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Abstract A relativistic delay model for Earth-based very
long baseline interferometry (VLBI) observation of sources
at finite distances is derived. The model directly provides
the VLBI delay in the scale of terrestrial time. The effect
of the curved wave front is represented by using a pseudo
source vector K = (R1 + R2)/(R1 + R2), and the variation
of the baseline vector due to the difference of arrival time is
taken into account up to the second-order by using Halley’s
method. The precision of the new VLBI delay model is 1 ps
for all radio sources above 100 km altitude from the Earth’s
surface in Earth-based VLBI observation. Simple correction
terms (parallax effect) are obtained, which can also adopt the
consensus model (e.g. International Earth Rotation and Ref-
erence Frames Service conventions) to finite-distance radio
source at R > 10 pc with the same precision. The new model
may enable estimation of distance to the radio source directly
with VLBI delay data.

Keywords Very Long Baseline Interferometry · General
Theory of Relativity · Spacecraft Navigation

1 Introduction

Very long baseline interferometry (VLBI) is a powerful tool
for astronomy and space geodesy, boasting the highest angu-
lar resolution. In fact, the International Celestial Reference
Frame is realized by VLBI observation of extragalactic ob-
jects and its overall precision was reported as 250µas for the
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position of individual sources and 20µas for the axis orien-
tation of the reference frame (Charlot 2004). Furthermore, a
phase-reference-dedicated VLBI project, VLBI Exploration
of Radio Astrometry (VERA; Kobayashi 2004), has started
and its target precision is set at the 10µas level.

On the other hand, the VLBI technique has been used for
spacecraft navigation as its engineering application (Border
et al. 1982). Recently, the technique was used for the angu-
lar observation of some closer targets such as NOZOMI, a
Japanese Mars exploration mission (Yamamoto and Tsuruda
1998), and Cassini-Huygens, which is a joint European Space
Agency (ESA)–National Astronautics and Space Adminis-
tration (NASA) probe to Saturn’s satellite Titan (Lebreton
and Matson 2002). Soon VLBI will be applied to SELENE, a
Japanese Lunar gravimetry mission (Matsumoto, et al. 1999;
Heki et al. 1999).

To utilize the full power of VLBI, the establishment of
precision VLBI delay model is essential. For sources at prac-
tically infinite distances, such as quasars, various models have
been proposed (Hellings 1986; Shahid-Saless and Hellings
1991; Zhu and Groten 1988; Soffel et al. 1991). They were
unified into the so-called consensus model (Eubanks 1991).
It has a 1 ps precision for Earth-based VLBI observation of
extra-galactic radio sources. Resolution B1.3 of the Interna-
tional Astronomical Union (IAU) XXIV General Assembly
(2000) recommends use of the Barycentric Celestial Ref-
erence System (BCRS) and Geocentric Celestial Reference
System (GCRS) for the barycentric and geocentric reference
systems in the framework of general relativity. The consensus
model has reviewed and adapted to the substantial frame-
work of the IAU-recommended BCRS, and has been used
in the International Earth Rotation and Reference Systems
Service (IERS) conventions (McCarthy and Petit 2003) and
in the world VLBI community as the standard VLBI delay
model.

Unfortunately, this model was designed for extra-galac-
tic radio sources and was derived based on the plane-wave
approximation by ignoring the effect of source’s distance
(Eubanks 1991). Therefore, it is inaccurate if the radio sources
are at finite distance, e.g. pulsars (maser sources in our
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galaxy), and the error is intolerable for radio sources in the
Solar System. When the distance to the radio sources is less
than about 200 kpc (kilo-parsec), the inaccuracy exceeds 1 ps
for a 12,000 km VLBI baseline due to the effect of the curved
wave-front.

Moyer (2000) provides a VLBI delay model for space-
craft observation. It is based on numerical solution of the
light-time equation for two ray paths from one radio source
to two observers. However it may not be suitable for pulsars
and other objects outside the Solar System, since most parts
of two ray paths from radio source to observers are com-
mon in that case. Alternative schemes to obtain the VLBI
delay for finite-distance radio sources were investigated by
Klioner (1991), Sovers et al. (1998), and Fukushima (1994).
Fukushima (1994) presented a vector formula, by which the
VLBI delay for a finite-distance radio source can be ex-
pressed in the same form as an infinite one. The VLBI de-
lay is given by numerical iteration in his model. Klioner
(1991) proposed an analytical formula for the VLBI delay
model for radio sources in the Solar System. His formula is
equivalent with ours in the BCRS at the order of (VE/c)2

(Sect. 3.1).
However both representations of the VLBI delay by Fuku-

shima and Klioner are given in BCRS. As such, time intervals
in that coordinate system have to be transformed to proper
time at the observer’s location for data processing. This is
because current VLBI data analysis software [e.g. CALC/
SOLVE (Petrov 2005), OCCAM (Titov 2004)] traditionally
deal with data in the time scale of terrestrial time (TT), in-
stead of converting observed data from proper time at the
observer’s location to barycentric coordinate time (TCB). In
addition, the consensus model is used to provide VLBI delays
in the TT-scale.

Motivated by the potential need of VLBI analysis of
spacecraft coordinates (Sekido et al. 2004), we have derived
an analytical representation of VLBI delay expressed in the
TT-scale with an accuracy of 1 ps for ground-based VLBI
observation of radio sources at finite distances. This model
is considered to be an expansion of the consensus model,
and it is useful for implementation in current VLBI analysis
software.

We first introduce the barycentric dynamical time (TDB)
and TT frames for derivation of the formula. These refer-
ence systems are identical with BCRS and GCRS, except
for a scale difference. Motions of spacecraft and other ra-
dio sources at finite distance may be described in a dynam-
ical celestial reference frame. In practice, such a reference
frame is the planetary ephemeris (such as the JPL ephem-
eris). Therefore, derivation of the formula with the TDB-
frame, which the JPL ephemeris is based on, is better for a
practical understanding.

In Sect. 2, the celestial reference system used as the base
of formulation is introduced and the new VLBI delay model is
presented. A full derivation scheme is described in Appendix
A. Comparison with other VLBI delay models is discussed
in Sect. 3.

2 Finite distance VLBI delay model

2.1 Coordinate system of reference

A reference system should be chosen so that the physical
process of concern can be described as simply as possible.
Resolution B1.3 adopted at the XXIV IAU General Assem-
bly (hereafter IAU-GA-XXIV) recommends the choice of
harmonic coordinates of the barycentric and the geocentric
reference system (Soffel et al. 2003). The former one is called
the BCRS, whose time-coordinate is called TCB. It is suit-
able for describing events in the Solar System. The latter
one is called GCRS, whose time-coordinate is called geo-
centric coordinate time (TCG). This is used for describing
local events nearby earth.

The metric tensor of BCRS is explicitly given by

g00 = −1 + 2W (T, X)

c2 − 2W (T, X)2

c4

g0i = − 4

c3 W i (T, X) (1)

gi j = δi j

(
1 + 2

c2 W (T, X)

)

with

W (T, X) = G
∑

J

∫
J

σ(T, X′)
|X − X′| d3 X ′

+ 1

2c2 G
∑

J

∂2

∂T 2

∫
J

σ(T, X′)|X − X′|d3 X ′

W i (T, X) = G
∑

J

∫
J

σ i (T, X′)
|X − X′| d3 X ′, (2)

where W (T, X) is scalar potential and W i (T, X) is vector
potential. As a boundary condition, both of the potentials
vanish far from the Solar System. Space-time coordinates of
BCRS are presented by (T, X). Suffix i, j = 1, 2, 3 and J
runs over all gravitating bodies in the Solar System. σ and
σ i are gravitational mass and current density. G and c are
gravitational constant and speed of light, respectively. δi j is
Kronecker’s delta.

