, the expression for the approx-
imated mean gravity along the plumbline used in the
Helmert orthometric height (i.e. computed using the
simplified Poincaré-Prey reduction) is [cf. Heiskanen
and Moritz 1967, Eqs. (4)–(25)]

ḡH(�) = g(rt,�)− 1
2

(
∂γ

∂h
+ 4πGρ0

)
HO(�), (9)

where ∂γ /∂h is the linear vertical gradient of normal
gravity, evaluated at the topographical surface, h is the
geodetic height, G is the Newtonian gravitational con-
stant, and ρ0 is the (assumed-constant) topographical
mass–density.

It is worth mentioning that, in this paper, we fol-
low the expression for Helmert’s orthometric height
(Eq. (9)) as given in Heiskanen and Moritz (1967, chap.
4). This is of most interest because this is the way in
which most (if not all) geodesists have assumed
Helmert’s definition, and using a planar approximation
of the terrain. In his original work, however, Helmert
(1890) considered the gravitational effect of the com-
plete topographic masses, delineating that the varying
density within the topographic masses and the masses
below the geoid should be considered in a rigorous treat-
ment. While this is described in Helmert’s (1890) text,
his mathematical formulation is simpler, thus probably
explaining why the simplification in Eq. (9) has been
adopted in practice.

Using the numerical values of ∂γ /∂h = −0.3086
mGal/m (the linear vertical gradient of normal grav-
ity in free air) and 2πGρ0 = + 0.1119 mGal/m (the lin-
ear vertical gravity gradient from the Bouguer shell for
ρ0 = 2,670 kg m−3) in Eq. (9) gives

ḡH(�) = g(rt,�)+ 0.0424HO(�). (10)

Therefore, Eqs. (9) and (10) effectively attempt to
reduce surface gravity to a point halfway down the
plumbline, using the Poincaré–Prey approximation of
the vertical gravity gradient, to give an approximation
of the integral-mean value along the plumbline between
the geoid and the Earth’s surface. Note that this approx-
imation embeds a constant topographic mass–density
for the Bouguer shell and completely neglects terrain
roughness residual to the Bouguer shell.

Making use of the general Equation (7) at the Earth’s
surface (i.e. r = rt), from Eq. (9) we obtain

ḡH(�) = γ (rt,�)+ δgNT(rt,�)+ gT
B(rt,�)+ gT

R(rt,�)

+ gδρ(rt,�)− 1
2

(
∂γ

∂h
+ 4πGρ0

)
HO(�) (11)

It is also worthwhile relating the rigorous orthomet-
ric height to the Niethammer (1932) and Mader (1954)
orthometric heights. This is curiosity driven, since these
height systems are not in wide practical use to the best
of our knowledge. Both systems attempt to take terrain
roughness, residual to the Bouguer shell, into account
when determining the integral-mean value of gravity
along the plumbline.

Both Mader and Niethammer orthometric heights
include a term in the computation of mean gravity to
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include the mean ‘terrain effect’. Niethammer (1932)
performs a discrete evaluation of the integral-mean
terrain effect at a series of discrete points at even inter-
vals along the plumbline, while Mader (1954) assumes
the terrain effect to vary linearly between the geoid and
the surface, and so uses a simple mean of the values
of the effect evaluated for the Earth’s surface and the
geoid.

In our terminology, and using our approach to evalu-
ate the terrain roughness term, Mader’s (1954) approxi-
mated mean value of gravity along the plumbline
method is

gM(�) = gH(�)+ gT
R(rg,�; ρ0)− gT

R(rt,�; ρ0)

2
, (12)

and according to Niethammer’s (1932) method, it is

gN(�) = gH(�)− gT
R(rt,�; ρ0)

+ 1
HO(�)

R+HO(�)∫

r=R

gT
R(r,�)dr. (13)

5 Corrections to the Helmert orthometric height

To establish the relationships between the more rigor-
ous mean gravity given by Eq. (8) and Helmert’s approx-
imate (i.e. Poincaré–Prey) formula given by Eq. (11), we
subtract them, grouping like terms. The resulting differ-
ence is called the correction to Helmert’s mean gravity
εg(�):

εg(�) = g(�)− gH(�)

εg(�) =
[
γ̄ (�)− γ (rt,�)+ 1

2
∂γ

∂h
HO(�)

]

+
[
gT

B(�)− gT
B(rt,�)+ 2πGρ0HO(�)

]

+
[
δg

NT
(�)− δgNT(rt,�)

]

+
[
gT

R(�)− gT
R(rt,�)

]

+[
gδρ(�)− gδρ(rt,�)

]
(14)

After being computed, εg(�) can be used to apply a cor-
rection to Helmert’s orthometric height εHO(�) using
(cf. Heiskanen and Moritz 1967, p. 169)

εHO(�) = −HO(�)

g(�)
εg(�), (15)

to an accuracy of <<1 mm in εHO(�).
Since εg(�) is small, the actual mean gravity in

Eq. (15) can (ironically) be computed using Helmert’s
approximation (Eq. (10)). This will make it considerably

easier to numerically evaluate εHO(�) in later sections
of this paper

εHO(�) = −HO(�) εg(�)

g(rt,�)+ 0.0424HO(�)
, (16)

where εHO(�) and HO(�) are in metres, and εg(�) and
g(rt,�) are in mGal.

