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Abstract Low-low satellite-to-satellite tracking (ll-SST)
range-rate observations have been predicted by two methods:
one based on a linear perturbation theory in combination with
the Hill equations, and one based on solving the equations
of motion of two low-flying satellites by numerical integra-
tion. The two methods produce almost equivalent Fourier
spectra of the range-rate observations after properly taking
into account a few resonant terms. For a typical GRACE-type
configuration, where the two satellites trail each other at a dis-
tance of 300 km at an altitude of 460 km, and in the presence
of the EGM96 gravity field model, complete to spherical har-
monic degree and order 70, the agreement between the Fou-
rier spectra is about 1 mm/s compared to a root-mean-square
(RMS) value of more than 220 mm/s for the range-rate sig-
nal. The discrepancy of 1 mm/s can be reduced significantly
when not taking into account perturbations caused by the J2
term. Excluding the J2 term, the agreement between the two
methods improves to 0.4 mm/s compared to a RMS value of
6 mm/s for the range-rate signal. These values are 0.01 and
2.3 mm/s when ignoring the spectrum for frequencies below
two cycles per orbital revolution, reducing the discrepancy
even further to about 0.5% of the signal. The selected linear
perturbation theory is thus capable of modeling gravity field
induced range-rate observations with very high precision for
a large part of the spectrum.

Keywords Low-low satellite-to-satellite tracking (ll-SST) ·
Linear perturbation theory (LPT) · Numerical integration
(NI)

1 Introduction

The concept of using low-low satellite-to-satellite tracking
(ll-SST) for mapping the Earth’s global gravity field has

P.N.A.M. Visser
Delft Institute for Earth-Oriented Space Research,
Delft University of Technology,
Kluyverweg 1, 2629 HS, Delft, The Netherlands
Tel.: +31-15-2782595
Fax: +31-15-2785322
E-mail: Pieter.Visser@lr.tudelft.nl

been studied for at least over three decades (Wolff 1969). In
2002, this concept was realized with the successful launch of
the GRACE satellite pair (Tapley and Reigber 1999; Tapley
et al. 2004) in near-polar (89◦ inclination) near-circular orbits
(eccentricity < 0.001) at about 480 km altitude with an inter-
satellite distance between 170 km and 270 km.Although many
modern precise orbit determination (POD) and gravity field
parameter estimation techniques rely on numerical integra-
tion techniques (Boyce and DiPrima 1986; Montenbruck and
Gill 2000), analytical orbit perturbation theories have proved
their value for gravity field satellite mission design stud-
ies and performance predictions (Wagner 1983, 1987; Kaula
1983; Visser 1999). Moreover, Colombo (1984) shows that,
for certain satellite orbit geometries, a close match can be
obtained between ll-SST observations predicted by analyt-
ical orbit perturbation theories solving the Hill equations
and ll-SST observations that were obtained by solving the
equations of motion of a satellite pair by numerical inte-
gration.

Cheng (2002) has further refined analytical perturbation
theories for ll-SST modeling. He included a detailed descrip-
tion of the observation modeling and analytical perturba-
tion theory, which is partly based on the work of Rosbor-
ough (1987). Cheng (2002) shows the high sensitivity of
ll-SST observation to high degree and order gravity field
coefficients and also indicates the need for high degree and
order modeling of tidal perturbations. However, the imple-
mentation of the analytical perturbation theory presented in
Cheng (2002) was not validated by independent methods,
tools or softwares. As will be discussed in this paper, some
of the results presented in Cheng (2002) require special atten-
tion.

For example, in Sect. 4.1 of Cheng (2002) a large ll-
SST range-rate signal of 93 m/s is described with a period
of 92 days, and in Sect. 4.1.1 J2 and J3 ll-SST signals of
107 and 103 m/s at nearly one and three cycles per orbi-
tal revolution (cpr) for a GRACE-type mission, whereas the
GRACE ll-SST instrument is designed for a signal magni-
tude of 1.5 m/s (Gerard Kruizinga, Jet Propulsion Laboratory
2003 Personal communication). These results and discus-
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sions partially triggered the research described below. More-
over, in the past, fast and efficient gravity field mission de-
sign and performance prediction tools were developed and
implemented based on analytical linear perturbation theories
(cf. Colombo (1984)). It is expected that the design of fu-
ture gravity field missions will continue to benefit from these
tools.