The metric tensor of GCRS is also explicitly given in
IAU-GA-XXIV resolution B1.3 as

G00 = −1 + 2w(t,x)

c2 − 2w(t,x)2

c4

G0i = − 4
c3 wi (t, x)

Gi j = δi j

(
1 + 2

c2 w(t, x)
) (3)

with

w(t, x) = wE(t, x) + wext(t, x)

wi (t, x) = wi
E(t, x) + wi

ext(t, x),
(4)

where geocentric potential is split into gravitational poten-
tial due to the Earth wE(t, x), wi

E(t, x), and external parts
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wext(t, x), wi
ext(t, x), which are due to tidal and inertial ef-

fects. Geocentric space-time coordinates of the GCRS is rep-
resented by (t, x). wE(t, x) and wi

E(t, x) are defined in the
same way with W (T, X) and W i (T, X), but calculated in the
GCRS with integrals taken over the whole Earth. As bound-
ary condition, the external parts of the potential are assumed
to vanish at the geocenter.

The observed time interval of a VLBI delay is measured
in the time-scale of proper-time at the observer. Proper-time
at each observation station differs from TT due to differences
in location on the Earth. Although such differences of local
time scales are practically absorbed by the time synchroniza-
tion procedure used to adjust the clock rate to that of Temps
Atomique Internationale (TAI), which is thought of as a real-
ization of TT. Thus we can suppose that the observed delay
is measured in the TT-scale. TT is re-defined by IAU-GA-
XXIV resolution B1.9 such that it is a time-scale differing
from TCG by a constant rate:

d TT

d TCG
= 1 − LG, (5)

where LG = 6.969290134×10−10 is a defining constant (Mc-
Carthy and Petit 2003, p. 126) corresponding to WG/c2 where
WG is the potential on the geoid.

For practical reasons, here we define the TT-frame as a
geocentric celestial reference system differing from GCRS
by a constant scaling factor of 1 − LG. The metric of the
TT-frame is expressed by using the metric tensor of Eq. (3)
as

ds2 = (1 − LG)−2(G00c2dτ 2 + Gi j dξ i dξ j

+2G0kdξ kcdτ), (6)

where i, j, k runs for 1, 2, and 3. Space-time coordinates of
the TT-frame are denoted by (τ, ξ). Throughout this paper,
the following rule will be applied. Repeated indexes in an
equation means taking summation for that index (Einstein’s
summation). The scalar product of vectors a and b may be
represented by a · b = ai bi .

Spatial scale on the International Terrestrial Reference
System (ITRS), which is the coordinate system fixed on the
crust of the Earth, is defined to be consistent with TCG (TCG-
scale) (McCarthy and Petit 2003, p. 25). However, its reali-
zation, the International Terrestrial Reference Frame (ITRF),
is not always consistent with the TCG-scale. The most re-
cent version, ITRF2000, is given by a spatial scale consistent
with time scale of TT (TT-scale), but earlier versions ITRF94,
ITRF96, and ITRF97 are expressed in the TCG-scale (Mc-
Carthy and Petit 2003, Sects. 4.2.2 and 4.2.4). In this paper,
we assume that the station’s coordinates are given in the TT-
frame. Coordinate transformation from ITRF to the TT-frame
is performed by

[TT-frame] = Q(t)R(t)W (t)[ITRF], (7)

where the rotation matrices Q(t), R(t), and W (t) are given
by McCarthy and Petit (2003, Sect. 5).

Coordinates of a space object in the Solar System are
given in planetary ephemerides such as DE405 (Standish,

1998a) which is thought of as a realization of the barycen-
tric dynamical reference system. In fact, the Jet Propulsion
Laboratory (JPL) planetary (DE405) and lunar (LE405) eph-
emerides are regarded as dynamical realizations of the ICRS
(McCarthy and Petit 2003, Sect. 3). The time argument Teph
of the JPL ephemerides is not TCB, but a coordinate time that
is related to TCB by an offset and a constant rate. Since these
ephemerides are automatically adjusted in the creation pro-
cess so that the rate of Teph has no overall difference from the
rate of TT (Standish 1998b), then Teph is consistent with the
definition (Guinot and Seidelmann 1988) of TDB. Therefore
Teph can be thought as a realization of TDB.

The constant scaling factor is represented by

1 − LB
def=

〈
d TT

d TCB

〉
= dTeph

dTCB
= d TT

d TCG

〈
d TCG

d TCB

〉

= (1 − LG)(1 − LC), (8)

where 〈〉 represents an average for a sufficiently long time
period.

1 − LC
def=

〈
d TCG

d TCB

〉
(9)

A recent estimate of LC is (Irwin and Fukushima 1999)

LC = 1.48082686741 × 10−8 ± 2 × 10−17. (10)

From Eqs. (8) and (10) and the value of the defining constant
LG, here we use a constant factor LB = 1.55051976772 ×
10−8.

Hereafter we call the reference frame of the JPL planetary
ephemeris the TDB-frame, which is a barycentric reference
frame differing from BCRS by a constant scaling factor LB.
The metric of the TDB-frame is expressed with metric tensor
(cf. Eq. 1) as

ds2 = (1 − LB)−2(g00c2dT̃ 2 + gi j dX̃ i dX̃ j

+ 2g0kdX̃ kcdT̃ ), (11)

where (T̃ , X̃) is space-time coordinates of TDB-frame.

2.2 VLBI delay model for radio source at finite distance

The problem to be solved is representation of time interval
τ2 − τ1 in TT with baseline vector and radio source coordi-
nates, under the condition that the motions of Earth and radio
source are given as functions of time. Let us consider that a
radio signal departing from a source S at (T̃0, X̃0) arrives
at stations 1 and 2, respectively, at (T̃1, X̃1) and (T̃2, X̃2) in
the TDB-frame (Fig. 1). The same events of signal arrival to
station i is indicated by (τi , ξ i ) in the TT-frame.

Here we define a pseudo source vector K (Fukushima
1994) as

K def= R1(T̃1) + R2(T̃1)

R1(T̃1) + R2(T̃1)
(12)

with

Ri (T̃1) = X̃0(T̃0) − X̃i (T̃1)

= X̃0(T̃0) − X̃E(T̃1) − RiE(T̃1), (13)
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Fig. 1 Configuration of VLBI observation for a radio source at finite
distance. The signal emitted from the radio source S at (T̃0, X̃0) arrives
at the observation station 1 (designated as P) and 2 (Q) at (T̃1, X̃1) and
(T̃2, X̃2), respectively. The pseudo direction vector K defined by Eq.
(76) is on the line from the middle point of the baseline B to the source
S in the TDB-frame

Ri (T̃1) = |Ri (T̃1)| (14)

where RiE(T̃1) is vector from the geocenter (T̃1, X̃E) to sta-
tion i(= 1, 2) in the TDB-frame, and it is expressed with
station coordinates in the TT-frame (τi , ξ i ) as

RiE(T̃1)=
(

1− WE

c2 −LC

)
ξ i (τ1)−

(
VE · ξ i (τ1)

2c2

)
VE,

(15)

where WE is the gravitational scalar potential of Eq. (2) eval-
uated at the geocenter (T̃1, X̃E), but the summation is taken
for all gravitating bodies except for the Earth. VE is the coor-
dinate velocity vector of the Earth at T̃1. We suppose the
coordinates of a spacecraft in the TDB-frame X̃(T̃ ) is given
as the function of T̃ .