5.1 Second-order correction for normal gravity

For the terms involving normal gravity, we seek a sim-
plification of

A =
[
γ̄ (�)− γ (rt,�)+ 1

2
∂γ

∂h
HO(�)

]
. (17)

The integral-mean value of normal gravity along the
plumbline γ̄ (�) is evaluated using a second-order Tay-
lor expansion for the analytical downward continuation
of normal gravity from the Earth’s surface γ (rt,�) to the
geoid. Using a formulation in terms of geodetic coordi-
nates, this is

γ̄ (�)≈ 1
HO(�)

h(�)=N(�)+HO(�)∫

h(�)=N(�)

(
γ (h(�),�)+∂γ

∂h

∣∣∣∣
h=h(�)

× [n − h(�)] + 1
2
∂2γ

∂h2

∣∣∣∣
h=h(�)

[n − h(�)]2

)
dn.

(18)

where h(�) is the geodetic (ellipsoidal) height of the
point (rt,�), N(�) is the geoid height at �, and n is an
element along the ellipsoidal plumbline (cf. Jekeli 2000).

Performing the integration, applying the integration
limits, and expressing normal gravity in terms of the
geocentric radius of the Earth’s surface at � gives

γ̄ (�) ≈ γ (h(�),�)− 1
2
∂γ

∂h

∣∣∣∣
h=h(�)

HO(�)

+ 1
6
∂2γ

∂h2

∣∣∣∣
h=h(�)

[
HO(�)

]2
. (19)

Inserting Eq. (19) in Eq. (17) yields

A ≈ 1
6
∂2γ

∂h2

∣∣∣∣
h=h(�)

[
HO(�)

]2
. (20)

Assuming the spherically approximated value of the
second-order free-air gravity gradient [Heiskanen and
Moritz 1967, Eqs. (2)–(122)], Eq. (20) reduces to

A = γ

(
HO(�)

rt(�)

)2

≈ γ

(
HO(�)

a

)2

, (21)

where a is the major semi-axis of the reference
ellipsoid. Taking HO(�)= 8.8 km (Mount Everest),
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rt (�) = 6,371 km andγ = 9.81 ms−2, A is about −1.87 mGal.
Using Eq. (16), this causes a maximum correction of
about 1.5 cm to the Helmert orthometric height.

5.2 Second-order correction for the Bouguer shell

For the terms involving the spherical Bouguer shell of
thickness HO(�), we seek a simplification of the term

B =
[
gT

B(�)− gT
B(rt,�)+ 2πGρ0HO(�)

]
. (22)

The gravitational attraction of the spherical Bouguer
shell at the Earth’s surface reads (Martinec 1993,
Eq. 4.16)

gT
B(rt,�) = 4πGρ0HO(�)

R2

(
R + HO(�)

)2

×
(

1 + HO(�)

R
+ 1

3

(
HO(�)

R

)2)
. (23)

From Wichiencharoen (1982) [cited by Martinec 1998,
Eq. (3.14)],the gravitational potential inside the spheri-
cal Bouguer shell is

rg � r � rt :

VT
B(r,�) = 2πGρ0

([
R+HO(�)

]2−2R3

3r
− r2

3

)
, (24)

where R is the inner radius of the shell (in this case, R =
rg) and r is a dummy point inside the shell.

Recognizing that gT
B(r,�) = − ∂VT

B(r,�)
∂r , the integral

mean gT
B(�) in Eq. (22) along the radial between the

geoid rg = R and approaching the Earth’s surface rt →
R + HO(�) from within the Bouguer shell gives

gT
B(�) = − 1

HO(�)

r= rg+HO(�)∫

r=rg

∂VT
B(r,�)
∂r

dr

≈ VT
B

(
rg,�

) − VT
B(rt,�)

HO(�)
. (25)

As with the normal gravity term, this is a more rigor-
ous formulation for the spherical Bouguer shell, where
r and H are along the same radial (i.e. HO(�) = rt(�)−
rg(�)). As such, there is no need to worry about the
deviation of the radial from the plumbline in this case
(cf. Tenzer et al. 2005, Appendix A).

Inserting the integration limits in Eq. (24), then insert-
ing the results into Eq. (25), after some algebraic manip-
ulation, gives

ḡT
B(�) = 2πGρ0HO(�)

(
1 − 2HO(�)

3
(
R + HO(�)

)
)

. (26)

Here we acknowledge the typographical error in the first
term of Tenzer et al. (2005, Eq. 21).

Inserting Eqs. (23) and (26) in Eq. (22) gives

B = 4
3
π Gρ0

HO(�)2

R + HO(�)

(
2 − HO(�)

R + HO(�)

)
. (27)

Using the earlier example of Mount Everest, a con-
stant topographical mass–density of ρ0 = 2,670 kg m−3

and Eq. (16), the second-order Bouguer term (Eq. 27)
affects the orthometric height by as much as −1.6 cm.
Thus, Eq. (14) now becomes

εg(�) =
[
δg

NT
(�)− δgNT(rt,�)

]

+
[
gT

R(�)− gT
R(rt,�)

]

+ [
gδg(�)− gδg(rt,�)

] − γ

(
HO(�)

rt(�)

)2

+ 4πGρ0

3
HO(�)2

R + HO(�)

(
2− HO(�)

R + HO(�)

)
, (28)

which represents the integral-mean value of gravity
along the plumbline expressed in terms of corrections to
Helmert’s approximate mean value. Term A takes a neg-
ative sign, indicating the radial derivative of Eq. (17) is
taken on the ellipsoid. These correction terms comprise:
mean and surface effects on gravity coming respectively
from masses inside the geoid, terrain roughness, later-
ally variable density distribution, second-order free-air
effects, and second-order Bouguer shell effects. All these
terms must be computed to apply a rigorous correction
to Helmert’s orthometric height.