This paper will first address ll-SST modeling by two inde-
pendent methods: one based on the linear orbit perturbation
theory solution of the Hill equations and one based on numer-
ical integration of the equations of motion of two satellites
flying “en echelon” in a low orbit. It will be shown that these
two methods provide nearly equivalent results when prop-
erly taking into account a few resonant terms. The differ-
ences between the two methods cannot account for some of
the results described in (Cheng 2002). It will be shown, how-
ever, that ll-SST range-rate observations can be modeled to
a precision of better than 1% of the total signal, where a
large part of the mismatch between the two methods can be
attributed to higher-order J2 effects.

2 Low-low satellite-to-satellite tracking

Typical ll-SST satellite missions for gravity field mapping
consist of two satellites that fly at low-altitude (300–500 km)
in near co-planar and near-polar circular reference orbits
(Wolff 1969). In the sequel, it is therefore assumed that the
ll-SST configuration consists of two satellites trailing each
other in the same orbital plane.

For the first method, based on a linear orbit perturbation
theory, a reference frame is used with the origin in the Earth’s
center of mass and with the XY -plane coinciding with the
nominal orbital plane of the two satellites, herein referred to
as the co-planar reference frame. The X axis is aligned with
the radius vector of the first satellite according to a nominal
circular orbit. The Y axis is perpendicular to the X axis in
the nominal orbital plane, aligned with the velocity vector
of the circular orbit (Fig. 1). The Z axis is perpendicular to
the orbital plane and completes a right-handed orthonormal
reference frame.

The distance between the two satellites is defined by the
separation angle α, where the second satellite is ahead of the
first satellite in the same orbital plane. It is assumed that the
orbits of the two satellites are perturbed in the radial (r), trans-
verse (τ ), and cross-track (c) directions. These perturbations
are denoted by �r1, �τ1 and �c1 for the first satellite and
�r2, �τ2 and �c2 for the second satellite. The inter-satellite
range and range-rate satisfy the following equations:

ρ =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (1)
ρρ̇ = (ẋ2 − ẋ1) × (x2 − x1) + (ẏ2 − ẏ1) × (y2 − y1)

+(ż2 − ż1) × (z2 − z1), (2)

where ρ and ρ̇ denote the range and range-rate, respectively,
and x1, y1, z1, x2, y2, z2 denote the location of the two sat-
ellites in the co-planar reference frame. For satellite 1, the
coordinates are:

Fig. 1 Configuration of two co-planar satellites and their orbit pertur-
bations

x1 = (r + �r1) (3)
y1 = �τ1 (4)

z1 = �c1 (5)

and for satellite 2:

x2 = (r + �r2) cos α − �τ2 sin α (6)
y2 = (r + �r2) sin α + �τ2 cos α (7)
z2 = �c2, (8)

where r denotes the geocentric radius of the circular refer-
ence orbits. Combining Eqs. (2) and (3) to (9) and keeping
only the linear terms in �r, �τ, �c, �ṙ, �τ̇ , �ċ, results in
the following relation:

ρρ̇ = r {(�ṙ2 + �ṙ1)(1 − cos α) + (�τ̇2 − �τ̇1) sin α}
(9)

By keeping only the linear terms in the orbit perturbations,
the cross-track terms perpendicular to the orbital plane are
cancelled in describing the relative motion of the two satel-
lites. For example, the range-rate approximation error ρ̇ε due
to ignoring cross-track orbit perturbations is equal to (using
Eqs. (2), (5) and (9)):

ρ̇ε = (�ċ2 − �ċ1) × (�c2 − �c1)/ρ. (10)

The cross-track velocities �ċ1, �ċ2, are thus multiplied by
a factor (�c2 − �c1)/ρ compared to r(1 − cos α)/ρ and
r sin α/ρ for the radial, �ṙ1, �ṙ2, and along-track veloci-
ties, �τ̇1, �τ̇2, respectively. Typically, cross-track orbit per-
turbations are of the same order of magnitude as radial and
along-track perturbations (Rosborough 1987) or smaller. In
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addition, the cross-track perturbations are at least a few orders
of magnitude smaller than the distance between the two satel-
lites (for example 300 km, see Sect. 5). This results in a con-
tribution of the cross-track perturbations to the range-rate
observations, which is a few orders of magnitude smaller
than the contributions by the radial and along-track terms
(cf. Wagner (1987) and Sect. 6 of this paper).