The coordinate time T̃0, when the signal departed from
the radio source, needs to be obtained by solving the light-
time equation

T̃0 = T̃1 −
∣∣∣X̃0(T̃0) − X̃E(T̃1) − R1E(T̃1)

∣∣∣
c

− �Tg, 01, (16)

where �Tg,01 is the gravitational effect on the ray path from
radio source S to observation station 1. It is given by (Hellings
1986; Moyer 2000, e.g.)

�Tg,01 = 2
∑

J

G MJ

c2 ln
R1J + R0J + R01

R1J + R0J − R01
, (17)

where the position of gravitating body J must be evaluated at
the epoch of closest approach of the photon to the gravitating
body. Higher order terms are not necessary for this purpose,
because its error in the light-time solution δT only affects
the VLBI delay in the order of (V0/c)(B/R)δT , where V0
is the coordinate velocity of the radio source. The light-time
equation (Eq. 16) may be solved by numerical iteration, such
as the Newton–Raphson method, and the solution converges
very rapidly.

The argument of position vector in Eqs. (76) to (17) are
given in TDB, however, the most usually accessible time sys-
tem is UTC. UTC has the same rate with TAI, but differs by
integer seconds of offset (leap seconds). Observed data at a
ground station is usually time-tagged by UTC; thus we need
covert time tag from UTC to TDB to get T̃1 and T̃0. TAI
is an atomic time-scale derived by the Bureau International
des Poids et Mesures (BIPM), and it is regarded as realiza-
tion of time scale of TT. Leap seconds are introduced by the
IERS to keep difference between UTC and UT1 within 0.9 s
in absolute value. Then TT is computed from UTC by

TT = (TT − TAI) + (TAI − UTC) + UTC, (18)

where (TT–TAI) is 32.184 for historical reasons. (TAI–UTC)
was 32 s in 2005 and is 33 s from 0 h UTC on 1 January 2006.

Banycentric dynamical time can be computed by using
time ephemeris �T⊕(Teph) (Irwin and Fukushima 1999) as

TDB = TT + �T⊕(TT) − �T⊕(TT0) + VE · ξ1

c2 , (19)

where TT0 corresponds to 0 h UT on 1 January 1977. ξ1
is a geocentric vector to station 1 in the TT-frame. Strictly
speaking, the argument of �T⊕ is not TT, but Teph. Al-
though TDB-TT is less than 2 ms, then using TT instead of
Teph for the argument of �T⊕ causes negligible error (Irwin
and Fukushima 1999). Using the above procedure, the signal
emission time T̃0 and pseudo-source vector K are obtained.

By using pseudo-source vector K of Eq. (76) and base-
line vector b in the TT-frame, the VLBI delay for a radio
source at finite distance is expressed in TT (τ2 − τ1) as

(τ2 − τ1)finite

=
{
−
[
1 − 2 WE

c2 − |VE|2+2VE·v2
2c2

]
K·b

c − VE·b
c2

[
1 + R̂2·V2

c − (VE+2v2)·K
2c

]
+ �Tg,21

}
[(

1 + R̂2·V2
c

)
(1 + H)

] , (20)

with

R̂2 = R2

R2
, R2 = |R2|, Vi = dX̃i

dT̃
, v2 = dx2

dt
, (21)

where Vi is coordinate velocity of object i (=1, 2, E) in the
TDB-frame. v2 is coordinate velocity of station 2 in GCRS.
H is a correction term of the second-order of V2(T̃2 − T̃1)/c,
which represents the effect of variation of baseline vector
due to the difference of arrival time. H is derived (Appendix
Section) by applying Halley’s method (Danby 1988, p. 151)
as

H =
∣∣∣V2

c × R̂2

∣∣∣2 K · b
2R2

. (22)
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See Appendix Section for detailed derivation of Eq. (20).
�Tg,21 is term of gravitational effect, and it is discussed by
Klioner (1991) in detail. The gravitational effect is composed
of several terms: post-Newtonian �TpN, effect in the field of
moving body �TM, influence of quadruple field �TQ, rota-
tion of the bodies �TR, and the post-post-Newtonian effects
�TppN.

�Tg,21 = �TpN + �TM + �TR + �TQ + �TppN. (23)

The post-Newtonian term (�TpN) is the most significant
and it must be included at least for the Sun, Moon, and major
planets (Jupiter, Saturn, Venus, Mars, and the Earth). This
term is given by Eq. (43). According to Klioner (1991), the
post-post-Newtonian term (�TppN) of the Sun becomes a few
hundreds of ps in the case of grazing ray and several ps even
when the source direction is 1◦ away from the Sun. The term
�TQ reaches a few tens of ps when the ray passes through the
rim of Jupiter or Saturn. The term �TM of Jupiter and �TR
of the Sun reaches 0.5 ps when ray passes the rim of those
gravitating bodies. Refer to Brumberg (1987) and Klioner
(1991) for the formula of each gravitational effects.

The main contribution of the wave-front curvature is con-
centrated in the expression of pseudo-source vector K of
Eq. (76) (Fukushima 1994). The effect of epoch shift due to
atmospheric delay is included in the consensus model (Mc-
Carthy and Petit 2003, Eq. (11) at p. 113). We think that it
must be included, but this effect is not described in this paper
because it is common for any VLBI delay model.

3 Comparisons

3.1 Analytical comparison

In this section, our VLBI delay model is compared with other
VLBI models. VLBI delay models for finite distance radio
sources have been proposed by several authors (Fukushima
1994; Sovers et al. 1998; Klioner 1991; Moyer 2000).

Moyer’s (2000) model is a direct way to compute the
numerical difference of time of flight of a photon for two
legs from a radio source to two observers. This model is used
for the navigation of planetary probes by JPL/NASA, and it
has enough precision for radio sources in the Solar System.
However, it may not be practical when applied to galactic
radio sources, such as pulsar and maser sources in our gal-
axy. Because most of the two ray paths from a radio source
to observers are common in the galactic case, then a large
number of digits in the numerical solution of the light-time
equation will be lost when taking the difference.

Fukushima (1994) gives Lunar VLBI delay models based
on BCRS, although his model is also represented by numer-
ical iteration. Sovers et al. (1998) also presented a VLBI de-
lay model for finite-distance radio sources for the MODEST
VLBI analysis package developed by JPL. Unfortunately,
they did not clearly define the reference system that the model
is based on. Since their model is also described by iterative
procedure, we will not make comparison here.

Klioner (1991) shows detailed consideration of VLBI de-
lay models for several cases of radio sources at infinite and
finite distances in the framework of general relativity. He
discussed a VLBI delay model based on the barycentric ref-
erence system (Brumberg 1987; Kopeikin 1988). The time-
scale of his reference system is TDB, thus we suppose it
correspond to TDB-frame in this paper. As his model is pre-
sented in analytical form, we make analytical comparison
with this model in the next section. In addition, to demon-
strate the magnitude of the effect of curved wave-front, we
make comparison with the consensus model as an example
of a VLBI delay model for infinite distance.

3.1.1 Finite-VLBI model by Klioner (1991)

The VLBI delay model for interplanetary spacecraft derived
by Klioner (1991) is expressed with our notation as follows:
(A factor c−1 was missing from the last term of Eq. (5.1) in
his paper, so it is corrected here.)