5.3 The geoid-generated gravity disturbance

In this subsection, we shall concentrate on the term

C =
[
δg

NT
(�)− δgNT(rt,�)

]
, (29)

which deals with the corrections to the Helmert ortho-
metric height coming from the geoid-generated grav-
ity disturbance, comprising the mean value along the
plumbline δg

NT
(�) and value on the Earth’s surface

δgNT(rt,�).
The integral-mean value of the geoid-generated grav-

ity disturbance along the plumbline between the geoid
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and the Earth surface can be represented [in analogy to
Eq. (2)] by

δg
NT
(�) = 1

HO(�)

rt∫

rg

δgNT(r,�)dr

∼= 1
HO(�)

R+HO∫

r=R

δgNT(r,�)dr, (30)

where the geocentric radius of the geoid surface rg is
approximated by R, the mean radius of the Earth, which
should not be confused with the subscript R in the ter-
rain roughness term.

Since the geoid-generated gravity disturbance δgNT

(r,�)multiplied by r is harmonic above the geoid (since
the NT space contains no topographical masses above
the geoid, and again neglecting the atmosphere), δg

NT

(�) can be evaluated by averaging Poisson’s equation for
upward continuation (e.g. Kellogg 1929) in an integral
sense. The Poisson equation reads

δgNT(r,�) = 1
4π

R
r

∫∫

�′∈�O

K
[
r,ψ

(
�,�′), R

]

×δgNT(
R,�′) d�′, (31)

where �0 is the solid angle, �′ is the dummy element
and ψ(�,�′) represents the spherical distance or geo-
centric angle between the computation and integration
points.

The required gravity disturbance δgNT(R,�), referred
to the geoid, is a part of the sub-integral function. The
spatial form of the Poisson integral kernel K[r,ψ(�,
�′), R] is given by (e.g. Kellogg 1929)

K[r,ψ(�,�′), R] = R
r2 − R2

�3[r,ψ(�,�′), R] , (32)

where the Euclidean spatial distance is given by

� =
√

r2 + r′2 − 2rr′ cosψ(�,�′), (33)

Inserting Eq. (31) into Eq. (30), the mean gravity dis-
turbance δg

NT
(�) becomes (cf. Tenzer et al. 2005, Eq. 8)

δg
NT
(�) ∼= 1

4π
R

HO(�)

∫∫

�′∈�O

∫ R+HO(�)

r=R

×1
r

K
[
r,ψ

(
�,�′) ,R

]
dr δgNT(

R,�′) d�′.

(34)

Performing the radial integration of Poisson’s integral
kernel K

[
r,ψ

(
�,�′) ,R

]
, multiplied by r−1, the follow-

ing expression can be found for the averaged Poisson’s
kernel (e.g. Vaníček et al. 2004, Tenzer et al. 2005)

R+HO(�)∫

r=R

1
r

K
[
r,ψ(�,�′), R)

]
dr

= R

R+HO(�)∫

r=R

1
r

r2 − R2

�3[r,ψ(�,�′), R]
dr

=
∣∣∣∣− 2R
�[r,ψ(�,�′), R]

+ ln

∣∣∣∣∣
R−r cosψ(�,�′)+�[r,ψ(�,�′), R

]
r sinψ(�,�′)

∣∣∣∣∣
∣∣∣∣∣
R+HO(�)

r=R

. (35)

for ψ �= 0.
Substituting Eq. (35) into Eq. (34), the mean grav-

ity disturbance δg
NT
(�) along the plumbline takes the

following form:

δg
NT
(�)

= 1
4π

R
HO(�)

∫∫

�′∈�0

[
2R

�[R,ψ(�,�′), R]
− 2R
�[rt(�),ψ(�,�′), R]

+ ln

∣∣∣∣∣
R

rt(�)

(
R − rt(�) cosψ(�,�′)+ �

[
rt(�),ψ(�,�′), R

]
R(1 − cosψ(�,�′))+ �[R,ψ(�,�′), R]

)∣∣∣∣∣
]

δgNT(R,�′)d�′. (36)

Equation (36) can be simplified as

δg
NT
(�) = 1

4π
R

HO(�)

∫∫

�′∈�O

K[R + HO(�),ψ(�,�′), R]

× δgNT(
R,�′) d�′ (37)

where K stands for the intermediary integration kernel.
It can be shown, in the first approximation, that this
kernel equals

K
[
R + H(�),ψ(�,�′), R

]=2R
(

1
�

− 1
�∗

)
+ ln

� ∗ −H
�

,

(38)

where � stands for � (R,ψ , R) and �∗ stands for � (R+HO

(�), ψ , R) . The derivation of this kernel is given in
Appendix A.