The range according to the nominal circular orbits is equal
to:

ρ = 2r sin
α

2
(11)

leading to (after combination with Eq. (9)):

ρ̇ = (�ṙ2 + �ṙ1) sin
α

2
+ (�τ̇2 − �τ̇1) cos

α

2
. (12)

This range-rate equation (Eq. 12) will be used in conjunction
with a linear orbit perturbation theory for predicting grav-
ity-field-induced radial and along-track perturbations for the
two satellites.

For the second method, an orthonormal Earth-centered,
inertial reference frame (ECI) will be used. The real world is
considered to consist of a uniformly rotating Earth with angu-
lar rotation rate ω̄ around the polar Zeci axis. The Xeci and
Yeci axes are in the equatorial plane, with the Xeci axis direct-
ing to the Vernal Equinox (true of reference date).
The range-rate is obtained by applying the following equa-
tions:

ρ = {
(x2,eci − x1,eci)

2 + (y2,eci − y1,eci)
2

+(z2,eci − z1,eci)
2
} 1

2 (13)

ρρ̇ = (ẋ2,eci − ẋ1,eci) × (x2,eci − x1,eci)

+(ẏ2,eci − ẏ1,eci) × (y2,eci − y1,eci)

+(ż2,eci − ż1,eci) × (z2,eci − y1,eci) (14)

where x1,eci, y1,eci, z1,eci, x2,eci, y2,eci, z2,eci denote the loca-
tion of the two satellites in the ECI reference frame (cf.
Eqs. (1) and (2)).

3 Linear perturbation theory

Orbit perturbations in the radial, along-track and cross-track
directions caused by spherical harmonic terms of the Earth’s
gravity field are derived by applying a linear perturbation
theory (LPT) assuming circular reference orbits (Kaula 1966;
Rosborough 1987). Use is made of the time derivatives of the
following equations for the non-resonant terms taken from
Visser et al. (2001) (as indicated in Sect. 2, cross-track terms
are not taken into account):

�r = a

lmax∑

l=2

l∑

m=0

l∑

p=0

(ae

a

)l

Flmp

[
2(l − 2p)

flmp

+4p − 3l − 1

2(flmp + 1)
+ 4p − l + 1

2(flmp − 1)

]
Slmp (15)

�τ = a

lmax∑

l=2

l∑

m=0

l∑

p=0

(ae

a

)l

Flmp

[
2(l + 1) − 3(l − 2p) 1

flmp

flmp

+4p − 3l − 1

flmp + 1
+ l − 4p − 1

flmp − 1

]
S∗

lmp (16)

flmp = l − 2p − m
nday

nrev
(17)

Slmp (ω + M, � − θ)

=
[

C̄lm

−S̄lm

]l−m even

l−m odd

cos((l − 2p)(ω + M) + m(� − θ))

+
[

S̄lm

C̄lm

]l−m even

l−m odd

sin((l − 2p)(ω + M) + m(� − θ))

(18)
S∗

lmp(ω + M, � − θ)

=
[

C̄lm

−S̄lm

]l−m even

l−m odd

sin((l − 2p)(ω + M) + m(� − θ))

−
[

S̄lm

C̄lm

]l−m even

l−m odd

cos((l − 2p)(ω + M) + m(� − θ))

(19)

where the mean equatorial radius of the Earth is denoted
by ae. Use has been made of the Kepler elements: the orbi-
tal semi-major axis a, eccentricity e (only terms of order
zero for the eccentricity will be used, assuming near-circular
orbits), argument of perigee ω, inclination i, right ascension
of ascending node � and the mean anomaly M . The Green-
wich hour angle is denoted by θ , while Flmp is a normalized
function depending on the orbital inclination i only (Chapter
3 in Kaula (1966)). Moreover, it is assumed that the satellite
flies in a repeat orbit with a duration of nday nodal days in
which nrev orbital revolutions are completed (nday and nrev
have to be relative primes for a repeat orbit). The normalized
gravity field harmonic coefficients are represented by S̄lm and
C̄lm, where l and m denote the degree and order (for the nor-
malization, see Eq. (1.34) in Kaula (1966)). The gravity field
is represented by a spherical harmonic model complete to
degree and order lmax.

Equations (15)–(19) are almost the same for the two satel-
lites, with the only difference being the value for the argument
of latitude:

u1 = (ω + M)1 (20)
u2 = (ω + M)1 + α, (21)

where u1 and u2 denote the argument of latitude of the trail-
ing and leading satellite, respectively. For a repeat orbit,
Eqs. (12), (15) to (19), (20) and (21) lead to a Fourier series
for the range-rate with basis frequency 1/nrev cpr. Resonant
terms caused by 0 and 1 cpr gravity-field-induced perturba-
tions have not been included for the moment. These terms
occur when flmp (Eq. (17)) is equal to −1, 0 or +1, which is
the case only for zonal terms for the results described in this
paper. Resonant terms require special attention, as will be
indicated in Sect. 4. For reference, the combination of these
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equations lead to an analytical model for ll-SST observations
similar to the one described in Wagner (1987).