(T̃2−T̃1)Klioner = K · B
c

[
1− R̂2 · V2(T̃1)

c
+ (R̂2 · V2(T̃1))

2

c2

]

+�Tg,12

(
1 − R̂2 · V2(t1)

c

)
+ (K · B)

c
H,

(24)

where B = X̃2(T̃1) − X̃1(T̃1) is baseline vector in the TDB-
frame. H is Halley’s correction term of Eq. (22).

Klioner’s delay model is given in the TDB time-scale,
and conversion to the TT-scale may be provided by numeri-
cal substitution. Hence analytical comparison with our model
was made in the TDB-frame. Our VLBI delay expressed in
TDB is presented by Eq. (80). Infinite series expansion of
this equation in terms of R̂2 · V2/c and H is represented as

(T̃2 − T̃1)our =
(

�Tg,12 − K · B
c

)

×
[

1 +
∞∑

n=1

(
− R̂2 · V2

c

)n
]

×
[

1 +
∞∑

n=1

(−H)n

]
, (25)

where we use the same gravitational delay model as Klioner
for �Tg,12.

Taking into account that H = O
[
(V/c)2

]
, the difference

between the two models becomes

(T̃2 − T̃1)Klioner − (T̃2 − T̃1)our = K · B
c

× O
[
(V/c)3]

(26)

Therefore, Klioner’s model is equivalent with ours to the
order of (VE/c)2 in TDB. The difference is that our model
gives the VLBI delay expression in the TT-scale with fully
analytical formula, whereas that of Klioner gives it in TDB.
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3.1.2 Consensus model (IERS conventions 2003)

The consensus model of the 2003 IERS conventions (Mc-
Carthy and Petit 2003) is widely used in the world VLBI
community as the standard model. It provides the difference
of arrival times between two stations in an analytical form.
It is expressed with our notation as

(τ2 − τ1)IERS =
{
−
[
1 − 2 WE

c2 − |VE|2+2VE·v2
2c2

]
k·b
c − (VE·b)

c2

(
1 + k·VE

2c

)
+ �tg

}
[
1 + k · VE+v2

c

] , (27)

where k is the unit vector from the Solar System barycenter
(SSB) to the radio source in the TDB-frame, and �tg is the
gravitational delay.

The IERS consensus model is originally expressed in the
time-scale of TCG with baseline vectors in GCRS. However,
the same formula is valid in the TT-frame for the relation
between delay and baseline vector, because it is just a scale
conversion (Eq. 63). Thus, here we use the consensus model
in TT-scale version for comparison with our model. The effect
of epoch shift due to atmospheric delay is skipped in this com-
parison, since that effect is common for both models. We note
that the difference between k and the pseudo-direction vector
K of Eq. (76) is the main part of the difference in the delay
expression.

Now R1 is expressed with k (see Fig. 2) as

R1 = Rk − X̃1 = R(k − ε1), (28)

where R is the distance from the SSB to the radio source and

ε1
def= X̃1/R. Then the magnitude of R1 is expanded around

R as

R1 = R
√

1 + ε2
1 − 2k · ε1 = R

√
1 + ε2

1 − 2ε1x1

Sun

Earth

Fig. 2 Representation of the position of a radio source with the distance
R and the unit vector k, directed from the Solar System barycenter to
the radio source

= R

{
1 − εx1 +

∞∑
n=2

[−x1 Pn−1(x1) + Pn−2(x1)]ε
n
1

n

}

= R

[
1+ ε2

1

2
−k · ε1− 1

2

∞∑
n=1

P2n(0)

n + 1
(ε2

1 − 2k · ε1)
n+1

]
,

(29)

where x1 = cos ϕ1 and ϕ1 is an angle between k and vector
ε1. Pn(x) are Legendre polynomials, and P2n(0) is given by

P2n(0) = (−1)n (2n − 1)!!
(2n)!! , (30)

where (2n)!! = 2·4 · · · (2n−2)(2n) = n!2n and (2n−1)!! =
1 · 3 · 5 · · · (2n − 3)(2n − 1) = (2n)!/(2n)!!.

It is seen from the second line of Eq. (29) that this infinite
series converges when ε1 < 1 i.e. R > 1 AU (astronomical
unit). In the same way, R2 can be expressed with an infinite
series expansion. Then, the difference of them becomes

R2(T̃1) − R1(T̃1) = −B · (k − εM)

×

1 +

∞∑
n=1

P2n(0)

n + 1

n∑
j=0

α
j
1α

n− j
2




def= −B · (k + δK) , (31)

where

εM = (ε2+ε1)
2 , (32)

αi = 2k · εi − ε2
i , (33)

εi = X̃i
R , (i = 1, 2) (34)

and

δK = −εM + (k − εM)

∞∑
n=1

P2n(0)

n + 1

n∑
j=0

α
j
2α

n− j
1 . (35)

Another expression of Eq. (31) is given with Eqs. (12)
and (76) as

R2(T̃1) − R1(T̃1) = −B · K. (36)

Therefore, K is expressed with k and δK of Eq. (35) as

K = k + δK. (37)

Also, R̂2 is expressed with k and its residual as

R̂2 = k + δR̂2, (38)

where δR̂2 is expressed with infinite series expansion in terms
of α2 or ε2 as:

δR̂2 = −ε2 + (k − ε2)

∞∑
n=1

P2n(0)αn
2 (39)

= −ε2 + (k − ε2)

∞∑
n=1

Pn(x2)ε
n
2 ,
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where x2 = cos ϕ2 and ϕ2 is an angle between k and vector
ε2. The second line of Eq. (39) shows the convergence radius
of this infinite series is ε2 < 1 i.e. R > 1 AU.

Corresponding to Eq. (80), the VLBI delay in TDB for
the consensus model is given by

(T̃2 − T̃1)IERS = �tg − (k · B)/c

[1 + k · (VE + v2)/c] . (40)

Then, the time difference in TDB-scale between two models
is given by using Eqs. (35), (37)–(39) and by retaining terms
of order of (VE/c)2:

�T̃finite − �T̃IERS = (�Tg,12 − �tg) − δK · B/c

1 + k · V2/c

+K · B
c

(
δR̂2 · V2

c
+ H

)[
1 − (k + R̂2) · V2

c

]
. (41)

This is the difference of delay in TDB between our model and
the consensus model. The first term is difference of gravita-
tional delay. The gravitational term used in the consensus
model has the form

�tg = 2
∑

J

G MJ

c3 ln
|R1J | + k · R1J

|R2J | + k · R2J
. (42)

This is approximated at the limit that the distance to the radio
source is infinitely large. In the case that the radio source is
at a finite distance, the same effect is computed by

�TpN = 2
∑

J

G MJ

c3 ln

(
R2J + R0J + R20

R2J + R0J − R20

× R1J + R0J − R10

R1J + R0J + R10

)
, (43)

Where positions of gravitating body J in both Eqs. (42)
and (43) must be evaluated at the epoch of closest approach
of the photon to the gravitating body. The difference between
�tg and �TpN reaches the order of nano-seconds when the
ray path is close to the gravitating body (Klioner 1991). The
second term of Eq. (41) contains the effect of the difference
of direction vector and curvature of wave-front. The third
term is the effect of variation of baseline vector due to the
difference of arrival time.