Equation (37) is somewhat cumbersome because it
requires the NT gravity disturbance to be known on
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the geoid, which is not known. Therefore, to imple-
ment it in practice first requires the downward con-
tinuation of δgNT(rt,�) to δgNT(rg,�). In Eq. (36), the
geoid-generated gravity disturbance δgNT(

rg,�
)

is
obtained from the geoid-generated gravity anomaly
�gNT(

rg,�
)

referred to the geoid in the NT-space by
[cf. Heiskanen and Moritz 1967, Eq. (2)–(151e); Vaníček
et al. 2004]

δgNT(R,�) = �gNT(R,�)+ 2
R

TNT(R,�) (39)

where TNT( R,�) represents the geoid-generated dis-
turbing potential in the NT space

TNT(R,�) = T(R,�)− VT(R,�)− VA(R,�) (40)

The disturbing potential T( R,�) can be taken from
a regional geoid model, computed according to Bruns
(1878) formula for the geoid height T = N(�)γ0, thus
making the geoid and the corresponding orthometric
height system more compatible.

The second term on the right-hand side of Eq. (40)
VT(rg,�) is the gravitational potential of the topograph-
ical masses, and VA(rg,�) is the potential of all atmo-
spheric masses. The term VT(rg,�) is obtained through
the Newtonian integral

VT(rg,�) = G
∫∫

�′∈�0

R+H0(�′)∫

r′=R

ρ(r′,�′)�−1

×[
R,ψ(�,�′), r′] r′2dr′d�′, (41)

where ρ
(
r′,�′) represents the actual mass–density of the

topographical masses, usually computed from a density
distribution model. The effect due to lateral mass–den-
sity variation is dealt with in Sect. 5.5.

Finally, to complement Eq. (29), the gravity distur-
bance at the Earth’s surface is required. This term can
be evaluated directly from

δgNT(rt,�) = �gNT(rt,�)+ 2
rt

T(rt,�)

− 2
rt

VT(rt,�)− 2
rt

VA(rt,�). (42)

Equation (29) can then be evaluated using Eqs. (37) and
(42).

5.4 The terrain/roughness-generated gravity

In this subsection, we shall concentrate on the term

D =
[
gT

R(�)− gT
R(rt,�)

]
(43)

which gives the correction to the Helmert orthometric
height from the terrain roughness residual to the

Bouguer shell, assuming for the moment a constant
topographical mass–density (lateral density variations
will be considered in Sect. 5.5).

The gravitational field of the terrain roughness term
is not harmonic inside the topography. As such, it has
to be calculated from an adopted model of the shape of
the topography (i.e. a DEM), coupled with a constant
mass–density assumption.

We begin with the gravitational potential VT(r,�)
of topographical masses expressed in Eq. (41). Using
a spherical approximation of the geoid and Newtonian
integration, this reads (cf. Novák and Grafarend 2005)

VT(r,�) ≈ G
∫∫

�′

r′=R+HO(�′)∫

r′=R

ρ(r′,�′)

× �−1(r,�, r′,�′)r′2dr′ d�′. (44)

The negative radial derivative of topographical grav-
itational attraction gT(r,�) is given by

gT(r,�) ≈ −G
∫∫

�′

∂

∂r

( r′=R+HO(�′)∫

r′=R

ρ(r′,�′)

× �−1(r,�, r′,�′)r′2dr′
)

d�′. (45)

From Eq. (43), we are looking for the mean value
ḡT

R(�) between the Earth’s surface and the geoid, which
is given – by definition – as [Tenzer et al. 2005, Eqs. (16)–
(18)]

ḡT
R(�) = 1

HO(�)

r=R+HO(�)∫

r=R

gT(r,�)dr

= −1
HO(�)

r=R+HO(�)∫

r=R

∂

∂r
VT(r,�)dr

= −1
HO(�)

{
VT[R+HO(�),�]−VT [R,�]

}
. (46)

Substituting for the two values of potential VT from
Eq. (44), we get

ḡT(�) ≈ G
HO(�)

∫∫

�′

R+HO(�′)∫

r′=R

ρ(r′,�′)

×
[
�−1[R,�, r′,�′]−

× �−1[R + HO(�),�, r′,�′]
]

r
′2dr′ d�′. (47)
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Let us now express the radial integral in Eq. (47) as a
sum of two integrals

R+HO(�′)∫

R

F(r′)dr′ =
R+HO(�)∫

R

F(r′)dr′

+
R+HO(�′)∫

R+HO(�)

F(r′)dr′ (48)

The first integral on the right-hand side of Eq. (48)
describes the contribution of the Bouguer shell of con-
stant thickness HO(�) (e.g. Vaníček et al. 2001), which
was dealt with in Sect. 5.2. The second integral gives the
contribution due to the terrain residual to the Bouguer
shell.