4 Numerical integration

The ll-SST range-rate observations are also computed based
on orbit solutions for the two satellites that are obtained
by numerical integration (NI) of the equations of satellite
motion. The NI is based on a tenth-order Adams-Moulton
integrator (Boyce and DiPrima 1986; Visser et al. 2003) and
the orbit solutions are given for each satellite as a series of
x, y, z coordinates in the ECI frame with a constant time step.
Equations (13) and (14) are then used to obtain a time series
of range-rate observations.

Resonant terms are implicitly included when solving the
equations of motion by NI. In order to facilitate a direct com-
parison between range-rates computed by the LPT and by NI,
the resonant terms need to be subtracted.As already indicated
by Colombo (1984), resonances result in a bow-tie pattern for
orbit perturbations. Therefore, in order to enable a compari-
son with range-rate observations predicted by the LPT, such
a bow-tie pattern ρ̇bt will be eliminated from the range-rates
using

ρ̇bt = a0 + ac cos ωsatt + as sin ωsatt

+bcωsatt cos ωsatt + bsωsatt sin ωsatt (22)

where ωsat is the satellite’s orbital angular velocity and a0, ac,
as, bs, bc are constants that are estimated by a least-squares
bow-tie fit through the time series of range-rate observa-
tions. After subtracting this estimated bow-tie pattern from
the range-rate observations, a range-rate amplitude spectrum
as a function of frequency (in cpr) will be obtained by a dis-
crete Fourier transform (DFT) .

5 Results

Range-rate observations are simulated for a global gravity
field mapping mission with the two satellites flying in a near-
circular (eccentricity ≈ 0.001) polar 10-day repeat orbit at
460 km altitude and with a separation of 2.5◦ (≈ 300 km).
The satellites complete 153 orbital revolutions in one repeat
period (nday = 10, nrev = 153). A time-series was generated
for the period covering September 1–11, 2003. The Earth’s
gravity field is represented by the EGM96 model complete
to spherical harmonic degree and order 70 (Lemoine et al.
1998).

5.1 Linear perturbation theory

The Fourier spectrum for the ll-SST range-rate observations
induced by the 70×70 EGM96 model was obtained by di-
rectly computing the amplitudes based on Eqs. (15)– (19). It
is displayed in Fig. 2 (top left). The root-mean-square (RMS)
of the signal, or the root-sum-square (RSS) of the amplitudes

divided by
√

2, is equal to 222.4 mm/s. The signal is domi-
nated by a clear 2-cpr peak with an amplitude of 314.4 mm/s
(RMS of 222.3 mm/s). Excluding this term leaves an RMS
of 6.0 mm/s. Furthermore, relatively large spectral peaks can
be observed close to the 1 cpr frequency resonance. It can
be observed from Fig. 2 that above 60 cpr, the amplitudes
become smaller than 1 �m/s.

5.2 Numerical integration

Fourier spectra were also obtained by the DFT of a time series
of ll-SST range-rate observations obtained by NI. The step
size in the numerical integration of the equations of motion
was taken equal to the observation time interval of 2 s, allow-
ing sufficient data points for the DFT and guaranteeing small
numerical integration errors. A total number of 432,000 sim-
ulated observations were generated for the selected 10-day
period.

As explained in previous Sections, a bow-tie pattern was
estimated from the observations first and subtracted before
conducting a DFT. The bow-tie pattern has an RMS of
65.3 mm/s. Subtracting this pattern reduced the RMS of the
range-rate observations from 232.1 mm/s to 222.8 mm/s, al-
most equal to the value found in Sect. 5.1. Excluding the
2-cpr term leaves a power of 6.0 mm/s, which is equal to the
value found by the prediction based on the LPT. The Fourier
spectrum is included in Fig. 2 (top middle) in addition to the
differences with respect to the spectrum obtained with the
LPT (top right).