When R is greater than 10 pc, then εM, ε2 ≤ 5 × 10−7.
In this case, the contributions of the second and higher order
terms of εM can be eliminated since they are less than 0.1 ps.
We may then approximate δK and δR̂2 simply as

δK = −pM + O(ε2
M), (44)

δR̂2 = −p2 + O(ε2
2), (45)

where

pM = εM − (εM · k)k, (46)

p2 = ε2 − (ε2 · k)k. (47)

We call pM the parallax vector for the midpoint of the base-
line. It is the projection of εM on the plane perpendicular to
k (see Fig. 3).
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Fig. 3 Schematic view of the parallax vector, pM
def= εM − (k · εM)k,

where εM
def= XM/R and R is the distance to the radio source from the

Solar System barycenter(SSB)

Substituting Eqs. (44) and (45) into Eq. (41), we approxi-
mate our model in terms of parallax vectors. The delay differ-
ence of the two models in TT-scale is given by substituting
Eq. (41) into Eq. (65). Eliminating higher orders than (VE/c)2,
the delay difference becomes

�τFinite − �τIERS = (�Tg,12 − �tg) + b · pM

c

×
(

1 − k · V2

c

)
−
(

p2 · V2

c
− H

)
k · b

c
+ O(bε2). (48)

The second term corresponds to the annual parallax caused
by the shift of the apparent source direction. The third term
comes from the variation of the baseline vector due to the
difference in arrival time.

Reversing the viewpoint, Eq. (48) gives the correction
terms to the consensus model when the radio sources are far-
ther than 10 pc. The correction with these terms is enough to
adapt the consensus model to observation of finite-distance
radio sources with precision of 1 ps.

The annual parallax of stars has been traditionally esti-
mated by mapping the measured celestial coordinates (α, δ)
of the source at different epochs on the celestial sphere. Still
the same procedure is deployed in the analysis of modern
and accurate radio observation such as VLBI (e.g. Brisken
et al. 2002; Chatterjee et al. 2005). We emphasize that these
techniques can directly measure the parallax through model-
fitting by means of Eq. (48) applied to the whole set of VLBI
delay data over multiple sessions at different seasons. The
partial derivative of the delay �τ ≡ τ2 − τ1 with respect to

a parameter p
def= a0/R is explicitly given as

∂�τ

∂p
= (uM · b)

(
1 − k · V2

c

)
−
(

u2 · V2

c
− ∂ H

∂p

)
k · b

c
,

(49)

where a0 is major axis of the Earth’s orbit around the Sun.

ui = Xi

a0
−
(

Xi

a0
· k
)

k, (i = 1, 2) (50)

uM = u1 + u2

2
. (51)
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The vector ul , (l = 1, 2, M) is projection of Xl/a0 to a plane
perpendicular to the vector k. ∂ H/∂p is smaller than the other
term by factor of VE/c, thus it may be neglected. The par-
tial derivative of Eq. (49) will be useful to estimate parameter
p = a0/R with the weighted least-square method from delay
data set.

3.2 Numerical comparison with consensus model

In this section, the difference between our model and the
IERS consensus model is evaluated numerically in some
practical cases. Figure 4 shows the maximum difference for
a relatively long baseline, Kashima–Algonquin (9,000 km).

In the case of αCen. (R = 1.3 pc), which is known as
the nearest star system to Earth, the maximum difference
amounts to some 100 ns. This effect will be also detectable
for radio sources in our galaxy such as pulsars. A good exam-
ple is the millisecond pulsar PSR1937+21 (R ∼ 3.6 kpc),
the use of which has been discussed for the purpose of the
reference frame tie between the ICRF and dynamical refer-
ence frames (Bartel et al. 1996; Chatterjee and Codes 2000;
Petit 1994). In that case, the delay difference between our
model and the consensus model, τfinite − τIERS, is illustrated
in Fig. 5 for the Kashima–Algonquin baseline. The differ-
ence consists of oscillations with the amplitude about 40 ps
at maximum. These are caused by the two components in
Eq. (48), pM and p2. From another point of view, this shows
that the distance to the pulsar may be directly estimated by
analyzing the delays with the new model.

Let us move next to a closer case. The consensus model
is designed for observation of extra-galactic radio sources,
and cannot be used for radio sources in the Solar System, as
stated in the 2003 IERS Conventions (McCarthy and Petit
2003, p. 109). If we use the direction vector of a radio source
starting from the SSB in the consensus model, the difference
is so large that it is obviously nonsense to use the consensus
model for object in the Solar System.

However, if geocentric direction vector to a radio source
is used instead of unit vector from SSB, the error becomes
smaller. Actually this approach was taken by Sovers et al.
(1998) to make VLBI delay model for finite-distance radio
source. To demonstrate the effect of curved wave-front in
this case, here we rename this geocentric direction vector as
k and substitute it to the consensus model. The difference of
two models is depicted for Venus in the period of 2005–2007
in Fig. 6. The main term of the difference is the so-called
horizontal parallax.

4 Conclusion

A delay model for Earth-based VLBI observation of finite-
distance radio sources has been developed. VLBI delay in TT
is expressed by fully analytical formula. The curvature of the
wave-front of the radio signal was taken into account by using
pseudo-source vector K. The effect on variation of baseline

vector due to the difference of arrival time was approximated
with Halleys’s method (Appendix section). The model has
precision better than 1 ps for any radio source above the
altitude of 100 km from the ground in ground-based VLBI
observations. Since Earth satellites are recommended to be
analyzed in the GCRS (McCarthy and Petit 2003, Sect. 10.2),
our model may not be used for Earth satellites. However our
model might be useful in VLBI observation of Earth swing-
by of interplanetary spacecraft.

This new delay model was derived with intention for prac-
tical use in VLBI analysis software to analyze observed VLBI
data of spacecraft. For that reason, coordinates of spacecraft
and planets are supposed to be given in TDB-frame (e.g. JPL
ephemerides). We have tried to include all of the equations
and relations necessary for coding a computer program, ex-
cept for the terms of gravitational delay in Eq. (23). �TpN is
given in Eq. (43), although other terms have to be taken from
the original literature. They may be taken into account for
VLBI observations of a spacecraft that is landing or orbiting
a planet.

When the distance to the radio source is larger than 10 pc,
the difference between our model and consensus model is
expressed by a few terms. Therefore, the consensus model
can be adapted for VLBI observation of finite-distance radio
sources by using these correction terms. This is a significant
advantage for implementing the delay model for finite-dis-
tance radio source into current VLBI analysis software, such
as CALC/SOLVE or OCCAM. The analytical expressions of
the parallax effects may enable modeling and direct estimate
of the parallax from global analysis of VLBI data sets.

Numerical comparison between our model and the con-
sensus model indicated that the difference is significant for
the radio sources in our galaxy (< 20 kpc). The effect of the
curved wave-front was demonstrated for PSR1937+21 and
Venus with Kashima–Algonquin baseline as example.
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Fig. 4 Maximum difference of τfinite − τIERS plotted as a function of
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ple. This plot was made for configuration on a virtual source in the
direction of the north pole (δ = 90◦). We confirmed that there was no
significant dependence on the declination



A VLBI delay model for radio sources at a finite distance 145

Time (Month of 2006)

D
el

ay
 D

if
fe

re
nc

e 
(p

s)

PSR1937+21

-50

-40

-30

-20

-10

0

 10

 20

 30

 40

 50

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

PSR1937+21

Date of 2006

D
el

ay
 D

if
fe

re
nc

e 
(p

s)

-15

-10

-5

0

5

 10

 15

 20

01 Jul 08 Jul 15 Jul 22 Jul 29 Jul

Fig. 5 Difference in the delay time between the finite-VLBI model and the consensus model, evaluated for PSR1937+21 (α = 19h39m38s.56, δ =
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A Appendix: Derivation of delay model
for finite-distance radio source

A.1 Reference system and coordinate transformation

The Barycentric Celestial Reference System (BCRS) and
Geocentric Celestial Reference System (GCRS) are recom-
mended in the 2003 IERS Conventions (McCarthy and Pe-
tit 2003) as fundamental reference system in framework of
general relativity. The time-coordinate of BCRS and GCRS
are named, respectively, Barycentric Coordinate Time (TCB)
and Geocentric Coordinate Time (TCG). Metric tensors of
each of these reference systems are given by Eqs. (1) and (3),
where we denote space-time coordinates of BCRS by (T, X),
and that of GCRS by (t, x).