The density can also be written as a sum of two terms,
one containing a contribution due to the mean density
ρ0 and the other containing the residual density δρ(r,�)
contribution

ρ(r,�) = ρ0 + δρ(r,�). (49)

The roughness term is represented by the second term
in Eq. (21) of Tenzer et al. (2005)

ḡT
R(�) = Gρ0

Ho(�)

∫∫

�′∈�0

R+HO(�′)∫

r′=R+HO(�)

{
�−1[R,�, r′,�′]

−�−1[R + HO(�),�, r′,�′]
}

r
′2dr′ d�′, (50)

This term is nothing else but the change in terrain rough-
ness of constant density of ρ0, from the geoid to the sur-
face of the Earth, divided by the orthometric height of
the point of interest

ḡT
R(�) ≈ 1

HO(�)

[
VT

R (R,�)− VT
R (R + HO(�),�)

]
.

(51)

These two roughness parts of topographical potential
VT

R can be evaluated through numerical quadrature of
the Newton integral (Eq. 44). Equation (51) provides
the mean gravity generated by the terrain roughness,
expressed in terms of gravitational potential. As pointed
out in Sect. 5.3, it comprises a contribution from the
average topographical mass–density, plus a smaller cor-
rection due to mass–density variations.

The other term in Eq. (43), the terrain roughness
term at the Earth’s surface, is given by the second term
in Martinec (1998)

gT
R(rt,�)≈−Gρ0

∫∫

�′∈�0

r′=R+Ho(�′)∫

r′=R+Ho(�)

∂�−1(r,�; r′,�′)
∂r

∣∣∣∣∣ r=rt(�)

× r
′2dr′ d�′ (52)

which can also be evaluated by quadrature methods.

5.5 The lateral variation of topographical mass–density

In this subsection, we consider the term

E = [
ḡδρ(�)− gδρ(rt,�)

]
. (53)

In most gravimetric geoid computations, the topo-
graphical mass–density is generally modelled by an aver-
age value of ρ0 = 2, 670 kg m−3 . Martinec (1998) posed
the question on how much a variation in topographi-
cal mass–density affects geoid height computation. To
answer this question in the context of the orthomet-
ric height, we assume only lateral variations of density,
leaving the radial variation still to be tackled. The devel-
opments below follow from those of Sect. 5.4.

The contribution of lateral variation of density to
the correction to Helmert’s orthometric height is rep-
resented by third term in Eq. (21) from Tenzer et al.
(2005)

gδρ(�) = G
Ho(�)

∫∫

�′∈�0

r′=R+H(�′)∫

r′=R

δρ(r′,�′){�−1[R,�, r′,�′]

−�−1[R + H(�),�, r′,�′]}r′2dr′d�′ (54)

The surface gravity generated by lateral variation of den-
sity is given by

gδρ(rt,�)=−G
∫∫

�∈�0

δρ(�)

r′=R+H(�′)∫

r′=R

∂�−1[R,�; r′,�′]
∂r

∣∣∣
r=rt(�)

×r′2dr′d�′, (55)

which follows from a more complete expression pro-
vided by Martinec (1998) that takes into account the
radial variation in density r′

gδρ(rt,�)=−G
∫∫

�′∈�0

r′=R+H(�′)∫

r′=R

δρ(r′,�′)∂�
−1[R,�; r′,�′]

∂r

∣∣∣
r=rt(�)

×r′2dr′d�′, (56)

Equations (54) and (55) provide the terms required in
Eq. (53)

The correction to Helmert’s orthometric height due
to the laterally varying topographical mass–density is
also given by the following approximate expression
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(Vaníček et al. 1995) if one considers only the radial
gradient of the gravitational attraction generated by the
spherical Bouguer shell of the anomalous topographical
density δρ(�),

ε
δρ

HO(�) ≈ 2π G
[
HO(�)

] 2 δρ(�)

g(�)
. (57)

5.6 Summary

The correction to the Helmert orthometric height to give
the rigorous orthometric height defined by Tenzer et al.
(2005) εHO(�) is given by Eq. (15). It follows directly
from the evaluation of the correction to Helmert’s mean
gravity εg(�), written below in a simplified manner as

εg(�) = A + B + C + D + E (58)

The terms A and B can be computed from Eq. (28) as

A + B = −γ
(

HO(�)

rt(�)

)2

+4
3
πGρ0

HO(�)2

R + HO(�)

(
2 − HO(�)

R + HO(�)

)

(59)

The terms C, D and E can be computed from Eqs. (37)
and (42), (51) and (42) and (54) and (55), respectively.

Note that several of these terms would have already
been computed for a regional gravimetric geoid model
based on the Stokes–Helmert approach (Vaníček and
Martinec 1994). This simplifies the task, where the
gridded quantities can be interpolated to the points of
interest and applied as part of the corrections to the
Helmert orthometric height, provided that the horizon-
tal locations of the benchmarks are known. It also makes
the rigorous orthometric heights more compatible with
the regional geoid model. Finally, the total correction
to the Helmert orthometric height εHO(�) is

εHO(�) = −HO(�)

g(�)
(A + B + C + D + E) (60)

6 Numerical tests

Using Canadian gravity, terrain and lateral topographic
mass–density data, we have computed rigorous correc-
tions to Helmert’s orthometric heights along a profile
across the Canadian Rocky Mountains. This profile
spans the longitudes from 235 to 239◦E along the 50◦N
parallel. Figure 2 shows each one of the terms in Eq. (60)
(i.e. A: second-order free-air, B: second-order Bouguer
shell, C: NT gravity disturbance, D: terrain roughness,
and E: lateral density variations) computed separately
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Fig. 2 Profiles of the five components of the correction to Helm-
ert’s orthometric height (cm), as well as the Helmert orthometric
height (m) along a profile at 50◦N across the Canadian Ropcy
Mountains. The continuous thick line represents the topographic
height; continuous thin line corresponds to ε