6 Comparison and discussion

The power of the ll-SST observations predicted by the LPT
and the RMS derived by NI are equal to 222.4 and 222.8 mm/s
(after subtracting a bow-tie pattern). The frequency spec-
trum predicted by the LPT and the Fourier spectrum obtained
by a DFT of numerically integrated observations agree very
well (top of Fig. 2). The power of amplitude differences is
equal to 1.1 mm/s (top right of Fig. 2). The largest amplitude
differences occur at frequencies below 5 cpr. Above 15 cpr,
all amplitude differences are well below 1 �m/s.

Wagner (1987) indicates that part of the mismatch can be
attributed to not taking into account cross-track perturbations.
When using Eq. (10) and applying the LPT (Eq. (3) in Visser
et al. (2001)) the contribution of periodic terms to the range-
rate observations has an RMS value of about 8 �m/s, which
explains that only a small part of the mismatch between LPT
and NI (cross-track resonant terms might give a bigger con-
tribution, but are for the larger part absorbed by the bow-tie
pattern, Eq. (22)).

One has to realize that the Hill equations are a set of line-
arized equations of motion for perturbations with respect to a
circular reference orbit leading to approximation errors (Clo-
hessy and Wiltshire 1960). The results presented in this paper
show that these errors lead to a limited range-rate observa-
tion error. It is fair to assume that these errors will be reduced
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Fig. 2 Spectra of ll-SST observations for two satellite flying “en-echelon” in a 10-day polar repeat orbit at 460 km altitude and separated by
300 km

when the perturbing forces are reduced. The J2 is the dom-
inant perturbing gravity field term, and it is therefore inter-
esting to assess the range-rate observation error by the LPT
when this term is ignored.

Putting the J2 term equal to zero, the RMS of the range-
rate signal becomes 6 mm/s (consistent with the value
mentioned in Sect. 5.1 when ignoring the 2-cpr peak). The
agreement between the two spectra obtained by the LPT and
NI improves from 1.1 mm/s to 0.4 mm/s. These values are
0.01 and 2.3 mm/s when ignoring the spectrum for frequen-

cies below 2 cpr, reducing the discrepancy even further: the
LPT modeling error becomes less than 0.5% of the range-
rate signal. All amplitude differences are below 1 �m/s above
5 cpr (middle of Fig. 2).

When taking into account only the J2 term, it was found
that the differences between the amplitude spectra obtained
by the linear perturbation theory and numerical integration
contain most dominant features of the spectra differences
when EGM96 is used complete to degree and order 70 (bot-
tom of Fig. 2). Based on these results, it can be concluded
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that the largest part of the discrepancy between ll-SST obser-
vations predicted by LPT or obtained by NI are due to the J2
term.

The results presented by Cheng (2002) indicate a much
larger power for ll-SST range-rate observations for a simi-
lar satellite configuration, with amplitudes up to 93 m/s for
a period of 92 days. Amplitudes with this order of magni-
tude were not found by the two methods described in this
paper: the maximum gravity field induced amplitudes are
around 30 cm/s. The large amplitudes might be due to the
choice of orbit parameters for which perturbation frequen-
cies become almost equal to 0 and 1 (Eq. (17)). For such
near-resonant frequencies, the equations for the orbit pertur-
bations might become unstable and fail or lead to unrealis-
tically large amplitudes. Especially when using higher order
eccentricity functions in analytical perturbation theories for
near-circular orbits, as was done in Cheng (2002), the risk
of selecting frequencies very close to 0 and 1 cpr increases,
which might result in an overestimation of the size of the orbit
perturbation amplitudes. For the results described in Sect. 5.1,
only orbit perturbation terms of zero order in the eccentricity
were included, where the eccentricity of the orbit used in the
numerical integration (Sect. 5.2) was around 0.001.

It might be argued that in Cheng (2002), a gravity field
model complete to degree and order 160 was used in the mod-
eling of the range-rate observations, compared to 70 for the
computations described so far in this paper. For comparison,
the LPT was also applied for a two-month polar repeat orbit
(nday = 61, nrev = 931) at approximately the same altitude
as Cheng (2002), but using the EGM96 gravity field model
complete to degree and order 360. It was found that the RMS
of the range-rate signal hardly changed, and – for this case –
is equal to 221.5 mm/s, even though through the choice of a
two-month repeat period, perturbation frequencies closer to
the resonant 0 and 1 cpr appear.