In this section, we derive VLBI delay model for radio
source at finite distance. When radio source is in the Solar
System, we suppose its position is given in the BCRS. In
fact, orbits of planets, asteroids and most of spacecraft in the
solar system are currently described in the DE405 planetary
ephemeris, which is developed by JPL/NASA and it is rec-
ommended as an IERS standard McCarthy and Petit 2003,
Chapt. 3. Here we call this reference system as TDB-frame,
since space-time coordinate of JPL ephemeris is consistent
with TDB (see Sect. 2.1). TDB-frame is a system differing
from BCRS by a constant factor LB. The metric of TDB-
frame is given by Eq. (11), where space-time coordinates of
TDB-frame is denoted by (T̃ , X̃). We assume radio sources
outside the Solar System may also be given in the TDB-
frame.
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The time interval observed at ground station is measured
by local clock running as proper time at that point. That time
scale is usually different from terrestrial time (TT), since
local gravitational potential at the observatory usually differs
from that of geoid. Although the difference of time scale
(clock rate) caused by difference of gravitational potential is
absorbed in the process used to keep the local clock synchro-
nized with UTC. Therefore, hereafter time scale of observed
delay at observatory is regarded as that of TT.

For practical use, we define TT-frame, which is a geocen-
tric reference system differing from GCRS by a factor of LG
From Eq. (5). The metric of TT-frame is given by Eq. (6),
where space-time coordinates of TT-frame are denoted by
(τ, ξ). Geocentric station coordinates are converted from
International Terrestrial Reference Frame (ITRF), which is a
reference frame co-rotating with the Earth, to the TT-frame
by coordinate transformation due to diurnal motion, polar
motion, nutation, and precession (Chapt. 5 of McCarthy and
Petit 2003). Note that the concept of ITRS is defined in scale
of GCRS; however products of ITRF is expressed in TT-
scale rather than TCG-scale, except for ITRF94, ITRF96,
and ITRF97. Then the scales of reference frames differ by
factor of LG depending on the version of ITRF. The scale
conversion from TT-scale to TCG-scale is explicitly given
in Eq. (14) of (McCarthy and Petit 2003, p. 30). Hereafter
we assume that station coordinates are expressed in TT-scale
(e.g. ITRF2000) and station coordinates are transformed to
celestial reference frame (TT-frame) without scale change.

The coordinate transformation from BCRS (T, X) to the
GCRS (t, x) is recommended by Resolution B1.3 adopted at
the XXIV IAU General Assembly (Soffel et al. 2003). This
is expressed with our notation as

t (T, X) = T − 1

c2

[
A(T ) + V i

E(T )Ri
E(T, X)

]

+ 1

c4

[
B(T ) + Bi (T )Ri

E(T, X)

+ Bi j (T )Ri
E(T, X)R j

E(T, X)+C(T, X)
]
+O(c−5),

(52)

xi (T, X) = Ri
E(T, X)

+ 1

c2

[
1

2
V i

E(T )V j
E (T )R j

E(T, X) + WE(XE(T ))Ri
E(T, X)

+ Ri
E(T, X)A j

E(T )R j
E(T, X) − 1

2
Ai

E(T )R2
E(T, X)

]

+O(c−4), (53)

where Ri
E(T, X) = Xi − Xi

E(T ) and

A(T ) =
T∫

T0

[
1

2
V 2

E (T ′) + WE(XE(T ′))
]

dT ′, (54)

B(T ) =
T∫

T0

[
−1

8
V 4

E (T ′) − 3

2
V 2

E (T ′)WE(XE(T ′))

+4V i
E(T ′)W i

E(XE(T ′)) + 1

2
W 2

E(XE(T ′))
]

dT ′, (55)

Bi (T ) = −1

2
V 2

E (T )V i
E(T ) + 4W i

E(XE) − 3V i
E(T )WE(XE(T )), (56)

Bi j (T ) = −V i
E(T )δaj Qa(T ) + 2

∂

∂ X j
Ui

E(XE(T ))

−V i
E

∂

∂ X j
WE(X(T )) + 1

2
δi j ẆE(XE(T )), (57)

C(T, X) = − 1

10
R2

E(T, X)( Ȧi
E(T )Ri

E(T )), (58)

Qa = δai

[
∂

∂ Xi
WE(XE(T )) − Ai

E(T )

]
. (59)

Here Xi
E, V i

E, and Ai
E are the vector components of position,

coordinate velocity, and coordinate acceleration of the Earth
in the BCRS, the dot over the quantities stands for the deriv-
ative with respect to coordinate time. T0 represents the epoch
of 1 January 1977, 0h0m0s. The external potentials WE and
W i

E are given by

WE(T, X) = G
∑
J 
=E

∫
J

σ(T, X′)
|X − X′| d3 X ′

+ 1

2c2 G
∑
J 
=E

∂2

∂T 2

∫
J

σ(T, X′)|X−X′|d3 X ′, (60)

W i
E(T, X) = G

∑
J 
=E

∫
J

σ i (T, X′)
|X − X′| d3 X ′, (61)

where E stands for the Earth, J runs for all gravitational
bodies in the Solar System, except for the Earth. σ and σ i

are the gravitational mass and current densities, respectively.
Let us suppose a signal that departed from a radio source

at (T0, X0) arrives to observation station 1 and 2 at (T1, X1)
and (T2, X2) in BCRS. These events correspond to space-
time coordinates (T̃0, X̃0), (T̃1, X̃1), and (T̃2, X̃2) in the TDB-
frame (Fig. 1). The last two events respectively correspond to
(t1, x1) and (t2, x2) in the GCRS and to (τ1, ξ1) and (τ2, ξ2)
in the TT-frame. In case of ground-based VLBI observation,
the time interval of signal arrival to two observatories on the
Earth is less than 43 ms. Then approximation up to the order
of (VE/c)2 is enough for 1 ps accuracy.

By using Eqs. (52) and (53), temporal interval between
two events (T1, X1) and (T2, X2) is expressed in TCG as

t2 − t1 = (T2 − T1)

[
1 − 1

c2

(
1

2
V 2

E + WE

)]

− V i
E(xi

2(t1) − xi
1(t1) + vi

2(t2 − t1))

c2 , (62)

where coordinate velocity of the Earth (V i
E) and external

gravitational potential (WE) is approximated as constant in
the integral of Eq. (54) for the short time interval of the
two events. Also, contributions from accelerations due to
the Earth’s spin and orbital motion were eliminated, since
they are, respectively, about 3.3 cm/s2 and 6 mm/s2. Then
xi

2(t2)−xi
1(t1) is approximated as xi

2(t1)−xi
1(t1)+vi

2(t2−t1).
From the definition of TT-frame, its temporal and spatial

scale differs from that of GCRS by the constant factor LG as

(τ2 − τ1) = (1 − LG)(t2 − t1)
ξ i = (1 − LG)xi .