δg
HO (�) (geoid-gen-

erated gravity disturbance); dashed line corresponds to εT
HO (�)

(terrain-roughness-generated gravity)] dotted line corresponds to
ε
δρ

HO (�) (lateral variation of topographical mass–density). The
other two components are too small to be plotted

to show their relative contributions to the correction.
These terms are superimposed on the topographic height
variations (shown with the thicker line in Fig. 2) scaled
down by 100 m, to show that there is not always a one-
to-one correspondence of the correction terms with
height. All integral terms were computed over a spher-
ical cap radius of 3◦, beyond which the far-zone contri-
butions become negligible (<1 mm) for this test area.

Inspecting Fig. 2, we see that the correction term
from the geoid-generated gravity disturbance (C) gives
the largest correction values, and is generally positively
correlated with topography, though not perfectly. The
correction due to terrain-roughness-generated gravity
(D) is the second most important contribution. How-
ever, it works against the former correction, and there
is a less strong, negative correlation with topography.
The third largest term in magnitude is the correction
due to lateral variation of topographical mass–density
(E), varying around zero and with maximum magni-
tude not greater than 5 cm. The final two terms, due
to second-order correction for normal gravity (A) and
second-order correction for the Bouguer shell (B), are
both very small, not showing up in Fig. 2. Table 2 sum-
marizes the statistics of these five correction terms.

Figure 3 shows a comparison between the corrections
to Helmert orthometric heights using the method de-
scribed in this paper (termed rigorous), and the Mader
and Niethammer approaches, for the same profile as in
Fig. 2. The Mader and Niethammer corrections were
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Table 2 Descriptive statistics
of corrections to Helmert’s
orthometric height from the
profile shown in Fig. 2

Values in centimetres,
rounded to the nearest
millimetres

Correction due Correction due Correction due to Correction due Correction due
to gravity to terrain- lateral variation for 2nd-order for 2nd-order
disturbance roughness of density normal gravity Bouguer shell

Mean 6.0 −1.4 0.2 −0.0 −0.0
STD 3.3 2.5 1.1 0.0 0.0
Minimum 0.0 −11.5 −1.9 0.0 0.0
Maximum 15.4 2.5 5.2 −0.1 −0.0
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Fig. 3 Comparison among the rigorous, Mader and Nietham-
mer corrections to Helmert orthometric heights along the same
profile as in Fig. 2. Units in centimetres. The continuous thicker
line represents the topographic profile; continuous thin line repre-
sents the rigorous correction; dashed line represents Niethammer
correction; dotted line represents Mader correction

computed from Eqs. (12) and (13) using the same topo-
graphical corrections used to evaluate the rigorous cor-
rections.

From Fig. 3, the Mader and Niethammer corrections
are very similar to one another, whereas the rigorous
correction is larger, which is attributed to the two addi-
tional terms not accounted for in Mader nor Nietham-
mer’s approaches: geoid-generated gravity disturbance
and lateral variation of topographical mass–density. The
larger contribution comes mostly from the geoid-gener-
ated gravity disturbance (cf. Fig. 2). Table 3 summarizes
the statistics of the corrections along this profile.

7 Summary, discussion and conclusion

We have derived expressions to transform Helmert’s
approximation of the orthometric height into a more
rigorous one (cf. Tenzer et al. 2005), taking into account
effects coming from the second-order correction for

Table 3 Descriptive statistics of the total corrections to Helmert’s
orthometric height from the profile shown in Fig. 3

Mader Niethammer Rigorous

Mean −1.4 −1.7 4.4
Standard deviation 2.5 3.1 3.1
Minimum value −11.5 −15.2 −4.9
Maximum value 2.5 2.9 13.0

Values in centimetres, rounded to the nearest millimetres

normal gravity, second-order correction for the Bou-
guer shell, the geoid-generated gravity disturbance, the
terrain-roughness-generated gravity, and the lateral var-
iation of topographical mass–density. These individual
corrections have been evaluated numerically along a
profile across the Canadian Rocky Mountains, and plot-
ted against the topographical height variation.

This comparison shows that the geoid-generated grav-
ity disturbance, the terrain-roughness-generated gravity
and the lateral variation of topographical mass–density
are, respectively, the most important contributors to-
wards obtaining a more rigorous orthometric height.
It also shows that the geoid-generated gravity distur-
bance and the terrain-roughness-generated gravity work
approximately against each other, though not
completely, as each is not perfectly correlated with the
topography. The second-order correction for normal
gravity and the Bouguer shell are negligibly small for
this test, but become larger for very high elevations.

Comparisons with other refinements of Helmert or-
thometric heights, namely Mader (1954) and Nietham-
mer (1932), have also been performed. The Mader and
Niethammer orthometric heights are very similar to one
another, but the respective corrections are smaller than
the rigorous corrections. They differ from the rigorous
approach due to inclusion of the terms pertaining to the
geoid-generated gravity anomaly and lateral variation
of topographical mass–density.