In the case of a change of satellite altitude, a transfer
of potential to kinetic energy will take place. A simplified
relation has been derived for low-low inter-satellite Dopp-
ler or range-rate measurements in Wolff (1969) and in Jekeli
(1999):

ρ̇ ≈ �U

v
, (23)

where v is the velocity of the satellite (taken equal to the nom-
inal circular orbital velocity of the two satellites), and �U
represents the difference between the gravitational potential
at the position of the first and second satellite, respectively.
Using the dominant central potential term Uct , the following
relation then applies:

ρ̇ ≈ �Uct

v
=

( �
r

− �
r+�h

)

v
, (24)

where �h is the altitude difference between the two trailing
satellites. Assuming an altitude of 460 km, an altitude differ-
ence between the two satellites of 84 km is required for a
velocity difference of 93 m/s. For the simulated 10-day pe-
riod, the altitude differences were found to range between

−300 m and +300 m, which is orders of magnitude smaller
and indicative of the much smaller amplitudes for the range-
rate observations found in this paper (i.e., 30 cm/s at most).
The LPT presented in this paper does not predict ll-SST
range-rate signals with amplitudes of the order of 93 m/s,
but does produce results that are very close to those obtained
by NI (Fig. 2).

As indicated above, the LPT is capable of modeling the
range-rate observation with very high precision for the
non-dominant components (e.g., J2) of the gravity field, espe-
cially for frequencies above 2 cpr. Equations (12) and (15) to
(19) can then possibly be used for estimating gravity field
model corrections. Limited gravity field recovery experi-
ments, complete to degree and order 8, were already suc-
cessfully conducted by Kaula (1983), who made use of an
LPT. When extending the estimation of gravity field model
coefficients to higher degrees and orders, great care must be
taken with near-resonant terms, for example those induced
by spherical harmonic orders equal to an integer multiple of
the number of revolutions per day. In the notation used in this
paper, the number of revolutions per day is equal to nrev/nday.
In Visser et al. (2001), it was found that these near-resonant
terms cause gravity field recovery to fail when making use of
the LPT and extending the estimation to coefficients with or-
ders larger than nrev/nday (or 15 for GRACE-type orbits: thus
the maximum order used in Wagner (1983) is much below
the first near-resonant order for low-flying satellites).

One has to realize that gravity field estimation from satel-
lite observations is a downward-continuation process, which
is inherently unstable (Rummel et al. 1979). This has as a
result that, although the LPT is capable of modeling grav-
ity field-induced range-rate observations with high precision,
small LPT modeling errors might result in large gravity field
recovery errors. However, with the advent of high-precision
gravity field models from the GRACE mission (Tapley et al.
2004), the remaining gravity field uncertainty and associ-
ated residual range-rate signal is becoming very small, pos-
sibly making the LPT capable of efficiently estimating further
refinements to these models. This is an interesting topic for
further research.

Finally, past experiences have proved that analytical per-
turbation theories help in designing efficient (preconditioned)
iterative gravity field recovery methods, e.g., as described by
Klees et al. (2000), Pail and Plank (2002), and Visser et al.
(2001, 2003).

7 Conclusions

Relatively simple relations have been derived for co-planar
ll-SST observations based on approximated geometric rela-
tions and a linear perturbation theory (LPT). These relations
were evaluated for a GRACE-type mission scenario to pre-
dict ll-SST range-rate frequency spectra in the presence of
the 70×70 truncated EGM96 gravity field model. These spec-
tra were validated by spectra obtained by solving the equa-
tions of motion through numerical integration (NI). A very
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close match was obtained between ll-SST range-rate spectra
obtained by LPT and NI after subtracting a bow-tie pattern
to account for resonant terms. Remaining discrepancies were
found to be mainly caused by higher order J2 effects. It was
found that by ignoring the dominant J2 term, the LPT range-
rate model error is less than 0.5% of the signal for frequen-
cies above 2 cpr. It can thus be argued that the LPT is capable
of predicting ll-SST observations induced by gravity field
model differences with high precision, for example relative
to an accurate a priori gravity field model.

The research described in this paper was partly triggered
by Cheng (2002), who presented a detailed analytical pertur-
bation theory for ll-SST modeling and found a few large
amplitudes of the order of 100 m/s for ll-SST range-rate
observations that cannot be explained by the LPT as formu-
lated in this paper. The results in Cheng (2002) were, how-
ever, not validated by an independent method, as is the case
here.

The results presented in this paper support earlier work by
Colombo (1984) and Wagner (1987), and indicate the suit-
ability of using analytical perturbation theories for gravity
field satellite mission design studies and performance pre-
dictions. With the advent of accurate high-precision gravity
field models from gravity field missions such as GRACE, it is
interesting to study whether the LPT described in this paper
is suitable for efficiently estimating further refinements to
these models.
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