(63)
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Also coordinates components of TDB-frame differ from that
of BCRS by the constant factor LB as

(T̃2 − T̃1) = (1 − LB)(T2 − T1)

X̃ i = (1 − LB)Xi .
(64)

With these factors and Eq. (8), Eq. (62) is re-written as a
relation between TT and TDB as follows:

τ2 − τ1 = T̃2 − T̃1

1 − LC

[
1 − 1

c2

(
1

2
|VE|2 + VE · v2 + WE

)]

−VE · b
c2 , (65)

where

bi = ξ i
2(τ1) − ξ i

1(τ1) (66)

is the baseline vector in TT-frame, and v2 is coordinate veloc-
ity of station 2, and its value is identical in either of TT-frame
and GCRS.

When the baseline vector in BCRS Xi
2(T1) − Xi

1(T1) is
concerned, space-time coordinates of event (T1, X1) corre-
spond to (t1, x1), although (T1, X2) does not correspond to
(t1, x2), but corresponds to (t1 + δt1, x2), where δt1 is differ-
ence of simultaneity between BCRS and GCRS. The differ-
ence in order of (VE/c)2 is given from Eq. (52) as

δt1 = − V i
E(Xi

2 − Xi
1)

c2 . (67)

Then a relation between baseline in BCRS Xi
2(T1)− Xi

1(T1)

and that in GCRS xi
2(t1) − xi

1(t1) is derived from Eq. (53) in
the order of (VE/c)2 as

xi
2(t1) − xi

1(t1) = (Xi
2(T1) − Xi

1(T1))

(
1 + WE

c2

)

+ V j
E (X j

2(T1) − X j
1(T1))

c2

(
V i

E

2
+ vi

2

)
.(68)

Converting Eq. (68) by using relations of Eqs. (63) and (64),
the baseline vector in TT-frame ξ2(τ1) − ξ1(τ1) is expressed
with that of TDB-frame X̃2(T̃1) − X̃1(T̃1) as

bi = Bi

1 − LC

(
1 + WE

c2

)
+ V j

E B j

c2

(
V i

E

2
+ vi

2

)
, (69)

where

Bi = X̃ i
2(T̃1) − X̃ i

1(T̃1). (70)

Since the difference between B and b is of the order of
(VE/c)2, B is expressed with b to the order of (VE/c)2 from
Eq. (69) as

Bi = bi
(

1 − WE

c2 − LC

)
− V j

E b j

c2

(
V i

E

2
+ vi

2

)
, (71)

where we used the same notation of coordinate velocity VE
and gravitational potential WE for BCRS and TDB-frame,
since these quantities are free from scale change as far as the
speed of light is constant.

A.2 Derivation of finite distance VLBI delay with Halley’s
method

The problem to be solved is computing the delay τ2 − τ1 at
given epoch τ1 under the conditions that the coordinates of
the radio source and orbits of planets, including the Earth,
are given as a function of time in the TDB-frame. The signal
departs from a radio source at (T̃0, X̃0) arrives at observer
1 at (T̃1, X̃1). The epoch T̃0 must be solved from light-time
equation (Eq. 16) with Eq. (17).

The position vector from radio source in TDB-frame
(T̃0, X̃0) to observation station 2 (T̃2, X̃2) can be approxi-
mated with coordinate velocity V2 as

R2(T̃2) = R2(T̃1) − V2(T̃2 − T̃1), (72)

where R2 is defined with Eq. (13). Effects of the acceleration
of station 2 are ignored, since the error due to this approxi-
mation is 30µm at maximum.

The magnitude of R2(T̃2) is expanded around that of
R2(T̃1) as

R2(T̃2) = R2(T̃1)

{
1 − R̂2 · V2(T̃2 − T̃1)

R2

+|V2 × R̂2|2
2R2

2

(T̃2 − T̃1)
2

+|V2 × R̂2|2
2R3

2

(R̂2 · V2)(T̃2 − T̃1)
3 + · · ·

}
, (73)

where R2 = |R2| and R̂2 = R2/R2. Time tags for these
variables are omitted but it is T̃1 such as R2 = R2(T̃1), R̂2 =
R̂2(T̃1), and V2 = V2(T̃1).

The third-order term of Eq. (73) is evaluated as follows:

|V2 × R̂2|2
2R3

2

(R̂2 · V2)(T̃2 − T̃1)
3 ≤ |V2|(T̃2 − T̃1)|3

3
√

3R3
2

= 1

3
√

3

( |V2|
c

)3 ∣∣∣∣ R2 − R1

R2

∣∣∣∣
3

,

(74)

where T̃2 − T̃1 ≈ (R2 − R1)/c was substituted. The trun-
cation error by omitting the third-order term was evaluated
by this inequality under the condition that mutual visibility
from the Earth-based stations is kept. Figure 7 shows that
the truncation error is less than 0.1 ps for any space object
above the altitude of 100 km in case of the Earth-based VLBI
observations.

Then the time interval T̃2 − T̃1 can be expressed with
sufficient accuracy by using Eq. (73) as

c(T̃2 − T̃1) = R2(T̃2) − R1(T̃1) + c�Tg,

= c�Tg,12 − K · B − R̂2 · V2(T̃2 − T̃1)

+|V2 × R̂2|2
2R2

(T̃2 − T̃1)
2, (75)
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Fig. 7 Maximum of the third-order truncation error, R2
∣∣V2(R2 − R1)/

√
3cR2

∣∣3 evaluated as a function of the altitude of the source. The evaluation
took into account mutual visibility of ground-based VLBI observers

where K is the pseudo-direction vector, which was introduced
by Fukushima (1994), and B is the baseline vector defined in
the TDB-frame.

K = R1(T̃1) + R2(T̃1)

R1(T̃1) + R2(T̃1)
,

B = X̃2(T̃1) − X̃1(T̃1), (76)

where Ri (i = 1, 2) is computed by Eq. (13). Equation (75)
is rewritten in the order of (T̃2 − T̃1) as

|V2|2 − (R̂2 · V2)
2

2R2
(T̃2 − T̃1)

2

−(c + R̂2 · V2)(T̃2 − T̃1) + c�Tg,12 − K · B = 0. (77)

In general, when a quadratic equation is given as

1

2
f ′′x2 + f ′x + f 0 = 0, (78)

its approximation solution is obtained by

x = − f 0

f ′ [1 − f 0 f ′′/2( f ′)2
] . (79)

This is called Halley’s method (Danby 1988, p. 151). This
approximation is known to give third-order convergence in
iterative use to solve a quadratic equation. It is quite effective,
especially when f ′′ f 0  ( f ′)2, as is the case here.

The solution of Eq. (77) is obtained by using Halley’s
method as

T̃2 − T̃1 = �Tg,12 − (K · B)/c

[1 + (R̂2 · V2)/c]
{

1 + K·B[|V2|2−(R̂2·V2)2
]

2c2 R2[1+(R̂2·V2)/c]2

}

= �Tg,12 − (K · B)/c

(1 + R̂2 · V2/c)(1 + H)
. (80)

where H is the correction term due to Halley’s method, which
is expressed in the order of (VE/c)2 as

H
def= K · B

∣∣V2 × R̂2
∣∣2

2R2c2 ≈ K · b
∣∣V2 × R̂2

∣∣2
2R2c2 . (81)

The approximation error of Halley’s method is evaluated by

δx ∼=
[
( f 0)3 f ′′2]

4 f ′5 �
(

B

4c

)(
B

R2

)2 (V2

c

)4

. (82)

Since the order of the error is (V2/c)4, then it is negligible.
Substituting Eq. (71) into Eq. (80) and into Eq. (65), the

VLBI delay model for a radio source at finite distance is
obtained in the order of (VE/c)2 as:

(τ2−τ1)Finite

=
{
−
[
1−2 WE

c2 − |VE |2+2VE ·v2
2c2

]
K·b

c −VE ·b
c2

[
1+R̂2·V2

c −(VE+2v2)·K
2c

]
+�Tg,21

}
[
(1+ R̂2·V2

c )(1+H)
] .