Finally, it is important to point out that several of the
correction terms used here are the same as would have
been computed for a regional gravimetric geoid model
based on the Stokes–Helmert approach (e.g. Vaníček
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and Martinec 1994). As such, they are relatively easy
to apply to existing Helmert orthometric heights. More-
over, this makes the resulting heights more compatible
with a regional gravimetric geoid model based upon the
Stokes–Helmert approach.

8 Appendix A: derivation of Eq. (38)

We wish to simplify the expression for the averaging
Poisson’s kernel (Eq. (35)), which reads

K(R + HO(�),ψ , R)

= − 2R
�(R + HO(�),ψ , R)

+ 2R
�(R,ψ , R)

+ln

∣∣∣∣R−(R+HO(�)) cosψ+�(R+HO(�),ψ , R)
(R+HO(�)) sinψ

∣∣∣∣
−ln

∣∣∣∣R − R cosψ + �(R,ψ , R)
R sinψ

∣∣∣∣. (A1)

For integration within a very small radius ψ0 of, say, 3
arc-degrees, we can assume

�, �∗, HO(�) << R, (A2)

where we have denoted �( R,ψ , R) by � and
�(R+HO(�),ψ , R) by �*. This is permitted because of
the rapid decay of the Poisson kernel with spherical
distance, as supported by our empirical evidence (cf.
Sect. 6).

Now, we can rewrite Eq. (A1) as

K(R + HO(�),ψ , R) = 2R
(

1
�

− 1
�∗

)

+ ln

∣∣∣∣1 − (1 + HO(�)/R) cosψ + � ∗ /R
(1 + HO(�)/R)(1 − cosψ + �/R)

∣∣∣∣. (A3)

The last term in Eq. (A3) should be

ln

∣∣∣∣∣∣
1 − (1 + HO(�)

R ) cosψ + �∗
R(

1 + HO(�)

R+HO(�)

)(
1 − cosψ + �

R

)
∣∣∣∣∣∣. (A4)

However, due to the precision required, the approxima-
tion in Eq. (A3) is enough since
(

1 + HO(�)

R + HO(�)

)
≈

(
1 + HO(�)

R

)
(A5)

Realizing that

� = 2R sin
ψ

2
, (A6)

we can express cosψ in Eq. (A4) as

cosψ = 1 − 2 sin2 ψ

2
= 1 − 1

2

(
�

R

)2

. (A7)

Substituting this result into Eq. (A3) gives

K
(

R + HO(�),ψ , R
)

= 2R
(

1
�

− 1
�∗

)

+ln

∣∣∣∣∣∣
1 −

(
1 + HO(�)

R

)[
1 − 1

2

(
�
R

)2
]

+ �∗
R(

1 + HO(�)
R

){
1 −

[
1 − 1

2

(
�
R

)2
]

+ �
R

}
∣∣∣∣∣∣ (A8)

After a few algebraic operations, we get

K
(

R + HO(�),ψ , R
)

= 2R
(

1
�

− 1
�∗

)

+ln

∣∣∣∣∣∣
1 −

(
1 + HO(�)

R

)[
1 − 1

2

(
�
R

)2
]

+ �∗
R(

1 + HO(�)
R

){
1
2

(
�
R

)2 + �
R

}
∣∣∣∣∣∣

≈ 2R
(

1
�

− 1
�∗

)
+ ln

∣∣∣∣� ∗ −HO(�)

�

∣∣∣∣. (A9)

This is the final simplified form, valid for a small (<3◦)
radius ψ0 of integration, which will next be studied.

It should be noted that the first term in Eq. (A9) is
the leading term, while the second is a corrective term.
The leading term converges very rapidly since it holds
most of its power in the nearest vicinity of the computa-
tion point. For instance, the cumulative sum of this term
across a profile gains ∼99% power atψ = 0.1◦. The mag-
nitude of the corrective (logarithmic) term comprises
<1% of the magnitude of the leading term.

One may see that the first terms on the right-hand
side of Eqs. (A3) and (A7) are exactly the same. Thus,
the difference between the exact expression and the first
approximation stems only from the much smaller loga-
rithmic term. As such, our subsequent numerical inves-
tigations study the relationship between the term

ln

∣∣∣∣∣∣
1 − (1 + HO(�)

R ) cosψ + �∗
R /(

1 + HO(�)
R

)(
1 − cosψ + �

R

)
∣∣∣∣∣∣ (A10a)

and its approximation

ln

∣∣∣∣� ∗ −HO(�)

�

∣∣∣∣. (A10b)

The variables in both terms are the orthometric height
HO(�) and the angular distance ψ . The behaviour of
these terms within the interval 0.0001◦ (10 m) <ψ3 ◦ will



The relation between rigorous and Helmert’s definitions of orthometric heights 703

0 0.5 1 1.5 2 2.5 3

-100

-10-2

-10-4

-10-6

Spherical distance [°]

Fig. A1 The behaviour of the ln

∣∣∣∣∣
1−(1+ HO(�)

R ) cosψ+ �∗
R(

1+ HO(�)
R

)(
1−cosψ+ �

R

)
∣∣∣∣∣

term (lower batch of curves) and the discrepancies

ln

∣∣∣∣∣
1−(1+ HO(�)

R ) cosψ+ �∗
R(

1+ HO(�)
R

)(
1−cosψ+ �

R

)
∣∣∣∣∣ − ln

∣∣∣ �∗−HO(�)
�

∣∣∣ (upper batch of curves)

a HO(�)= 200 m dotted line; b HO(�)= 1,000 m dashed line;
c HO(�)= 2,000 m solid thin line; d HO(�)= 5,000 m solid bold
line. Also note the negative logarithmic scale

be numerically investigated. In these tests, the orthomet-
ric height takes the following constant values HO(�) =
200 m, HO(�) = 1 km, HO(�) = 3 km, HO(�) = 5 km. In
other words, the topography of the test area is assumed
to be a plateau with a constant height HO(�).