Acknowledgements We thank Dr Yoshikawa of JAXA/ISAS and
Kashima VLBI group of NICT for guiding us to the issue of finite
VLBI observation. We also appreciate Prof W. Cannon of York Univer-
sity, Canada, for care of this work during author’s stay in his laboratory.
Finally, we appreciate S. A. Klioner, H. Schuh and referees of Journal
of Geodesy for precise checks, useful comments, and constructive crit-
icism. Owing to them, the content of this paper was greatly improved.

References

Bartel N, Chandler JF, Ratner MI, Shapiro II, Pan R, Cappallo RJ (1996)
Towards a frame-tie via millisecond pulsar VLBI. Astron J 112:1690–
1696

Border JS, Donivan FF, Finley SG, Hildebrand CE, Moultrie B,
Skjerve LJ (1982) Determining spacecraft angular position with delta
VLBI: the voyager demonstration. AIAA/AAS Astrodynamics Con-
ference, 9-11 August, San Diego, CA, AIAA-82-1471

Brisken WF, Benson JM, Goss WM, Thorsett SE (2002) Very long
baseline array measurement of nine pulsar parallaxes. Astrophy J
571:906–917

Brumberg VA (1987) Post-post-Newtonian propagation of light in the
Schwarzschild field. Kinematica Fizika Neb 3(1):8–13

Charlot P (2004) The ICRF: 2010 and beyond. In: Vandenberg NR,
Baver KD, (eds) Procceedings. of International VLBI service for
geodesy and astrometry 2004 general meeting, NASA/CP-2004-
212255; pp. 12–21



A VLBI delay model for radio sources at a finite distance 149

Chatterjee S, Vlemmings WHT, Brisken WF, Lazio TJW, Cordes JM,
Goss WM, Thorsett SE, Fomalont EB, Lyne AG, Kramer M (2005)
Getting its kicks: a VLBA parallax for the hyperfast pulsar B1508+55.
Astrophys J 630:L61–L64

Chatterjee S, Codes JM (2000) VLBI neutron star astrometry: tech-
niques and initial results. In: Kramer M, Wex N, Wielebinski R (eds)
IAU colloquium 177: pulsar astronomy – 2000 and beyond, ASP
conference Service, vol 202, pp 139–140

Danby JMA (1988) Fundamentals of celestial mechanics, 2nd edn.
Willimann-Bell, Richmond, 151pp

Eubanks TM (1991) A Consensus model for relativistic effects in geo-
detic VLBI. In: Proceedings of the USNO workshop on relativistic
models for use in space geodesy, pp. 60–82

Fukushima T (1994) Lunar VLBI observation model. Astron Astrophys
291: 320-323

Guinot B, Sidelmann PK (1988) Time scales – Their history, definition
and interpretation. Astron Astrophys 194: 304-308

Heki K, Matsumoto K, Floberghagen R (1999) Three-dimensional
tracking of a lunar satellite with differential very-long-baseline-inter-
ferometry. Adv Space Res 23:1821-1824

Hellings RW (1986) Relativistic effects in astronomical timing mea-
surements. Astron J 91:650–659

Irwin AW, Fukushima T (1999) A numerical time ephemeris of the
Earth. Astron Astrophys 348:642–652

Kobayashi, H, Kawaguchi N, Manabe S, Omodaka T, Kameya O, Shi-
bata KM, Miyaji T, Honma M, Tamura Y, Hirota T, Imai H, Kuji S,
Horiai K, Sakai S, Sato S, Iwadate K, Kanya Y, Jike T, Fujii T, Kasu-
ga T (2004) VERA system. In: Bachiler R, Colomer F, Desmurs JF, de
Vicente P (eds) Proceedings of the 7th Symposium of the European
VLBI network, 12–15 October, Toledo, Spain, pp 275–278

Kopeikin SM, (1988) Celestial coordinate reference systems in curved
space-time. Cel Mech 44:87–115

Klioner S (1991) General relativistic model of VLBI observables. In:
Carter WE (eds) Proceedings of AGU Chapman conference on geo-
detic VLBI: monitoring of global change. NOAA Technical Report
NOS 137 NGS 49, American Geophysical Union, Washington DC,
pp 188–202

Lebreton J-P, Matson DL (2002) The Huygens probe: science, payload
and mission overview. Space Sci Rev 104:59–100

Matsumoto K, Heki K, Rowlands DD (1999) Impact of far-side satellite
tracking on gravity estimation in the SELENE project. Adv Space Res
23:1809–1812

McCarthy DD, Petit G (2003) IERS conventions. IERS Technical Note
No. 32, Paris Observatory

Moyer TD (2000) Formulation for observed and computed values of
deep space 4 network data types for navigation. JPL Monograph
2 (JPL Publication 00-7). This is published from JPL deep space
communications and navigation series, John Wiley, Hoboken, ISBN
0-471-44535-5

Sekido M., Ichikawa R, Osaki H, Kondo T, Koyama Y, Yoshikawa M,
Ohnishi T, Cannon WH, Novikov A, Berube M (2004) Astrometry
observation of spacecraft with very long baseline interferometry – a
step of VLBI application for spacecraft navigation. In: Noon D (ed)
Proceedings of URSI commission-F triennium open symposium, 1–4
June, Cairns, Australia, pp. 163-170 (http://www.ursi-f2004.com/)

Petit G (1994) Observations VLBI Des Pulsars Millisecondes Pour le
Raccordement des Systèmes de Rèfèrence Cèlestes et la Stabilitè des
Èchelles de Temps”, PhD thesis, Paris Observatory

Petrov L (2005) Mark-5 VLBI analysis software Calc/Solve
(http://gemini.gsfc.nasa.gov/solve/)

Shahid-Saless B, Hellings RW (1991) A picosecond accuracy relativ-
istic VLBI model via fermi normal coordinates. Geophys Res Lett
8:1139–1142

Soffel MH, Muller J, Wu X, Xu C (1991) Consistent relativistic VLBI
theory with picosecond accuracy. Astron J 101:2306–2310

Soffel M. Klioner SA, Petit G, Wolf P, Kopeikin SM, Bretagon P, Brum-
berg VA, Capitaine N, Damour T, Fukushima T, Guinot B, Huang T-Y,
Lindegren L, Ma C, Nordvedt K, Ries JC, Seidelmann PK, Vokrouh-
licky D, Will CM, Xu C (2003) The IAU resolutions for astrometry,
celestial mechanics, and meteorology in the relativistic framework:
explanatory supplement. Astron J 126:2687–2706

Sovers OJ, Fanselow JL, Jacobs CS (1998) Astrometry and geodesy
with radio interferometry: experiments, models, results. Rev. Mod
Phys 70(4):1393–1454

Standish EM (1998) JPL planetary and lunar ephemerides,
DE405/LE405, JPL IOM 312.F-98-048

Standish EM (1998b) Time scale in the JPL and CfA ephemerides.
Astron Astrophys 336:381-384

Titov O, Tesmer V, Boehm J (2004) OCCAM 6.0 User’s Guide
(http://www.ga.gov.au/geodesy/sgc/vlbi/)

Yamamoto T, Tsuruda K (1998) The PLANET-B mission. Earth Planets
Space 50: 175–181

Zhu SY, Groten E (1988) Relativistic effects in VLBI time delay mea-
surement. Manuscripta Geodetica 13:33–39