The logarithmic term is always negative, since the

argument
∣∣∣ �∗−HO(�)

�

∣∣∣ takes values between 0 and 1,

i.e. 0 <
∣∣∣ �∗−HO(�)

�

∣∣∣ < 1. Figure A1 shows the behaviour

of the logarithmic term and the discrepancies between
the exact expression (Eq. (A3)) and its approximation
(Eq. (A7)) across the 3◦ integration area. The lower
batch of curves in Fig. A1 indicates the magnitude of
the logarithmic term for each case, whereas the upper
batch denotes the corresponding discrepancies.

From Fig. A1, most of the power in the logarithmic
term is in the nearest vicinity of the computation point
and it decreases with increasingψ . Note that at the com-
putation point, the discrepancies are almost zero. The
magnitude of the relative discrepancies increases line-
arly with the distance (recall that a logarithmic scale
is used in Fig. A1. Note, however, that in any tested
case and for ψ < 1◦ the discrepancies are at least of two
orders of magnitude less than the logarithmic term itself.

At ψ = 3◦, the error of the approximation ln
∣∣∣ �∗−HO(�)

�

∣∣∣
consists of ∼ 3% only from the exact expression.

Also recall that the logarithmic term is <1% of the
whole Poisson kernel. From the above results, it is obvi-
ous that the expression K[R + HO(�),ψ(�,�′), R] =

2R
(

1
�

− 1
�∗

)
+ln �∗−HO(�)

�
is sufficient as the first approx-

imation of the complicated integration term.
Next, next let us have a look at the first term in

Eq. (A3). Realizing that lim
ψ→0

�∗ = √
�2 + HO(�)2, it

can be written as

2R
(

1
�

− 1
�∗

)
≈ 2R

(
1
�

− 1√
�2 + HO(�)2

)

= 2R
�


1 −

(
1 + HO(�)2

�2

)− 1
2


 (A11)

For HO(�) < �, (the case of HO(�) > �can be treated
in a similar way) this can be represented by a convergent
binomial series

2R
(

1
�

− 1
�∗

)
= 2R


1
�

− 1
�

(
1 + HO(�)2

�2

)− 1
2




= 2R

{
1
�
− 1
�

[
1+

∞∑
k=1

(− 1
2

k

)(
HO(�)

�

)2k]}
.

(A12)

Carrying out the required algebraic operations, we
arrive at

2R
(

1
�

− 1
�∗

)
= 2R

�

∞∑
k=1

(− 1
2

k

)(
HO(�)

�

)2k

. (A13)

The series in Eq. (A10) is alternating, and thus a con-
vergent series even for H and � going simultaneously to
zero, thus

lim
� → 0

HO(�) → 0

2R
(

1
�

− 1
�∗

)

= 2R lim
�→0

HO(�)→0

1
�

∞∑
k=1

(− 1
2

k

)(
HO(�)

�

)2k

= 2R lim
�→0

HO(�)→0

1
�

∞∑
k=1

(− 1
2

k

)
(A14)

As the summation is a real number, the whole expres-
sion grows above all limits and we get

lim
H→0

2R
(

1
�

− 1
�∗

)
= δ(�,�′), (A15)

where δ is the Kronecker symbol for the function that
grows beyond all limits when � = �′ and equals zero
for all other values of � . We can thus see that



704 M. C. Santos et al.

lim
HO(�)→0

δg
NT
(�) = lim

HO(�)→0

1
4π

R
HO(�)

×
∫∫

�′∈�O

K[R + HO(�),ψ(�,�′), R]

× δgNT(
R,�′) d�′

= δgNT(R,�) (A16)

as one would expect.
We note that the averaging Poisson kernel also has a

singularity for the case when H is not equal to zero. For
HO(�) > 0, we get

lim
�→0

2R
(

1
�

− 1
�∗

)

= lim
�→0

2R


1
�

− 1
H

(
1 + �2

HO(�)2

)− 1
2




= lim
�→0

2R

{
1
�
− 1

HO(�)

[
1+

∞∑
k=1

(− 1
2

k

)(
�

HO(�)

)2k
]}

= lim
�→0

2R
(

1
�

− 1
HO(�)

)
= lim
�→0

1
�

(A17)

which also grows above all limits. Thus, the averaging
Poisson kernel has a removable singularity of a linear
type (1/0) at the point of interest �, whether the height
is equal to 0 or not. The second, logarithmic term is
always negative: it equals 0 for � going to 0, and it also
goes to 0 for growing �. Note that the argument 0 <∣∣ �∗−HO(�)

�

∣∣ < 1.
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